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We present the systematic results for three-dimensional fragmentation functions of spin-1 hadrons
defined via the quark-quark correlator. There are totally 72 such fragmentation functions, among them 18
are twist-2, 36 are twist-3 and 18 are twist-4. We also present the relationships between the twist-3 parts and
those defined via the quark-gluon-quark correlator obtained from the QCD equation of motion. We show
that the two particle semi-inclusive hadron production process ete™ — VzX at high energies is one of
the best places to study the three-dimensional tensor polarization dependent fragmentation functions. We
present the general kinematic analysis of this process and show that the cross section should be expressed in
terms of 81 independent structure functions. After that we present parton model results for the hadronic
tensor, the structure functions, and the azimuthal and spin asymmetries in terms of these gauge invariant
fragmentation functions at the leading order perturbative quantum chromodynamics up to twist-3.
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I. INTRODUCTION

In describing high energy reactions, we need two sets of
important quantities, the parton distribution functions
(PDFs) and the fragmentation functions (FFs). The former
are used to describe the hadron structure and the latter
describe the hadronization process. In a quantum field
theoretical formulation, both PDFs and FFs are defined via
the corresponding quark-quark correlator. The quark-quark
correlator is defined as a matrix in the Dirac space
depending on the hadron states. It is then decomposed
into different components expressed in terms of the basic
Lorentz covariants and the scalar functions. These scalar
functions contain the information of the hadron structure
and/or hadronization mechanism and are called the corre-
sponding PDFs or FFs. In many cases in the literature,
specific PDFs and/or FFs are introduced whenever needed,
sometimes with different conventions and/or notations.
With the development of the related studies, it is necessary
and useful to make a systematic study and present a
complete set of such results. The results for three-
dimensional PDFs of the nucleon defined in this way are
presented in [I] in a systematical way. Since usually
different types of hadrons with different flavors and spins
are produced in a high energy reaction, FFs are therefore
more involved and perhaps even more interesting but less
studied yet. Specific recent discussions can also be found
e.g. in [2-17]. A short summary can be found in a recent
unpublished note and short reviews [18-20].

In this paper, we summarize the results for three-
dimensional FFs defined via the quark-quark correlator
for spin-1 hadrons in a systematical way. The FFs are
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divided into a spin-independent part, a vector polarization
dependent part, and a tensor polarization dependent part.
Formerly, the spin-independent part is the same as those for
spin-0 hadrons and the vector polarization dependent part is
the same as those for spin-1/2 hadrons. They are also
similar to those for PDFs presented e.g. in [1] for the
corresponding cases. We will pay special attention to the
tensor polarization dependent part including higher twist
contributions. In this connection, we will in particular show
also FFs defined via the quark-gluon-quark correlator and
their relationships to those defined via the quark-quark
correlator obtained using the quantum chromodynamics
(QCD) equation of motion.

The most convenient place to study the three-dimensional
FFs of vector mesons is perhaps ete™ — VzX. We present
the results for the general kinematical analysis of this
process and calculate the hadronic tensor and differential
cross section up to twist-3 at leading order in perturbative
(pQCD). We also present the results for the tensor polar-
izations of V in terms of the three-dimensional FFs.

The rest of the paper is organized as follows. After this
introduction, we briefly summarize the general procedure
of deriving the results of FFs from the quark-quark
correlator and present results and relationships to those
defined via the quark-gluon-quark correlator at twist-3
in Sec. II. We make a general kinematical analysis of
ete” — VzX in Sec. III. We calculate the hadronic tensor
at leading order perturbative QCD up to twist-3 in Sec. IV.
We present the results for the structure functions in Sec. V
and those for azimuthal and spin asymmetries in Sec. VL.
We make a summary and a discussion in Sec. VII. Since
most of the equations are rather long, we will present the
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discussions in the corresponding sections but show most of
the formulas and tables in the appendixes.

II. FRAGMENTATION FUNCTIONS DEFINED
VIA THE QUARK-QUARK CORRELATOR

A systematic analysis is given in a recent unpublished
note [18]. For completeness, we briefly summarize the
basic ideas in this section and summarize the results in
Appendix A. Similar to parton distribution and/or correlation
functions, in quantum field theory, the quark fragmentation
is defined via the quark-quark correlator given by

Z/d4§e"kF5
x (0[£7(0; 00)y;(0)| p. $: X)
x (p, 85 X[ ;(§)L(&; 0)[0), (2.1)

where kr and p denote the 4-momenta of the quark and the
hadron respectively, S denotes the spin of the hadron;
L(&; 00) is the gauge link that is given by

()(kF,P S)

L(E ) = Peigf; A AT (e E))

=1+ igL_ A AT (138 EL)

+ (ig)? /: dny /;l di; AT (07384, €1)
X AT (s €7 E0) +

The correlator given by Eq. (2.1) satisfies the following con-
straints imposed by Hermiticity and parity conservation, i.e.,

(2.2)

2O (kp; p, S) = B (kg p, S)° (2.3)

EO(kp; p, S) = PPEO U p7. ST, (24)
where a vector with the superscript P denotes the result
after space reflection such as pf = p". Unlike that for the
hadron structure, because of the presence of the gauge
link and final state interactions between A4 and X, time-
reversal invariance puts no such simple constraint on the
correlator 2 (kz; p, S).

The three-dimensional or the transverse momentum
dependent (TMD) FFs are defined via the three-dimensional
quark-quark correlator é(o)(z,kF 1;p,S) obtained from

é(o)(kp, p,S) by integrating over k7, i.e.,

=0 )(Z kpisp, S Z/p dé:
x (0[L£7(0; 00)y (0)|p. S: X)
)L(&; 00)|0),

_i<P+§_/Z_zFL'EL>

x (p.S; (2.5)
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where z = pT/kf is the longitudinal momentum fraction
defined in light-cone coordinates. Here we use the light-cone
coordinate and define the light-cone unit vectors as
A= (1,0,0,), n=(0,1,0,), and n, = (0,0,1,). We
choose the hadron’s momentum as the z direction so that
p is decomposed as p# = pTi* + (M?*/2pT)n#

The FFs are obtained from é(o)(z, kpi;p,S) by decom-
posing it in the following two steps. First, we note that
E(O)(z,kF 1;p,S) is a matrix in Dirac space and expand

it in terms of the I" matrices, I' = {1, iys, 7%, ysy% ic®ys},
1.€.,
E(O) (Z? kFl; P, S)
=EO(z.kp1:p. ) +irs= V(2. kp1: p. S)
+ 72 (2 ks p.S) + 75720 (2. kp i . S)
+ iGaﬁ}’SEaﬁ (2, kg1 p,S). (2.6)
The coefficient functions are given by
E(O)[F](Z kpi;p,S)
——Z/p d§ d2§ (p*& /2= kFLéL)
x (p, $; X|p(£)L(&; 00)[0)
x T(0[L7(0; c0)yr(0) |, S5 X). (2.7)
where 2Ol represents respectively =@, =), =0 =0,

and Eg;) for different I"’s. Together with the demands

imposed by the Hermiticity and parity invariance
[Egs. (2.3) and (2.4)], the Lorentz invariance demands
that all the corresponding coefficient functions are real
and are Lorentz scalar, pseudoscalar, vector, axial-vector,

and tensor respectively. Furthermore, the tensor Eg}; is

antisymmetric in Lorentz indices and odd under space
reflection which implies that it can be made out of a vector
and an axial vector.

Second, we expand these coefficient functions according
to their respective Lorentz transformation properties in
terms of the basic Lorentz covariants constructed from the
basic variables at hand. They are expressed as the sum
of the basic Lorentz covariants multiplied by scalar
functions of z and k%,. These scalar functions are the
three-dimensional FFs. We note in particular that because
of the Hermiticity given by Eq. (2.3), these FFs defined via
the quark-quark correlator are real.

Clearly, the basic Lorentz covariants that we can con-
struct depend on what basic variable(s) we have at hand.
Besides the 4-momenta p and kr, we have the variables
describing the spin states. Such variables are different
for hadrons with different spins. For spin-1 hadrons, the
polarization is described by a 3 x 3 density matrix p,
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which, in the rest frame of the hadron, is usually decom-
posed as [21]

1 3 . T
P=3 1+ ES’Z’ +3TVZEY), (2.8)
where, X' is the spin operator of the spin-1 particle, and
¥ = 1(2'%/ 4 $/57) — 216", The spin polarization tensor

is T = Tr(pZ"), and is parametrized as

| _%SLL + S7r Str Sir
=1 s asaesnosh |9
Sir Sty 1811

Here, besides the polarization vector S, we also need a
polarization tensor 7. The polarization vector S is similar
to that for spin-1/2 hadrons and the tensor T has five
independent components that are given by a Lorentz scalar
S 1. aLorentz vector S ;. = (0, S5 7, S7 7., 0), and a Lorentz
tensor S%7 that has two nonzero independent components
§¥. = —Syr and Sy = Syr. In a covariant form, the
polarization vector S is decomposed as

+

P M
Sﬂ :lﬁn"—l—S’;—/{Z"ﬁn”, (210)

where 4 denotes the helicity and S; = (0,0, 3‘7) denotes
the transverse polarization. The tensor polarization 7+ is
expressed as [21]

174 +\ 2 +
TMD:§|:§SLL<%> ﬁ”ﬁ”ﬁ-%n{”sz}T

2 = v v M = v
=3 Sua i) = ) 4 S = ks

—l—lS —2””
= ntnY |,
3 LL pT

where we used the anticommutation symbol A{#B*'=

AFBY 4+ A¥B*, and also in the following of this paper

AlBYl = AFBY — A*B* and d’ =g" —i'n® —n'it.
Hence, for spin-1 hadrons, the quark-quark correlator

(2.11)

2 can be written as the sum of a polarization independent

0)

part EVO) a vector polarization dependent part 20 and a

tensor polarization dependent part 27 ie.,

S0z kpy: . S) = YOz kpys p) + 2V Oz kpis p. S)
+ 27Oz, k13 p, S). (2.12)

Since the polarization dependence is linear to the corre-

sponding spin parameters, formally, the spin-independent

part is exactly the same as that for spin-0 hadrons, and the
vector polarization dependent part is the same as that for
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spin-1/2 hadrons. The tensor polarization dependent part is
new and contributes only for spin-1 hadron production. We
summarize them separately in the following.

Before we present the results, we describe the notation
system for the FFs used throughout the paper. We will use
D, G, and H for unpolarized, longitudinally polarized, and
transversely polarized quarks. They correspond to those
FFs obtained via decompositions of the vector, axial-vector,
and tensor part of the correlator. Those defined via the
scalar and the pseudoscalar are denoted by E. A number j in
the subscripts specifies the twist: j = 1 for twist-2, null (no
number) for twist-3, and j = 3 for twist-4. We will also use
different symbols in the subscripts to denote the polariza-
tion of the produced hadron such as L and 7 in the vector
polarization case and LL, LT, or TT in the tensor
polarization case; a L in the superscript denotes that the
corresponding basic Lorentz covariant is kr, dependent.

If we decompose the quark field in Eq. (2.7) into the sum
of the right- and left-handed parts, i.e., v =y + y; with
wr/L =5 (1 £ 75)y, we see that for I' = I, iys and ic%ys,
wrl'y; and w;lyy are nonzero. So the terms related to
them (i.e., the E and H terms) correspond to the helicity-
flipped quark structure and are called chiral odd (y odd).
Similarly, for I' = y* and y>y%, ¥ Ty, and yglyy are
nonzero. Hence, the terms related to them (i.e., the D’s and
the G’s) do not flip the quark helicity and are y even. We
also recall the properties of the fermion bilinears under time

reversal 7, i.e.,

TPy, Wiysw. Wy p. WysyaW - Wicasysy}

= {wy, —wiysy, oy w, yrsy "y, wic%ysy}.  (2.13)
Using this, we can determine whether a component of
FF defined via the quark-quark correlator is time-reversal
even (7 even) or odd (T odd) according to the time-reversal
behavior of the corresponding basic Lorentz covariant.
However, we should also note that they are usually referred
as “naive T odd” or “naive T even” because the interactions
between the produced hadron £ and the rest X can destroy
simple regularities so all of them can exist in a practical
hadronization process.

A. Results of the decomposition and FFs

1. The unpolarized part

For the spin-independent part =V (z,kpy3p), the

independent variables that can be used to construct the
basic Lorentz covariants are p,, kg ,, and n,. The basic
Lorentz covariants that we can construct from them are
one Lorentz scalar p2 = M? no pseudoscalar, three
Lorentz vectors, p, kg, and n, one axial vector ¢ | pak’} | =

1~<Fa, and three antisymmetric and space reflection odd
Lorentz tensors pi,kriss €1pes and npkpi,. Here
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€1 pq = Eupant'n” and g, is the antisymmetric tensor. We

also use the notation @, , = &, ,,a” to denote the transverse
vector perpendicular to a |, and note in particular that a | -
b, =¢€,,,a"b* = —a, - IBL and c:zl = —a . The general
decomposition of the spin-independent part of the quark-
quark correlator is given by Egs. (A1)—(AS) in Appendix A.
We obtain eight unpolarized TMD FFs, two of them
contribute at twist-2, four at twist-3, and the other two
at the twist-4 level.

From Egs. (A1)-(AS), we see in particular the existence
of a leading twist FF H{ (z,kp,) that leads to azimuthal
asymmetry of the produced hadron in fragmentation of a
transversely polarized quark. This was first introduced in
[4] and is now known as the Collins function. We see also a
twist-4 addendum to it described by H3 (z, k).

If we integrate over d’kp,, we obtain the one-
dimensional results as given by Egs. (A6)-(A8) in
Appendix A. We see that there are only four left and the
number density D (z) is the only leading twist, two of them
contribute at twist-3 and the other one at twist-4.

We note in particular the direct one-to-one correspon-
dence between the results obtained in this case for FFs and
those obtained in [1] for PDFs. The only obvious difference
is the existence of the naive time-reversal odd H(z) due to
final interaction between & and X while the corresponding
term vanishes for PDFs.

2. The vector polarization dependent part

For the vector polarization dependent part, we have,
besides p,, kr 4, and n,, the polarization vector S to use to
construct the basic Lorentz covariants. The results obtained
are given by Egs. (A10)-(A14) in Appendix A. We see that
there are 24 vector polarization dependent TMD FFs, six of
them contribute at twist-2, 12 at twist-3, and the other six at
twist-4 level. Among them, eight are naive 7" odd (E%, E;,
E, Di;, Df, Dy, D7, and Ds;), and the other 16
are T even.

We also note that four of them (E; , Gy, Gi, G3,) are for
longitudinal (to longitudinal) spin transfer; six of them
(Hiy, Hiy, H¥, Hf, Hyr, Hy;) are for transverse (to
transverse) spin transfer; five of them (E%#, Gi;, Gy, G#,
G;yp) are for longitudinal to transverse spin transfer; three of
them (H{; , H;, H3; ) are for transverse to longitudinal spin
transfer; the other six (Ef, Di;, Dy, D1, Df, D3;) are for
induced polarizations which leads to hadron polarizations
in fragmentation of an unpolarized quark. At leading twist,
we have a Di; for induced polarization, a longitudinal
(Gqp), two transverse (H,r, HllT), a longitudinal to trans-
verse (Gi7), and a transverse to longitudinal (Hi;) spin
transfer.

We note in particular the induced polarization terms
described by Ef and the D’s in fragmentation of an
unpolarized quark. At leading twist, there is a Sivers-type
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[22] FF Dy, describing polarization transverse to the
production plane and corresponding to the transverse
hyperon polarizations observed in high energy hadron-
hadron and hadron-nucleus collisions [23]. Other higher
twist FFs describe polarizations in longitudinal as well as
two transverse directions.

If we integrate over d’k |, we obtain the results given by
Eqgs. (A15)-(A19) in Appendix A. We see that only eight
terms survive, which means that, in the one-dimensional
case, for the vector polarization dependent part, we have
totally eight FFs. We see also that two of them are leading
twist, they are the longitudinal spin transfer G, (z) and the
transverse spin transfer H,7(z). We also have four twist-3
FFs that lead to induced polarization of the hadron and two
twist-4 FFs that are addenda to the longitudinal and
transverse spin transfer respectively. We also see that in
this case induced polarization in the transverse direction
exists at twist-3.

We note again the direct one-to-one correspondence
between the results obtained in this case and those obtained
in [1] for PDFs. The difference is the existence of the naive
time-reversal odd E;(z) and Dy(z) due to final state
interactions between i and X while the corresponding term
vanishes for PDFs. While E; (z) is an addendum to G (z),
Dy (z) leads to transverse polarization in fragmentation of
the unpolarized quark. Both of them contribute at twist-3.

3. The tensor polarization dependent part

The general decomposition of the tensor polarization
dependent part is given by Egs. (A21)-(A25) in
Appendix A which is obtained by constructing basic
Lorentz covariants by using, besides p, kr,, and n, the
Lorentz scalar S; ;, Lorentz vector S; 7, and Lorentz tensor
Srr. We see that there are totally 40 tensor polarization
dependent TMD FFs, ten contribute at twist-2, 20 at
twist-3, and the other ten at twist-4. Among them, 24
(those related to ég“” and E;o(,o) ) are T odd and the other 16
are T even.

We emphasize in particular the similarities between
the tensor polarization dependent terms given by
Eqgs. (A21)—(A25) in Appendix A and those unpolarized
and vector polarization dependent terms given by
Egs. (Al)=(A14) in Appendix A.

(1) Since §;; is a Lorentz scalar and thus has no

influence on the basic Lorentz covariants, the
Sy -dependent terms have exactly one-to-one cor-
respondence to the unpolarized terms.

(2) For the S;r-dependent terms, because S;r and S
behave differently under space reflection, the S -
dependent terms are different from the S-dependent
terms. Since S;r has only two independent trans-
verse components, we have one-to-one correspon-
dence for S; 7 to Sy terms with the replacement of

STa by SLT(I‘
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(3) Although there is no counterpart for the Syz-
dependent terms in other cases, however, there is
no direct Sy7,, term contributing because Sy7,, =

. . o —T(0 —T(0) . .
STTap is symmetric while ;pf,) = —:a,ﬁ) 1s anti-

symmetric. All the independent S77 terms are in the
form of S77,,k%, which is denoted by S]}‘”Ta. Because

S’}*'Ta has exactly the same Lorentz and space
reflection behaviors as S;;,, we obtain a direct
one-to-one correspondence between S; - and Syz-
dependent terms with the replacement of S;7,
by ST

We note again the induced polarizations in the fragmen-
tation of an unpolarized quark. We see that at leading twist
an S;;-dependent term exists and is described by Dy;;.
There exist also terms depending on the other components
of the tensor polarization at higher twists. We emphasize
that, since they are independent of the polarization of the
fragmenting quark, they might be much easier to study in
experiments since no polarization in the initial state is
needed.

We integrate over d’k, and obtain Egs. (A26)—(A30) in
Appendix A. We have totally eight terms, four of them are
S71 dependent and the other four are S; dependent. They
have exact one-to-one correspondence to the unpolarized
and Sy-dependent parts. We see that there are completely
no Syr-dependent terms that exist in the one-dimensional
case. This means that no Syr-dependent one-dimensional
FF can be defined via the quark-quark correlator. The Sy7-
dependent one-dimensional FFs can only be higher twists.

We list those twist-2 FFs in Table II, and those twist-3
FFs in Table III. The twist-4 FFs have the same structure
of those at twist-2, so we will not make a separate table
for them. We also list them according to chiral and
time-reversal properties in Table I'V.

We note in particular the S; ; -dependent terms exist also
in the one-dimensional case. We see that the leading twist
contribution D;;; term survives the integration over kp |
and the higher twist addenda such as E;; and Ds;;. This
means that it can be studied even in inclusive high energy
reactions. In the case that the leading twist effect domi-
nates, the results should be not very much dependent of
energy. The energy dependence can be used as a sensitive
test of higher twist contributions.

B. Relation to those defined via the quark-gluon-quark
correlator at twist-3

Higher twist PDFs and FFs can also be defined via
the corresponding  quark-j-gluon-quark  correlators
(j = 1,2, ... represents the number of gluons) too [6—17].
However, because of QCD equation of motion
y - D(y)w(y) = 0, the higher twist PDFs and FFs defined
via these quark-j-gluon-quark correlators are often not
independent. They are related to those defined via the
quark-quark correlator by a set of equations derived using
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the equation of motion and can often be replaced by using
these relationships when calculating the cross sections
and other measurable quantities for different high energy
reactions. In this section, we take twist-3 as an example to
illustrate the results for FFs defined via the quark-j-gluon-
quark correlator and their relationships to those defined via
the quark-quark correlator.

Up to twist-3, we need to consider the quark-gluon-
quark correlator defined as

2 (1
2 (ks p.S)

1 .
:EzX:/d4§e—zkff<p,S;Xlu—,j(f)ﬁ(f;oo)m)

x (0[L£7(0;00)D,(0)y;(0)| p. S: X), (2.14)

where D,(y) =—id, +gA,(y) and A,(y) denotes the

gluon field. Similar to the quark-quark correlator 20,
we decompose it as

2(1)

—p (Z’kFJ_QI%S)
—(1 P
= :/() )(Zv kpisp,S) + 17555)1)(2, kriip,S)
+ 772 (2 ks p, S) + vsr" S5 (z, ke 13 . S)

; =(1) .
+ laaﬂ}/s‘—‘paﬂ(z’ kFJ_’ p7S) (215)

Twist-3 components are the leading twist contributions
that we obtain from é,‘,”. There has to be one 7 involved in
the basic Lorentz covariants and the other(s) are from the
transverse components. Since the 77 component of the gluon
field goes into the gauge link, we only have the other three
components for D,; thus no 71, component exists in the
basic Lorentz covariants. We therefore do not have twist-3

=)

contributions from =, or éf(,l). The twist-3 contributions
() =)

are obtained from =4, =,;, and E;:l)ﬁ and are given by
Eqgs. (A31)-(A39) in Appendix A. Here, we use a subscript
d to specify that they are defined via the quark-gluon-quark
correlator. A prime in the superscript before the L denotes a
different polarization situation, that after the L specifies
different FFs for the same polarization situation. We see
that we have in total 36 FFs at twist-3 defined via the quark-
gluon-quark correlator. This is just the same as what we
obtained from the quark-quark correlator. Among them, 18
are y even and the other 18 are y odd; four contribute to the
unpolarized part, 12 to the vector polarized part, and 20 to
the tensor polarized part. We note in particular that the
Hermiticity in this case does not demand that the FFs
defined via the quark-gluon-quark correlator are real. They
can have both real and imaginary parts.

For the 18 chiral even FFs (the D,’s and G,’s), the QCD
equation of motion leads to rather simple relationships.
They can be written in the following unified form, i.e.,
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1 )
Dig(z. k1) 4+ Ghg(z. k1) = z [Df (z. k1) +iG§ (z. k)],
(2.16)

where the superscript K can be null (no superscript), a “L”
or a “/_L”; the subscript S specifies the polarization of the
hadron and can be null (unpolarized), L, T, LL, LT, or TT.
There are in fact totally nine such equations with the
following combinations of K and S: K =nulland S = T or
LT;K=1land S=null, L, 7, LL, LT, or TT; K = 'L
and S = T'T. For the 18 chiral odd FFs, we have also nine
equations in the form,

K2 /
Hig(z, k1) + ﬁH{z’(s(Zv ki)

1 i
= —[H{ (2, ky) + 5 ES (2, kL)),

2.1
27 2 (2.17)

with the following combinations of K, K’ and S: (K, K') =
(null, L) and S =null, L or LL; (K,K')=(L,L’) or
('L,’L"yand S =T, LT, or TT. We note in particular that
these 18 equations in fact represent 36 real equations which
imply that all the 36 twist-3 FFs defined via the quark-
quark correlator are given either by the real or imaginary
part of those defined via the quark-gluon-quark correlator.
We note also that there are of course different choices for
the basic Lorentz covariants used here in defining these FFs
via the quark-quark and/or quark-gluon-quark correlators.
We choose them in a way so the defined FFs satisfy the
relationships given by Egs. (2.16) and (2.17).

These relationships reveal the physical essences of these
FFs and also help us to choose correct conventions in
defining FFs. It is also very interesting to observe that,
although not generally proved, the final results obtained for
the physical observables up to twist-3 are all expressed in
terms of FFs defined via the quark-quark correlator [6—17].
The contributions from the quark-gluon-quark correlator
can be replaced by using the relations given by Egs. (2.16)
and (2.17).

ITI. KINEMATIC ANALYSIS OF efe™ - VaX

As mentioned in the Introduction, among all different
high energy reactions, e e~ annihilation is most suitable
for studying FFs. For one-dimensional FFs, the inclusive
hadron production process e*e™ — VX is the simplest case
to study. In order to study transverse momentum depend-
ence, we need at least two hadrons in the final state. Hence
eTe” = VzX as illustrated in Fig. 1 is most suitable for
studying the tensor polarization dependent part of the three-
dimensional FFs. We now concentrate on this reaction and
present the results for cross sections in this and the next
sections.

For explicitness, we take ete™ — Z° = VzX as an
example. The differential cross section is given by

PHYSICAL REVIEW D 94, 034003 (2016)
Vi(p1,9)

ﬂév// m(p2)

FIG. 1. [Illustrating diagram for e*e™ — VzX.

2E\E,d6 o
m:él‘ﬂu(ll’IQ)WW(‘LPI’S’I’Z)- (3-1)
Here we use the same notations as illustrated in Fig. 1:
a = in, = 0"/[(Q> M) +T3M3]sin 20y, 0 =
s=gq? 0Oy is the Weinberg angle, M, is the
Z-boson’s mass, and I'; is the decay width. The leptonic
tensor is well known and is given by

L;w(ll’ 12) = Cﬂllulb + l]l/ZZﬂ - (l] : 12)9/41/]

+ ic§€up6l1 15, (3.2)
where ¢¢ = (¢%)? + (c4)? and ¢§ = 2c¢%,¢$; ¢ and ¢4 are
defined in the weak interaction current wy*(c$, — c¢$7° )w.
Similar notations are also used for quarks. The hadronic
tensors are defined as

1

W, (q.p1.S.p2) = (27)42(2@454@ — P11 = P2 Px)
X

2 <O|‘]l/(0)|p19 S’ p27X>

X<plaS’p27X|Jﬂ(0)|O>’ (33)

where S denotes the polarization of the hadron and for

the vector meson it includes both the vector and

tensor polarization parts, J,(x) = w(x)I',w(x) and
- q

L, =7 (cy = cir).

Besides the Lorentz covariance, the hadronic tensor W#*
satisfies the general constraints imposed by Hermiticity,
current conservation, and parity conservation in the electro-
magnetic process, i.e.,

W (q, p1. S, p2) = W#(q. p1.S. p2),  (3.4)
,W*(q. p1.S. p2) = ¢, W*(q.p1.S.p2) =0, (3.5)
W (q, pi.S.pa) = W, (¢”. pT.S7.pY).  (3.6)

We emphasize that parity conservation is not valid in the
weak process via Z exchange.

A. The general structure of W*(q,p,S,p,)

A systematic analysis of the hadronic tensor W, for
ete™ — h h,X for the case that both &, and h, are spin-
1/2 hadrons is presented in [14]. Here, we extend the
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analysis to eTe~™ — VzX including parity conserving as
well as violating contributions. We present the results for
the basic Lorentz tensors, the cross section and structure
functions in the Lorentz invariant form, as well as in the
form of azimuthal angular dependences in a particular
Lorentz frame.

1. The basic Lorentz tensors for W* (q,py.S,p3)

For the spin-independent and vector polarization depen-
dent parts, the results can just be taken from [14]. We list
them here for completeness and also for unification of
notations that are more convenient to extend to including
tensor polarization dependent parts.

First, the spin-independent (or unpolarized) part, we take
the notations as

S;wi v ”qv {u v} 3.7
gﬂ q ’plqplq’pquZq’quPZq ( : )

h = {elmarez(py, pyg ), (3.8)
" = plyphy (3.9)
ﬁ?flf” = {evary gvar}, (3.10)

where & represents the parity conserved (space reflection
P-even) tensors, i.e., those satisfying Eq. (3.6) or more
precisely 1 (g”. pT. 87, p%) = h(q. p1. S. p2) while h
represents those parity nonconserved (P odd), i.e., satisfy-
ing #(q", p7,S”, p}) = =i (g, p1. S, p); the super-
script § or A denotes symmetric or antisymmetric under
exchange of (4 <> v), and the subscript U denotes the
unpolarized part [24]. A 4-momentum p with a subscript ¢
denotes p, = p—q(p-q)/q* satisfying p,-q=0. We
use the shorthanded notations to make the expressions
more concise such as PP =e'%q,p,p,,, and

S{Wplpz(plq’mq)u} means g{ﬂqplp2pl;(}1 and g{ﬂqplpzp‘z/}q_

We see that there are totally nine such basic tensors in
the unpolarized case.
For the vector polarization dependent part, we have

i ={((a-S), (p- S Sehfyy, (3.11)
e ={((a-S), (p2- S SeRyy, (3.12)
hy = {(q- ). (pa- Viigf e¥mrhgf}, (3.13)
iy =1{l(q- ). (pa- SNy, eSwrigf}. (3.14)

There are totally 27 such S-dependent basic tensors, three
times as many as those for the unpolarized part, corre-
sponding to three independent vector polarization modes.

PHYSICAL REVIEW D 94, 034003 (2016)

For the tensor polarization dependent part, after some
lengthy algebra, we find out that if we consider S;;-, S;7-,
and Syr-dependent parts separately, we obtained the
following nice symmetric forms.

(1) The Sy;-dependent part. Since S;; is a scalar,
the S;;-dependent part is very simple. The S;;-
dependent basic tensors are just given by the
corresponding spin-independent tensors multiplied
by S;; such as h3* = S, ; 3" and so on. We have
therefore nine such tensors in this case.

(2) The S;r-dependent part. In contrast to the axial-
vector S, S;r is a vector satisfying the constraint
S;r - p1 =0, the S;r-dependent part is thus differ-
ent from the S-dependent part. Furthermore, both
S;r and S77 have only two independent transverse
components in the rest frame of the vector meson;
this is guaranteed by demanding a further constraint
S;r-q=0 for S;7. The basic S;r-dependent
Lorentz tensors are given by

hi'r; = {(pa - Sur)hyyy PGy, (3.15)
' =A{(p2- SLT)il}gjﬂiy»gs”qplpzh%D}’ (3.16)
hyri = {(pa - Sur)hy!”, Sy, (3.17)
= (- Sun e ooty (318)

There are totally 18 such tensors corresponding to
the two independent S; 7 components.

(3) The Syp-dependent part. S%. is a tensor
satisfying the constraints, S57 = S5, gasSty = 0,
PP (=8% p.,) = 0,and S%. = 0. We have the Sy-
dependent basic Lorentz tensors as given by

R = [ SEap S ST qplpzhsl"’} (3.19)
;l%ul _ {szpthﬂv STqulpth’;”}, (3.20)
R — [ §hap S%qpmzh“‘””} (3.21)

fo,#lx = {shp hA/w SP2qp1pa hz‘/””}_ (3.22)

There are also totally 18 Syy-dependent basic
Lorentz tensors. For W, (q.p;.S.py), we have
totally 81 basic Lorentz tensors, 41 of them are
space reflection even and 40 are odd.

2. General form of W* (q.p,,.S.ps)

The hadronic tensor W**(q, py,S, p,) is in general
expressed as a sum of all these basic Lorentz tensors
multiplied by corresponding coefficients. The coefficients
are real and functions of the Lorentz scalars qz, q- D1,
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q-p,, and p; - p,, which can be replaced by s = ¢,

& =2q-p1/q’ & =2q-p2/q’, and & =sp/s =
(p1 + p»)?/s. More precisely, we have

W (q, p1.S. p2)

= W¥(q, p1,S, p2) + WA (g, p1. S, p2),  (3.23)
W(q, p1,S, pa) = Zwii(s»glfzflz)hg’lw
+Z_Wrsfj(sv§17§27§12)hi,y, (3.24)
o.]
WA (g, p1. S, pa) = ZW (5, €1, & Ern) I A;w
+ZWW Ly E)H, (3.25)

where the subscript ¢ denotes U, V, LL, LT, and TT for
different polarizations; all the coefficients W’s are scalar
functions of the Lorentz scalars s, &, &, and &5.

B. The general structure for the cross section

Since the number of independent structure functions is
rather large, in practice, it is often more convenient to write
the cross section directly.

1. The Lorentz invariant form
Making the Lorentz contraction of W*(q, pi, S, p»)
with Lﬂl,(l 1,1»), we obtain the general form of the cross
section. For the unpolarized part, this is given by

2E]E2d0 a)(
Tpidps 8 S Fuls.&1.6. 812351, 32)

+ Fuls. &1, 6. 81 v2.9)]. (3.26)
where F and F v represent the space reflection even
and odd parts respectively and they have the structures as
given by

Fu=FY+ Fhy + Fhy, + FY + F2y3 + F2yv,,
(3.27)

Fu =5(FY + Fyy, + Fiyy), (3.28)

where besides &;, &, and &, defined before, we introduced
two new Lorentz scalars y; =2p,-1,/¢>, v, = 2p> - 1,/ ¢°,
and one pseudoscalar y = 9”172 /g% The “structure
functions” F’s are all scalar functions depending on
(s,&1, &2, E12). We see also clearly that the six F’s describe
the parity conserved contributions while the three F’s
represent the parity violated part. They are related to the
W’s by

PHYSICAL REVIEW D 94, 034003 (2016)
1
Fi = _ECT[ZW"EA + (MW, + maWis)

— (&1

—my— m%)me]

1 - -
+ 5SC§ (EWE + EWE), (3.29)
1
Fy :chs(fl Wi, +&EW U4>_C3SWU1’ (3.30)
1 ~
Fiy = 5¢is(eaWis + EWia) = §sWi, (3.31)
1
Fi} = —chstjz, (3.32)
1
F% = —chsW,B, (3.33)
Fi2 = —cSsWy,, (3.34)
FY = c§s*(E; Wi + E W) — 2c8s W, (3.35)
Fliy = =2¢52 W, (3.36)
= —2c¢52 Wiy (3.37)

We see here that although the Fy;’s and F ui’s are all
functions of s, &, &, £», they contain already information
from the leptonic tensor due to the coefficients ¢{ and c§.
We also see that the parity conserved parts come from
parity conserved hadronic tensor terms (characterized by
W’s) contracted with parity conserved leptonic tensor terms
(characterized by c{) or parity violated hadronic tensor
terms (characterized by W’s) contracted with the parity
violated leptonic tensor term (characterized by c5). We
have six such Fy;’s. Similarly we have three Fy;;’s for the
parity violated parts obtained from Lorentz contractions of
parity conserved leptonic tensor terms with parity violated
hadronic tensor terms or parity violated leptonic tensor
terms with parity conserved tensor terms.

The polarization dependent part has completely the same
structure. For the vector polarization dependent part, from
Egs. (3.11)—(3.14), we obtain immediately that

2E\E do¥ a2
W 2)({(4 S)(Fwi +~7:v1)

+ (P2 S)(Fva+ Fya)

+ &8P (F s + Fys) ) (3.38)

Here, we note that since ¢ - S and p, - S are space reflection
odd, the parity conserved parts Fy; and Fy, take exactly

the same form as F U glven by Eq. (3.28), while the parity
violated parts F v1 and F v» take the same form as Fy
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given by Eq. (3.27) with the subscript U replaced by V1 or
V2. Since £5P172 s a scalar, F 5 and F 3 take exactly the

same form as F and j—'U given by Eqgs. (3.27)-(3.37)
respectively with the subscript U replaced by V3. We have

three sets of Fy; and F vi because there are three indepen-
dent components of vector polarization.
For the tensor polarization dependent part, we have

2E,\Eyde"t  o?

Bpdlp, s_z)(SLL(]:LL + FrL), (3.39)
2FEE,detT  o? .
d31plzd3p2 = STZ{(Pz “Ser)(Frr +Frr)

+ 851_74[’11’2 (:FLTZ + ~7~:LT2)}v (340)
2E\E,dc'T o -
d31plzd3p2 = {szpz(}-TTl + Frr1)

+ SSTT(H)IPZ(FTTZ +ﬁTT2)}- (341)

Here S;;, p»- Spr, and SP2P* are scalars, €5:79P17> and
STHaPP2 are pseudoscalars. Hence, F;;, Frri. Frris
F 72, and F 12 take exactly the same form as F; given
by Eq. (3.27), while fLL, :FLTI’ FTTI’ Frr2s and Frpy

take exactly the same form as Fu given by Eq. (3.28).

&

2. In the helicity-GJ frame

Going into a special reference frame, we can express
the cross section in terms of angular dependences. The
polarization of high energy particles is described and/or
studied most conveniently in the helicity frame, i.e.,
where we choose the direction of motion of the particle
as the z direction. Hence, to study polarization dependent
FFs for V in ete™ — VX, we suggest to choose the
following frame. We choose the center-of-mass frame of
the eTe™ system, and direction of motion of V, i.e., p, as
the z direction, and the lepton-hadron (vector meson)
plane as the Oxz plane. This is a particular Gottfried-
Jackson frame [25] which we will refer to as the “helicity-
GJ frame” in the following of this paper. In this frame,
we have

P1 = (EI’O’ 0’ plz)’ (342)

P2 = (Ex, [Par|cos @, [por|sing, pa.),  (3.43)
Q

I8 5(1 sin 6,0, cos 0), (3.44)
0

I, = 5(1 —sin®,0, —cos6), (3.45)

q = 11 + 12 = (Q,0,0,0), (346)

PHYSICAL REVIEW D 94, 034003 (2016)

and we choose &, &, ,0,or y=15L -pi/qg-p1 =
(1 + cosd)/2 and ¢ as the independent variable set. The
other variables are replaced. The basic volume element
transforms as

d’pd’p, _ w6

="5(1 —4M2,/sEV2dE dESdyd? pyr,
EE, £ ( zT/ 2) 1agrayads porr

(3.47)
where M3, = M3 + p3; and d*pyr = dp3;de/2.
The structure functions.—For the unpolarized part, we have

Fu = (1+cos?0)Fy + sin?0F,; + cos OF 3y,
+ cos @[sin OF |7, ? + sin 20F 5"

+ cos 2¢sin2OF > | (3.48)
Fy = sin[sin OF 1 + sin 20F50 "]
+ sin 2sin20F" 7 (3.49)

where Fp; and F u; are all scalar functions of s, &, &,
and p%T. We see also clearly that we have totally nine
independent structure functions in the unpolarized case,
six of them are denoted by F;’s and correspond to parity
conserving terms and the other three are F u’s describing
the parity odd part of the cross section. This is just the same
as those shown by Egs. (3.29)—(3.37). We note in particular
that the structure functions F;’s and F u’s themselves are
scalar functions of s, &}, &, and p3, and are invariant under
space reflection. But the angular dependent coefficients
have the corresponding space reflection properties. The
different basic Lorentz tensors Ay;;’s and fl’{,”i’s are trans-
formed to different angular dependences. We also see that
there are three azimuthal angle independent structure
functions, three parity conserving, and three parity violat-
ing azimuthal angle dependent structure functions. They
correspond to cos or sin asymmetries and are parity
conserving and violating respectively.

Here we take the following conventions for the notations
of structure functions, i.e., the superscript to denote the
corresponding azimuthal angle ¢ dependence, the capital
letter in the subscripts to denote the polarization, and the
digital number in front of the capital letter to specify if we
have more than one such structure function corresponding
to the same azimuthal angle ¢ dependence but different 8 or
y dependences [26]. We also note that to replace 6 by y we
have

1 +cos?0~1+(2y—1)*=

24(y),  (3.50)

cosf~—1+2y=—-B(y), (3.51)
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sinfd~1—(1-2y)2=4y(1-y)=C(y), (3.52)
that appear frequently in the expressions of the cross
section.

For the vector polarized part, we note that

- _—_ E,
s_(E, E) (3.53)

St|sin @g, 4

The (g - S) and £5971P> terms in Eq. (3.38) contribute to
longitudinal and transverse polarization separately, while
the (p, - S) terms contribute to both cases. The contribu-
tions to transverse polarization from the (p, - ) and £5¢717>
terms are characterized by additional cos(@g— @) and

|

Fr = singg[sin OF 275 + sin 20F5n%5] + sin(¢pg + go)sin29Fsm(%+"’> + sin(¢pg —

PHYSICAL REVIEW D 94, 034003 (2016)

sin(g@s — @) dependence. We absorb the different kinematic

factors into £ and F and write the cross section as

2E\Eydo” o - - -
4513,19123,?2 = UFL+FL)+[S7(Fr+Fr)}

(3.54)
Since A changes sign under space reflection, the parity
conserving F L and parity violating F; take exactly the
same form as F v and F; respectively. We have three F';;’s

that have one-to-one correspondence to F ;u’s and six F, iL’S
that have one-to-one correspondence to F;;’s.

For the transverse (vector) polarization dependent part,
due to @g dependence, the structure looks a bit different;
they are given by

9)[(1 +cos?0)Fip ™"

+ sin20F50 @) 4 cos OFS @] 4 sin(gg — 29)[sin OF 25727 4 sin 20F 50 *s72)]

+ sin(gs — 3¢)sin29F;‘“<"’S‘3"’>,

Fr = cos gg[sin OF 3?5 + sin 20F55 5] 4 cos(gs + go)sinZGFCTOS({”SW) + cos(ps — @) [(1 + COSZQ)FTOTS((”“_{”)

+ sin2OF SOTS 9570) | cos OF P "’S_w)] + cos(gpg — 2¢)[sin OF ‘1:(}5("’5_2"') + sin 20F SOTS("’S_M]

+ cos(ps — 3¢)sin2OF e (7s730)

There are 18 such transverse polarization dependent struc-
ture functions, nine of them are space reflection even and
nine are space reflection odd. Totally we have 27 vector
polarization dependent structure functions corresponding
to the 27 independent basic Lorentz tensors /);’s for the
hadronic tensor. Among them, 12 contribute to space
reflection even terms in the cross section, the other 15 to
space reflection odd terms. We note in particular the sin ¢g
and cosgg terms correspond to single transverse spin
asymmetries in deep-inelastic lepton-nucleon scattering
e~ h — e~ X with respect to the leptonic plane. They are
either parity or time reversal odd and do not exist in
e"h — e~ X. In et e annihilation, they describe the trans-
verse polarization in or transverse to the lepton-hadron plane.

The S, ; -dependent part is again completely the same as
that for the unpolarized case; i.e., we have a one-to-one
correspondence of Fy; to Fy and F 1 to F U-

For the S;7-dependent part, we define

Sir = |Scr|cosepr, (3.57)
S)IiT = |SLT| singy 7, (3'58)
Serl =/ (Sir)* + (S1r)% (3.59)

(3.55)
(3.56)
[
and we have
2E E dGLT az .
L7_2)(|SLT|{~¢LT"'-7:LT}. (3.60)

&pid’py s

Because S;; behaves differently from Sy under space
reflection, we obtain that F; ; takes exactly the same form
as F r and F .7 behaves in the same way as Fy. More
precisely, we obtain the results for F;; by replacing ¢g
with @7 and F;; with F;;; in Eq. (3.56), and those for
Frr by replacing ¢g with ¢, and Fj;; with F,-LT in
Eq. (3.55). We have exactly one-to-one correspondence
here.
For the Syr-dependent part, we take

Str = |Srr| cos 2¢rr, (3.61)
S7r = |Srr| sin 2977, (3.62)
|S7r| =/ (S77)% + (Spr)?, (3.63)

so that 7272 and 51747172 will contribute cos(2p77 — 2¢)
and sm(Z(pTT —2¢) terms. Compared with the S; part,
by changing ¢g — 2¢7rr — @, the Srr-dependent part is
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classified into cos 2¢zr, cos(2@rr —
terms. More precisely, they are given by

2E1E2dUTT - 0(2
d*p,d®p, s

(P>, COS(Z(PTT - 2fﬂ), COS(Z(pTT

S XISrr{Frr + j:TT}’

PHYSICAL REVIEW D 94, 034003 (2016)

—3¢), cos(2¢rr —4¢), and the corresponding sin

(3.64)

Frr = cos 2prpsin®0F 7 o cos(2prr — ¢)[sin OF cos(2¢TT—gp) + sin 20F EOTS;Z(/)TT_W]

+ cos(2p7r — 20)[(1 + cos2) FSo20r=20) 4 Gin2gFsos20rm=20) o5 QFSos20mr=20)]

+ cos(2p7rr — 3¢)[sin OF COQ(Z[” m30) 4 sin 20F%;. 2(/'”_3(”)] + cos(2¢7r — 4¢)sin’0F CTO;(Z{”"_‘“/'),

(3.65)

Frr = sin2¢ppsin?0F STi;Z(p” + sin(277 — @) (sin OF ?i;(z‘/’"_w + sin 20F° ;1; (27— (f'))

+ sin(2prr — 29)[(1 + 00529) bm(2wrr 2¢) + sin26 Fsm(Z(prr 2¢) + cos erm(Z(prr 24))]

+ sin (2§0TT

To show the regularities we list all 81 structure functions
together with the leading twist parton model results in a
table. See Table I in Sec. V.

The azimuthal asymmetries.—From these equations, we
can calculate the azimuthal asymmetries and different
components of hadron polarization in a straightforward
way. E.g.,

(cos @)y = (sinOF ;Y + sin20F5;7)/2Fy,,  (3.67)
(cos 20); = sin20F 5> 2F ., (3.68)
(sing)y = (sinOF5? + sin20F5 ") /2F ;. (3.69)
(sin2¢); = sin20F3" > J2F (3.70)

where Fy;, denotes the result of F; + F y averaging over
@, 1.e,

do ~
Fuy(s.&1.62. par. 0) E/ﬂ(fU'i'j:U)
= (1 +cos’0)Fy

+ 8in?0F,; + cos OF 3. (3.71)
We see that these azimuthal asymmetries just equal the
corresponding structure functions divided by the azimuthal
angle independent part. We also see that the cosine asymme-
tries correspond to the parity conserving part and the sin
asymmetries correspond to the parity violating part of the
cross section so the latter vanish in parity conserving
processes.

The polarization of the vector meson V.—The average
value of each component of the polarization is obtained

3¢)(sin gFil;(2¢TT_3¢) + sin 29F;1;<2(/}TT 34’)) + sin(2pyp — 4(p)sin291:“sri;<2(”"_4"’>,

(3.66)

I

from their correspondences to the probability differences in
a different polarization such as S;; = [1 —37P(0;0,0)]/2
where P(m;8,,¢,) is the probability for V to be in the
eigenstate of X" with the eigenvalue m [21]. For the
five components describing the tensor polarization, we
obtain

- 1FLL+»¢LL

— - LL 3.72
SR (3.72)
v 2Fi+ T
§i, =Ll T LT o (3.73)
3 Fu+Fy
gy, _ 274+ Fir (3.74)
T3 F 4 Fy

where i = x or y denotes different components of the
polarization tensor. It is also interesting to see that the
numerator 73, and F7j, are equal to the cos¢@; and
sin ¢, r terms of F respectively. They can be obtained
as follows:

Fir= /@cos o1 F L7, (3.75)
Fip = / LT G )1 F o (3.76)
and similar for F};. For F3, we have
. / d";" c08 2077 F . (3.77)
F = / d‘fr” sin 2¢77Fr7. (3.78)
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and similar for f’%’T The explicit expressions can be
obtained easily from those for the corresponding F, or
F -~ We omit them here but simply emphasize that they
are in general dependent on the variables s, &, &, por,
0, and ¢.

If we average over ¢, we see that only the ¢-independent
terms in the expressions of F’s and F’s survive. We denote
them as

do

F= [

Lr., (3.79)

and we obtain

(Fu) = (1 + cos?0)F,y + sin®0F 5, + cos OF 3, (3.80)
(Fy) =0, (3.81)
(FL) =0, (3.82)
(Fr) = (14 cos?0)F,, + sin®0F,; +cosOFy;, (3.83)
(Fr) = singg(sin OF %5 + sin 20F3075), (3.84)
(Fr) = cos gs(sin OFSS?S + sin 20F52 %), (3.85)
(Frr) = cos@pp(sin OF (7" 4 sin 20F5*"),  (3.86)
(Frp) = singpr(sin OF 727 4 sin20F5027), (3.87)

(Fr) = (1 +cos?0)Fy; + sin®0F,;; + cosOF 3,
(3.88)
(FiL) =0, (3.89)
(Frr) = cos 2pysin2@F 52011 (3.90)
(Frr) = sin 2¢p7sin20F ?r}z”’". (3.91)

We see the similarities between different components and
also the cos ¢, or sin ¢, term corresponding to the x or y
component of the polarization. More precisely, in this case,
we obtain

(A = (1 4 cos20)F,; + sin®0F,; + cos OFy;),

3FU1
(3.92)

<SLL> =

2Fy,
(3.93)

(14 cos?0)F; + sin?0F 5, ; + cosOF5.;),

PHYSICAL REVIEW D 94, 034003 (2016)

(1) = 37— ——— (siNOFS?S +sin20F5° %), (3.94)
Ut

(51) =37 (sinOF 07 4 sin20F5n?%),  (3.95)
Ut

X 2 COS @11 COS QT

(S57) = 3, —— (sin@F /" + sin20F5, /"),  (3.96)
t

(S} 1) = == (sinOFM07 4 sin 20F507),  (3.97)
Ut

2 2
SH) = = §in2QFSS T 3.98
< TT> 3FUt T ( )
’ 2 —
(S = Sin2QF5n 20T (3.99)
3Fy,

We see that in this way we just pick up the corresponding
@-independent and, in the transverse polarization case, the
cos ¢, or sin ¢, terms. These results are much simpler and
can be used to study the corresponding components of the
structure functions more conveniently. We also note that
(SrL)s (S7), (S51), and (S3%.) are parity conservmg, and the
other components such as (1), (S¥), (S77), and (Syy) are
parity violating. This implies that if we consider parity
conserving reactions, only the F terms survive and the F ;'S
have to vanish. In this case we see that we have only
nonzero (S;;), (Sy), (S37), and (S3%.). Other components
such as (1), (S¥), (S77), and (S7;) have to vanish.

In the case where transverse components are concerned,
it is often useful to study different components with
respect to the two transverse directions ¢, and ¢, defined
as ¢, = py X po/|p1 X po| = (=sing.cosg) and ¢, =
Par/|Par| = (cos @, sing), ie., the normal and tangent
of the hadron-hadron plane respectively. The corresponding
components of the polarization are given by exactly the
same equations such as Eqgs. (3.73) and (3.74) with i = n
or t. It can easily be shown that such components can
also be obtained from Egs. (3.73) and (3.74) with ¢,
being replaced by ¢, — ¢ in the integrations given in
Eqgs. (3.75)-(3.78), e.g.,

T= /%Sm((ps - @) Fr. (3.100)
= /%COS(% - o) Fr. (3.101)
ir= / d(’;” sin(prr — @) Frpn  (3.102)
F— /d(f[LT cos(@rr —@)Frr,  (3.103)

034003-12



TENSOR POLARIZATION DEPENDENT FRAGMENTATION ...

Prr

COS(zgﬂT'r - 2(/))?7‘7‘, (3104)

nn d
T — —

nt _/dgoT
T —

It will be also interesting to see the results after integrating
over ¢, we just pick the corresponding cos(g, — @) or

Sln(2§07'7‘ - 2(p)f7*7‘ (3105)

sin(¢, — @) terms. More precisely, we have
(81) = 3 [(1+ Coszg)Fii;(ms—rm
1
+ Sin2OF ™) 4 cos OF i), (3.106)
(1) = 35— (1 + cos?O) Py
t
+ Sin20F S0 70) 4 cos OF S0, (3.107)
(Str) = 35— (1 + cos?O) P
t
+ Sin2FSe) 4 cos gFSIe)) (3.108)
(St,) = 3, [(1 4 cos? @) Fsolwiro)
t
+sin2 OFS\0) 4 cos OF 0] (3.109)
nn -2 2 009 2(PTT—zf/’)
(S77) = E[( + cos*0) F,y
t
+ SIH29FCOS(2(PTT—2(/7) S ng‘;SJ(}(”TT—Z(ﬂ)] ’
(3.110)
(1) = 3 [(1 + cosO) ™

3Fy,
+ sin0F, Sm(z(’”"_m + cos OF ;1;(2(””'_2(")]

(3.111)

It is interesting to see that all the average transverse
polarizations with respect to the hadron-hadron plane take
a similar form in terms of the corresponding structure
functions. We also see that in this case (S%), (S};), and
(S71.) are parity conserving while (S%), (S7,), and (S%5.)
are parity violating.

In experiments, it is usually very difficult to study
azimuthal dependence and hadron polarization simultane-
ously. From the kinematic analysis given above, we see that
we can either study the azimuthal asymmetries given by
Egs. (3.67)—(3.70) in the unpolarized case, or study the
longitudinal hadron polarization in the helicity frame and
transverse polarizations with respect to the lepton-hadron
plane or the hadron-hadron plane averaged over the
azimuthal angle ¢ to study the corresponding structure
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functions as given (3.94)-(3.99) or

Egs. (3.106)—(3.111).

by Egs.

C. Reduce to ee” —» VX

It is also clear that if we consider the inclusive process
ete™ — VX, we should integrate over p,, i.e., carrying out
the integration [ d*p,/(2E,) to obtain the corresponding
hadronic tensor and/or cross section. In this case, we obtain
three for unpolarized, three for -, three for S;; -, four for
Sr-, four for S; 7-, and two for the S;r-dependent parts. The
basic Lorentz tensors for the hadronic tensor obtained in
this case are given by

v v ”q” v
f;jln — {gﬂ 1p/14qp1q ) (3112)
hyfy, = e, (3.113)
hyt, = elransptl, (3.114)
e, = (g Shg,. SEpUY. (3.115)
Auv . 7 Apv [I«WP]S p]
hyiin = {(q - S)hyiy. € Pigts  (3.116)
7 Auv v
hVI,lm SW 1]qa (3117)
hi’ﬁ',m = SLthZ-'jm, (3.118)
i = SLLlig i, (3.119)
Wt = St pt (3.120)
By, = elramsipid, (3.121)
Auv v
Ry in = S[L”rpl]q (3.122)
]2/2;#,/1‘;1 = 8[/’”1PISLTPII]q’ (3123)
hiltiin = St (3.124)
ilsﬂu = g{ﬂaqmsl’} (3 125)
TT,in TTa* .

There are totally 19 such independent basic Lorentz
tensors, ten of them are space reflection even and nine
of them are space reflection odd. We note in particular the
spin-dependent time-reversal odd term hy'", = elra p'{}é
novel to deep-inelastic lepton-nucleon scattering (DIS) as
discussed in [27]. This corresponds to single transverse
polarization of V with respect to the lepton-hadron plane.
There could be also parity violating transverse polarization
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in the lepton-hadron plane described by the last one in

Eq. (3.115), ie., Iy, = S§pil.

The inclusive process e™e™ — VX can also be studied
in the helicity-GJ frame. Formerly, the differential cross
section for eTe™ — VX takes exactly the same form as that
for ete™ — VrX integrated over ¢. The corresponding
inclusive structure functions just have one-to-one corre-
spondence to those given by Eqgs. (3.80)—(3.91). They are
just equal to the counterparts in Egs. (3.80)-(3.91) inte-
grated over & and p3;. In this case, we can study the
longitudinal polarization and the transverse polarization
with respect to the lepton-hadron plane that have similar
expressions in terms of the structure functions as those
given by Egs. (3.92)-(3.99).

IV. HADRONIC TENSOR IN TERMS OF FFs

We now calculate the hadronic tensor and differential
cross section in the partonic picture at leading order in
pQCD but with leading and twist-3 contributions. In this
section we present the results obtained for the hadronic
tensor.

In the partonic picture at the leading order in pQCD, we
need to consider the contributions from the diagrams shown
in Figs. 2 and 3 just as in [7] where spin-1/2 hadrons are
considered. We need to perform the collinear expansion
and pick up the results up to the order 1/Q in order to get
the twist-3 contributions. Collinear expansion was first
proposed for the inclusive process [28,29] and has now
been applied to all processes where one hadron is explicitly
involved [15,17,30]. Systematic derivations have been
given for such processes (for a recent short summary
see, e.g., [20]). However, for processes with no less than
two hadrons involved, systematic derivation for collinear
expansion is still lacking. Usually, one just picks up terms
up to 1/Q from these diagrams [6—-13,16]. We do it in the
same way in the following of this paper.

A. Hadronic tensor in the collinear frame

The leading power contribution from Fig. 2 gives us the
leading twist contribution where no transverse gluon
exchange is involved. The longitudinal gluon exchanges
lead to the gauge link that is needed to keep the quark-quark

FIG. 2. Feynman diagram for Z — VzX without gluon
exchange that contributes at leading and higher twists.
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correlator gauge invariant. Up to twist-3, we need the next-
to-leading power contribution from Fig. 2 and also the
leading power contributions from Fig. 3, where the quark-
gluon-quark correlator is involved. We use the definition of
the quark-gluon-quark correlator as given in Eq. (2.14),
1.e., to use the covariant derivative D instead of A. This is
not only to use the simple relationships as given by
Egs. (2.16) and (2.17) but also to be consistent to the
cases of efe™ —» VgX and ete™ — VX where collinear
expansion has already been systematically proven [15,17].
To do so, we need to pick up the corresponding k| terms

from Fig. 2 and add them to those from Fig. 3. In this way,

we obtain W, = WL‘Z) + W,(J,) - AWE,?,). For the contribu-

tion Wf}? from Fig. 2, we have

~ 1 &k, d*K
W = [ S h +K, — 1)

" pipr ) (2n)* (20)
X Tr[E(O)(Zl’ ki, pi, S)FME(O)@L kl, Pz)ry]-
(4.1)
Corresponding to Fig. 3(a), we have
~(1a> —1 /Jlklko/l 2 ’
W' = 5k, +K, —q,)
" V20pipy ) (2n) (22) ’
X Tr[FME(O)(zz, k’y Pz)VpﬁryE(l)p(Zh ki, pi, S)]
(4.2)

(c) (d)

FIG. 3. Feynman diagrams for Z — VzX with one gluon
exchange that contributes at twist-3 and higher twists. Here, in
(a) and (b), we have quark-gluon-quark correlator for the
fragmentation of the quark, and in (c) and (d) we have that of
the anti-quark.
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~ (0a) 1 /dsz dzk’l 82
AW = Sk, +K, —q.)
" Vagpipy) @a(r
Xk!j_Tr[Fﬂ >(Z2’kj_’p2)7pﬁry‘—‘ (Z17kJ_’p1’S)]
(4.3)

and similar for those from Figs. 3(b)-3(d). The transverse
momentum dependent quark-quark or quark-gluon-quark
correlators, 20 (z,k,, p.S) or Z0P(z,k,, p, S) are given
by Egs. (2.5) or (2.14) respectively. We use = to denote that
for antiquark fragmentation that differs from the corre-
sponding one for the quark by exchanging y and  in the
definition. Here as well as in the following of this paper, for
explicitness, we consider only ¢ — VX and g — zX. The
complete results should be the sum of these contributions
and those from ¢ — VX and ¢ — zX. The latter are just
obtained simply by changing the =’s to the corresponding
Z’s and =’s to the corresponding =’s. Also a summation
over the flavor of ¢ is implicit.

We emphasize in particular that these expressions
(4.1)—(4.3) are obtained from Figs. 2 and 3 and they are
also straightforward extensions of the results obtained for
ete™ — VgX which is a special case by setting |p,, X) as

In the latter case W,(,?,) — AW,&?)
together reduces to the corresponding results of W,ﬁ? while

an antiquark final state |k').

Wf,i) reduces to the corresponding result directly.

To obtain the corresponding results for the hadronic
tensors, we need to substitute the Lorentz decompositions
of the quark-quark and quark-gluon-quark correlators as
given by the equations in Appendix A into the above
Egs. (4.1)~(4.3) and carry out the traces. We note that
all the decompositions of the quark-quark and quark-
gluon-quark correlators are given in the collinear frame
of the corresponding hadron; i.e., the direction of motion
of the hadron is taken as the longitudinal direction. Hence,
the most convenient frame to carry out the calculations of
the hadronic tensor is the collinear frame of the hadron.
Fortunately, in the case we discuss here, we have only two
hadrons and we can make a Lorentz transformation into a
frame where the two hadrons move in opposite directions.
We call it the collinear frame of the two hadrons. We first
present the results of the hadronic tensor in this frame and
then transform them into the helicity-GJ frame.

1. Hadronic tensor at twist-2

The leading twist contribution to the hadronic tensor

comes solely from Wf,(,i) given by Eq. (4.1). To obtain the

results, we insert the leading twist parts for the quark-quark
correlator given in Appendix A. The unpolarized part and
the vector polarization dependent parts are the same as
those for spin-1/2 hadrons and can be found, e.g., in [14].
We present here for completeness and for unification of
notations. First of all, the simplest case, i.e., the unpolarized
part is given by

PHYSICAL REVIEW D 94, 034003 (2016)

0)U
w2(q. p1. pa)

4 [Pk, Pk,
=— (k. + K,
zlzz/(Zn)2 (2r)? (ky 91)
X {—(Ci’gl,w + icgelﬂy)Dl(zl,kl)Dl (2. K))
4C§

+ MM, (kL gk, = kiK1 giw)

x H%(zl,knfff(zm)}, (44)

where ¢§ = (cf)? = (¢9)% zy~ & and z; ® & up to 1/Q.
To make the results look more concise and explicit, we
introduce the basic Lorentz tensors similar to those defined
in [17], i.e.,

Cluw = C(IZgJ_/w + icgglﬂw (45)
EJ_;U/ = ngluv + iC(]I'gJ_mn (46)
aJ_;u/(a’ b) = aJ_{ﬂbJ_u} - (aJ_ ’ bL)gJ_yw (47)

for two Lorentz vectors a and b. We will also omit the
arguments of FFs in the expressions in the following of this
paper. Since we are considering only the case of ¢ - VX
and g — zX, this omission will not cause any ambiguity.
The FFs defined via =’s, i.e., D’s, G’s, E’s, and H'’s, are for
g — VX and have the arguments (z;,k ), while those
defined via =’s, i.e., D’s, G’s, E’s, and H’s are for § — nX
and have the arguments (z,,k’,). With such simplified
notations, we have

W(?,)U _ i d2kJ_ d2k'
! 2122 (27)* (27)°

L &2k, + K, —q))

o4
{ CLMDD D] +1\441M aLyu(k k/)HlHL}
(4.8)

We see that for the unpolarized part at twist-2, we have
chiral even contribution from D, convoluted with D, and
chiral odd contribution from Hi convoluted with H{. We
also note that for the chiral even contribution, there is a
symmetric and an antisymmetric part. However for the
chiral odd contribution, there is only a symmetric part.

For the vector polarization dependent part, we write the
longitudinally and transversely polarized parts separately.
For the longitudinally polarized part, we have

OL _ d’*ky d*K, 52
T azm ) (2n)?(2n)?

& (ky + K —q.)

{cl;wGlLDl +M M X

(%, k)HliLﬁll}.

(4.9)

034003-15



CHEN, YANG, WEL and LIANG PHYSICAL REVIEW D 94, 034003 (2016)

We see that besides the helicity A factor, this takes a quite similar form as that for the unpolarized part. Here, we have
contributions from G; convoluted with D, and from Hi; with Hi. For the transverse polarization dependent part, we have

or _ 4 [ &k K, / ki -Sri. 1 ; 1AL
Wi =0 707 (kL + k) ,GizD (K k) H
! 2122 (27)% (2x)? (e + q1) M, CLwbirti +M M a,, (K k)Hiz
ky-S. 4cd
— M] CLM”DILTDI 4+ — M2 aLﬁu(k S)HITHl } (410)

Because there are two transverse directions, this part looks more complicated. We see clearly that we have both

contributions in k; or transverse to k; (i.e., in k ) directions.
The S;;-dependent part looks very much the same as the unpolarized part, i.e.,

oL A4Sy [ &k, dPK| 4cd
W™ = 12 /(271) 2 (22 582 (k + K, —q1)3 —cLuDi Dy +M M a,, (kK )Hip Hi o, (4.11)

where we have the chiral even contribution from D,;; convoluted with D, and chiral odd part from H{;, with H,.
For the S;7- and Sy7-dependent part, we have

2 2 q
orr 4 d’k, d°K'| ) , {kl Sy [ LA 4c; Nyl ‘J_]
Wy =—— ki + K, —c DDy +—=—ay,,(k,K')H{; -H
H 212 (2”) ( ) (J_ ) A41 L 1LT1 MM2 J_/,t( ) 1LT*1
k N 4cl
LELT CLﬂleLTD1+ zalm/(k SLT)HILTH } (4-12)
4 d*k dzk’ Skk ‘1 _
0)TT 1
W = G b K i ey s
1
S . et
+—= M2 CJ_MDGITTDI +M M alﬂl/(k/ TT)H/IJfTHl} (4~13)

We see clearly the similarities and differences between them and the transverse polarization dependent part. We note once
more that the chiral even contributions contain a symmetric and an antisymmetric part given by the basic tensor ¢, or ¢ 1,
while the chiral odd contributions are always characterized by ¢3 and have only symmetric tensor a L

2. Hadronic tensor at twist-3

The twist-3 contribution to the hadronic tensor comes from both Eqs (4.1)and (4.2). In Eq. (4.1), we either expand =)
to leading twist and Z(© to twist-3 or Z(© to leading twist and Z(© to twist-3. In Eq. (4.2), we expand all the =’s to their
leading twist contribution. The equations are a bit longer than those at leading twist, and we present as examples the results
for the unpolarized and S;; -dependent parts here but other parts in the Appendix,

W = [N 204, - a0 el (0D + 6, (06D, D)o (KD +, ()6
az ) (2n)* (27) pi " py 1k Z
e H 20k~ ki 5 = k) ]+ i 206, = Ky H i, = ) LA
2 o 0DDy - otk mt A, (4.14)
where we introduce the shorthanded notations defined as
Apwy = A1, Q) = A1y, (4.15)
@, (a.b) = c{(a, + by) () — icd(@, + ba)jy- (4.16)
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&);w(a’ b) = Cg(an + bﬁ){/w} - lctli(&n + l;?t)[/w]’

(n)

wu/ (a,b) = (aﬁ_b

and 0, (a) = o, (a,—a), ®,,(a) = @, (a,—a).
The S;;-dependent part looks very much similar, i.e.,

AT bian){ﬂv}’
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(4.17)

(4.18)

WLL 4511 / k. &K, 2k, + K ) ! [0, (k) DL, + @, (k)G1, 1D : Dy [0 (K)D: + @, (K)G]
v = - el (097 Dy i o) w
H Lz (271’)2 (2ﬂ)2 1 1491 pf . LL i LI ; 1LL| @y,
2C§M2 — - 2CqM1 —
- Hi [2(k, = kg) i H + i(ky = k)i E] + =222k, = Ky) (1 H (K, — k) Epp H-
M][?E 1LL{ ( n ”){I“’} + l( n n)[;u/] ]+ sz?_ [ ( n n){;w} Lt l( n n)[;w] LL] 1
V2 ho_ 4G ;
+ E |:60lw(k/, k)DlLLD] — Wﬁ)ﬂy (k, k/)H%LLH%:| } (419)

B. Transform into the helicity-GJ frame

We now transform the hadronic tensor into helicity-GJ
frame as described in Sec. III B 2. Since our goal is to
express the hadronic tensor by FFs that are usually defined
in the collinear way, we should just keep the FFs defined
this way and transform the coefficients into the helicity-GJ
frame of the vector meson V. This is achieved by replacing
the vectors and tensors in the hadronic tensor by their
expressions in the helicity-GJ frame. Up to 1/Q, we
have [7,13]

(klﬂ)coll = kJ_ﬂ - \/qu : kLﬁﬂ/Q + ey (420)
(giﬂv)coll = 91w~ \/E‘Iﬁ{/w}/Q +oee (421)

(EJ_/H/)COH =€l + \/Eéﬁ[yy]/Q +-- (422)

and g, = —pyr/zy + -+, where --- are higher power

suppressed terms. We see that the differences are all higher
twist. It implies that the leading twist part is unchanged but
there are additional twist-3 terms generated by transform-
ing the twist-2 parts. E.g., for the unpolarized part, we have

w2

S0 _ Pk, &K,
- 21220

(2”)2 (2”)2 62(kl + k/J_ - ('IJ_)

X {—(C?%{W} — i¢§G5pu))D1D;

q
4c;

T

&ﬂﬁw@ﬁMMﬁ%. (423)

Others are given in Appendix B.
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V. STRUCTURE FUNCTIONS IN TERMS OF FFs

Making a Lorentz contraction with the leptonic tensor,
we obtain the cross section and the structure functions. The
parton model results for the structure functions are given as
the convolution of the gauge invariant TMD FFs in the
form,

_ 1 d*k, d*K
ClwDD] = — L2k, + K, —
[W } 212 (27[)2 (2”)2 ( 1 + 1 QL)

xw(ky, k' )D(zy.ky)D(z, K, ).

(5.1)

The weight w is a scalar function of k; and ;. As in [14],
we introduce the following dimensionless scalars,

wy = —k3 /M3, (5.2)

wy = —k'}/ M3, (5.3)

wi = —por - ki /Mi|par|, (5.4)
Wi = —por - k' /M| par, (5.5)
wy = —k, - K\ JM\M,. (5.6)

Others are just functions of them and are given when
needed.

A. Structure functions at twist-2

We note that the twist-2 results presented here are for
leading order in pQCD. Formally they just correspond
to the results obtained from the naive or intuitive parton
model.

We introduce a second digital in the subscript to
specify the contributions at twist level, e.g., F;l}’i(‘”s_”’), and
i=1,2,3,... to specify the twist-(i 4+ 1) contributions. The
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unpolarized and vector polarization dependent parts can be

derived from those given in, e.g., [14]. We list them here for

completeness and comparison. We list only those nonzero

structure functions. Those not listed are zero at twist-2.
For the unpolarized part, we have

Fyy1 = 2¢5¢{C[D D], (5.7)
F3U1 = 4C§C§C[D1D1], (58)
Fi%% — 8¢ cClwy, HEHY), (5.9)

where wy,;, = 2w;w; — wy. The other six F;’s are zero at
twist-2. We note in particular that there is a twist-2
contribution to cos 2¢ due to the Collins function [4] but
no such contribution to cos ¢ or sin ¢.

The longitudinal polarization dependent part is very
much the same as the unpolarized part. There are three
nonzero F;’s at twist-2, they are given by

Fypy = =2¢¢¢iC[Gy Dy, (5.10)
F3Ll = —4C§C?C[G1LD1], (511)
F%7 = —8¢¢cdCwy, Hs HY). (5.12)

We see a one-to-one correspondence to the unpolarized
terms. More precisely we have that F'j; | just corresponds to

Fjy, upon exchange of D; to G, and F“nzfﬂ just

corresponds to FS* > upon exchange of Hi to Hyj.

For the transverse polarization dependent part, we have

Fif» ™ =2c5c{Clw, DDy, (5.13)

Fip" ™" = dcgelClw DD, (5.14)

Fipo = 2¢4ciCw GizDy]. (5.15)

Fg(}sfw—q}) = dcse{Clw GipDy ], (5.16)

FRO = _8eteiClm iz AT (5.17)
FnesT0) — _geecdCiwt HEHEY],  (5.18)

where  wh, =wwy, —wowi /2, Hiy is defined by

Eq. (A20). We see that there are six nonzero transverse
polarization dependent structure functions (Fy or F r) at
twist-2, four of them are parity conserving and the other
two are parity violating.

We see that among the 36 spin-independent and vector
polarization dependent structure functions, 12 of them have
twist-2 contributions while the other 24 are zero at twist-2.
Among these 12 are nonzero F’s, eight are parity

PHYSICAL REVIEW D 94, 034003 (2016)

conserving, four are parity violating, and eight of them
correspond to azimuthal asymmetries.

For the tensor polarization dependent part, the results are
much similar. First the S; ; -dependent part looks very much
the same as the unpolarized part. There are only three
nonzero F;’s at twist-2, they are given by

Fippy = 2¢§c{CIDy . D), (5.19)
F3LL1 = 4C3C3C[D1LLD ] (520)
FCL()Lglzq) _8cecgc[whhH1LLH ]. (5.21)

The S;7-dependent part is very much similar to the Sy
part. The six nonzeros are given by

FTTT(({)” ?) = =2¢$ciClw\Di; D], (5.22)
FS™?) = —4ce{Clw DYy, D1l. (5.23)
Fyn) = 2¢4ciClwiGlyDi). (5.24)
Fhr) = —4¢eiClw GlD)). (5.25)
FEnr ) = —8c{c§Clio My A, (5.26)
FCLO;§¢LT_34)> = SCTCgC[WZhHllLTHH- (5.27)

The Syr-dependent part is similar to the Sy part but the
weights are different,

FSosor=20) _ peecdclytt DLoDy], (5.28)
F g()TSﬁwTT_zq}) 4c5ciCwi,DigrD). (5.29)
Fiurlw"_zq}) = 2¢{ciCwi,GirrDil. (5.30)
F?ITI(TZFTT_M) = 4c5c{Clw,GirrDil. (5.31)
FCTO;?@TT_“(/)) = —de{cSClwiyHippHy),  (5.32)
Fipi®™ = 8cieiChnHif A (533)

where W', = 2w —wy,

2 3= 1r —
4v2v1w2:r 8w1w;1, and Hi7, =
par|Hizr/2M7.

W;lth = Wowp — 4WOW1\’_V1 +
Higr + (K3 +8(ky - par)?/

B. Discussion about the twist-2 results

As we mentioned earlier in this paper, the twist-2 results
presented here just correspond to the results obtained
from the intuitive parton model with FFs defined in the
gauge invariant form. Just as for the structure functions in
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inclusive DIS obtained using the original intuitive parton
model, at the leading order (LO) in pQCD and twist-2, the
results exhibit a number of simple regularities (symmetries)
such as the Callan-Gross relation. To see these regularities
more clearly, we list the leading twist results in Table I.
Indeed, from these results, we see that although there are
81 independent structure functions, a large part of them
vanish at twist-2. Totally 27 of them are nonzero, among
them 19 are parity conserved and eight are parity violated.
Furthermore we see the following regularities.

ey

(@)

Among the 27 nonzero structure functions five with
c¢c, five with ¢4, and nine with ¢¢c¢? are parity
even, and four with ¢¢c¢f and four w1th cscl are
parity odd. This can be understood easily since from
Eq. (3.2) we see that ¢{ symbolizes the symmetric
parity conserving part and ¢4 the antisymmetric
parity violating part of the tensor.

The nonvanishing structure functions are associated
with either 1 + cos? @, or cos@ or sin? 6.

For those associated with 1 + cos?@ or cosé,
there are five with coefficient c¢c! and five with
c¢§cq. They are all from C[DD], i.e., fragmentations
of the unpolarized quark and are parity conservmg
There are also four with coefficient c¢c? and four
with ¢§c. They are all from C[GD], i.e., fragmen-
tations of the longitudinally polarized quark and
unpolarized antiquark and are parity violating.

Those associated with sin?@ all have coefficient
¢§cd and are from C[HH|, i.e., transversely polarized
quark and antiquark.

To understand such regularities, we recall the
result for the basic weak process eTe™ — Z — ¢g.
We recall that the differential cross section is [31]

dé o

05 xlcsct(1 + cos?0) + 2¢4cd cos 6], (5.34)

and the produced quark (antiquark) is longitudinally
polarized and the polarization is given by

_ cfci(1 + cos?d) + 2¢5cf cos 6
e (14 cos?0) + 2c5cd cos O

P,(0) = (5.35)

Furthermore, although the quark (antiquark) is not
transversely polarized, their transverse spin compo-
nents are correlated. We define

|Mn++| + ‘Mn——|2
|Mn++|2 + ‘]‘4n——|2 + |1un+—|2 + |Mn—+
(5.36)

|]V[n-&-—|2 - |1‘/[n—-f-|2
2 9

q
Cnn =

where M is the scattering amplitude, + or — denote
that the quark or antiquark is in the s, = 1/2 or

3

“
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—1/2 state. We obtain that, for 7 in the normal of the
production plane,

c¢clsin’0

c§cl(1 + cos?0) + 2c4cd cos O’

ci(0) = (5.37)

which is in fact also true for any transverse direction
n if we replace sin?6 in the numerator by
sin> @ cos 2¢, where ¢, is the azimuthal angle
between 7 and the normal of the production plane.
In terms of y = (1 + cos0)/2, we have

dé o
d_Q = Z)( (q)(J’)’ (5-38)
Py(y) =TI/ T5 (), (5.39)
cin(y) = c$ciC(y) /2T (y),  (5.40)

where T4(y) = c¢fc{A(y) — c§ciB(y) is the relative
production weight for flavor g, T (y) = —c¢ciA(y)+
c$clB(y); A(y), B(y), and C(y) are given in
Sec. I B2 by Egs. (3.50)—(3.52). We see clearly
why we have the regularities for the structure func-
tions mentioned at the beginning of this point.

It is also clear that if we consider eTe™ — y - q4q,

i.e., the electromagnetic process, we have Tq em) (y)=
e2A(y), Pi™ = 0. The quark transverse spin corre-

lation CZ,(fm) (y) = C(y)/2A(y) is independent of the
flavor of the quark. In this case, we will not have
C|GD] terms but C[DD] and C[HH] terms.

If we integrate over p,, we obtain the results for the
inclusive process e e~ — Z — VX. The nonvanish-

ing structure functions are

21 F1y1in = 2¢{¢{Dy (2)), (5.41)
21 F3y1in = 4¢5¢3Dy (21), (5.42)
2 F 1 = =2¢5ciG (1), (5.43)
21F3L1,m = _4C§C(17G1L(Zl)v (5.44)
21F p1in = 2¢c{Dy1(21), (5.45)
2 F3pp1in = 4¢5¢3D1(21). (5.46)

All the others vanish at twist-2. This is consistent
with the results obtained in [15]. We emphasize in
particular that the Callan-Gross relation in DIS now
is replaced by Fjy1;, =0, and all the structure
functions associated with the transverse spin com-
ponents vanish at leading twist.
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C. Twist-3 contributions

Among the 54 structure functions that vanish at twist-2,
36 have twist-3 contributions as the leading power con-
tributions. The results are a bit lengthy so we present them
in Appendix C. We see that all 36 structure functions
associated with sin @ and sin 20 have twist-3 contributions
as leading power contributions. Besides others, we have
Fipys Fapy s F0%, and F5})9 in the unpolarized part, also
Y095, Fopds, FS90/s, and F595" in the vector polarization
dependent part. This means that at the twist-3 level there
should be parity conserved azimuthal asymmetry (cos @),
and parity violated asymmetry (sin ¢),, in the unpolarized
case and parity conserved transverse polarization in the
normal direction of the lepton-hadron plane and parity
violated component in the plane. We will discuss this more
in the next section.

VI. AZIMUTHAL ASYMMETRIES AND
HADRON POLARIZATIONS

A. Azimuthal asymmetries

At leading twist and for unpolarized V (i.e., polarization
is not measured), there is only one azimuthal asymmetry as
given by Eq. (3.68), i.e.,

(0) C()’)chff/’gc[whhH%Hﬂ

PHYSICAL REVIEW D 94, 034003 (2016)

This is the only leading twist azimuthal asymmetry in the
unpolarized case due to the Collins effect [4] and transverse
spin correlation ¢y, given by Eq. (5.37) for gg produced
via eTe™ annihilation. Here, as well as in the following of
this paper, when writing the expressions for azimuthal
asymmetries and/or polarizations in terms of FFs, to avoid
confusion, we include the summation over g explicitly but
still keep the g <> g terms implicitly and omit the flavor
indices for the FFs.

If we could consider the polarization and azimuthal
asymmetry simultaneously, we would have

<COS 2(p>(LOL) — _ C(y)ZqC‘fch[Whh (Hf_ + SLLH%EL)I:I%}
S Te)C(Dy + Sp.Dyp) D]

’

(6.2)

O AC(y) 32 i e5Clwy Hiy Hi|

sin 2 = - ——
< Vi Zng(y)C(Dl _AGIL)DI

(6.3)

Although it is academic since it will be very difficult to
measure this asymmetry, it is interesting to see the existence
of such asymmetry.

(cos2¢),’ =— _ (6.1) Up to twist-3, we have another two azimuthal asymme-

Zng ()C[D1 D] tries in the unpolarized case, i.e.,

|
8D(y . _ =
(eos )l)) = =P S (9(3) (M,Clwy D2,Dy] + MsCliy 21Dy D)
2220Fy, g
+ T3(0) (M Clw Hzy Hy | + MyClwiz Hi HY) (6.4)
) 8D(y _ _ - . _ _ _
inely’ = %Z{Tgb’)(MIC[WIGLZZDI] — M,C[W,2,D,G"]) + 2¢5¢5 (M C[w) Ez Hi] = MoClwy 2 HY E]) },
Q12llyr ¢

(6.5)

e e J— e e J— e 0 1
where D(y) = /y(1 =), T4(y) = —c5¢d + c$cB(y), T(y) = c5¢! — cScB(y), TI(y) = 4cciB(y), and FY) is the

twist-2 contribution to Fy; and is given by

0 —_
Fiy) =43 T§(y)CID\ D). (6.6)
q
We see that they depend on several twist-3 FFs.
If we consider eTe™ — y* — VzX, we have
om C e2Clwy, Hi HY
<0052(p>§?’ ) — _ () Zq q £ hh71 1) , (6.7)
A(y)  >2,e;CID\Dy]
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cos -
(oso)y A(y) lezQqu?,C

+ M,ClWw 2D DY + 4w,z  HT H'1},

and (sing)}]“" =0, where B(y) = /y(1—y)B(y). In
this case we have a nonzero azimuthal asymmetry
) at leading twist due to the Collins effect [4]

and a twist-3 asymmetry {cos @) g),em) similar to the Cahn

effect [32] in deep-inelastic lepton-nucleon scattering.

(cos 2¢) E?'em

B. Hadron polarizations at twist-2

The polarization is in general dependent on ¢.
Experimentally it is much easier to consider the case where
@ is integrated. In this case, at the leading twist, we have for
the longitudinal polarization,

0) — %quq(y)Tg(y)C[GlLDI]
A o (7 T
(5,00 = 122,76(y)C[D1..D)] (6.10)

2 3, T4(CID: Dy

For transverse dependent components with respect to the
hadron-hadron plane, we have

S
R e 7 T

The transverse components with respect to the lepton-
hadron plane are zero at the leading twist in the ¢
integrated case.

If we consider ete™ — y* — VzX, i.e., annihilate via
electromagnetic interaction only, we have

PHYSICAL REVIEW D 94, 034003 (2016)

[D\ D] Zeg{Mlc[MDlZle + 4w Hz, Hy
q

(6.8)
[
1>°,e2C[Dy 1Dy
<SLL>(0.em) - E%, (6.17)
quq [D1D]
<Sn>(0,em) — %qu%C[WlD%z"Dl] (618)
g 3 qulzlc{DlDl}
(51 y0em = 20g¢CMDIDI o)
3 quéc[DlDl]
2 tt Ll N
(spy0em — 2 2Za&aCliaDirrDi o

3 3),eClDDy]
while the parity violating components,

</1>(0,em) _ <StT>(0em) — <S1riT>(0.em) — <S’71~17-><0em) —0.

(6.21)

We see in particular that the S;; component is nonzero at
leading twist also in the parity conserved case. Parity
conserving transverse components exist due to Sivers-type
FFs such as Di;, Di;,, and Di;, similar to the Sivers
function f{; in three-dimensional PDFs [22].

For the inclusive process eTe™ — Z — VX, we have

Zzp

)T (y)Gip(z /Z3To()’ Dy(zy),
q

(6.22)

(6.23)

ZTO )D1r(z) /Z2T0 1(z1),

SLL m

(0)

in >

while all the transverse components such as (S%);
(S5 and ($7,)5)

We also see that (SLL)( )]
reactions while <i>52) exists only in the parity violated case.

(i,j = x or y) vanish at twist-2.

is nonzero also in parity conserved

C. Transverse polarizations with respect
to the lepton-hadron plane at twist-3

As mentioned in Sec. V C, the twist-3 contribution exists
only for those structure functions that are zero at twist-2.
They are the leading power contributions for the corre-
sponding structure functions. In particular we see that there
is no twist-3 contribution to the transverse components
with respect to the hadron-hadron plane discussed in last
subsection. However, for the transverse components with
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respect to the lepton-hadron plane, four of them, i.e., (S}.),
(87), (S57), and (S} ;) have twist-3 contributions. They are
determined by Fips, FS5i/s, F3MTS. and F33% given in
Appendix C respectively. The expressions can easily be
obtained by inserting these results into Eqs. (3.94)—(3.97)
but are a bit lengthy so we omit them here. However we
emphasize that if we consider ete™ — y* —» VzX, the
parity violating parts vanish and we have only the following
two components,

<S}I">(],em): SMIB(y) _
321220A(y))_,e5C[D Dy
« Zeg{ZZC [D%Dl _2;_21%—;1%]
q
ZIMZC 1ALl AL 1 gl
_2M1 [Wz(DmD -GG )_8H1TH1] )
(6.24)
<S)IC‘T>(1.em) — SMlé(y)

- 321220A() 3, €4C[D1 D)

< Zeg{zzc {DiTDI _ zﬂvfl—leﬁHli]
q

uM, = =
oM, C[Wz (DllLTDl/ + GlLLTGl)
- stLTﬂlﬂ]}. (625)

It is also interesting to see that these transverse compo-
nents are defined with respect to the lepton-hadron plane
and exist also in the inclusive process. For ete™ - Z— VX,
we have

_8MD(y) 2, T5(»)Gr

(S35 = o ST, (62
(S = MilDQ(y) ;‘2283 (6.27)
(Sir)in = - SZZ;IDQ@) %q?g((yy))l);f . (6.28)
(s — 3MiDL) 2 T5(0)Ger (629)

32,0 Zng(y)Dl '

We recall that (S7) is P even and naive T odd, (S%) is P odd
and naive T even, and (S};) is P odd and naive T odd.
Neither of these three can exist in deep-inelastic scattering
such as e”N — e~ X. The only existing one is (S} ;) which
is both P and T even. We see also from Table IV whether

PHYSICAL REVIEW D 94, 034003 (2016)

the corresponding FFs are 7 odd or T even which is

consistent with the structure functions and/or the
polarizations.
For ete™ — y* — VX, we have
em SM E €2D
(spyem) = SM,BL) La T (6.30)
LT/in 3Z1QA()7) quiDl ,

and other two parity violating components are zero.

VII. SUMMARY AND DISCUSSION

Three parts were presented in this paper: A summary of
results of a general decomposition of the quark-quark
correlator that leads to the operator definition of TMD
FFs, a general kinematical analysis for ee™ — VzX, and a
complete twist-3 calculation based on the partonic picture
at leading order in pQCD. We summarize the main results
in the following.

(1) We presented the results of general decomposition
of the quark-quark correlator for fragmentation of
the quark to the spin-1 hadron. The correlator is
expressed as a sum of a spin-independent, a vector
polarization dependent, and a tensor polarization
dependent part. Formally, the spin-independent part
is identical to that for spin-0 hadrons, the vector
polarization dependent part is the same as that for
spin-1/2 hadrons, while the tensor polarization
dependent part is novel for spin-1 hadrons. The
decomposition leads to totally 72 TMD FFs, eight
for spin-independent, 24 for the vector polarization
dependent, and the other 40 for the tensor polari-
zation dependent part. Among them, 18 contribute
at leading twist, 36 at twist-3, and the other 18 at
twist-4; half of them (36) are T odd, the other half
are T even; also half are ¥ odd and the other half are
¥ even.

(2) These TMD FFs are used in describing the semi-
inclusive high energy reaction (see, e.g., [17]). We
note that usually for a complete description of a
semi-inclusive reaction, the quark-quark correlator is
not sufficient. One usually needs the quark-j-gluon-
quark correlator, too (j =1,2,... represents the
number of gluons). They contribute at higher twist
starting at twist-(j + 2). For example, to make a
complete calculation up to twist-3, besides the
quark-quark correlator, one needs the quark-
gluon-quark correlator. These contributions should
be taken into account simultaneously. It is also
important to note that because of the QCD equation
of motion, they are often not independent and
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relationships obtained from QCD equation of mo-
tion should be used.

We presented also the results for a general kinematic
analysis for e e~ — VzX. This process is in general
described by 81 structure functions, 42 are parity
conserving and 39 are parity violating. The azimu-
thal asymmetries and hadron polarizations are in
general coupled with each other and are described by
the corresponding structure functions. In practice, it
is much simpler to study the azimuthal asymmetries
in the unpolarized case and hadron polarizations
averaged over the azimuthal angle ¢. For unpolar-
ized hadrons, there are four azimuthal asymmetries,
i.e., (cos@)y, (sing)y, (cos2¢)y, and (sin2¢),.
The two cos asymmetries are parity conserving
while the two sin asymmetries are parity violating.
The hadron polarizations are most conveniently
studied in the helicity Gottfried-Jackson frame.
Here, we have two longitudinal components (1)
and (S;;) defined in the helicity basis, and six
transverse components that can be defined either
with respect to the lepton-hadron plane, i.e., (S}),
(S7). (Sir). (Sir). (Sg). and (S;). or with respect
to the hadron-hadron plane, i.e., (S}), (S%), (S77),
(S17), (S¥r), and (S%%). In the case of averaging
over ¢, they correspond to different structure
functions as given by Egs. (3.94)-(3.99) and
Egs. (3.106)—(3.111) respectively. Half of them
are parity conserving while the other half are parity
violating.

The results obtained in the partonic picture at LO
pQCD up to twist-3 were also presented in terms of
the gauge invariant FFs. These results showed that at
leading twist there are 27 nonvanishing structure
functions, 19 correspond to parity conserving and
eight are parity violating. We have also 36 structure
functions that have twist-3 as leading power con-
tributions.

For unpolarized hadrons, there is only one azimuthal
asymmetry (cos2¢) at leading twist due to the
Collins effect [4] in fragmentation and transverse
spin correlation ¢y, given by Eq. (5.37) in ete™
annihilations, and two twist-3 asymmetries (cos ¢)
and (sin @), the former is similar to the Cahn effect
[32] in DIS and the latter exists only in parity
violating reactions.

Longitudinal components of hadron polarization (1)
and (S; ;) exist at leading twist as given by Egs. (6.9)
and (6.10). While the former depends on the initial
polarization P, of the quark produced at the e*e”
annihilation vertex and exists only in weak inter-
action processes, the latter is independent of P, and
exists also in electromagnetic processes.
Transverse components (S7), (S4), (S77), (Sir),
(S74.), and (S%%) with respect to the hadron-hadron
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plane exist at leading twist given by Egs. (6.11)—
(6.16). Among them (S%), (S},), and (S%%) are
parity conserving and (S%), (S7;), and (S%%) are
parity violating.
(9) There are also twist-3 transverse components (S}.),
(S7). {Sir). (Sir). (S5i). and (S§y) with respect
to the lepton-hadron plane. They are determined
by the corresponding twist-3 FFs as given by
Egs. (6.26)~(6.29). Similarly, (S}), (S};), and
(83%.) are parity conserving and (S%), (S77), and
(Syr) are parity violating.
For inclusive reaction ete™ — VX, we can only
study z dependence. Kinematically, the hadronic
tensor and/or cross section take the same form as that
of the semi-inclusive reaction ete™ — VzX aver-
aged over ¢. We have two longitudinal components
of polarization, i.e., (1) and (S; ;) at leading twist. In
particular we have four transverse components (S7.),
(S7), (S37), (S7,) at twist-3. Three of them are
either 7 odd or P odd and do not exist in deep-
inelastic scattering such as e"h — e~ X. The only
one that is both P and 7 even is (S} ;).

Finally, we would like to emphasize in particular that, in
experiments, different components of the (vector) polar-
izations of octet hyperons such as A, £*, and 2%~ and those
of the tensor polarizations of vector mesons such as p and K*
can be measured in a conceptually simple way. Polarizations
of these hyperons can be measured by studying the angular
distributions of the decay products of their spin self-
analyzing parity violating decays. All the five independent
components of the tensor polarization, S;;, S5r, Sy7, S35,
and S7., of these vector mesons can also be measured via the
angular distributions in their strong decays into two pseu-
doscalar mesons [21]. Such measurements have also been
carried out in the past in different high energy reactions.
Transverse polarizations of different hyperons have been
observed in unpolarized hadron-hadron, hadron-nucleus
collisions [23], in e e~ annihilations [33] and lepton-hadron
reactions [34] that correspond to the Sivers-type FF D{; and
higher twist addenda to it. We see in particular that in
experiments with e*e™ annihilation at high energies
where FFs can be best studied, measurements have been
carried out, e.g., at the LEP on longitudinal polarization
of A hyperon production [35,36] by the ALEPH and
OPAL Collaborations, and also on the spin alignment
poo = (1 =28;,)/3 for vector mesons such as K*, p, and
so on [37-39]. Results for z dependences have been obtained
in both cases. Even nondiagonal components (corresponds
to higher twist contributions only) have also been measured
[37-39]. The data available are definitely still far from
enough to limit the precise forms of the FFs involved. They
have however provided important hints for the correspond-
ing components and have attracted much attention theoreti-
cally. Many phenomenological model studies have been
carried out in the last few years [40-58].

(10)
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Recent measurements have been carried out on azimu-
thal asymmetries for two hadron production by the Belle,
BABAR, and BESIII Collaborations [59-63]. They provide
useful constraints on the Collins function [64,65].
Presently, related measurements can be and are being
carried out, e.g., in pp collisions by STAR at RHIC,
and in the existing e™ e~ colliders such as Belle at KEK and
BES at BEPC [66]. They can certainly also be studied
in future eTe~ colliders at high energies, electron-ion
colliders discussed in the community [67]. We would in
particular like to note that usually the production rates of
vector mesons are much higher than hyperons in high
energy reactions. Hence, we expect that studies of vector
meson tensor polarization might provide us a more sensi-
tive window to study polarization effects in fragmentation
process in particular and to develop QCD theory in general.
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APPENDIX A: FRAGMENTATION
FUNCTIONS DEFINED VIA THE
QUARK-QUARK CORRELATOR

We make a full list of the TMD FFs defined via the
quark-quark correlator in this appendix.

1. The spin-independent part

The general decomposition of the spin-independent part
of the quark-quark correlator is given by

ZEYON(z, kpys p) = ME(z, kg L), (A1)

22O (2, kg3 p) =0, (A2)

—U(0 _
2B )(Z, kpyip) = pTigDy(z.kpy) + kpy oD (2, kry)

MZ
+ F”aD3(Z’ kpi ) (A3)
Zég(m(z, kpisp) = _I;FLaGL(Zv kry), (A4)
—U(0) pr_ - 1
2Zpa (2, kpisp) = _ﬁn[kaL(l]Hl (z.kpL)
=+ MEJ_paH(Za kFJ.)
M - 1
- p_+n[kaJ_a]H3 (z.kpy)- (AS)
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Here, we note in particular that, compared with the
corresponding 7 component, the n;, and n components
are suppressed by M/p* and (M/p*)? and contribute at
twist-3 and twist-4 respectively. If we integrate over d?k |,
terms with k| odd Lorentz structures vanish and we obtain

20 (z; p) = ME(2),

EYO(z; p) =0, (A6)
=209z p) = ptiiDy(z) + f—j”aD3(Z>v

=00z p) =0, (A7)
2=pa” (23 ) = Mey,uH(2), (A8)

where the one-dimensional FF is just equal to the corre-
sponding three-dimensional one integrated over d’kp
such as

D(z) = /C(iip)ﬁ Dy (z kpy)

& .. i
= sz:/%e"” T p S X|w(E)L(E 0)|0)

n
x L (017 (05 00)y(0) . 5 X)- (A9)
The factor z before Z(© on the left-hand side of
Egs. (A1)~(A5) is needed so that D;(z) obtained this
way is the number density for a quark fragmentation into a
specified hadron. However, when polarization is involved,
we note the difference: While for phenomenologically
defined D;(z), a sum over spin of /4 and an average over
the spin of the quark is understood; for D(z) defined via
the quark-quark correlator as given by Eq. (A9), we have an
average over the hadron spin and a sum over the quark spin.
Hence D, (z) is identical in the two cases only for spin-1/2
hadrons.

2. Vector polarization dependent part
We build the S-dependent basic Lorentz covariants with
the corresponding properties under space reflection as
demanded and obtain the general decomposition of the
S-dependent part of the quark-quark correlator as

22Oz, kpy5p, S) = (I;FL - Sp)ET (2. kp L), (A10)

O ke ) = M[AEL (2 k)

kg - S
+ T B k)| (AL
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kp S
ZEZ(O)( FL1 9T

Diy(z.kpy) — MS7oDr(z kpy)

2. kpi3p,S) = pTitg

kFJ_ ) ST

. M -
—kpiq [/U)f(& kpy) + D7 (z. ku)} + p_+na(kFJ_ - S7)Dir(z, kpy ), (A12)

= _ kp, - S
Z:X«)) (kaFJ_;p’S) =pri, |:/1G1L(Z’kFJ_) + MM TGlLT(Z’kFL)] - MSTaGT(kaFJ_)

1 kFL ) ST 1 M2 kFL ) ST 1
—kp1q|AGT (2, kp L) +TGT (z.kpy) +p_+na AG3 (2, kpy) +TG3T(kaFJ_) .

(A13)

kFJ_ i ST

- _ Pt
Z:/‘)/oso)(zy kpi;p.S) = p+n[pSTa]H]T(Z’ kpi) + ﬁn[kaLa] {}LH%L (z.kpL) + Hfr(z, kﬂ)]

_ kp, - S
+ kp1jpStaHr (2, kL) + Miijng |:’1HL(Z7 kpi) + %H%(Z, kn)]

2

M M kp, - S
+p—+nL,,STa]H3T(z,kFJ_) —|—p—+n[pkm_a] |:AH§_L(Z’kFJ_) + FJM TH?'T(Z,kFJ_)]' (A14)

If we integrate over d’ky,, only eight terms survive, i.e.,

2Y0(z; p,S) =0, (A15)
22"0(z; p. §) = IME(z), (A16)
%0 " (z:p. S) = ~MS7,D1(2), (A17)
=V (0 M?
Z‘Ea( )<Z;P, S) = /1P+7laG1L(Z) - MSTaGT(Z) +/1FnaG3L(Z)7 (AIS)
- _ _ M?
Z:XO(CO) (Z; P, S) = p+n[/)STa]H1T(Z) - an[/)na]HL (Z) + F n[/)STrI]H3T(Z)’ (A19)

where the one-dimensional FF in the longitudinally polarized case is just equal to the corresponding three-dimensional FF
integrated over d’kj |, while in the transversely polarized case, we have

d*k k2
Kr(e) = [ GEKh ki), Kfke) = Ka(aken) + o K G kr). (A20)
(27) 2M
for the transverse polarization dependent FFs such as Ky = D, Gy, H|r, or H37, and similar for the S; r-dependent part in

the following.

3. Tensor polarization dependent part

The most general decomposition for the tensor polarization dependent part is given by

- kg, -S Skeke
Bz, kp1sp, S) =M [SLLELL(Z7 ke, )+ %Eir@ kpi) + %E%T(Z’ kFJ.)] ; (A21)
ETO)(, ko p §) = ko Sur ST ot
=Nz ke p,S) =M TELT(Z7kFJ_) "‘WETT(Z»]‘FL) ) (A22)

034003-26



TENSOR POLARIZATION DEPENDENT FRAGMENTATION ... PHYSICAL REVIEW D 94, 034003 (2016)

kp ks
_T(0 B kg, - S S5
Z:a( )(Z, kpi;p.S) = pTig, [SLLDlLL(Z» k1) +¥D1LLT(Z kry1) +%D%TT(Z7 kpy)
+ MS17Dyr(z k1) + Sk D (2, ki)
ko Sir i
+kpiq |:SLLD1J:L(Zv kpi) + TDi_T(Z’ kpi) + WD%T(L kn)]
2 kpkp

M kp, - S S
+ pina {SLLDSLL(Z’ kpy) + %Dir(z’ kpy) + %D%TT(Z» kFL)] ; (A23)

kkp

kpy - S 5 3
L % i 2 (z.kpy) + %Gf'ﬁ(z’ kFJ.)] ~MS;1aGrr(z kL) — S];"FZ“aG/TJ_T(Zv k)

Zég(o)(Z, kpi;p,S) = P+ﬁa[ i LT

. kpi S Syer
—kpia [SLLGfL(L kri) + %Gh(% kpi) + % G%T(Z» kFJ_):|

kekp

M?  Tkpy - Sir S
+ p_+ ng [T G%LT(& kpi) + % G3LTT(Z9 kpi)|, (A24)

=T(0 -3 Pt < F
Zﬂpo(t )(Zv kpi;p.S) = =pTiSiraHir(z, kpy) — ﬁnpsl}Ta]H'llTT(Z, kpy)

Pt - ko' - S Skrkr
- Mn[kaJ_a] |:SLLH%LL(Z’ kpy) + %Hﬁr(zv ki) + %H{_TT&’ ki)

ko Sir . N
+Me o |SppHpp (2, kpy) + THLT(Z’ kpi) + WHTT(Z’ kpy)

kpkp
+ g {(ku - S r)Hir (2, ko) + Z Hiz(z, ku)}

M - 1 kpi - Sir o, SI;FTkF L
_p_+nL0kFJ_a] SLLH3LL(Z’ kFJ.) +7M H3LT(Z’kFJ_) + M?> H3TT(Z’kFJ_)
M < Sk 1L
- pﬁnp)[MSLTa]HuT(L k1) + SyrgH5rr(2. kp1)]- (A25)

We integrate over d’kp, and obtain

BTNz p.S) = MS Ep1(2). (A26)
EO(z p,8) =0, (A27)
- _ M?
A (z3p,8) = P ReSpL Dy (2) + MS 7D r(2) + p_+naSLLD3LL(Z)’ (A28)
Zég(())(Z;P’ S) = _MSLTaGLT(Z)’ (A29)
- _ o= M? -
Z:;z§0>(z; p.S) =~ P+nUzSLTa]H1LT(Z) + MglpaSLLHLL(Z) - p_+n[pSLTa]H3LT(Z)' (A30)

Again, the four S;;-dependent one-dimensional FFs are just equal to the corresponding three-dimensional FFs integrated
over d*ky, while the four S, ;-dependent FFs are given by Eq. (A20) for K; = D; 7, G.7, Hy;7, and Hs; 7.

We list those twist-2 FFs in Table II, and those twist-3 FFs in Table III. The twist-4 FFs have the same structure of those at
twist-2, so we do not make a separate table. We also list them according to chiral and time-reversal properties in Table IV.
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TABLE II. The 18 leading twist components of the FFs for quark fragments to spin-1 hadrons. The symbol x
means that the corresponding FF disappears after the integration over transverse momentum.

uark
Solarization Hadron polarization TMD FFs Integrated over k FL Name
U U Dy(z, kr1) D (z) Number density
r Dif7(z, kpy) X
LL Dipr(z kpy) D11 (2) Spin alignment
LT Diyr(z kpy) X
T Dizr(z, kp1) X
L L Gip(z. kp1) Gi.(2) Spin transfer (longitudinal)
r Gir(z. kpy) X
LT Gipr(z. kpL) X
T GllTr(Zv ki) X
T U Hi(z,kp)) X Collins function
(] H1T(Z kp1) Hir(z) Spin transfer (transverse)
T(L) (Z kg1 )
L H 1L(Z kg1 ) X
LL Hiyp (2 kpy) x
LT Hypr(z, ko), Hipr(z kry) Hir(z)
T Hizp (2, ki), Hipr (2, kpL) %, X

TABLE III. The 36 twist-3 components of the FFs for quark fragments to spin-1 hadrons. The symbol x means
that the corresponding FF disappears after the integration over transverse momentum.

Quark polarization Hadron polarization TMD FFs Integrated over %F 1
U U E(z,kpy ), D (z, kpy) E(z), x
L Di(z,kpy) X
T Ef(z.kpy), Dr(z, k1), Dy (2 kpy) x, Dr(z)
LL Epp(z.kp1), Dfy (2. kFJ_) Epr(z), x
LT Efr(z,kp1), Dpr(z. ko), Dip(z,kpy) X, Dpr(2)
T Err(z,kp1), Drp(z, kpy), Di(z, kpy) X, X, X
L U G (2, kp1) x
L EL(z, ku)’ Gr(z, ku) E;(z), x
T Ei(z.kpy), Gr(z. kFJ_) (2 kp1) x, Gr(2)
LL Gip (2 kpy) X
LT Efr(z,kp1), Grr(z,kpy), Gip(z kpy) x, Grr(z)
T Efp(z.kpy), Grp(z kpy), Grp(z ko) X, X, X
T U H(z. kpy) H(z)
L Hp(z.kpy) H(z)
() Hy (2, kpy) x
T(1) Hi (2, kpy) x
LL Hpp(z,kpy) Hpp(2)
LT Hir(z. kpy), Hiz(z, kpy) X, X
T Hyr (2. kpy), Hyp(z, key) X, X

4. Twist-3 FFs defined via the
quark-gluon-quark correlator

Twist-3 components are the leading twist contributions

&(1)

that we obtain from =, ’. There has to be one 7 involved in components for D,; thus no 7

the basic Lorentz covariants and the other(s) are from the
transverse components. Since the 77 component of the gluon
field goes into the gauge link, we only have the other three

, component exists in the
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TABLE IV. Chiral and time-reversal properties of TMD FFs from the quark-quark correlator.

Chiral even Chiral odd
Quark Hadron
polarization polarization T even T odd T even T odd
U U D, D+, D, E
L Dt
T D{y, Dy, Df, D3y Ef
LL Diyr, Dips Dipp EpL
T Diyr. Dyr, Dy D3y Erp
L U G+
L G, Gt, G3;, Ep
T Gl Gr, G, G& Ej
LL Gy
T Girr» Grrs s Garr Efp
T U Hi, H, HE
L Hf'Ls Hp, H%L
T(ll) Hr, Hy, Hyr
T(L) Hi7, HY, Hyp
LL H%LL’ Hypyp, H%LL
LT H 7. Hiyp, Hyp, Hig,
Hypp, Hypp
T Hiry, Hipr, Hyp, Hi,

1 1L
HSTT’ H3TT

basic Lorentz covariants. We therefore do not have twist-3 contributions from E;,l) or é,()l). The twist-3 contributions are

obtained from E,(,la) é,%) and Er(gla)ﬂ and are given in the following.
For the unpolarized part, we have

ZE/[JJOSI)(Z7 kFJ_; p) = _p+flukFJ_/)D(J1_(Z7 kFJ_) + ey (A31)

Zé/l)]agl)(zv kFL; p) = _ierﬁal;FL/)Gj(Z’ kFL) +oeey (A32)
- _ l- _

Z:/l)]a(/p (z.kpisp) =—p* |:M€Lp[anﬁ]Hd(Za kpi)— MkFkaFL[anﬁ]Hj(Z’ kn)] +ee (A33)

For the vector polarization dependent part, we have

_ _ ~ ~ kg, - S

Z:XOSI)(Z7 kFL; P, S) = p+na{MST/)DdT(Z’ kFl) + kFL/) |:/1Dﬂ1_L(Za kFl) + %Dij_]‘(z, kFL):| } +---, (A34)
2v(1) ] L 1 kel St |

Z‘:‘/)a (Z’ kFJ_’ P, S) = —LIp Ny MST/)GdT(Z’ kFJ_) + kJ./) /‘LGdL (Z’ kFJ_) + TGdT(Z9 kFJ_) + (A35)
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- _ 1 _
Z:‘/;‘/;E/lj) (Z, kFL; D S) = p”L {ﬂ, [Mglp[anﬂ]HdL(z, kpl) + Mkapka[anﬁ]HjL (Z, kFL):|

- 1 -
— (kgL - St) |:8J_p[aﬁﬂ]H£1_T(Z’ kpi) — Wkupku[aﬁﬁ]HdL%(Zv ku)}

_ 1 _
+ (kgL - S7) |:gJ_p[anﬂ]HillT(Z’ kpi) + Wkupku[anﬁ]l‘lﬁﬁ/(z’ kFJ_)] } +---. (A36)
For tensor polarization dependent part, we have

kg,

—T(1 _ -S
z:p,g )(Z’ kpi3p,S) =—pti, [kFlpSLLDdLLL(Zv kpy) + MSLT/)DdLT(Z’ kpi)+ kei, TLTDjLT(Zy kpy)

Kpkr
+ 87, Dl (2. k) + ke 5 D (2. ku)] +eo, (A37)

= [ - 1 -
Z:/(;}z)(Z’ keisp, S) =—ip*h, |:kFJ_pSLLG(Jj_LL<Z7 kn) + MSLTdeLT(Zv kFJ_) + MkFJ_kaJ_ : SLTGi_LT<Z7 ku)

- - SkaF
+ 89, Gl (2. kL) + ke —z Garr(2 ku)} o (A38)

- _ 1 - _
ZEZ(E}}) (Z, kpl;p, S) = p+{SLL {Melp[anﬂ]HdLL(z, kpl) - MkFlkal[anﬁ]HdlLL(Z’ kFL):|

_ 1 - _
+ (kFJ_ : SLT) |:8J_/)[(ln[)’]H¢J1_LT(Z’ kFJ_) - WkFJ_kaJ_[an[)’]HjL/T(Z’ kFJ_):|

— (kpy - Sir) [QLp[aﬁﬁ]HffLr(Z’ kpi)+ WkFlkaJ_[aﬁﬁ]H;’LL/T(Z? kpy)

skekrr 1 ]
+ IT‘; [8lﬂ[anﬂ]H£1_TT(Z’ kpy)— WkFlkal[a”ﬂ]Hd#T(Z kFL)]
|
+ |:gL/)[aﬁ/3]H/de"T(Z’ kFL) + WkFL/)kFL[aﬁ/)’]H&JiJT(Z’ kFL):| } +eee (A39)

Here, we use a subscript d to specify that they are defined via the quark-gluon-quark correlator. A prime in the superscript
before the | denotes different polarization situation, that after the L specifies different FF for the same polarization
situation. We see that we have totally 36 FFs at twist-3 defined via the quark-gluon-quark correlator. This is just the same as
what we obtained from the quark-quark correlator. Among them, 18 are y even and the other 18 are y odd; four contribute to
the unpolarized part, 12 to vector polarized part, and 20 to the tensor polarized part. We note in particular that the
Hermiticity in this case does not demand that the FFs defined via the quark-gluon-quark correlator are real. They can have
both real and imaginary parts.

APPENDIX B: TWIST-3 CONTRIBUTIONS TO THE HADRONIC TENSOR

In the two-hadron-collinear frame, the twist-3 contributions to other parts of the hadronic tensor besides W,(,i,)U and

Wi given by Egs. (4.14) and (4.19) are given by
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L 44 [ dPky &K, ) 1 S .
Wi = o Ky - — |~w,,(k)D (k)G1]D
2122 (27)% (2n)? (ki +K —q1) pf[ @y (k)Dy. + oy, (k)G D,

IMcd . -, - .- _ 1 L
+ e [2(]{/ - k:‘z){;w}HL + l(k/n - klr‘z)[/u/]EL]I_Ill —i_;GlL[w/w(k/)Dl + wﬂu(k/)GL]
2

2M,cl ~ - _ e . V2. _
- =2 H, [2(kn - kﬁ){;w}H + l(kn - kh)[/w]E} - E |:a)/w(k/v k)GlLDl

(R R+ Ty K+ K, klkm{,w}HﬁH%} } (B1)

wr 4 [ &Pk K ) {
wih = L&k, + K,
. uz ) (27)* (2x)? (ky

2M

1 _ - _
+;G1r[5)ﬂy(k’)DL+5) K6 + 5 2[2(k — k) gy Hi + ik, = ki) B HY

" ( 0~k F)DF + i3, (K)GEID,

2M2€2

@, (K, k)GiyD
M1p2 ﬂ 171

Hiy[2(ky = k) gy H + ik = K5) 0y E] -

q

L ke
MIM

ky - 1 o
(R I+ kK K+ K, -k K, ){W}HlTHiD - jwlsT <p Diz[~@,,(K)D* = &, (K)G"]
2

2M1C2 \/E —
+ 2(kl, — Ky o Hy + i(k, — K, DEJ-HL—I——a),,k’,kDJ-D)
szT[( i) gy Hy +( 7)) 7] ) (K k) D7Dy
2M2Cg
P>

4y/2c8 ~ ~ ~ -
- M2Q2 (=K', - Sy (ki + ki) gy + KL ki Siguy + ko Siknpy + K- Sik;{wﬂleHll}’ (B2)

~ ~ _ L~ _ M, ~ B _
HIT[Z(Sn _Sh){ﬂy}H+l(Sn )[;w]E] +p7+[ V(S)DT+CU;W(S)GT]D1
1

aer _ 4 [ Lk K / {"i SLT( L
W™= =— k, + K, k)Diy + @, (k)Gi7]D
g 2132 (271')2 (271') ( L ) 1‘/[1 P1 [ ( ) LT ( ) LT] 1
1 ~ ~ 2M !

_z[ o (K)Diy D + @, (K) D1y 7G| + sz7 ;

1

2M !l _ _. V2 _ 4 ; i}
- 2 _2 [2(kn - kﬁ){m/}HllLTH + l(kn - kr'z)[/w]HlLLTE] + |:w/w(k/7 k)DllLTDl - M w/(w) (ka k/)HllLTHlL:| >
M, p; Q 1

K Sur (L Gt (k9D + 0 ()G + 208 (20— )y i+ (K, — )
+ M, _5 1170 (K )D~ + @, (K)G+] + +[ (kn = ﬁ){lw} ir +ilk, )[/““] 7]

f~
0

2(ky — k7) }HLT + ik, — kj )[;w]ELT]H

{uv

_ M L _
(K5 k)GlLLTD1> + p_Ji [0,,(SLT)D 1 + @, (Sp7)Grr]Dy
1

2M2Cg
123

4y/2¢4 .
— 1‘\4/_;2 (kJ_ . SLTk:’q - kl . SLTkﬁ + kJ_ . k/LSLTﬁ + kESLTn){;w}HlLTH%}’ (B3)
2

[2(SLTn - SLTﬁ){;w}HlLTH + i(SLTn - SLT’_Z)[/,M/]H]LTE}
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1 4 d’k, d*K Skk /1 _
W,(W)TT _ T il léz(kl—l—k’ q1) °TT F[ W(k)DTT—l-a)W(k)G%T}Dl

<122 (27T)2 (27 ) M%
1 Nl AL s (L sy . 2Mic / / ST Y) / 11771
_E[wuu(k )DiprD~ + @, (k') Dizr G| + Map: 2(k, = k&) fuuy Hor + i(ksy, = ki) ) B | H
2M,cd _ 2 _
_W;—z[z(k" - kﬁ){}w}Hf_TTH +i(k, — kﬁ)[;w]sl%kTHlLTTE} +E [a),w(k’, k)Df_TTDl
2
n) 1L gl S%" [ L
- " (k, K)H: H ST (Gl (@, (K DL )G
gt A ) i B ) 308 (Gl (0D + 0, ()G
2M,c? - \/—~ _
2 ol = Ry i+ i = R BRI =5 0 (K )Gy Dy )
1
1 kK \TYL 1 & ok N LT 2Myc§ k 1L fy 4 i(ck k AN
+p_+[a)/w(STT)DTT +wﬂu(STT)GTT]D1 - M, [2(STTn STTh){yv}HlTTH+ i(ST7s _STTn)[,w]HHTE]
I
4\/§ch2 _
- M22Q (Skk k/ - S];kan + kJ_ K STTn + kES];Tn){/w}H/ﬁ"THIL}' (B4)

Transforming them into the helicity-GJ frame, we obtain from Eqs. (B1)—(B4) the contributions at twist-3 and they take
exactly the same form as given in these equations. However, we obtain also additional twist-3 contributions from the twist-2
parts given by Eqs. (4.4)—(4.13). The corresponding terms for the unpolarized part are given by Eq. (4.23). Other parts are
given in the following:

A2 [ &k &K,
72120 (27)* (2n)?

- _ 4cd ~ _
5W;(t9L 52(1& + K - )/1{(031%{;4@ - lclllqﬁ[;w])GlLDl + M1A2/12 ki-(qL— kL)k,-,{W}HllLHll}’

(BS)
W2 [k, P,

(T 2 /
oW, = 56 (k. + K|
! 71220 (2”) (27 ) (ks )
kl . SL g~ - 4Cg ~ —
X { M, {(Cg%{;w} - lc‘{%[;w})G%TDl + MM, ki-(q.— kJ_)k;{,w}Hf_THf—
ki oS, q :a LA, A 71 ) o =
T, (c1aguy = i€3ap)) PirD1 + E(kJ_ Sy ks +ky ki Sy—ky - Sika) g HirHy ¢, (B6)
e W2 [ &Pk PR,
oW, = 5 ky +k
! 21220 (277) (27 ) (ks 9)
g~ _ 4c7 _
X SLL{_(C?‘]H{/W} - lCZ‘IhW])DlLLDl + Mll\z/lz (kik% + kﬁkﬁ){ﬂu}HllLLHll}v (B7)

mer W2 [ &Pk PR,
Wy~ = 582 (k, + K
H Z]Z2Q (2”)2 (2 ) ( 1 1= )
q

k- S 4 z
X{Tl _(C?Qﬁ{ﬂl/} ’C3Qn[;4u])D1LTD1+M1M (K3 kG + kfkﬁ){ﬂv}HlLLTH%

ki -S 4cd _
+ LMILT(CSI%{W} lc1f1n[/w])G1LTD1Jr (QL K\ Spra+ky - Sprky — k/J_'SLTkﬁ){;w}HlLTHf_}s (B8)

o W2 [ dPky dPK,

kk
(1) 2 / STr q - g 1 7 271 ) 1 flL
oW, = 5k—|—k — = (1 atmy — ic3Ga1u)) Dipr D1 + (k] ki + KT k) 0 Hypr H
H 22,0 (Zﬂ) ( ) ( 1 ){M%[ ( 19 {uv} 34 [;4]) 1rT1 ( 1 1 ){;4} ITT 1]
st q ,
+ e (Cg%{/w} llen[/w])GlLTDl "‘ MM (QJ_ K\ Skrs + Stk — Sk ){;w}HlTTH } (B9)
1
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APPENDIX C: TWIST-3 CONTRIBUTIONS TO THE STRUCTURE FUNCTIONS

In the partonic picture at the LO pQCD, 36 of the 81 structure functions for e*e™ — VzX have twist-3 contributions.
We list the results in this appendix in the following.

! 8c¢cd _ _
Fpf = —2C[Mw\D*2,D\ + My 2z, D DV, (C1)
21220
4¢f - = 7 F
Fyps = 1Z21Q {c{CIM wD+2,D\ + Myw z; D, D] + 4ciC[M W Hz, Hy — Myw 2 H{ H+']}, (C2)
~ sing 8¢5 _ _ - _ _ _
Fiys = 21Z23Q {ciCl(Mw G 2,Dy = My 2D GH)] 4 2¢5C[(M W) Ezo Hy — Mow 2 HY E)]}, (C3)
. 4c¢ q
Fypg = 215 CIM w, G ,D, — Myivy 2D, G, (C4)
71220
~ cosg 8¢5 _ _ _ _ _ _
i = le;Q {c{CIM\w\G{z.D1 = Maw12,Gy DY) + 2¢3C[—M Wy EL 2o HY + Mow 2 H; E]}, (C5)
4cf c? _ _
Fyy = >C[Mw\GE2,Dy = Moy 2,Gy DY, (C6)
71220
' 8cscd - ~ _
Fiy = 2 ; éC[ ~Mw\D;2,Dy + Myw12,G, .G, (C7)
- 4c¢ ) _ _
Fyrf = —1 {ch[ —M \wD{z,D + Myw,2,G G + 4¢3CIM W Hy 2, H — Mow, 2 H; H}, (C8)
-~ i 4c¢ _ _ _ _ -
Fip = Z1Z23Q {c{C2M GF 22D + Mywy 2y (Gip DY + DiGh)] + ¢3C[-2M wr Ex~ 2, Hi + Moz HizEl}, (C9)
- 4c¢ q _ _
F;()szws = ﬂC[Mlg 22D, +M2 Zl(GL DY + D{_TGL):|’ (C10)
71220
. 8csc _ 7 _ _
Fipds == 30{ —M Dy z,D, +M272z1(DfTDl’—G,LTGL)}, (C11)
21220
FSinf/’s — 4C(lf acl—M,DLz,D M W DL DY —GL Gt 4cic\m W H:—72 H: — M,z H- HY
272 71122Q c\C| =M DyzDy + 2721( 1T —Yir ) + 4c, 17 7 2oHy — Myz HypH ,
(C12)
-2 8c§ _ - _ _
Feosles=20) — ZIZ; Q{c 1C[M w3 G2,Dy — Mywyz, (G DY — DG + 2¢9C[~M ywyExt 2, HE + Mywsz  HEE)},
(C13)
=cos(ps—2¢) _ 4] C3 1 AL 1AL
F2T2 C[ W3 TZZDl M2W4Z1(G1TD _DITG )}, (C14)
2120
sin(ps—2¢p) 8C3C3 1 AL 1L AL
Fir lezQC[M1W3DTZ2D1 Mawyzi(DizDY + Giz G, (C15)
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4c¢ . _ ~ - =
F;I;gw 20— 201 {cICIM \w3D#+2,D\ — Myw,z,(DiDY + Gi7:G)] + 4ciCl-M wyHF 2, H + Mywsz HiHY]},

21220
(C16)
8cecl
Fifh = —2C[Mw Dy 25Dy + Mo 2Dy, DY), (C17)
21220
4t _
F;;SL(FZ = 2z it {C C[MIWIDLLZZDI +M2W1Z1D1LLDL] ‘I‘ 4CqC[M1W1HLLZ2H1 M2W1Z1H%LLHL/}}, (CIS)
1
G 4c¢cd - _ ~
Fyih = z 1 éC[leleLzle — My 2Dy, G, (C19)
|
~ i 8¢} - _ ~ _ _ -
F?ZZ)Z = @ {Ct]IC[MIWIGi_LZZDI - MlelelLLGJ'} + 2CLZIC[M1W1ELLZ2Hf' - Mzwllef‘LLE]}, (CZO)
- 8cse
Fintyr = 29 Dl D, - M, (Dl DY + G, 6| (c21)
21220
Fspr = 2L acl Dby — My Y2 2 (Dl DY + Gy Gl)| - 4t | M, 2 B BE - My
ur =05 C 1DrrzaDy = 27Z1( iLrD + GiprGH) | —4c) 175 Hir 22t 2w ey s
(C22)
~ g 8¢t - w - _ _ -
;IE%T = le;Q {C?C |:M1gi_TZZDI - M27221 (GllLTDll - DlLLTGL)] + CZC[—lezEﬁszHll - 2M2ZIH%LTE] }
(C23)
gy 4¢¢cd _ w - -
oy =299 1,610y - 11,22 (Gl D - D1y G, (c24)
21Z2Q 2
2 8cecd _ _ _
FOPr=0) = 2553 M wy D2, Dy + Mawyzy (D DY — G, GY), (C25)

2120

S ) 4Ce — — - _ _ —
F;%(g” Y = IQ{C?C[MIWSDiﬂle +Mywyz, (DILLTDLI - GlLLTGl)] +4CZC[M1W4HiT ZzHll _M2W3ZIH1LLTHL/} }

2122
(C26)
~ _ 8¢t _ _ _ _
Filz(r(/;” ) = Z Z3Q {ch[ MIWSGiTZZDl +M2W421(G1LLTDL/+DILLTGL)] 2026[ 1W4EiT_ZzH1l _M2W3ZIH1LLTE]}7
122
(C27)
Feintor20) A4S o By GL . DY + DL Gt C28
2LT2 2 [=Mw3Grr2oDy + Mawyz (G DY + DG, (C28)
2 8cscl _
F?}S( Prr= (/}) p Z?’ 3 C[ MIWIDTTZZDI Mzzl(w3wlD1TTDL —WSG%TTGL)], (ng)
122
2¢ ¢ 4 _ = =
F;‘;( prr) _ 21Z2Q —L{c1C[-M w Dfyz,Dy — Mz, (w3w  Dipp DY — wsGipp G
+ 4CgC[M1 (W6H%TZZI:I% - WSH/TJ‘TI:I%> =+ MzwllefTTHl/]}, (C30)
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2 8¢5 _ _ B B
Fsll;(rzw” = 3 {ch[ MIWIQTTZZDI Jr]"[2ZI(V"6G1LTTDL/+V"3V"ll)1lTTGl)]

2120
+ ZCZC[MIZZ (W6E%TH% - WSE/TJ}H%) + M2W1Z1H%TTE]}, (C31)
sin(err—p) 4‘/’ng 18 2 1 Pl vy 1 AL
Fyrm) = mc[ M w1 GrrzoDy + Moz (WeGrpp D' + w3  Dizp G, (C32)
122
_ 8ctcd _ w _ _
i =22 5C [lew%mal + Myt (Dige D - Gmcﬂ] , (€33)
1
_ 4c¢ _ w _ _
Fopalm ) = =L {C(fc {M1W9Dzl"r2201 + M, 2y (Dt DY - GfrrGL)}
21220 2
+4£CPM¥§JH§QH%—A@quHﬁTHﬂ}}, (C34)
Fgm(zfﬂrr—-”f/’) 8C§ ‘IC -M G D M G DJ_/ DJ_ GJ_
1772 Cj WoGrrzaDy + My — Zl( irrD~" + Di77G™)
ZlZzQ 2
— cACIM w1 EF7 2, HY — 2M2w9z,1H1iTTE]}, (C35)
91“(2¢TT—3¢) 4Cfcg 1L ~L
F2TT2 p ZZQC M1W9GTTZ2D1 + M2 3 ZlDlTTG . (C36)
1

Here, just as for the Sy- and S; r-dependent FFs given by Eq. (A20), for Syy-dependent K, we define

K2
Kir(z, k) = Kir(z, k) + ZA;KL (z.k)), (C37)

for K = D, G, or H. Also, K}* = K} £ K%', for all different K’s and polarization ¢’s, and for the leading twist involved
combinations,

DY = 5,D, — DL, HY = H — wyn L. (C38)

Besides the w’s given by Egs. (5.2)—(5.6) and in the text in Sec. V, we have also introduced the scalar weights
defined as

1 1 _ 1
W3 = EWO — W%, Wy = EWz —wWiwi, W5 = WiWy — WoW» -+ EWOWI, (C39)

1 1 3
We = Wiwy — Ewov"vl, Wy = 4w%v"vl —2wiwy, — WoWy, Wg = 4w%v"v1 —2wiw, — Ewov"vl, Wy = <2w% — 2W0)W1
(C40)

They are all scalar functions of k,, k', and p,y.
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