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We interpret the potential observation of the 750 GeV diphoton resonance at the LHC in models, in
which an SUð2Þ isospin-singlet scalar boson mixes with the standard model (SM) Higgs boson through an
angle α. Allowing the singlet scalar boson to have renormalizable couplings to vectorlike leptons and
quarks and introducing sizable decay width of the 750 GeV diphoton resonance into non-SM particles such
as dark matters, we can explain the large production cross section σðH2Þ × BðH2 → γγÞ as well as the
apparent large total width of the boson without conflicts from the results obtained by previous global fits to
the SM Higgs boson data.
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I. INTRODUCTION

The biggest triumph of the LHC Run I was the discovery
of the standard model (SM) like Higgs boson with mass
about 125 GeV [1,2]. The signal-strength data and the spin-
parity of the observed 125 GeV particle have all indicated
that it is very close to the SM Higgs boson [3,4]. After a
shutdown for 2 years, the Run II started with a high
expectation. Just with an accumulated luminosity of about
3 fb−1 at

ffiffiffi
s

p ¼ 13 TeV, both ATLAS [5] and CMS [6]
showed a hint of a new particle at about 750 GeV decaying
into a photon pair. The particle is likely to be a scalar boson

or a spin-2 particle. We focus on the scalar boson scenario
in this paper.
With a luminosity of 3.2 fb−1, the ATLAS Collaboration

found a resonance structure at MX ≈ 750 GeV with a local
significance of ∼3.64σ, but corresponding to 1.88σ when
the look-elsewhere-effect is taken into account [5]. The
CMS Collaboration also reported a similar though smaller
excess with a luminosity of 2.6 fb−1 at MX ≈ 760 GeV
with a local significance of 2.6σ but a global significance
less than 1.2σ [6]. Also, in the analysis of ATLAS a total
width of about 45 GeV is preferred [5].
These data could be summarized as follows:

ATLAS∶ MX ¼ 750 GeV; σfitðpp → X → γγÞ ≈ 10� 3 fb; ð95%CLÞ; ΓX ≈ 45 GeV

CMS∶ MX ¼ 760 GeV; σfitðpp → X → γγÞ ≈ 9� 7 fb; ð95%CLÞ

The uncertainties shown are 1.96σ corresponding to
95% C.L. Note that we estimate the best-fit cross section
from the 95% C.L. upper limits given in the experimental
paper, by subtracting the “expected” limit from the “ob-
served” limit at MX ¼ 750ð760Þ GeV for ATLAS (CMS).
Although this hint for a new resonance is still very

preliminary, it has stimulated a lot of phenomenological
activities, bringing in a number of models for interpreta-
tion. The first category is the Higgs-sector extensions,
including adding singlet Higgs fields [7–9], two-Higgs-
doublet models and the MSSM [10]. But in general it fails
to explain the large production cross section of pp → H →
γγ in the conventional settings, unless additional particles

are added, for example, vectorlike fermions [7–10].
Another category is the composite models [11] that
naturally contain heavy fermions, through which the
production and the diphoton decay of the scalar boson
can be enhanced. Other possibilities are also entertained,
such as axion [12], sgoldstini [13], radion/dilaton [14], and
other models [15]. More general discussion of the diphoton
resonance or its properties can be found in Refs. [16]. The
generic feature of the suggested interpretations is to
enhance the production cross section of pp → H → γγ,
where H is the 750 GeV scalar or pseudoscalar boson, by
additional particles running in the Hγγ decay vertex and/or
Hgg production vertex. Another generic feature, though not
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realized in the CMS data, is the relatively broad width of
the particle, which motivates the idea that this particle is
window to the dark sector or dark matter [8,9].
A possible interpretation for this 750 GeV particle can be

an SUð2Þ isospin-singlet scalar. In this interpretation, a
general feature is that the singlet s mixes with the SM
Higgs doubletHSM through an angle α due to the cubic and
quartic potential terms such as μsH†

SMHSM þ λs2H†
SMHSM.

Further, we note that the singlet may also have renorma-
lizable couplings to new vectorlike leptons and quarks [17].
We assume after mixing the lighter boson is the observed
SM-like Higgs bosonH1 at 125 GeV while the heavier one
H2 is the one hinted at 750 GeV. Thus, the 750 GeV scalar
boson H2 opens the window to another sector containing
perhaps dark matter (DM) and other exotic particles.
In our previous global fits to the Higgs-portal type

models with the SM Higgs mixing with a singlet scalar
boson with all the Higgs boson data from Run I [18], we
have constrained the parameter space of a few models with
a singlet scalar. In the Higgs-portal singlet-scalar models
with hidden sector DM, there are no new contributions
to the hγγ and hgg vertices beyond the SM contributions,
and the mixing angle α is constrained to cos α > 0.86
at 95% C.L. However, in those models with vectorlike
leptons (quarks) the mixing angle can be relaxed to
cos α > 0.83ð0.7Þ at 95% C.L.
The implication is that the 750 GeV scalar boson H2 can

be produced in gg fusion as if it were a 750 GeV SM Higgs
boson but with a suppression factor sin2 α if there are no
vectorlike quarks running in the H2gg vertex. Additional
contributions arise when there are vectorlike quarks run-
ning in the loop. Similarly, the decay of the scalar bosonH2

behaves like a 750 GeV SM Higgs boson with each partial
width suppressed by sin2 α if there are no vectorlike leptons
or quarks running in the H2gg and H2γγ vertices. If this is
the case the branching ratio BðH2 → γγÞ ∼ 10−6, which is
too small to explain the resonance. In this work, we
consider vectorlike leptons and vectorlike quarks that
can enhance the H2 → γγ decay substantially to give a
large production cross section for pp → H2 → γγ.
Vectorlike fermions are quite common in a number of

extensions of the SM with various motivations. Although
we can introduce vectorlike fermions in an ad hoc and
phenomenological way in order to explain the 750 GeV
diphoton excess, their existence can be understood at
theoretically deeper levels. They appear naturally in models
with new chiral Uð1Þ gauge symmetries in order to cancel
gauge anomalies [19–21], in non-Abelian gauge extensions
such as SUð3ÞC × SUð3ÞL ×Uð1ÞY model (the so-called
3-3-1 model where gauge anomalies cancel when three
generations of fermions are considered) [22], or in flavor
models for fermion masses and mixing [23], to name a few
explicit models in the context of 750 GeV diphoton excess.
In such models, one can in particular forbid large bare
masses of the vectorlike fermions if they are chiral under

this new Uð1Þ gauge symmetries, and thus motivate their
masses fall into the range we need to accommodate the
750 GeV diphoton excess.
In this paper, we interpret the 750 GeV diphoton

resonance by introducing an SUð2Þ singlet taking fully
account of its mixing with the SM doublet. We show that
the large production cross section can be explained if the
singlet scalar has renormalizable couplings to the vectorlike
leptons and quarks. We further show the possibly large total
width can be accommodated if H2 substantially decay into
non-SM particles such as dark matters.
The organization is as follows. In the next section, we

describe briefly the framework of the SM Higgs mixing
with a singlet scalar that couples to new vectorlike
fermions. In Sec. III, we present the numerical results
for the 750 GeV resonance including the constraints from
the properties of the 125 GeV SM Higgs-like scalar boson.
Then we conclude in Sec. IV.

II. HIGGS-SINGLET MIXING FRAMEWORK

If there are extra vectorlike fermions with renormalizable
couplings to a singlet scalar s,1 these models generically
contain two interaction eigenstates states of h denoting the
remnant of the SMHiggs doublet and s the singlet. The two
mass eigenstates H1;2 are related to the states h and s
through an SOð2Þ rotation as follows:

H1 ¼ h cos α − s sin α; H2 ¼ h sin αþ s cos α ð1Þ

with cos α and sin α describing the mixing between the
interaction eigenstates h and s. In the limit of sinα → 0,
H1ðH2Þ becomes the pure doublet (singlet) state. In this
work, we are taking H1 for the 125 GeV boson discovered
at the 8-TeV LHC run and H2 for the 750 GeV state hinted
at the early 13-TeV LHC run. We are taking cosα > 0
without loss of generality. For the detailed description of
this class of models and also Higgs-portal models, we refer
to Refs. [17,18].
In this class of models, the singlet field s does not

directly couple to the SM particles, but only through the
mixing with the SM Higgs field at renormalizable level.
And the Yukawa interactions of h and s are described by

−LY ¼ h
X

f¼t;b;τ

mf

v
f̄f þ s

X
F¼Q;L

gSsF̄FF̄F; ð2Þ

with f denoting the 3rd-generation SM fermions and F the
extra vectorlike fermions (VLFs): vectorlike quarks
(VLQs) and vectorlike leptons (VLLs). Then the couplings
of the two mass eigenstates H1;2 to the SM and extra
fermions are given by

1This singlet scalar s could be a remnant of new gauge
symmetry breaking. In that case, s may carry a new quantum
number different from the SM gauge charges [24].
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−LY ¼ H1

�
cos α

X
f¼t;b;τ

mf

v
f̄f − sin α

X
F¼Q;L

gSsF̄FF̄F

�

þH2

�
sin α

X
f¼t;b;τ

mf

v
f̄f þ cos α

X
F¼Q;L

gSsF̄FF̄F

�
:

ð3Þ

The couplings of H1;2 to two gluons, following the
conventions and normalizations of Ref. [25], are given by

SgH1
¼ cos αSgðSMÞ

H1
− sin αSgðQÞ

H1

≡ cos α
X
f¼t;b

Fsfðτ1fÞ − sin α
X
Q

gSsQ̄Q

v
mQ

Fsfðτ1QÞ;

SgH2
¼ sin αSgðSMÞ

H2
þ cos αSgðQÞ

H2

≡ sin α
X
f¼t;b

Fsfðτ2fÞ þ cos α
X
Q

gSsQ̄Q

v
mQ

Fsfðτ2QÞ;

ð4Þ

where τix ¼ M2
Hi
=4m2

x. We note that SgðSMÞ
H1

≃ 0.651þ
0.050i for MH1

¼ 125.5 GeV and SgðSMÞ
H2

≃ 0.291þ
0.744i for MH2

¼ 750 GeV. In the limit τ → 0,
Fsfð0Þ ¼ 2=3. The mass of extra fermion F may be fixed
by the relation mF ¼ vsgSsF̄F þm0

F where vs denotes the
VEVof the singlet s while m0

F is generated from a different
origin other than vs as in −Lmass ⊃ m0

FF̄F. We note that,
when m0

Q ¼ 0, each contribution from a VLQ is not
suppressed by 1=mQ but by the common factor 1=vs.
Similarly, the couplings of H1;2 to two photons are

given by

SγH1
¼ cos αSγðSMÞ

H1
− sin αSγðFÞH1

≡ cos α
�
2
X

f¼t;b;τ

NCQ2
fFsfðτ1fÞ − F1ðτ1WÞ

�

− sin α

�
2
X
F

NCQ2
Fg

S
sF̄F

v
mF

Fsfðτ1FÞ
�
;

SγH2
¼ sin αSγðSMÞ

H2
þ cos αSγðFÞH2

≡ sin α

�
2
X

f¼t;b;τ

NCQ2
fFsfðτ2fÞ − F1ðτ2WÞ

�

þ cos α

�
2
X
F

NCQ2
Fg

S
sF̄F

v
mF

Fsfðτ2FÞ
�
; ð5Þ

where NC ¼ 3 and 1 for quarks and leptons, respectively,
and Qf;F denote the electric charges of fermions in the
unit of e. In the limit τ → 0, F1ð0Þ ¼ 7. We note

that SγðSMÞ
H1

≃ −6.55þ 0.039i for MH1
¼ 125.5 GeV and

SγðSMÞ
H2

≃ −0.94 − 0.043i for MH2
¼ 750 GeV.

The production cross section of H2 via the gluon-fusion
process is given by

σðgg → H2Þ ¼
jSgH2

j2
jSgðSMÞ

H2
j2
σSMðgg → H2Þ ð6Þ

with σSMðgg → H2Þ ≈ 800 fb denoting the corresponding
SM cross section for MH2

¼ 750 GeV at
ffiffiffi
s

p ¼ 13 TeV
[26]. Note that the relation in Eq. (6) only holds at
leading order.
The total decay width of H2 can be cast into the form

ΓðH2Þ ¼ sin2αΓSMðH2Þ þ ΔΓH2

vis þ ΔΓH2

inv; ð7Þ

where ΓSMðH2Þ≃ 250 GeV for the SM-like H2 with
MH2

¼ 750 GeV.2 And ΔΓH2

vis and ΔΓH2

inv denote additional
partial decay widths of H2 into visible and invisible
particles, respectively. The quantity ΔΓH2

vis includes the
decays into H1H1 by definition and, if it is allowed
kinematically, into extra vectorlike fermions as well as
those into γγ, gg through the one-loop processes induced by
the extra VLQs and/or VLLs. The quantity ΔΓH2

inv may
include the H2 decay into invisible particles such as dark
matters, or H2 decays into a pair of Nambu-Goldstone
bosons such as Majorons which appear in models for
neutrino mass generations (see Refs. [28,29] for example),
or dark radiation (or fractional cosmic neutrinos) which
appear when global dark Uð1Þ symmetry is spontaneously
broken [30].
The partial decay width of H2 into two photons is

given by

ΔΓH2→γγ
vis ¼ M3

H2
α2

256π3v2
½jSγH2

j2 − sin2αjSγðSMÞ
H2

j2� ð8Þ

and that into two gluons is

ΔΓH2→gg
vis ¼

�
1þ αs

π

�
95

4
− 7

��
M3

H2
α2s

32π3v2

× ½jSgH2
j2 − sin2αjSgðSMÞ

H2
j2� ð9Þ

with αs ¼ αsðMH2
Þ.

III. NUMERICAL RESULTS

In our numerical analysis, we shall restrict ourselves to
the case 2mF > MH2

so that H2 → FF̄ decays are kine-

matically forbidden and SgðQÞ;γðFÞ
H1;H2

are all real. In this case,
one may carry out a model-independent study on the

2For MH2
¼ 750 GeV, ΓSMðH2 → WWÞ≃ 145 GeV,

ΓSMðH2 → ZZÞ≃ 71.9 GeV, and ΓSMðH2 → tt̄Þ≃ 30.6 GeV.
[27].
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750 GeV diphoton resonance with the following varying
parameters:

sin α; SgðQÞ
H2

; SγðFÞH2
; Γnon−SM

H2
; ηgðQÞ; ηγðFÞ; ð10Þ

where

Γnon−SM
H2

≡ ΓðH2 → H1H1Þ þ ΔΓH2

inv: ð11Þ

Here the parameters ηgðQÞ and ηγðFÞ are defined as in

SgðQÞ
H1

≡ ηgðQÞSgðQÞ
H2

; SγðFÞH1
≡ ηγðFÞSγðFÞH2

: ð12Þ

We note that ηgðQÞ and ηγðFÞ take values between 2=3 and 1
for the following reasons:

SgðQÞ
H1

¼
X
Q

gSsQ̄Q

v
mQ

Fsfðτ1QÞ≃ 2

3

X
Q

gSsQ̄Q

v
mQ

;

2

3

X
Q

gSsQ̄Q

v
mQ

≤ SgðQÞ
H2

¼
X
Q

gSsQ̄Q

v
mQ

Fsfðτ2QÞ

≤
X
Q

gSsQ̄Q

v
mQ

; ð13Þ

if we have gSsQ̄Q > 0 for all Q’s.3

Since jSgðQÞ;γðFÞ
H1

j is larger than 2
3
jSgðQÞ;γðFÞ

H2
j, the param-

eters SgðQÞ;γðFÞ
H2

cannot be arbitrarily large without affecting
the LHC data on 125 GeVHiggs boson when sin α ≠ 0. For
example, the quantities

Cg;γ
H1

¼ jSg;γH1
j=jSg;γðSMÞ

H1
j ð14Þ

cannot significantly deviate from 1 [3]. If sin αjSgðQÞ
H1

j and
sin αjSγðFÞH1

j are required to be within the �10% range of the
corresponding SM values, one might have

jSgðQÞ
H2

j≲ 0.1
j sin αj ; jSγðFÞH2

j≲ 1

j sin αj ; ð15Þ

when ηgðQÞ ¼ ηγðFÞ ¼ 2=3. Therefore, we again restricted
ourselves to the case of j sin αj ≲ 0.1 in order to have

jSgðQÞ
H2

j≳Oð1Þ and jSγðFÞH2
j ≳Oð10Þ.

When sinα ∼ 0, we have numerically

σðgg → H2Þ ∼ 1250jSgðQÞ
H2

j2 fb;

ΓðH2 → γγÞ ∼ 4.67 × 10−5jSγðFÞH2
j2 GeV;

ΓðH2 → ggÞ ∼ 8.88 × 10−2jSgðQÞ
H2

j2 GeV;

σðgg → H2Þ × BðH2 → γγÞ ∼ 11.8
ðjSgðQÞ

H2
SγðFÞH2

j=90Þ2
ðΓH2

=40 GeVÞ fb

ð16Þ

where ΓH2
∼ΓðH2→γγÞþΓðH2→ggÞþΓðH2→H1H1Þ þ

ΔΓH2

inv.
First of all, to have ΓðH2 → γγÞ ∼ 40 GeV, one needs

jSγðFÞH2
j2 ∼ 106 which requires unlikely large value of QF ≳

10with gSsF̄F ∼ 1 andmF ¼ 400 − 500 GeV. IfQF ∼Oð1Þ,
ΓðH2 → γγÞ is significantly smaller than 1 GeV since

jSγðFÞH2
j2 ∝ Q4

F. On the other hand, to have ΓðH2 → ggÞ∼
40 GeV, one needs jSgðQÞ

H2
j2 ∼ 4 × 102 which results in

σðgg → H2Þ ∼ 5 × 105 fb leading to enormous number
of dijet events with BðH2 → ggÞ ∼ 1. Therefore, one
may need to have

ΓH2
∼ Γnon−SM

H2
∼ 40 GeV: ð17Þ

Second, we note that jSgðQÞ
H2

SγðFÞH2
j ∼ 90 to accommodate

σðgg → H2Þ × BðH2 → γγÞ ∼ 10 fb. Our representative

choice of SgðQÞ
H2

¼ 3 can be easily realized if there are
about 6 VLQs with mQ ∼ 400–500 GeV and gSsQ̄Q ∼ 1.

Usually jSγðFÞH2
j is larger than jSgðQÞ

H2
j enhanced by the

2NCQ2
F factor together with additional contributions from

VLLs. Therefore SγðFÞH2
¼ 10 × SgðQÞ

H2
¼ 30 could be a rea-

sonable choice.
Bearing all these observations, in Fig. 1, we show

the decay width ΓH2
(upper left), the cross section

σðgg → H2Þ × BðH2 → γγÞ (upper right), and the ratios
Cg;γ
H1

(lower) as functions of sinα taking SgðQÞ ¼ 3,

SγðFÞ ¼ 10 × SgðQÞ ¼ 30, and Γnon−SM
H2

¼ 40 GeV. In the
lower frames, the solid (dashed) lines are for
ηgðQÞ ¼ ηγðFÞ ¼ 2=3ð1Þ. We observe that the suggested
scenario comfortably explains the properties of the
750 GeV diphoton resonance without any conflict with
the precision data on 125 GeV Higgs. A full model-
independent precision analysis of the 125-GeV Higgs
and 750-GeV resonance data is to be addressed in a future
publication [31].
Though we have concentrated on the case of

j sin αj < 0.1, we find our solution with SgðQÞ ¼ 3 and
SγðFÞ ¼ 30 remains to be valid up to j sin αj ∼ 0.4 which is
still allowed according to our global fits to the Higgs-portal

3In this study, we take the more conventional choice of
gSsF̄F > 0 for the Yukawa-type coupling between s and VLFs.
In general, it may be possible to have negative gSsF̄F for some
VLFs in specific models and the parameters ηgðQÞ;γðFÞ can take
any values in principle. However, we shall fully investigate such a
case in a later work [31].
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type models [18], see Fig. 2. We fix ΓH2
¼ 45 GeV and

tune Γnon−SM
H2

to accommodate it. And a general possibility

of having ηgðQÞÞ ¼ ηγðFÞ ¼ 0 is considered to satisfy the
results of the global fits to the 125 GeV Higgs boson data.
In this case, we note that σðgg → H2Þ × BðH2 → γγÞ ∝
cos4 α and Cg;γ

H1
¼ cos α.

In the following, we would like to comment on H2

decays into WW, ZZ, tt̄, and gg. First, let us consider the

case where H2 is produced through the SM-singlet VLQs
which only have couplings to g and γ. In this limit of no
interactions between VLQs with the W=Z boson, H2

decays into WW, ZZ, and tt̄ through its SM Higgs
component at the tree level while the decay into gg
proceeds through the VLQ loops. In this case, the cross
section times branching ratios are

σðgg → H2Þ × BðH2 → WWÞ≃ 400 fb

�
SgðQÞ
H2

3

�2�
sin α
0.1

�
2
�
40 GeV
ΓH2

��
σSMðgg → H2Þ

800 fb

�
;

σðgg → H2Þ × BðH2 → ZZÞ≃ 200 fb

�
SgðQÞ
H2

3

�2�
sin α
0.1

�
2
�
40 GeV
ΓH2

��
σSMðgg → H2Þ

800 fb

�
;

σðgg → H2Þ × BðH2 → tt̄Þ≃ 90 fb

�
SgðQÞ
H2

3

�2�
sin α
0.1

�
2
�
40 GeV
ΓH2

��
σSMðgg → H2Þ

800 fb

�
;

σðgg → H2Þ × BðH2 → ggÞ≃ 200 fb

�
SgðQÞ
H2

3

�4�
40 GeV
ΓH2

��
σSMðgg → H2Þ

800 fb

�
: ð18Þ

Given that the current upper limits on production of a
resonance into a ZZ, WZ, or WW pair is about 150–200 fb
for MX ¼ 750 GeV at

ffiffiffi
s

p ¼ 13 TeV [32], our scenario is
moreor less safe if j sinαj≲ 0.1.At

ffiffiffi
s

p ¼ 13 TeV, the search

for dijet resonances did not cover the dijet mass range below
1 TeV, and we did not find any search for tt̄ resonances.
On the other hand, at

ffiffiffi
s

p ¼ 8 TeV, the gluon-fusion
production cross section for a SM Higgs boson of 750 GeV

sinα

Γno
n-

SM
 [

 G
eV

 ]

ΓH2 = 45 GeV , S
g(Q)

H2 = 3 , Sγ(F) H2 = 30 , ηg(Q) = ηγ(F) = 0

sinα

σ (
gg

 →
 H

2 
) 

× 
B

( 
H

2 
→

 γ
γ 

) 
[ 

fb
 ]

sinα

C
g H

1

sinα

C
γ H

1
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FIG. 2. The non-SM decay width Γnon−SM
H2

(upper left),
σðgg → H2Þ × BðH2 → γγÞ (upper right), and the ratios Cg;γ

H1

(lower) as functions of sin α. We have taken SgðQÞ
H2

¼ 3,

SγðFÞH2
¼ 30, and ΓH2

¼ 45 GeV. In the upper-right and lower
frames, the physical condition Γnon−SM

H2
> 0 is imposed.

sinα
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FIG. 1. The decay width ΓH2
(upper left), σðgg → H2Þ×

BðH2 → γγÞ (upper right), and the ratios Cg;γ
H1

(lower) as functions

of sin α. We have taken SgðQÞ ¼ 3, SγðFÞ ¼ 10 × SgðQÞ ¼ 30, and
Γnon−SM
H2

¼ 40 GeV. In the lower frames, the solid (dashed) lines

are for ηgðQÞ ¼ ηγðFÞ ¼ 2=3ð1Þ.
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is about 150 fb [33]. A combined search for WW, WZ, ZZ
resonances has placed at upper limit of σðpp → G�Þ ×
BðG� → VVÞ at slightly less than 100 fb for MG� ≈
750 GeV [34]. Therefore, the parameter regions of
j sin αj ≲ 0.1 are perfectly safe with this 8 TeV search.
Another search for tt̄ resonances put an upper limit of
σðpp → XÞ × BðX → tt̄Þ at about 0.5–1 pb for a few
models [35], which is again very safe for our scenario.
Yet, another search for dijet resonances [36] only covered
the mass range from 0.85 TeV and up. At 0.85 TeV,
the production rate limit is 1–2 pb, which hardly affects
our scenario.
In general there can exist interactions between VLFs and

W=Z bosons. To be specific, we consider the case in which
VLQs share the SM SUð2Þ and Uð1ÞY interactions. Then,
in the limit of very small sinα, the decay ofH2 intoWW as
well as those into ZZ, Zγ and γγ are dominated by the loops
of VLQs. These loop-induced decay modes, especially the
WW mode, are more model dependent than those into two
gluons and two photons and we consider two representative
scenarios for the interactions between VLQs with W=Z
bosons.
In the scenario where VLQs are SUð2Þ singlets with only

hypercharge interactions, they do not couple to the W
boson. While their interactions with the photon and the Z
boson are described by

LVLQ ¼ −eQVLQQ̄γμQAμ −
e

sWcW
ð−QVLQs2WÞQ̄γμQZμ;

ð19Þ

where we are taking e > 0 with sW ≡ sin θW , cW ≡ cos θW ,
and tW ¼ sW=cW . We find that the effective vertices
involving H2γγ, H2Zγ, and H2ZZ can be written as, up
to an overall constant,

L ∝ H2ðFμνFμν þ tWFμνZμν þ t2WZμνZμνÞ; ð20Þ

and the ratio ΓðH2 → ZZÞ∶ΓðH2 → ZγÞ∶ΓðH2 → γγÞ is
approximately given by

ΓðH2 → ZZÞ∶ΓðH2 → ZγÞ∶ΓðH2 → γγÞ ≈ t4W∶2t2W∶1;

ð21Þ

ignoring the Z-boson mass in the final state. Taking
tW ≈ 0.55, the ratio is 0.09∶0.6∶1. For σðpp → H2 →
γγÞ ∼ 10 fb, we have σðpp → H2 → ZZÞ ≈ 0.9 fb and
σðpp → H2 → ZγÞ ≈ 6 fb which correspond to 1.4 ZZ
events and 130 Zγ events using Z → lþl− with an
accumulated luminosity of 300 fb−1 in the future LHC.
In another scenario, we place one pair of VLQs U and D

in an SUð2Þ doublet as ðU;DÞT ¼ ðU;DÞTL þ ðU;DÞTR
which carries hypercharge Y. Then the electric charges
are given by QU ¼ T3U þ Y and QD ¼ T3D þ Y and we
have QU −QD ¼ 1 independently of the hypercharge Y.

Note we are taking T3U ¼ −T3D ¼ 1=2. In this case the
interactions of the VLQs with gauge bosons are given by

LVLQ ¼ −eðQUŪγμU þQDD̄γμDÞAμ

−
e

sWcW
½ŪγμUðT3U −QUs2WÞ

þ D̄γμDðT3D −QDs2WÞ�Zμ

−
effiffiffi
2

p
sW

ðŪγμDWþ
μ þ D̄γμUW−

μ Þ: ð22Þ

We note the couplings to the Z boson are purely vectorlike
and proportional to the factors T3U;3D −QU;Ds2W which are
different from the SM case where only the left-handed
quarks are participating in the SUð2Þ interaction. It is
possible to make a precise prediction in a simpler case in
which, for example, Y ¼ 0

4:

ΓðH2 → WWÞ∶ΓðH2 → ZZÞ∶ΓðH2 → γZÞ∶ΓðH2 → γγÞ

≈
1

2s4WðQ2
U þQ2

DÞ2
∶
1

t4W
∶
2

t2W
∶1; ð23Þ

ignoring the W- and Z-boson masses. Taking s2W ≈ 0.23
and Q2

U;D ¼ 1=4, we find the ratio is 38∶11∶6.6∶1. For
σðpp → H2 → γγÞ ∼ 10 fb, we have σðpp → H2 →
WWÞ ≈ 380 fb, σðpp → H2 → ZZÞ ≈ 110 fb, and
σðpp → H2 → ZγÞ ≈ 66 fb which correspond to 5400
WW events, 180 ZZ events, and 1400 Zγ events using
Z → lþl− and W → lν with an accumulated luminosity
of 300 fb−1 in the future LHC. This scenario is much more
promising to probe compared to the previous one.
Before concluding, we would like to make a comment on

the LHC constraints on VLQs. The VLQs have been
actively searched for at the LHC. For example, the
ATLAS and CMS collaborations carried out searches
recently at

ffiffiffi
s

p ¼ 13 TeV [38,39] and there was another
one at 8 TeV [40]. The lower limits on VLQ mass range
from about 750 GeV to about 1.7 TeV, depending on decay
channels. Such channels include VLQ → bW, Zt,Ht. Note
that all the particles in the final states are visible and
energetic because the mass differences between the VLQ
and decay products are assumed to be large enough.
Furthermore, the branching ratio into a chosen decay
channel is assumed 100%. However, if the VLQ decays
into invisible particles, e.g., dark matter, and other SM
particles, and also if the mass difference between the VLQ
and dark matter is small, then the energy available for the
visible particles would be small. In these cases, the search
would be more subtle and the constraints on VLQ can be
significantly relaxed, such that a VLQ of mass as low as
400 GeV might evade the LHC constraints.

4We find a complete agreement between our results and those
presented in Ref. [37]. A more detailed study considering various
scenarios will be presented in Ref. [31].
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IV. CONCLUSIONS

The hint of a potential 750 GeV particle observed
by ATLAS and CMS is very intriguing. At the surface
value of the large production cross section, it is hard to
interpret it in the conventional Higgs extension models,
such as 2HDMs or MSSM. However, if the additional
particles exist, e.g. vectorlike fermions which are allowed
to run in the H2γγ and H2gg vertex, it is possible to explain
the large cross section and relatively large total width of the
particle.
In this work, we have investigated the models with a

singlet scalar that has renormalizable couplings to the
vectorlike leptons and quarks, taking fully account of
the doublet-singlet mixing. We have used the allowed
parameter space regions that we obtained in recent global
fits to the Higgs boson data. In the allowed space, we
actually find solutions to the 750 GeV boson with
j sin αj ≲ 0.1, ΓH2

∼ ΓðH2 → H1H1Þ þ ΔΓH2

inv ∼ 40 GeV,

and jSgðQÞ
H2

SγðFÞH2
j ∼ 90. It remains to be seen if this excess

will survive more data accumulation in the near future.
Should the fitted cross section from the LHC experiments
increase or decrease in the future, we can simply modify the

product jSgðQÞ
H2

SγðFÞH2
j to fit to it. If the 750 GeV excess turns

out to be a new particle, new vectorlike fermions may
accompany and could be of utterly importance at the LHC
Run II.
As shown in this work, when the total decay width of the

750 GeV diphoton resonance is sizable, it would decay
dominantly into invisible particles, which could give rise to
monojet events with an addition gluon radiated from the
initial-state gluons. Monojet events have been searched
actively at the LHC, e.g., at

ffiffiffi
s

p ¼ 13 TeV [41] and at

ffiffiffi
s

p ¼ 8 TeV [42] by ATLAS (CMS has similar results), in
which the 95% C.L. upper limits on monojet production
cross sections due to DM are given. Let us focus on the
13 TeV data and, to be more specific, on a particular
selection cut—IM1 (ET > 250 GeV and PTj

> 250 GeV).
It gives an upper limit of σ × Acceptance × Efficiency ¼
553 fb. On the other hand, the production cross section of
H2 via gluon fusion is σðgg → H2Þ ∼ 104 fb, see the first
equation in Eq. (16). In order to radiate an additional
energetic gluon from the initial-state gluons, the cross
section would decrease by a factor of αs=2π ∼ 10−2.
Therefore, we expect a cross section of order 102 fb for
monojet production which is obviously below the current
experimental upper limit. We find that the case at 8 TeV
would be similar. Therefore, the current production of H2,
which decays dominantly into DM, would still be con-
sistent with the monojet searches at the LHC.5
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