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We derive the collision term relevant for neutrino quantum kinetic equations in the early universe and
compact astrophysical objects, displaying its full matrix structure in both flavor and spin degrees of freedom.
We include in our analysis neutrino-neutrino processes, scattering and annihilation with electrons and
positrons, and neutrino scattering off nucleons (the latter in the low-density limit). After presenting the
general structure of the collision terms, we take two instructive limiting cases. The one-flavor limit highlights
the structure in helicity space and allows for a straightforward interpretation of the off-diagonal entries in
terms of the product of scattering amplitudes of the two helicity states. The isotropic limit is relevant for
studies of the early universe: in this case the terms involving spin coherence vanish and the collision term can
be expressed in terms of two-dimensional integrals, suitable for computational implementation.
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I. INTRODUCTION

The evolution of an ensemble of neutrinos in hot and
dense media is described by an appropriate set of quantum
kinetic equations (QKEs), accounting for kinetic, flavor,
and spin degrees of freedom [1-14]. QKEs are central to
obtain a complete description of neutrino transport in the
early universe, core collapse supernovae, and compact
object mergers, valid before, during, and after the neutrino
decoupling epoch (region). A self-consistent treatment of
neutrino transport is highly relevant because in such
environments neutrinos carry a significant fraction of the
energy and entropy and through their flavor- and energy-
dependent weak interactions play a key role in setting the
neutron-to-proton ratio, a critical input for the nucleosyn-
thesis process.

In Ref. [9] the QKEs describing the evolution of
Majorana neutrinos were derived using field-theoretic
methods [see [15—19] for an introduction to nonequilibrium
quantum field theory (QFT)]. These QKEs include spin
degrees of freedom and encompass effects up to second
order in small ratios of scales characterizing the neutrino
environments we are interested in. Specifically, we treat
neutrino masses, mass splitting, and matter potentials
induced by forward scattering, as well as external gradients,
as much smaller than the typical neutrino energy scale E,
set by the temperature or chemical potential: namely,
m,/E ~ Am,/E ~ Zgyryara/ E ~ Ox [ E ~ 0(6) [20]. The
inelastic scattering can also be characterized by a potential
Tinelastic ~ Zforward X GpE* which we therefore power count
as Zinelasic/ E ~ O(€?). This power counting is tantamount
to the statement that physical quantities vary slowly on the
scale of the neutrino de Broglie wavelength.
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In this paper we elaborate on the terms of the QKEs
describing inelastic collisions or production and absorption
in the medium. These terms are essential for a correct
description of neutrinos in the decoupling epoch (region),
in which the neutrino spectra and flavor composition are
determined [21-25]. While Ref. [9] only included a
discussion of neutrino-neutrino scattering in an isotropic
environment, here we compute the collision terms induced
by neutrino-(anti)neutrino processes, neutrino scattering
and annihilation with electrons and positrons, and neutrino
scattering off nucleons. Our expressions for processes
involving nucleons are valid in the low-density limit, i.e.
do not take into account nucleon interactions. However, the
effects of strong interactions in dense matter—relevant for
supernova environments—can be included by appropri-
ately modifying the medium response functions (see for
example [26-28]).

The paper is organized as follows: in Sec. II we review
the QKEs in the field-theoretic approach, for both Dirac
and Majorana neutrinos. In Sec. III we provide a derivation
of the generalized collision term for Majorana neutrinos
and present general expressions involving coherence terms
both in flavor and spin space, valid for any geometry,
relegating some lengthy results to Appendix C. The
collision terms for Dirac neutrinos are discussed in
Sec. IV. After presenting general results, we discuss two
limiting cases. In Sec. V we take the one-flavor limit and
illustrate the structure of the collision term for the two spin
degrees of freedom of a Majorana neutrino (i.e. neutrino
and antineutrino). In Sec. VI we consider the isotropic
limit relevant for the description of neutrinos in the early
universe, with some details reported in Appendix D.
Finally, we present our concluding remarks in
Sec. VII. To keep the paper self-contained, we include a
number of Appendices with technical details and lengthy
results.

© 2016 American Physical Society
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II. REVIEW OF QUANTUM
KINETIC EQUATIONS

In this section we review the field-theoretic approach to
neutrino QKE:s, following Refs. [9,11], with the dual purpose
of having a self-contained presentation and setting the
notation for the following sections. After a brief discussion
of neutrino interactions in the Standard Model at energy
scales much smaller than the W and Z boson masses, we
present the Green’s function approach to neutrino propaga-
tion in hot and dense media, we describe the structure of the
QKEs, and we finally review the content of the “coherent”
(collisionless) QKEs. Throughout, we use four-component
spinors to describe both Dirac and Majorana neutrinos,
providing an alternative description to the one of Ref. [9],
that employs two-dimensional Weyl spinors. In this section
we present results for both Majorana and Dirac neutrinos.

A. Neutrino interactions

In this work we describe neutrino fields (Dirac or
Majorana) in terms of four-component spinors v,, where
a is a flavor or family index. In the Majorana case the fields
satisfy the Majorana condition ¢ = v, with v = Co7,
where C = iyyy, is the charge-conjugation matrix. In the
Majorana case, the kinetic Lagrangian can be written as

I/E
1
*CKin :%Dﬁy—iﬂmv, UV = I/M ) (1)

Uz

where m = m! is the Majorana mass matrix (a complex
symmetric matrix) [29].

In situations of physical interest, such as neutrino
decoupling in the early universe and neutrino propagation
in compact astrophysical objects, the typical neutrino
energy is well below the electroweak scale (~100 GeV).
Therefore, in computing the collision integrals it is safe to
use the contact-interaction limit of the full Standard Model
and to replace the quark degrees of freedom with nucleon
degrees of freedom.

After integrating out W and Z bosons, the part of the
Standard Model effective Lagrangian controlling neutrino
interactions can be written in the following current-current
form (in terms of four-dimensional spinors):

Gr
L, =———vy,Pvoy'P;u, 2a
ﬂ Yul Lvvy ( )
El;e = —2\/§GF(D}/HPLYLUE}/ﬂPL€ + Ij}/”PLYRUé}/ﬂPRe),
(2b)
L= —V26, Y o PRl - N, (20

N=p.n

Lee = —\/EGFEYFPL%PV”U — gays)n +He., (2d)
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where G is the Fermi constant, P; = (1 F y5)/2, and

1+ sin’0y 0 0
Y, = 0 —14sin’0y 0 ,
0 0 — 1+ sin* Gy
YR = Sin2¢9W x 1. (3)

The nucleon couplings are given in terms of g4 = 1.27 by

1 . n 1
C&}’) =5- 2sinfyy, CE,) =5
9a ol 9ga

B. Neutrinos in hot and dense media

QKEs are the evolution equations for suitably defined
dynamical quantities that characterize a neutrino ensemble,
which we will refer to as neutrino density matrices.
In the most general terms a neutrino ensemble is described
by the set of all 2n-field Green’s functions, encoding
n-particle correlations. These obey coupled integro-
differential equations, equivalent to the Bogoliubov-
Born-Green-Kirkwood-Yvon equations [18]. As discussed
in Refs. [1,9], for weakly interacting neutrinos [Z/E
~O(e, €*)] the set of coupled equations can be truncated
by using perturbation theory to express all higher order
Green’s functions in terms of the two-point functions. In
this case the neutrino ensemble is characterized by one-
particle correlations [30].

One-particle states of massive neutrinos and antineutrinos
are specified by the three-momentum p, the helicity
h € {L,R}, and the family label i (for eigenstates of mass
m;), with corresponding annihilation operators a; ; , and
b3 satisfying the canonical anticommutation relations

{a; 5. aT St = (27)320,(p)8)06;/6 (p—p'). etc., where

w;(p) = \/p?> + m?. Then, the neutrino state is specified by
the matrices f}/,(p) and f},(p) (which we call density
matrices, with slight abuse of language):

-

<a},;,/,h/ai,7;,h> = (27)*2n(p)5) (p —

PO (B).  (5a)

(bl 5 wbipn) = 22)2n(p)8 (B — B')fyy (P).  (Sb)
where (...) denotes the ensemble average and n(p) is a
normalization factor [31]. Forinhomogeneous backgrounds,
the density matrices depend also on the space-time label,
denoted by x in what follows.

The physical meaning of the generalized density matri-
ces f hh,(*) and f,(p) is dictated by simple quantum
mechanical considerations: the diagonal entries f%,(p)
represent the occupation numbers of neutrinos of mass

m;, momentum p, and helicity 4; the off-diagonal elements
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f’h’h(ﬁ) represent quantum coherence of states of same
helicity and different mass (familiar in the context of
neutrino oscillations); f%, (p) represent coherence of states

of different helicity and same mass, and finally /7 (p)
represent coherence between states of different helicity
and mass.

In summary, the basic dynamical objects describing
ensembles of neutrinos and antineutrinos are the 2n, x
2ny matrices:

> fLL fLR >
F b - b
() <fRL Frr
= /> .?RR fRL )
F(p,x)=|_ _ , 6
(p.x) (fLR Fu ©)

where we have suppressed the generation indices (each
block fy is a square ny X ny matrix). QKEs are the
evolution equations for F and F. Before sketching their
derivation in the following subsections, we discuss how this
formalism allows one to describe both Dirac and Majorana
neutrinos.

(i) For Dirac neutrinos, one needs both F and F, with
fo. and frr denoting the occupation numbers of
active states, left-handed neutrinos and right-handed
antineutrinos, respectively. Similarly, frz and f;;
describe the occupation number of wrong-helicity
sterile states.

(i) For Majorana neutrinos, one can choose the phases
so that a,(p., h) = b;(p, h) and therefore f,;; = fT,
(transposition acts on flavor indices). Therefore the
ensemble is described by just the matrix F(p,x).
With the definitions f = f,;, f = frr = frg> and
¢ = fr, one needs evolution equations only for the
matrix F introduced in Ref. [9]:

e (bp) o

Here f and f are ny x ny matrices describing the
occupation and flavor coherence of neutrinos and
antineutrinos, respectively. The ny x n; “spin co-
herence” matrix ¢ describes the degree to which the
ensemble contains coherent superpositions of neu-
trinos and antineutrinos of any flavor.

The above discussion in terms of creation and annihi-
lation operators has been presented in the mass eigenstate
basis [32]. One can define “flavor basis” density matrices
fop In terms of the mass basis f;; as fop = Ugif;;Uy;,
where U is the unitary transformation v, = U ,v; that puts
the inverse neutrino propagator in diagonal form. While the
QKEs can be written in any basis, we give our results below
in the “flavor” basis.

PHYSICAL REVIEW D 94, 033009 (2016)
C. Green’s function approach to the QKEs

1. Generalities

The description in terms of creation and annihilation
operators presented so far has a simple counterpart in the
QFT approach of Ref. [9]. In that approach, the basic
dynamical objects are the neutrino two-point functions (a
and b denote flavor indices, and we suppress spinor
indices)

(G (x.y) = Wa(x)55 (7)), (8a)
(G (x,y) = (B (n)va()). (8b)

from which one can construct the statistical () and spectral
(p) functions

N — N —

([va(x), B (»)])

(G (xr.y) = (GY)(xy)). (%)

F(x.y)

P (e y) = il{ua(x).7,(3)})
= i((GY)) (2, y) + (GY) (%, y)), (9b)

and the time-ordered propagator

G (x,y) = (T(va(x)7,(»)))
= 0(x" — y)(G) " (x.)
—0(° =G (x.y).  (10)

The statistical and spectral functions have a simple physical
interpretation (see for example [19]): roughly speaking the
spectral function encodes information on the spectrum of
the theory, i.e. the states that are available, while the
statistical function gives information about the occupation
numbers and quantum coherence for the available states. As
we will show below, the Wigner transform (i.e. Fourier
transform with respect to the relative coordinate) of the
statistical function

F&) (k,x) = / d'r e FY) (x4 r/2.x—r/2) (1)

contains all the information about the density matrices
introduced in Egs. (5) and (6). Below we sketch the various
steps leading to the QKEs.

2. Equations of motion

The starting point is the equation of motion for the
two-point function G, (x,y), equivalent to the Dyson-
Schwinger equation
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GO = 6V ()] -E(xy),  (12)

where we have suppressed for simplicity the flavor indices.

G(()U) (x,y) is the tree-level two-point function and X(x, y) is
the neutrino self-energy, i.e. the sum of all amputated one-
particle-irreducible (1PI) diagrams with two external neu-
trino lines. Z(x,y) is itself a functional of the two-point
function G and admits the decomposition into a local
term and + components:

2(x,y) = =iZ(x)8® (x = y) + O(x° = yO)IT" (x, y)
—0(y° = xO)I" (x,y). (13)

With the interactions given in Sec. II A, one can show that
¥(x) receives contributions starting at one loop (Fig. 1), i.e.
first order in Gp, while I1*(x,y) receive contributions
starting at two loops (Fig. 2) and are thus of second order
in GF'

Wigner transforming the equation of motion for the two-
point function and keeping terms up to O(e?) in the small
ratios discussed in Sec. I, namely,

Op,m X I )
B O(e), = O(e?), (14)

one arrives at [9]

QF V) (k,x) = _%(ﬁ+(k’ x)G®)(k, x)

— 117 (k, x)GW (k, x)), (15a)
. i i 90X 0
Q L

FIG. 1. Feynman graphs contributing to X(x). External lines
represent neutrinos. Internal lines represent v, e, n, p propagators.
We represent each 4-fermion interaction vertex from Eqs. (2) in
terms of two displaced fermionic current vertices.

P e

FIG. 2. Feynman graphs contributing to IT(k, x). We represent
each 4-fermion interaction vertex from Eqgs. (2) in terms of two
displaced fermionic current vertices. External lines represent
neutrinos. Internal lines represent v, e, n, p propagators (left
diagram) and v propagators (right diagram).
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3. Decomposition in spinor components
The Wigner transform of the statistical function

F (ayb) (k, x) (and any other two-point function) has 16 spinor
components (scalar, pseudoscalar, vector, axial-vector,
tensor):

FO = [Fs + (FBpy, —  (FEVo,| P,

i
+ [FL+ () + 5 (FEy o] e (16)

where P, g = (1 F ys)/2 and 6, = 4[y,.7,]. The various
components satisfy the Hermiticity conditions F5," = FL,
FR" = FR and FL" = FR. The forward scattering potential
¥(x) and the inelastic collision self-energies IT*(k, x) admit
a similar decomposition in spinor components (we give

here only the decomposition for I; a completely analogous
one exists for X):

~ i
I = |:HS + HI;?},” - Z (H%)m/gyv} PL

i
n [HT 10y, + (Hgi)fw%} Pe.  (17)

where we suppress the + superscripts.

For ultrarelativistic neutrinos of three-momentum &
(characterized by polar angle # and azimuthal angle ¢),
it is convenient to express all Lorentz tensors and compo-
nents of the two-point functions [such as the (F}*)* and
(FERY] in terms of a basis formed by two lightlike four-
vectors &*(k) = (sgn(k®),k) and #*(k) = (sgn(k°), k)
R-R=F =0, k- =2) and two transverse four-

vectors X ,(k) such that &-%;=&"-%;=0 and %;-%;=-5;;
+

ijs
or equivalently x* =%, +i%,, with 2" -3 = —2 (see
Appendix A for additional details).

The components of the self-energy entering the QKEs
are obtained by the projections (see Appendix A)

1. -
I} p(k.x) = EK”Tr[H(k, x)7"Pr gl (18a)
iet® o -~
Pr(k,x) = T (& A I TrI(k, x)0,, PR,
(a A D) = a'b¥ — a*b*, (18b)
" 1
2L,R(x) = ETT[Z(X)YMPL.RL (18¢)

which can be arranged in the 2n, X 2n; structures
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HKj: 2P:t
At _ R T
I (k, x) = <2Pﬂ Hki>. (19)
T L

4. Leading order analysis

The equations of motion (15) impose relations between
the 16 components of ng)(k, x). Solving (15) to O(€°),
only four components survive (L- and R-vector compo-
nents and two tensor components), parameterized by the
real functions F; g(k,x) and the complex function ®(k, x):

(Fv™)! (k.x) = & (k) Fp g (k. x), (20a)
(F§)u (k. x) = e O (R(k) A 57 (k)),, (k. x),  (20b)
(F§) (k. x) = e ® (&(k) A 3*(K)),, ¥ (k,x).  (20c)

with all other spinor components vanishing.
Beyond O(€), the four independent spinor components
of F i';,) (k,x) can be conveniently chosen to coincide with

the ones nonvanishing to O(e°) [9,11]. They can be isolated
by the following projections:

1
Fprlk,x) = ZTT(V;;PL,RF@)(/(, x))RH(k), (21a)
i
@(T)(k, xX)=F ETI(G}!DPL/RF(D)(I(’ x))
x (R (k) A &% (k))Petio®) (21b)

where the upper (lower) signs and indices refer to ® (®7)
[33]. These components can be collected in a 2ny X 2ny

matrix [34]
. F, @
F= . (22)
of Fp

In the free theory, the positive- and negative-frequency
integrals of F give (up to a constant) the particle and
antiparticle density matrices of Eq. (6) defined in terms of
ensemble averages of creation and annihilation operators
[see Egs. (9)]:

o gk . - 1

—2[) EF(]C,)C)—F(]C,)C)—EH, (233)
0 dKk° . o

i) / I pkx) = F(—kx) =21, (23b)
o 2T 2

In the interacting theory, we take the above equations as
definitions of neutrino and antineutrino number densities
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(generalized to include the off-diagonal coherence terms).
These correspond to spectrally dressed densities in the
language adopted in Refs. [35,36], with quasiparticle
spectra dictated by Eq. (24b) below.

5. Kinetic equations and shell conditions
beyond leading order

Beyond O (), the dynamics of £(k, x) is still controlled
by Eq. (15). Projecting out all the spinor components of
(15) one finds [9] (i) constraint relations that express “small
components” of F*) in terms of F & and @; (ii) evolution
equations (i.e. first order in space-time derivatives) for
F(k,x); and (iii) constraint relations on the components
F (k,x), which determine the shell structure of the sol-
utions. Defining O = &(k) - 9, 0" = %/(k) - O, the kinetic
and constraint equations [items (ii) and (iii) above] for the
matrix F(k,x) are

.1 S .. 1 (0% OF .
KE {3 QY+ {2 % = —i[H,F] + C,
B +2‘k|{ 0 }+2{W %} i[H, F] +

(24a)
{k(k) - k=2 F} =0. (24b)
Using k* = |%|f<"(k) + O(€?) the constraint equation (24b)

can be written in the more familiar form of a shell-
condition:

(k2 = |k|=*(x), F(k,x)} = 0. (25)

The 2n; x 2n; potential X(x) is defined in (19) and its
projections are ¥ = &(k) - £ and X' = &, - Z.

The Hamiltonian-like operator controlling the coherent
evolution in Eq. (24a) is given by

Hp Hpg
ae () o
LR L
with
1 N
Hp =%k + m (m'm — €', + 455%%),  (27a)
1 N
H; =35 + m (mm' + €V0'E] +457%5),  (27b)
1
HLR = —— ZerT — mT2+ s 27¢
R L

K|

where Xf = (1/2)e™?(x; + ix,), X ; and € is the two-

dimensional Levi-Civita symbol (e!> = 1).
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Finally, the collision term in Eq. (24a) reads
A 1 A+ A= 1 — AN
C:_E{H ,G}+§{H,G 1, (28)

where the 2n; x 2n; gain and loss potentials IT*(k) are
given in Eq. (19) in terms of spinor components of the self-
energy, extracted from a calculation of the two-loop
diagrams of Fig. 2, and

pl+ F. (29)

In order to obtain the collision terms to O(e*) we will need
only the O(e) expression for the vector component of the
spectral function, namely, p(k) = 2ix|k|5(k*)sgn(k°) (see
Appendix B).

6. Integration over frequencies: QKEs for Dirac
and Majorana neutrinos

The final step to obtain the QKEs requires integrating
(24a) over positive and negative frequencies, taking into
account the O(e) shell corrections from (24b), whenever
required in order to keep terms up to O(e?) in power
counting. Recalling the definitions (23a), the integrations
over positive and negative frequency lead to

1 1[0z OF
OF +—{T,OF ——{T,T}z—iH,F +C
2|k|{ AT P [H, F]

(30a)

1 . 1(8z OF o
OFF —— {3 O'F +—{f,f}=—iH,F +C.
2|k|{ J 21 0x pk A, F]

(30b)

The differential operator on the left-hand side generalizes
the “Vlasov” term. The first term on the right-hand side
controls coherent evolution due to mass and forward
scattering and generalizes the standard Mikheyev-
Smirnov-Wolfenstein effect [37-39]. Finally, the second
term on the right-hand side encodes inelastic collisions and
generalizes the standard Boltzmann collision term [40—48].
Let us now discuss in greater detail each term.

The physical meaning of the differential operators on the
lhs of (30) becomes more transparent by noting that they
can be rewritten as

1 1
0, +§{3;wiﬁ}} _E{afca):ba}}? (31)

with @, = |k| + =* for neutrinos and w_ = |k| — = for
antineutrinos. Recalling that w_ (k) = |k| 4= =¥ are the O(e)
neutrino (+4) and antineutrino (—) Hamiltonian operators,
one sees that the differential operators on the lhs of (30)

PHYSICAL REVIEW D 94, 033009 (2016)
generalize the total time-derivative operator d, =

0, + x0; + %a%, with k = -0 and X = 0; o, thus encod-
ing the familiar drift and force terms.

In terms of the mass matrix m and the potentials X7 p, the
Hamiltonian-like operators controlling the coherent evolu-
tion are given by

Hy, H _ Hy, H
H:( S LR), H:< = _LR>, (32)
HLR HL HLR HL

with H;, Hg, H;r given in Egs. (27). The antineutrino
operators H p can be obtained from H; y by flipping the

sign of the entire term multiplying 1/ (2|%|) The first two
terms in H; z are included in all analyses of neutrino
oscillations in medium. Xj , include the usual forward
scattering off matter and neutrinos and are functions of F, F
thereby introducing nonlinear effects in the coherent
evolution. The m'm/ |%| term encodes vacuum oscillations.
The additional terms in H; p and the spin-flip term H;p,
discussed in detail in Refs. [11,49], complete the set of
contributions to O(e?).

Finally, the collision terms on the rhs of Eqgs. (30) are

C:%{m,F}_%{n—,ﬂ _F),  (3%)

N IS .
0= {I" F} - {1~ F}, (33b)

where [50]

I (F) = /°° dKOTE (10, R)5(K0 — [7)),

_ - ’ 0 R . .
(k) = — / AR T (0, —K)s(k0 + k) (34)

[5e]

and the 2n; X 2n; gain and loss potentials IT* are given in
Eq. (19) in terms of spinor components of the self-energy.

The above discussion directly applies to Dirac neutrinos,
with Eqgs. (30) representing QKEs for neutrino [F(k, x)]
and antineutrino [F(k,x)] density matrices. In the
Majorana case F(k, x) contains no additional information
compared to F(k, x). So one can get QKEs for a Majorana
neutrino exclusively from the positive-frequency integral of
(24a). To avoid confusion, in the Majorana case we denote
the positive-frequency integral of F(k,x) by F(k,x) [see
Eq. (7) for a discussion of its physical content]. The
Majorana QKE is formally identical to the first one of (30):

1 R 1 (0ZF OF
aK]:‘i‘—_. Zl,alf ——{—_.,—_.}——l.H,]: —|—C s
S5 0T 5 G g = P+ G

(35)
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with

I .
Cy =5 {II". F} = {I1", 1 = F}, (36)

and IT* formally given in (34). The analogy, however, is
only superficial because the potentials %, and IT* have a
very different structure in the Dirac and Majorana cases.
Anticipating results to be described later, we note the
following.
(i) Concerning the potentials induced by forward scat-
tering, X ;, for Dirac neutrinos X # 0 while X;
Gpm? ~ O(€®) (massless right-handed neutrinos do
not interact). On the other hand, in the Majorana
case one has £; = —X%, with transposition acting on
flavor indices: right-handed antineutrinos do interact
even in the massless limit.

(i) Concerning the inelastic potentials n* given in (19),
in the Majorana case all four n x n, blocks are
nonvanishing, i.e. IT§5; # 0and P5 # 0. In the Dirac
case, on the other hand, in the massless limit only the
upper diagonal block is nonvanishing, i.e. II§* # 0
and IT§* = P = 0. This again corresponds to the
fact that massless right-handed neutrinos and left-
handed antineutrinos have no interactions in the
Standard Model.

D. Refractive effects

Before discussing in detail the collision terms in the next
section, for completeness we briefly describe refractive
effects in the coherent evolution, controlled by the potential
2. Zp and Z; (see Eq. (19) are the four-vector potentials
induced by forward scattering for left-handed and right-
handed neutrinos, respectively. For Dirac neutrinos X, # 0
and ¥; «x Gpm? ~ O(e?) while for Majorana neutrinos
ZL - —Zg

The potential induced by a background of electrons and
positrons is given for any geometry by the following
expressions:

1
[Z/;i’le}ab = 2\/§GF |:(5ea5eb + 5ab <Sin29W - E) ) Jl(leL)

+ 5ahsin29WJ’(‘eR>] , (37a)
&3 N - L
o) = [ Gt @0 @5) = o). (7

Vo) = [ Gt @F (@) =T, ). (70

PHYSICAL REVIEW D 94, 033009 (2016)

where a, b are flavor indices, vfe) = (1,g//m% + ¢*), and
we use the notation f, (¢.x) [f,, (¢.x)] for the distribution
function of L-handed electrons (positrons), etc.

The nucleon-induced potentials have similar expres-
sions, with appropriate replacements of the L- and R-
handed couplings to the Z and the distribution functions
fe, = fn,» etc. For unpolarized electron and nucleon
backgrounds of course one has f, = f,,, etc., and the
nucleon contribution to the potential is

Sl = V2GR CYY I

(N)(sab7 (38)

with Cg,n’p) given in Eq. (4).
Finally, the neutrino-induced potentials are given by

(ZklJas = \EGF([JI(‘D)]M + 8 Trl ). (39a)
3
1)) = [ @) a0~ Fun(@0). (390

with n#(q) = (1, §). For a test neutrino of three-momentum

k, these potentials can be further projected along the basis
vectors: with lightlike component ¥ = n(k) - Z, along the
neutrino trajectory (in the massless limit), and spacelike
component X' = x'(k) - £, transverse to the neutrino tra-
jectory. In particular, for the neutrino-induced contribution
we find E*(x)ox [d’q(1 —c08iy) (frL(q.%) = Frr(q. %)),
consistently with the familiar results in the literature (see
[51] and references therein).

Having summarized the structure of the neutrino QKEs,
we next discuss the main new results of this paper, namely,
the calculation of the collision terms.

III. MAJORANA COLLISION TERM:
DERIVATION AND GENERAL RESULTS

Direction-changing scattering and inelastic processes
such as neutrino emission, absorption, pair production,
or pair annihilation are encoded in Cj; on the rhs of (35). In
this section we derive the structure and detailed expressions
for C,;, providing, for the sake of completeness, several
intermediate steps in the derivation. All the results pre-
sented in this section pertain to Majorana neutrinos. The
collision term for Dirac neutrinos is discussed in Sec. IV.

We recall that the Majorana collision term is given by

1 1
CM :E{H+,f} —E{H_,ﬂ —f}, (403)

(k) = /O T AOTE(RO, R)S(KO — [K[),  (40b)

with the 2n; X 2n; gain and loss potentials [T+ given in
Eq. (19) in terms of spinor components of the self-energy,
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extracted from a calculation of the two-loop self-energies of
Fig. 2. The 2n; x 2n collision term matrix is thus given by

c q
Cy = _ 41
. (C; CT) (41)

with

—

(k) =3 (M)} = {1~ (1= /)})
+ (P7 + P)$" + §(P7 + P7)T,

CT(R) = 5 (1) 7} = {(115)~. (1 = 7))
+ (P + P7)'d + ¢"(PF + P7),
C¢@) = % (MR)* + (MR) ™) + (7)™ + (IT}) 7))
+ f(P} + P7) + (P + P7)fT —2P7. (42)

Note that the collision term has a nondiagonal matrix
structure in both flavor [1,2] and spin space [9]. The matrix
components of IT* can be expressed in terms of neutrino
density matrices and distribution functions of the medium
particles (electrons, etc.). To the order we are working, we

PHYSICAL REVIEW D 94, 033009 (2016)

need only the O(e”) expressions for the neutrino and matter
Green’s functions in the collision term. These expressions
are collected in Appendix B.

The contribution to v —v scattering neglecting spin
coherence is given in Ref. [9]. We present below the full
analysis including scattering off neutrinos, electrons, and
low-density nucleons. Deriving the collision term requires
the following steps:

(i) calculation of the self-energy diagrams in Fig. 2,

(i1) identification of the components of I+ [see (19)] by

projecting the self-energy diagrams on appropriate
spinor and Lorentz components via Eq. (18),
(iii) integration over positive frequencies according to
Eq. (40b) to obtain IT*(k), and
(iv) matrix multiplications to obtain the various compo-
nents of C,, in (42).
In the following subsections we present results on each of
the above items.

A. Self-energies to two loops

The Standard Model interactions allow for neutrino-
neutrino processes and neutrino interactions with charged
leptons and nucleons; cf. Eq. (2). We report below the
various contributions.

(1) Neutrino-neutrino processes receive contributions from both topologies in Fig. 2. Left diagram:

~ diq d*qrd*q v
it (k) = 63 | a0 k= a3 =+ (P = PRIG (a9 (PL = Py)
x Tr[p* (P — Pr)GY) ¥ (42)7" (P — Pr)GY)* (a1))- (43)
Right diagram:
~ d4q d4q d4q v
i1 (k) = 2G} / s 0 k== 4+ )P = PG (@)n (P = Pr)
GY)F (qu)r"(PL — PR)GU (q3)r*(PL — P 44
X G (g2)r"(Py, R) b (q3)r"(PL R) (44)

where a, b, ¢, d are flavor indices.

(i1) Neutrino-electron processes receive contributions only from the first topology in Fig. 2:

d4f]1d4f]2d4%

fii ) = -8 [ 1T

SV (k—q3—q,+ q2)

X Z {ru(PL = PR)[YAGY=(43)Y bl (PL = Pr)Trly* PsGlIT (q2)r* PAG%(q1)]}.  (45)

A.B=L.R

(iii) Neutrino-nucleon processes receive contributions only from the first topology in Fig. 2. There are two contributions,

scattering and absorption.
Scattering:

d4f11d442d4f13
(2n)®
x Tr[[4,GNF (g,) T GM* (g,)]}

I, (k) = —2G2 /

SOk =g =g+ @) Y {ru(PL = Pr)Go (a3)7. (P = Py)

N=n.,p

ry = (Y = cMys). (46)
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Neutrino absorption and emission:

- d'q,d*q,d*q
I, (k) = —2G? / Sl Gl L
ab( ) F (2”)8

PHYSICAL REVIEW D 94, 033009 (2016)

s® (k—q3—q, + 612)}’,4PL [Ie}abG(e)i(‘13)7yPLTf[F”G(p)i((I1)FuG(")jF(612)]

, [dqdiqdiys () (e)F G (n)+ v (P)F
=26 | —F =596 (k+q3—q) + C]z)hPR[Ie]abG (q3)7, PRTr[I*G (q)I'G (92)],

(27)®
" = y*(1 = gays).

In the above expression we have introduced the
projector on the electron flavor,

[Ie]ab = 5ae5be’ (48)

and we are neglecting contributions from x* and 7%,
which are kinematically suppressed at the energies
and temperatures of interest. Their contributions are
formally identical to the electron one, with the
replacements I, — 1, I, and Gl - GW, G0,

B. Projections on Lorentz structures

Using the identities collected in Appendix A2 and A 3,
one can perform all the needed projections in a straightfor-
ward way (at most four gamma matrices and a y5 appear in
the traces). In the following, we will suppress flavor
indices. The vector and tensor components of the self-
energies [defined in Eq. (18)] for all processes considered
in this work are the following.

1. Neutrino-nucleon scattering processes

K\t — 1 d4CI3 + 1122
()= (k) = i) e (Ry (k. q3))
x [Gy(q3)* (T) (k. q3), (49a)
1 [a
M50 = = | Gy (R (ko)
x (G (g3)]* (T1) (k. q3). (49b)
4
P =7 3 [ G Rk
X [®(q3) (T7) (k. q3)- (49¢)
The various tensors are given by
(TR,L)yy(k7 k/) = kMkI/J + kuk/a —k- k/n;w
F i€,qsk kP, (50a)
(1), (K, K) = [R(K) A X7 (K)] o [R(K) A T (R)]S
x el@k)—e(K)) (50b)

(47)

In the last expression we have explicitly indicated the
dependence of the basis vectors &, &/, 2. on the four-
momenta k and k’. Finally, the nucleon response function is

given by

v d4611d4Q2
(R qx) = 203 [ CHEE

x (22)* Te[Dy GV (g))T5, GNVT (g5)].
(51)

W (k—q3—q,+ q2)

We give the explicit expressions for the neutrino and
nucleon Green’s functions G+*, ®, and G™) to O(e°) in
Appendix B.

2. Neutrino-electron processes

K \E _ 1 d4q3 + 7%
mE=- 5 / S R (k.a)

X [YA(Gf/(%))iYB] (TR);w(kv q3) (52a)

4
) =- 3 / %(R;a(k,qg))w

A.B=L.R |k‘

X [Y4(GF(q3)) V5] (TL)/u/(k9 q3) (52b)

4
Prik) =% %AZ/ S5 (R )

x [Y4®(q3)Ys] (T7),0 (K, q3). (52¢)

The electron response functions are given by (recall
A,B S {L,R} and PA,B = PL,R)

d4Q1d4Q2
(2n)*
X TT[Y”PAG(e)i(%)J’"PBG(Q);(CD)]-

(Rja(k.q3))" = 8GE 54 (kg5 = q1 + q2)

(53)

Expressions for the electron Green’s functions G'¢) to
O(e°) are given in Appendix B.
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3. Charged-current processes

1 [ d
L / D95 (Rep (k. g3)™

PHYSICAL REVIEW D 94, 033009 (2016)

4. Neutrino-neutrino processes

The diagram in the left panel of Fig. 2 induces

i @n? (It (k) = - |k| (d (R (k)
X [[Ie]uhG(e>i(QS>] (TR)W(]Q Q3)7 (543) X [GL (5]3)]i(TR)W(k7 613), (563)
~ K\E — d 4q3 + uv
= T (Reclhas)" o |/5|/ @yt K0
% [11G% g5)] (Tu)yu ke g3).  (54b) V@ Tules). (6)
d*qs
There is no tensor projection from these processes. The Pr(k) = 2/ H( (k )}
charged-current response is given by x [@(q3)[(Tr) (K, g3). (56c¢)
. o [Ead e g
Rectkeanp =263 [ T80 g, g 4 gy T 26 [ o e
G G ), (550 <TG 0] Gt T)ula )
+ (G (@) T [(GF (a0 (T1) (922 41)
- } , dadt — ®7(q2)®(q: (T )y(‘h,fh)
Rectka =263 [ SEE o0+ 0=+ a0 @) (g)) (T (42 00)]. (564)
X TY[F”G(n)i(‘Zl)FuG(p)jF(‘Jz)]- (55b) The diagram in the right panel of Fig. 2 induces
|
2 4 4
() (k) = —8%1” T 50 k= g3 = a1+ @) (Tl 000 G 2 )
- kan(TT)aﬂ(‘ha q1)2(q1)2"(92)[GF(g3)]* - kaq/f(TT)ﬂa(%’ 32)[G(q1)] " ®(92)®" (g3)
+Z(qu)(QIQ3)[GL(CII)]i[GL(QZ)]:F[GL(‘B)]i}’ (57a)
2 4 4
(115 (k) = —8|§|F [ AT 5 k= g3 = a1+ @) (T340 (1) G )] Bla)
— K5 (Tr) (2. 41) 27 (q1)2(02)[GF (92)] = K0} (T1);a(43. 42)[GF (1) * 8 (42) @ (g3)
+2(kq2)(9193)[G¥ (1) [GF(42)] T [GF (93)]* 1 (57b)
and
4 4
Pi(k) = 4G} [ TEBED 506 - gy =g, + 42 {3000 ()00 ()20 T (k0
+ ®(q)[GR ()] [GE(a3)1 55 (Tr) s (ks 1) F (G () *®(2)[GR (43)1 54565 (T) sk, 42)
£ G40 G @)™ (as)t AT el as) - (570

033009-10



NEUTRINO QUANTUM KINETIC EQUATIONS: THE ...

C. Frequency projections: General results
for loss and gain potentials

To obtain the Majorana collision term C,;, we need the
positive-frequency (k* > 0) integrals of T (k°, k) defined
in Eq. (40). Furthermore, we also integrate over ‘1(1),2.3 using
the & functions present in all Green functions; see (B4)
and (B6).

In the following, we will use abbreviations for the
various density matrices, ie. f;=f(q). fi=Ff(q:),
fi=1"a). fT=1"(q), and ¢; = ¢(q:). ¢7 = ¢"(4.),
ol =¢'(q), ¢r = q’)*( ;). We will, however, omit sub-
scripts k: f=f ( ), p= ql)( ). Note that all density
matrices and distribution functions appear with argument
“+4;,” 1.e. f(g;) and not f(—g;), something we achieve via
variable substitution under the integrals. Furthermore, f, f
with subscripts (N), (e) indicate them being nucleon and
electron (anti)particle distributions (and thus scalars in
flavor space) rather than neutrino distributions. Finally,

PHYSICAL REVIEW D 94, 033009 (2016)

the medium. From these, the gain potentials (Hﬁ)‘(%) and

P;(z) can be obtained as follows:

()™ (k) = (R) " (k)| f, 1= 1, -,

Pr(k) = PF(K) | 21-f, 4,9, (59)

forall f; (all particle species, including barred ones) and ¢;.
For each class of processes, we also give below the recipe to

obtain the antineutrino potentials IT§* (k) from the neutrino
potentials TT5 (k).

1. Neutrino-nucleon scattering processes

Neutrino-nucleon scattering v(k)N(g,) — v(q3)N(q,)
induces the following contributions to the loss potentials

I (k) and Py (k):

2

we write Iy (k) = 7 | dq\dgydqs(2x)*
d*q;
[da= [ 55 (58) X M(a1. 245, K)(0 = i, f 21 = ),
(60a)
where the energy is E; =~ 1/(¢;)* for neutrinos [since their -
. 3 . . . . . - ~ ~ ~
masses would g1ve_'0(€ ) contributions in the collision P} (k) = =L / dg,dg,dgs(2x)*(C3 + C3)
term] and E; = \/(g;)*> + M? for electrons and nucleons |k
with M = M, and M = M, respectively. x Mz(q,. 6]2»613,/()f(1v).2(1 —f(N),1)¢3, (60Db)
Below, we give the expressions for the loss potentials
15t (k), Py (k) corresponding to each class of processes in ~ with
|
Me1(q1: G243, %) = 8Y (k= g3 = g1 + @)4((CF, + C3)((9193) (k) + (91K)(4243))
— (G} = CH)MR(q3k) £ 2CyCa((9193)(kq2) = (4293)(kq1))),
Mr(q1, q2: 93, k) = 5(4)(k —q3—q; + Q2)|k||fi3|qqqg(TT)ﬂu(k, q3), (61)

where (T7),,(k, k') is defined in (50), we suppressed the
superscripts (N) on the couplings Cy 4 and all four-momenta

are on-shell, i.e. ¢) = E; and thus 5(4>(k ~@G—q1+q) =

S(E; — E3 — E, + E»)8® (k — 43 — 4, + @»). The antineu-
trino potentials are obtained by the relation

()= (k) = () (K) /-7 aort,- (62)

where M — M, amounts to a change of sign in the axial
coupling Cy.

2. Charged-current processes

The loss potential term from charged-current neutrino
absorption v(k)n(q>) — e~ (q3)p(q1) is

[

. 2
" (k) =

_}F
k|
X (2”)4(1 _f(p),l)f(n),Z(l

dq,dg,dqs M$E(q1. q2. 45, k)

= fle)3)les (63)
where the flavor projector /, is defined in Eq. (48) and
M1€3<Q17612,Q3»k)
=4((1+93) (9391 (kq2) +
-M,M,(1-g3)(kq3)

+294((9391)(kq2) — (kq1)(4392)))8W (k= g5 = q1 + q»).
(64)

(9392)(kqy))

Neutrino absorption and emission does not induce P (k).
The antineutrino potentials are obtained by the relation
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(T () = (VR ey et (65)
where again M§¢ - MEC amounts to a change of sign in the axial coupling g,.

3. Neutrino-electron processes

Neutrino-electron processes contribute to the loss potentials as follows:

- 32G2 ~ - =
H?(k) =T F/dCIIdQ2dQ3(2”)4 Z [(1 _f(e).l)f(e).ZYI(l —f3)(2Y1M§(f11,512’6137k) - YJ#IMm(QIvQqu3vk))

|k| I=L.R
+}(e),1(1 _]_C(e).Z)YI(l —fs)(zyle(—‘h, —(]27(]3vk) - YJ;EIMm(_QI’ —q2; 6]37"))
+ (1= fo) (L= f0)2)Y1f3RY MR (q1. =2 —q3. k) = Y 10 M, (g1, —G2. —q5. 5))]. (66a)

- 32G3 ~ ~
P?(k) == |z|F/d41d42dCI3(2”>4 Z [(1 _f(e),l)f(e),ZYI(_(pB)YIMT(QI?‘hv‘hvk)

I=L.R
+f(e).1(1 —J_C(e).z)Yl(—ﬁbs)YlMT(—%’ ~42,q3, k)
+ (1 _f(e),l)(l —]_C(e),z)Y1¢3TY1MT(Q1, 42, —q3, k)], (66b)

where

ME(q1. 2. 93.k) = (68 (q391)(kqa) + 85 (q362) (kq1))8W (k — g5 — g1 + q2).
ME(q1.q2. q3. k) = (67 (q391) (kaa) + 5F (q3q2) (kq1))8™ (k — g5 — q1 + q2).
M, (q1. G2, 43, k) = m2(kq3)8% (k — g5 — g1 + 4»). (67)

and M (g1, 92, g3, k) is defined in (61). The first term of the sum in Eq. (66a) stems from neutrino scattering off electrons
[v(k)e™(g>) = v(q3)e™(g1)], the second from neutrino scattering off positrons [v(k)e™ (g;) — v(q3)e™ (g,)], and the third
ones from neutrino-antineutrino annihilation into electron-positron pairs [v(k)D(g3) = e*(g2)e(g;)]. The antineutrino
potentials are obtained by the relation

()= (k) = (TIR) = (k)| 5,77 F, sy, (68)
where Y; <> Yy is equivalent to the replacement M¥ — ME.

4. Neutrino-neutrino processes

Neutrino-neutrino scattering vv — vv and neutrino-antineutrino scattering v — v contribute to the neutrino loss
potentials as follows:

-

2 ~ ~ ~
() (F) = —4% / dardardas (22 (1 = £1)f2 + (1= F)£2)) (1 = F3) M1 420 43, K)

— 21 + (1) (1 = f3) M1 (g3, k. g1, q2) = (1 = f1) 2pap} + te(h20h})) M (1. k. 02, 43)

+ 201 T i M1 (q2. k. q1. q3)

+{Q2,3 = —=q23, 23— (1 —f2,3),}£3 - (1 _f£3)v¢2,3 - —¢£3,¢;3 - —¢§,3}

+{611,2 - —91.2,f1,2 - (1 _}1,2)’]?{,2 - (1 _flT,Z)’¢1,2 - —(/’1T,2’¢T,2 - —¢T,2 } (69)

with M7(q, q», g3, k) defined in (61) and

M(q1. 42. 43, k) = 4(q193)(q26)8D (k — g3 — g1 + q2). (70)

033009-12



NEUTRINO QUANTUM KINETIC EQUATIONS: THE ...

In the absence of spin coherence (¢; — 0) the first term in
(69) encodes loss terms due to vv, — vyv3, while the
terms in the last two lines in (69) encode the effects of
vy — v processes. All the remaining terms, involving ¢;,
arise due to the fact that target neutrinos in the thermal bath
can be in coherent linear superpositions of the two helicity
states (see Sec. V for a discussion of this point). The

|

. 2
Py (k) = | |

(0= £ 2+ 300 = 0f2) )M a1, 2.5, K) + 1 (FEC1 = )

- (1 —f1)¢z(1—f3)Mr
+1{q23 = —q23.f23 = (
{12 = —q12.f12 = (

<917¢13,f]2,k)
1—1_02,3)&;,3 - (1-
1—]‘1.2), _1T,2 - (1 -

with Mz(q1, 42, g3, k) defined in (61) and

1 .
MTT(‘]I?‘h’q}’k):§|CI1||Q2’|Q3||k|(TT)yy(k’QI)

X (T7)"(g2.93)8W (k= q3— q1 + 42).
MTT(Q]?Q27q3’ )__|QI||LI2||Q3||k|<TT>;w(k Q2)
(

X (Tr)*™(qy.q5)8% q1+q2).

(73)

k—qs—

With the gain and loss potentials at hand, the collision
terms C and C, are then assembled according to Eq. (42).
We present the lengthy results for (some of) the assembled
collision terms in Appendix C.

IV. DIRAC COLLISION TERM

In this section we discuss the structure of the collision
terms C and C (33) appearing in the QKEs (30) for Dirac
neutrinos and antineutrinos. We do not repeat all the steps
reported in Sec. III but simply outline how to map the
Majorana expressions into the ones relevant for Dirac
neutrinos.

First, note that the self-energy diagrams in Fig. 2 for
Dirac neutrinos are obtained from the ones in Sec. IIT A,
that refer to the Majorana case, with the following simple
changes:

(1) in the weak vertices one should make the replace-

ment y, (P, — Pg) = 7,Pyr;

(i1) in Eq. (43) the trace should be multiplied by a factor

of 2;
(iii) in Eq. (47) the second term (with y,Pg in the
vertices) should be dropped.

As a consequence of the different structure of the
vertices, the projections over various spinor and Lorentz

PHYSICAL REVIEW D 94, 033009 (2016)

corresponding antineutrino potentials are obtained by the
relation

(I} )* (k) =

and the contributions of neutrino-neutrino processes to the
helicity off-diagonal loss potentials read

i
(HE) (k)|fi->J_",<T,f}->f,<T-t/)j<—>l/"j,Mr—>M*T’ (71)

G + 1 3 1 -
/ daydaadas 2m)* (105 = St(b19D) ) bsMar (a1, 0,05, K) = St (12 bs My (a1, 42, 5. K)

1 _ _
+§tr(f§(1 —fg)))MT(CI%CIzJIlak)

f13) s = =L bl — —d33}
flT.,z)vQ"l.z - —¢1T,21¢I.2 - —¢T,2}’ (72)

|

components of ITF [see (19)] simplify greatly. Using
Eq. (18) one sees that in the Dirac case I1; and P vanish.
Moreover, in the expressions of II; only the terms propor-
tional to G% survive. The above simplifications simply
reflect the sterile nature of R-handed neutrinos and
L-handed antineutrinos.

Results for the neutrino (I15°) and antineutrino (IT%)
gain and loss potentials are obtained integrating over
positive and negative frequencies according to Eq. (34).
The positive-frequency integral is fairly similar to the
Majorana one. The negative-frequency integral can be cast
in a simpler form by performing the change of variables
k® — —k°, leading to

T (7) = / " KO TISE (K, R)S (K0 — [7)), (74a)

0

i (F) = — /) " KO TIST (=K, —R)S(K0 — [R]).  (74b)

Finally, performing the matrix multiplications to obtain the
various components of C and C we obtain the following
form in terms of n; X ny blocks:

C,, C , Cre C
C <C:L CLR>’ o (_RR _RL>’ (75)
k. Crr

Cro Cur
with
1 K+ 1 K—
Crp = E{HR S} — E{HR A —=fr},  (76a)
CRR — 0, (76b)
1 K+ K—
Crr = 3 (TR" + %) f &> (76¢)
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and
~ 1 <t F 1 x— ¥
Crr :E{HR frR} _E{HR = fre},  (77a)
CLL - O, (77b)
~ 1 K+ c—\ £
Crp = 5 (g + 1) f k- (77¢)

2

The collision terms Cgg and C, ; vanish because R-handed
neutrinos and L-handed antineutrinos do not interact in the
massless limit that we adopt here (mass effects in the
collision term are higher order in the ¢ counting). The gain
and loss potentials IT5" and IT5* can be expressed in terms
of neutrino density matrices and distribution functions of
the medium particles (electrons, etc.), as in the Majorana
case. In fact, the expressions for the Dirac case can be
obtained from the ones in the Majorana case with the
following mapping, which we have checked with explicit
calculations.

(i) The Dirac neutrino potentials 1'[’,}jE are obtained
from the Majorana ones by replacing f — f;,
and f — frg everywhere.

(i) The Dirac antineutrino potentials 1=I§i are in one-to-
one correspondence to the Majorana potentials
(TT5*)T. Their expressions are simply obtained from
the Dirac neutrino potentials IT$" with the following
simple changes: (a) in the vN, ve, and vv processes
replace f;; — fgrr and frg — f, everywhere and
flip the signs of the axial couplings (C4, - —C, in
vN terms and Mp — M, in ve terms). (b) In the
CC processes, make the replacements f, — f,,
fn < fp and flip the sign of the axial coupling

(94 = —9ga)-

V. ONE-FLAVOR LIMIT AND INTERPRETATION
OF OFF-DIAGONAL ENTRIES

We now specialize to the one-flavor limit and illustrate
the structure of the collision term for the two spin degrees
of freedom corresponding to the Majorana neutrino and
antineutrino. We will discuss explicitly only the simplest
process, namely, neutrino-nucleon scattering. We provide a
simple form for the various components of the gain and loss
potentials IT* in terms of scattering amplitudes of the two
spin states (neutrino and antineutrino) off nucleons. We
also provide a heuristic interpretation of the results for [T+
in terms of changes in occupation numbers and quantum
coherence due to scattering processes in the medium.
Finally, in the limiting case of nearly forward scattering
we are able to recover earlier results by Stodolsky and
collaborators [2,52,53]. Note that while we work with spin
degrees of freedom, the discussion applies to the case of
any internal degree of freedom.
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A. Scattering amplitudes

In the collision terms calculated in the previous sections
we have set the neutrino mass to zero, as terms proportional
to the neutrino mass in the collision term would be O(€?) in
our counting. Therefore, when computing neutrino-nucleon
scattering from the interaction Lagrangian £, 5 of (2), we
need to use the massless Majorana neutrino fields,
vy, which can be expressed as follows [with dk defined
in (58)]:

vL(x) = Pru(x)

= / dk(u(k, —)a(k, =)e~*
+ v(k, +)a’ (k, +)e™*), (78)

in terms of spinors v(k,+) = u(k,F) and creation and
annihilation operators a'(k, F) and a(k, F). The F label
refers to helicity: negative (L-handed) helicity corresponds
to the neutrino (v_), while positive helicity (R-handed) to
the antineutrino (v, ). The spinors satisfy the following
relations:

M(k, :t)ﬁ(k, :l:) == kPL/R’

ulk, )ii(k, F) = K| 30 & A 55),,0"Pryr. (79)

in terms of the basis vectors &(k) and (k) (see
Appendix A).

The gain and loss terms can be expressed in terms of the
following neutrino and antineutrino scattering amplitudes
(and their conjugates):

Az (k) = A(vx(K)N(p) = v (K)N(p")). (80a)

Az (k) = A(vz (K)N(p') = v+ (k)N(p)) = Ax(k)*. (80b)

The amplitudes A (k) depend also on &', p, p’, but to avoid
notational clutter we do not write this down explicitly.
From the interaction Lagrangian L,y of (2), recalling

Iy = 7”(C§/N) - Cﬁ\mys), one finds
A_(k) = =V2Gpa(K . =)y u(k, =)y (p) T uy(p). (81a)

Ay (k)=V2Gpa(k,~)y*u(k . =)y (p")Cyuy(p). ~ (81b)
Note that the scattering processes do not flip the neutrino
spin [this effect enters to O(m,/E,)]. In other words, we
consider the case in which collisions do not change the
internal quantum number. In the Standard Model this
applies to both spin (neglecting neutrino mass) and flavor.

Taking the average over the initial and sum over final
nucleon polarizations, i.e.
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1
(Aidg) =35 > Aidy Y a.fp.
N pol

(82)

using i(p, =)y u(q, —) = u(q, +)r*u(p,+), the relations
(79), and the trace identities for gamma matrices, one can
show that

(A5 (K)]?) o Mgy (p'. p. K, k), (83a)

(A% ()A . (K)) & My (p'. p. K. K). (83b)

A

y ( (JA-(R)P)f(K)
(AL (kYA (k) (K)

while the loss term reads
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where My ; 7 are given in (61) [note the proportionality holds
modulo the four-momentum conservation ¢ function in (61)].
These results imply that IT; ; and P7 can be expressed in
terms of (A*A_), (A% A,), and (A*A_), respectively.

B. Gain and loss potentials in terms
of v and v scattering amplitudes
Keeping track of all factors, we find that the gain and loss
potentials IT* [as per (19)] in the one-flavor limit can be
written in terms of (A;Ap) as follows. The gain term is
given by

A (f) = —F;' / dk dp dp' (225 (k + p— K — p')(1 = Fu(p))fu(P)

(A_()A7 (k)P(K) ) | (84)

(A, (k)P)F(K)

I (k) = —% / dk dp dp' Y6 (k + p— K — p)fw(p) (1 = fu(p))

/

5 ( (A (R (1 = f(K))
(A ()AL (k) (=" (k)

Using (19) one can easily identify [Ty, (k) and Py (k) as
the diagonal and off-diagonal entries in the above equa-
tions. Moreover, one can check that the positive-frequency
integrals of (49) in the one-flavor case reduce to the matrix
entries in (84) and (85).

The diagonal entries in the above expressions correspond
to the familiar gain and loss terms for neutrino and
antineutrinos [v(k)], that one could have guessed
without the field-theoretic derivation: they are proportional
to the square moduli of the scattering amplitudes of each
state (JAx(k)|?). The off-diagonal entries, however, are

proportional to the products A’i(k)A+(k)¢(7c/) and thus are
related to interference effects that arise when initial
and final states in a scattering process are given by
coherent linear combinations of v, (k), v_(k) and v (k'),
v_(K) [p(K) # 0.

While so far we have phrased our discussion in terms of
neutrinos and antineutrinos of the same flavor, the results
generalize to a system with any internal degree of freedom,
such as flavor, denoted by labels a, b. Assuming that
scattering processes do not change the internal degree of
freedom, i.e. A(v,N — v, N) « §,,A,, one gets the general
structures

(A (k)AL (k) (~p(K')) ) _ (85)

(AL (K)P)(1 = F(K)

1 ~ o~ -~
I, (k) = —m / dk' dp dp'(2z)*6W(k+ p — k' = p')

< (1= fn(P)fn(P)A(K) fup(K)Ay (k). (86a)

1 O
I, (k) = —m / dk' dp dp'(2z)*6W (k+ p — k' — p')

< fu(p)(1 = fn(p')Aq(k)

X (1= f(K)) apAn(K), (86b)
in agreement with earlier work on collisional terms for
particles with internal degrees of freedom, such as color,
flavor, and/or spin [35,54,55].

The above results for [T (k) are derived in the field-
theoretic context with a well-defined set of truncations,
dictated by our power counting in €’s. In addition, heuristic
arguments can help explain the structure of the gain and
loss potentials. Let us discuss IT, (k), i.e. the “gain term.”
As we already mentioned, the off-diagonal terms must be
related to interference effects in the scattering, arising
when the thermal bath contains states that are coherent

superpositions of |k,a) and |k, b), i.e. states with same
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momentum but different internal quantum number. So let
us consider the evolution of an initial state [i) =
ca(k’)|%l, a) + cb(k’)|7</, b), where k' represents a generic
momentum other than the momentum % of our “test”
neutrino. Modulo normalizations, the density matrix asso-
ciated with this (pure) state reads f (k') « c,(k')c,(K).
Under S-matrix evolution the state |i) evolves into |f) =
S|i) o ¢y (K)A,(K)|k, @) + ¢y (K)A,(K)|k, B) + - -, where
we used <%,a|S|7</,a> o A, (k) [see (80)] and the dots
represent states with p ;él_é onto which the final state

S|i) can project. So as a net result of evolving the state
i), a linear superposition of internal states with momentum

-

k is generated. The change in the density matrix for
momentum & reads Afap(k) & fop(K')A,(K)A;(K), which
has the same structure of (86a). So we see that
IT,, (k) < Af,,(k), i.e. the gain potential is related to the
change in occupation number (a = b) or coherence (a # b)

in the momentum state k resulting from scattering from all
bins k" into the bin k.

C. Coherence damping

The coherence damping rate has been estimated in
Refs. [2,52,53] in the special case of nearly forward
scattering, namely, k' ~ k, and our expression can repro-
duce their result. In fact, for k' ~k one has

In(p)( = fn(p") ~ fn(p')(1 = fn(p)). Using this result
in (84) and (85) one obtains P7(k) = —Pj (k) (the latter
relation holds under the weaker condition |%| ~ |%/|).
Inspection of the collision terms C, C, and C¢ of
Egs. (41) and (42) shows that in this limit C(k) =
C(k)=0. On the other hand, using ¢(k') ~ ¢p(k),
one finds C,(k) in (42) to be proportional to
|A_(k)|> + |AL(k)|* — 2A% (k)A, (k). Recalling that for
k' ~ k then A* A, becomes real, one arrives at the result

Cy(k) =T, (k) (k).

N 1 ~ -
r,(k)= —m / dk' dpdp’ 2z)*6W (k+p—k —p)

XfN(p)(l_fN(p/))%qA—(k)_A+(k)|2>v (87)

which agrees qualitatively with Refs. [2,52,53,56]: the

damping rate for the coherence ¢(%) is proportional to a
statistical average of the square of the difference of the
scattering amplitudes of the two states. In the case of
neutrinos and antineutrinos, since weak interactions are
spin dependent, A_ — A, # 0 and we expect damping of
spin coherence with a typical weak-interaction time scale.
On the other hand, neutrino-nucleon scattering is flavor
blind and therefore does not contribute to damping of flavor
coherence in the case of nearly forward scattering.

PHYSICAL REVIEW D 94, 033009 (2016)

“Flavor-blind” scattering (i.e. A, = A_) can still cause
coherence damping, as long as the collisions involve energy
transfer. Assuming for simplicity thermal equilibrium for
the “scatterers” [the nucleons in our example, so that

fn(p) = 1/(ef/T 4-1)], we find

- 1 ,
Cy(k) =— p |/dk dp dp'(2x)*

x 8W(k+p =K = pA-(K)Pfu(p) (1= fu(p)

: {4’(75) — B E T (k')

3 (B ENT 1) (B (R + F(E))

@) +f<%>>1}. (88)

The vanishing of [ d3kC,/,(%) =0 (in agreement with
Ref. [2]) signals that coherence at the level of the
“integrated” density matrix is not damped for flavor-blind
interactions. On the other hand, the fact that the individual

C(/,(%) # 0 signals that flavor-blind collisions “shuffle” or
transfer coherence between momentum modes. _

For the “flavor-diagonal” collision term C(k), in the
same limit we obtain

c(k) = - l/dk'dpdp(zn)“(s (k+p—Kk—p)

k]
x [A_(K)Pfn(p)
x {f(k)(1 - f(K
+ (e B EIT — 1)Re(g (k)b

l—fN( ))
) — BB R (1
“(k))}.

(
) — f(k))

VI. ISOTROPIC LIMIT AND THE
EARLY UNIVERSE

In this section we revert to the full three-flavor analysis
and consider the limiting case of our expressions corre-
sponding to isotropic space, that allows us to further
evaluate analytically the expressions derived earlier in this
work. The isotropic limit is of considerable physical
interest, as it applies to the description of the early universe
(see earlier works [21-25]). In this setup we may assume
that all f’s depend only on the absolute values of the
momenta (not the angles) and additionally all ¢ (for
Majorana neutrinos) and f; (for Dirac neutrinos) vanish,
thus greatly simplifying our collision terms. In particular,
all collision terms relating to spin coherence vanish, i.e.
Cy = 0 in the Majorana case and C;z = Cr. = 0 in the
Dirac case.

In the Majorana QKEs, the nonvanishing ny x n, blocks
of Cy; in Eq. (41) are given by
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C =5 ({I" f} —{I". (1= f)}). (89a)

CT =S (@) f1} = {@m)=. (1= f)}).
In the Dirac QKEs, the nonvanishing n; x n, blocks of C

and C in Eq. (75) are obtained from the Majorana results as
follows:

(89b)

= W] —

Crr = C|f—’fLL~J2'—’J_CRR’
Crr = C|f—’fLLf—’fRR‘ (90)
The key trick [22,57] leading to closed expressions for

the collision integrals is to write the momentum-conserving
o0 function in terms of its Fourier representation

3

> L L d’2
5(3)(k—513—%+512):/(2ﬂ)3

_/r%dr,ld(cosé’,{)dweim_ag_;]ﬁ;h).
(27)?

(1)

M k=43-G1+4>)

With this result, one can integrate out all angles ultimately
arriving at an expression with only two integrals left
|

co 2G_§ dE,dE,dE;
- TE (2r)3
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[22,57]. The types of integrals appearing for the x =
cos 0; are

1 ) 2
/ dxe™ = Zsin A,
» A

) ‘ by A
/_1 dxxe ™ = Tl <cosA - SIZ ) (92)

The integrals over the ¢; are trivial when aligning the Z axis
with /.

Below, we report our results for the collision term in
isotropic environments. Each contribution to the collision
term has a factorized structure, in terms of weak matrix
elements and distribution functions of the “scatterers,”’
multiplied by a matrix structure involving the neutrino
and antineutrino density matrices f, f,3 and 1 f1.2,3.

A. Neutrino-nucleon scattering processes

Neglecting contributions from antinucleons (irrelevant in
the early universe in the interesting decoupling region,
T <20 MeV) the scattering processes v(k)N(q,) <>
v(q3)N(q;) lead to

S(Ex—E3s—E1 + E)(1 = fon ) f oAl = f3. f = Fona (L= Fan 2 ) {f3. 1 = f})

X ((Cy + Ca)*(E\E2EsE D (41, G2, 3. k) + E2ExDy(q2. k3 g1, q3) + E\E3Dy(q1. 3 92. k) + D3(q1. 42. 43. k)
+ (Cy = Ca)*(E\E2E3ED (41, 92, 3. k) — E\ExD1(q1. k3 g2, q3) — EaE3Dy(q2. 43391, k) + D3(q1. 42, g3, k))
— M}(Cy — C3)(EsExD1(q1. 2. 43. k) — D2 (1. 23 3. k))). (93)

where g, = /E}, — M3, g3, k = \/E3,, and D » 5 are

expressions previously discussed by Dolgov, Hansen and
Semikoz in [22] (see also [57]), and we list them explicitly
in Appendix D. In the above expressions one recognizes the
usual loss and gain terms. In the one-flavor limit the
anticommutators become trivial and we recover the stan-
dard Boltzmann collision term for neutrino-nucleon
|

G} [dE\dE,dE;

C=——+
E? P

ME —E3—E\+E)(1=fe)1)f(e)2

|
scattering. The antineutrino collision term C” can be

obtained from C in (93) with the replacements f; <> f7
and Cy —» —Cy4.

B. Neutrino-electron processes

The neutrino collision term induced by v-e* processes is
given by

X ((E1E2E3EkD1((]1,(]z,f137k) + EyExDy(q2.k3q1.q3) + E1E3D5(q1. 93392, k) +D3(q1.92.q3. k) ){Y L (1= f3)Y 1, f}

+ (E1E2E3EkD1((]17927Q37k) _ElEkD2<LI17k;QZ7Q3) —E2E3D2<6]2,C]3§611,k) +D3<C]1’Q2,C]3’k>){YR(1 _fS)YR’f}

m2

I=L.R

—78(E3EkD1(611,(]276137k) —Dy(q1.92:93.k)) Z {r;(1 —fs)YJ;ehf})

+{Ey; > —Ey3. fo3>(1—f23) } +{Ei2>—Eis. fio— (1—fi2)}+gain, (94)
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where q,, = \/E}, —m2, g3, k = /E5,, “gain” denotes

the corresponding gain terms for which the overall sign is
flipped and all f <> (1 — f) (including barred occurrences
of f;), and the polynomial functions D;,; are given in
Appendix D. The explicit loss terms in (94) correspond to
v(k)e (g,) = v(q3)e™(q;) scattering. The additional loss
term expressions indicated implicitly in the last line in (94)
represent  v(k)et(q;) = v(g3)et(q,) scattering and
v(k)o(g3) = e (g2)e(g1) pair processes, respectively.
Note that in these terms, the sign flips of energies affect
the energy-conserving delta functions as well as the overall
|

G2 [ dE,dE,dE;

=2
E? (2r)3
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sign of some of the terms proportional to D,. The
antineutrino collision term C7 is obtained from (94) by
the replacements f; <> f7 and Y, <> Y. If we neglect the
off-diagonal densities (f,z, = 0, f#,, = 0), the anticom-
mutators become trivial and we reproduce the results of
Refs. [21,22] for the diagonal entries C,, of the collision
term.

C. Charged-current processes

The processes v(k)n(q,) <> e (q3)p(q,) lead to the
neutrino collision term

S(Ex —E3—Ei + E)((1 = fi) ) f w2(1 = foa) e f1 = Fippa(1 = fy2)f e 3ile: 1 = f})

X (14 ga)*(E1E2E3ExD (g1 42. 43, k) + E2ExDo(qa, ki q1. 93) + E1E3Da(q1, q35 2. k) + D3(q1. G2, 3. k))
+ (1= ga)2(E\EyESE D1 (q1. 43, 43. k) — E{ExDy (g1, k3 42, 43) — E2E3Da (g2, 43341, k) + D3(q1. 42, 43. k)
+ M, M, (g3 — 1)(EsExD:(q1. 92.95. k) — D2(q1. 42 43. k). (95)

where ¢, = \/Ei =M}, ¢ =/E5—M;, g3 =/ E3—M;,
k = \/E3%, D3 are given in Appendix D, and the flavor
projector /, is defined in Eq. (48).

The antineutrino collision term C” induced by the
processes U(k)p(g,) <> et (g3)n(g;) can be obtained from
C in (95) with the replacements f <> f7, f, = f.,
fn< fp, and g4 = —g4. Moreover, CT receives a
|

Gp [ dE\dE,dE;

C=-2
E? (2r)?

S(Ex —E3 — E| + Ey)

|

contribution induced by neutron decay, which can be
obtained from C in (95) with the replacements f < f7,
fe - l_fe’fn <_>fp’ and ga = —9a and E3 - _E3’

D. Neutrino-neutrino processes

Neutrino scattering off neutrinos and antineutrinos
induces the collision term

X ((E\EyE3ED\(qy. 9. q3. k) + E2ExDy (g2, k3 q1. q3) + E1E3D3(q1. g35 92, k) + D3(q1. 42, 3. k))

x {(tr((1 = f1)f2) + (1 = f1)f2) (1 = f3), f}

+ (E\EyEsE Dy (41, 2. 3. k) — E\ED>(q1.k; 42, q3) — ExEsDy (42, 433 1. k) + D3(q1. q2. q3. k))
< {(w(f2(1=f1)) + (1= F)) (1= f3) + (r((L = f3) (A = F1)) + (1 = £3)(1 = F1))f2. f}) + gain, (96)

where all g; = \/E—l2 and “gain” denotes the corresponding
gain terms for which the overall sign is flipped and all
f < (1 —=f) (including barred occurrences of f;). The
second and third lines in (96) correspond to v(k)v(g,) —
v(q3)v(q,) scattering. The fourth and fifth lines in (96)
represent v(k)o(q,) — v(q3)0(q,). The antineutrino colli-
sion term CT induced by the processes v — v and
v — bv can be obtained from C in (96) with the replace-
ments f < f! (including all occurrences of f;). If we
neglect the off-diagonal densities (f,», = 0, f#b = 0), the
anticommutators become trivial and we reproduce the
results of Refs. [21,22] for the diagonal entries C,, of
the collision term [58].

[
VII. DISCUSSION AND CONCLUSIONS

In this work we have derived the collision terms entering
the quantum kinetic equations that describe the evolution of
Dirac or Majorana neutrinos in a thermal bath. We include
electroweak processes involving neutrino scattering off
other neutrinos, electrons, and nucleons, as well as o <
ete™ pair processes.

Throughout our analysis we have kept track of both
flavor and spin neutrino degrees of freedom. We have first
provided general, rather formal, expressions for the colli-
sion terms, valid in principle for any geometry, including
anisotropic environments such as supernovae and accretion
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disks in neutron-star mergers. Our results generalize earlier
work by Sigl and Raffelt [1], in which spin coherence
effects were neglected. When including spin degrees of
freedom, the gain and loss potentials IT= become 21, x 2n,
matrices, whose diagonal ny x n; blocks describe the
collisions of each spin state and whose off-diagonal
ny x ny blocks describe interference effects in the scatter-
ing involving coherent superpositions of the two spin
states. Since for Dirac neutrinos the “wrong helicity” states
(R-handed neutrinos and L-handed antineutrinos) do not
interact in the massless limit, in this case the gain and loss
potentials greatly simplify, as only the upper ns x ny block
survives (see Sec. IV). Our results are in qualitative
agreement with the ones in Ref. [35], where collision
terms involving flavor and helicity coherence have been
studied in the context of kinetic equations for leptogenesis.

The main results of this paper are as follows.

(i) Within the field-theoretic framework, we have de-
rived general expressions for the neutrino collision
terms, valid in anisotropic environments. The
lengthy results for the gain and loss potentials are
given in Sec. III, while the collision terms are
presented in Appendix C. Compared to previous
literature, new terms involving spin coherence ap-
pear. After using the constraints from the energy-
momentum conservation, all the terms (including the
“standard” ones that do not involve spin) can be
expressed as five-dimensional integrals. These are
intractable at the moment in codes describing
astrophysical objects but will be required for a
detailed study of neutrino transport in the future,
especially to assess the impact of the so-called
“halo” on collective neutrino oscillations in super-
novae [48].

(i) After presenting general results, we have focused on
two limiting cases of great physical interest. First, in
Sec. V we have taken the one-flavor limit and
illustrated the structure of the collision term for
the two spin degrees of freedom (neutrino and
antineutrino in the Majorana case). Here we have
provided simple expressions for the diagonal and
off-diagonal entries of the gain and loss potential. As
expected, the diagonal terms are proportional to the
square moduli of the amplitudes describing neutrino
and antineutrino scattering off the target particles in
the medium (JAz[*). On the other hand, the off-
diagonal terms are proportional to the product A*A
of scattering amplitudes for neutrino and antineu-
trino. In this section we have also estimated the
damping rate for spin coherence due to neutrinos
(antineutrinos) scattering off nucleons, under the
assumption that collisions involve small energy
transfer compared to typical energies of the system.
Finally, we have shown that coherence “transfer”
among momentum modes is enforced by the
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collision term even in the case of flavor-blind
interactions, as long as the collisions involve energy
transfer.

(iii) Next, in Sec. VI we have considered the isotropic
limit relevant for the description of neutrinos in the
early universe. In this case, following Ref. [22], we
were able to analytically evaluate most of the
collision terms, leaving just two-dimensional inte-
grals for computational implementation. These latter
expressions generalize earlier results found in
Refs. [21,22]. In fact, our results encode the same
scattering kernels as in Ref. [22] but multiplied by
the appropriate products of density matrices that
realize the “non-Abelian” Pauli blocking first de-
scribed in Ref. [2]. Our flavor-diagonal collision
terms reproduce the results of Ref. [22]. The
resulting collision terms in the isotropic limit are
amenable for computational implementation in stud-
ies of neutrino transport in the early universe and its
impact on primordial lepton number asymmetries
and big bang nucleosynthesis.

In summary, this work completes the derivation of
neutrino QKEs from field theory in general anisotropic
environments, started in Ref. [9], by including the collision
terms. While the computational implementation of these
collision terms will be challenging, here we have provided
the needed theoretical background. We have also gained
insight on the structure of the collision term by discussing
in some detail the one-flavor limit, relevant for neutrino-
antineutrino conversion in compact objects, and the iso-
tropic limit, relevant for the physics of the early universe.
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APPENDIX A: KINEMATICS OF
ULTRARELATIVISTIC NEUTRINOS

1. Basis vectors

For ultrarelativistic neutrinos of momentum &, it is
useful to express all Lorentz tensors in terms of a basis
formed by two lightlike four-vectors & (k) = (sgn(k°), k)
and R#(k) = (sgn(k®),—k) ®-k=R % =0, k-& =2)
and two transverse four-vectors %, ,(k) such that & - %; =
R - % = 0and %;-%;=—5;;. It is also useful to define i* =
X, £ i%, so that 7 - = = —2. Note that k¥* — —k* means
(with our choice of basis) that & — —& and i* — ¥, i.e.
(R A &%) = —(kR A &F), where (RAXF),, =(R,A7 —R,&;).
This can be seen directly in terms of spherical coordinates:
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sinfcos ¢ cos@cos @
i= sinfsing |, ;%1: cos@sing |,
cos@ —sinf
—sing cos@cos@ F ising
):czf cosg |, = cos@sing +icosg (A1)
0 —siné

Under parity, the
@ — 7+ @. Therefore, cos@ — —cos0,

angles change as 6 - 7 —60 and
sinf — + sinH

and cos ¢ — —Cos ¢, s1n(p — —sin ¢, leading to P —K‘

x1—>+x1 xz —x2 and 3~ — &7,

Any Lorentz vector V* has hghtlike and spacelike
components defined as VX =& -V and V/ = &' - V, respec-
tively. For the components of the derivative operator we
adopt the notation F =& -9, ' =1 - 9.

2. Vector and tensor components of two-point
functions and self-energies

The decomposition of the neutrino Green function
G (k) into independent spinor and Lorentz structures is
discussed in Ref. [9]. It takes the form

G(v)(ﬂGLWSL Gy-o )
LiGy sk,

GE.&
i
= [(Ghyr, -5 (G| Py

+ [(G‘L,)"y,, +£(G’§)ﬂvoﬂy} Pk, (A2)

where ¢# = (1,5), * = (1,—6) and ¢' are the usual Pauli

matrices. Additionally,

i
S;ll‘b - —Z

Z (5;¢01/ - 51/0/4)1

Lo, (ShoO
2% L= o o)

P 0 0
20wk = o & )

The first line in Eq. (A2) corresponds to the notation of
Ref. [9], while the second and third lines make explicit use
of the four-dimensional Dirac matrices. For additional
relations between the four- and two-component represen-
tations, see e.g. [59].

Similarly, any self-energy diagram carries spinor indices.
It can be written as follows:

(Gﬂév - 0-1/6;4) ’

R _
S =

(A3)

PHYSICAL REVIEW D 94, 033009 (2016)

N <H5+21HL””SL I, o )
My & IT + Ll sk,
|:HS + HRy/t 4 (H%)#Uo-/w} PL

i
4 [n; + Ty, +3 (HI;)W%} Pe. (A4)

where the first line corresponds to the notation of Ref. [9],
while the second and third lines make explicit use of the
four-dimensional Dirac matrices. The vector and tensor
spinor components of IT can be isolated with the following
projections:

1
I r = ETr[HVO’PL,RL

i,
(H%)uy = ETI‘[HG;M/PLL

i
(H[;');w =~ ETI.[HG/MPR}' (AS)
Furthermore, the Lorentz vector and tensor objects I17 ,
(TIER) . can be decomposed in terms of the basis vectors &,
&, %i,. The quantities I1j , and Py that appear in the
collision term correspond to specific components I1f , and
L.R
(HT )/w
(H’;) =e PR AR, PT + -
(Hé)/,w - e”l’( A )C+) + T

1
H’LR :§H§$Rk'”+~--. (A6)

The components relevant for the collision term are obtained
by the contractions

[

K _ =~ H A -
l'IL’R = K”HL’R, K, = |

l

bk g

|
l[p
PT = _? (K A x+)ﬂy(HR)ﬂy’
e~

8

So in summary, to obtain the quantities relevant for the
collision term we need the following projections (traces are
only on spinor indices; I}  and Py are matrices in flavor
space):

J
Pl =—

(k A ST (I, (A7)

T
1] r = EK;;TT[HJ’”PL,R], (A8a)
ie'? R
T (& A 3T Tr[llo,, Pgl, (A8b)
. ie'v A
Pp=- (kR A 37 Tr(llo,, Py). (A8c)

16
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3. Tensor components and duality properties

The projections and traces are greatly 51mphﬁed by
noting the following identities. Denote by T any self-dual
(+) or anti-self-dual (—) antisymmetric tensor, with dual
tensor 7* defined by

i
T;y = EeﬂvaﬂTaﬁ (Ag)
Then one has
VT = 4T Py,
B -
o Tl = —4iT' v,y Pp . (A10)

Using the above identities one can perform all the needed
projections in a straightforward way (at most four gamma
matrices and a ys5 appear in the traces).

Furthermore, notice also that S” LIR [introduced in (A3)]
are (anti-)self-dual, i.e.

v U\ % l vpo
St :_(512) :_Eeﬂ/’ SLM,

S = (S)" = 5" S (A11)
which may be checked by explicit computation using the
Lie algebra of the Pauli matrices. Similarly, the wedge

products satisfy the following duality relations:

(R A ZEp i(('? EEp)

=F e (R A )?i)/m, (A12)
and from these relations it directly follows that
Capyu(R N ZE) iz(é”é”é” + 6”5”5"
+ 855,87) (R A 35) 50 (Al3a)
(Ry N X7)(R; A A;’)W =0, (A13b)

APPENDIX B: GREEN’S FUNCTIONS TO 0O(¢")
IN POWER COUNTING

In this Appendix we summarize the form of the two-
point functions for neutrino and matter fields (e, n, p) to
leading order in our power counting, i.e. to O(e”). We use
these expressions to evaluate the collision potentials IT*
to O(e?).

PHYSICAL REVIEW D 94, 033009 (2016)

The collision term involves the * components of the
Green’s functions, defined in terms of the statistical (F) and
spectral (p) functions as

Gt=-lp+F.

: (B1)

Using the fact that to leading order the neutrino spectral
function has only vector components,

Pl (k. x) = 2in6(K%)sgn(K°) k8,1 (B2)
we can write [see (A2)]
(Gy™)y (k) = K, (Gy )= (k).
(G R) )22 = :t(F%“R)/AD’
(Ff)u = e (& AE7),, 2.
(FR),, = e(k A £1),,". (B3)

The explicit form of (GL*)*(k) and ®(k) for Majorana
neutrinos is [60]

— O(—K0) F(=K)],
(B4a)

(Gh)* (k) = 225(k*)[B(K)(1 = £ (k)

~ F(=k))],
(B4b)

(G~ (k) = 275(k2)[0(K0) £ (k) = O(=K°)(1

— O(=K°) T (=),
(B4c)

(GE)* (k) = 228(k>)[0(K0) (1 — F7 (k)

(GR)~ (k) = 228(k>)[B(K) F7 (k) — (k) (1 — fT (~k))].
(B4d)

O (k) = —2a|k|5(k2) [O(KO)p(K) + O(—kO) BT (—k)).
(B4e)

In the above equations the transposition operation acts on
flavor indices.

In summary, the neutrino Green’s functions to O(e) can
be written as

- i e e
(G(D>)i = [(Gl‘i)ik/ﬁ/y + Z(I)e—l(/?(,( A X )” U/w]PL

+ [(Gh)key, £ 7 Belo (& A 570

/ll/]PR'

(BS)

Finally, for unpolarized target particles of mass m and
spin 1/2 (denoted generically by y, where w = e, n, p) the
Wigner transformed two-point functions read [9,16]
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Gt (p) = 228(p* = my) (# + my,)[0(p°)(1 = £, (B)) = O(=p°)f, (=DP)].
GY)=(p) = 216(p* — my) (pr + m, )[0(p°)f, (P) = O(=p°)(1 = £, (=P))]. (B6)

where f,,(p) and ]_ﬂ,,(f)) are the target particle and antiparticle distributions, respectively. In order to isolate the spinor
structure, we use the notation G¥)*(p) = (p + m, )G¥W*(p).

APPENDIX C: COLLISION TERM FOR v-N, v-e, AND CHARGED-CURRENT PROCESSES

In this Appendix we present the results for the “assembled” collision terms C and Cy induced by neutrino-nucleon,
neutrino-electron, and charged-current processes, assembling the gain and loss potentials of Sec. III C according to Eq. (42).
We refrain from displaying the expressions for the collision terms induced by neutrino-neutrino processes: these are quite
lengthy but can be obtained straightforwardly in the same way as for the other processes.

1. Neutrino-nucleon scattering processes

Neutrino-nucleon scattering v(k)N(g,) = v(q3)N(q,) induces the following contributions to C and C in (42):

2G2
C=- | | dQ1dQ2d613(2”) (MR<C]17Q27Q3,k)((1—f ) {1 —f37f} f ( (N),2){f3’1_f})
- 4(C%/ + Cfx)(f(N),z _f(N).1>(MT(‘11v 492,93, k>¢3¢T + M?(%,C]z, q3, k)llﬁfﬂ))’ (Cl)
2 ~ ~ ~
Cyp=-— |%\F dq,dg,dq;(27)* (Mg(q1. g2, 43. k) (1 = finy 1) f oz + (Faa = Fa2)f3)@
+ M (g1, 92, 3. K)p((1 = fonvy) fow )2+(f( w1 = fn2)f5)
—4(CY + CHM1(q1, 92, g3, &) ((f v w.1) (D3 + D3 fT) + 2f 1 (1 = fwy2)d3))- (C2)

where Mr; 7(q1, ¢2.q3. k) given in (61) and M. denotes the complex conjugate of My, whose only differences are

i < &T and the sign of the phase. B ,
The contribution to CT in (42) can be obtained from C in Eq. (C1) with the following substitutions: f; <> f7, ¢ i < ¢;,
MR <> ML» and MT <> M;

2. Neutrino-electron processes

In terms of the matrix elements M¥(q,, q», g3, k), ME(q\,q2,93.k), M, (q1,q>,q3,k) defined in (67) and
My(q1. 9. q53. k) defined in (61), the collision terms C and C,, read

_16G%
C= |k| /d%déhd%(z”)
X ((1 _f(e).l)f(e),Z{YI(l —fs)(ZYIMf(QI,QZJI%k) =Y Mou(q1, g2, 43, %)) f}
I=L.R
fe ( ){Y1f3(2Y1MR<CI1’QZ’QS7k)_YJ#M ((]17(]2,613vk))v1—f}
- ((fe ,1)Y1¢3Y1MT(QDQZ7‘]37 k)@ = d((f )2 = fe))Y103Y M1 (1. 42. 43, k))7)
+ {612,3 = =423, fa3— (1 —J_[2,3)7 3 — —¢3 b+ {qu = —qi2 fi2— (1 _}1,2)} (C3)

and
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16G% [ - - -
Cp=- |7€»F/dQ1d612dQ3(2ﬂ)4 Z (M= Ffo)fe2Yr + (fe)n = fe)2)Y1f3)
I=L.R

x (2Y; M (a1, 92, 43. k) = Y 50 M, (41 42, 43, K) )

+ (1= fop)f@2Y1+ (Fon = Fo2) YD) RYIME (g1, 62, 43, k) = Y 11y M, (41, 42, 63, K))
—((f(fer2 = Fiep1) + 2f 1 (1 = 2 Y103Y 1 + (fie)2 = F0.) Y13 Y 1S T ) M1 (q1. 2. g5.k))

{3 = =023 fr3=> (1=Fa3), d3—= =% [5-(0-f1)}

{12 = =012 f12—> (1 =Ffi2)} (C4)

Note that these expressions display explicitly the effect of the process v(k)e™(q,) = v(g3)e™(q,), while the impact of
neutrino scattering off positrons and pair processes is obtained by simple substitutions, as indicated above. B
The antineutrino collision term C7 in (42) can be obtained from C in Eq. (C3) with the following substitutions: f; < f7,

¢; < $}. Yr < Y, and My < Mj.

3. Charged-current processes

The contributions to the collision term from charged-current neutrino absorption and emission v(k)n(gq,) <>
¢ (q3)p(q1) are

26t [+ = -
C=- |z|F/ dq,dgydaqs (27)* M§ (91, 42 43, k)

X ((1 _f(p),l)f(n),Z(l _f(e),?a){le’f} _f(p),l(1 _f(n),Z)f(e),?a{Iev 1 _f}) (CS)

and

2

2G -~
C¢ == |z|p/dQ1dQ2dQ3(2ﬂ)4(MgC(CI176127613»/()((1 _f(p),l)f(n),Z + (f(p),l _f(n),2)f(e),3)[le¢]

+ ME(q1. 92, 3. )AL = 1) f )2+ Fona = Fim2)fe)s): (Co)

where the flavor projector 7, is defined in Eq. (48) and the matrix elements M,gi(ql, 4>, q3, k) are given in (64).
The antineutrino collision term C” induced by the processes (k) p(q,) <> e*(q3)n(q,) can be obtained from C in (C5)
with the replacements f — f7, f, = f,. fn < [, and M —> MEC (g4 > —ga).

APPENDIX D: THE Dolgov-Hansen-Semikoz (DHS) INTEGRALS
Using Mathematica we find (for all g; > 0)

4 [eodi ) ) )

Dia1-42005.00) = [ Gy sintia,) sin(aas)siniqy)sin(ig)
1

:Z(|CI1 t@rt =il ot - g+l g =+ g3+ gl + g2 + g3+ g4 — a1

ot a—a—al =g =g+ 93— qul = |l — 2 — a5 + @4l = (q1 + @2 + g5 + q4)). (D1)
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Dy (q1.92:93.94) =

D (611,612 43,44)

—-sin(4q;) sin(4q,) [cos(1g3) e

4Q3Q4/ dA . Sin(/lq3) Sin(ﬁq4)
e 7S 2930 leos(i)

1
:ﬁq‘h -Gl o -+ a3 —alP =l + a3 —asP + a1 — a0 — a5 + 44

“laita—at+al-la-atatal-l-a+a+a+al + (@ +a+a+a)?)

49394

+7(|611+Q2 =l = — @+ a3 —aqsl +1q1 + 92+ a3 — q4l = |a1 — 42 — g3 + q4]
+|¢11+C]2—Q3+Q4|_|C]1—QZ+‘]3+‘]4|_|_‘]1+612+‘]3+Q4|+41+%+‘]3+44)

q3 —

+ 3 (sgn(q1+q2+q3 q1) (@1 +a+ a3 — qs)* +sgn(qr — 92— g3 + 94) (01 — 42 — 43+ q4)*

—sgn(q; +q2 — g3+ q4) (1 + 92 — 43+ q4)* —sgn(q — @2 + 43— 94) (91 — G2 + 43 — q4)?)

Q3+6]4(
8

+ sgn(q) + ¢ —q3 — qa) (@1 + 92— 43 — q4)* +520(q1 — 42 + 43+ 94) (41 — @2 + g5 + q4)?

—sgn(q1 — g2 — g3 — q4) (1 + @2+ @3 + 94)* — (01 + 92 + 43 + q94)?), (D2)

4q1612613614/0 ;1;1 {CO (1) - %H 0s(igs) — sm(/lzqz)}

’ )] |cos(rge) - 10

X |cos(Ag3) —
[ (4g3) Aq; Aq4

1
=— (@ +a-5G+a+a)a -5+ a3+ ai)ai 5645+ a3) =565 (a3 + 43)

120
1
3(,2 _ 3 2
+ (q3 + q4) (qS 4493 + q4)) + 480

o -t a—al’ o+ e+ a—al’ =g — a2 — a3 +
+lg1+ a2 — a3+ @ + a1 — a2 + a5 + q4l’)

(g1 =@ — a3 — qul’ = a1 + 42 — 43 — 44l

1 3
+o2 (2394 + 92(q3 + q4) — 91 (q2 + 45 + 94)) |01 — @2 — 45 — Q4| — 641929594]91 — G2 — 45 — q4]

q1(q2 + 43 = 44) — 0245 + (02 + 43)94)|01 = 42 — @3 + @’ = 6419293q4]91 — 42 — g3 + g4
9192 + 4392 + 0193 — (41 + 02 + 93)94) |91 + 42 + 93 = @l — 641929394l91 + @2 + 43 — 44
(43 = q4) + 4394 + 01(42 = 43 + 1)) 191 — @2 + 45 — g4’ — 641929394|91 — @2 + 43 — 44
(94 = q3) = 4344 + q1(92 — 43 + q4)) |91 + 92 — g3 + 94’ — 641929364l91 + G2 — g3 + |
9394 = 92(q3 + q4) + q1(=q2 + a3 + q4))|q1 — @2 + @5 + qul’ — 641629395191 — g2 + g3 + g4
093+ q4) — 43qs + 1 (=42 + 45 + q4) |91 + 42 — 43 — 4] — 641929394l 91 + 42 — 45 — q4)

+(
(
(42
(22
(
(

.
|
T
+
+

!
+ 5 (senlar + a2 = 43 = qa) (@1 + 42— 43 — 44)*(q} +3q1(43 — 6(q5 + q4)q2 + 43 + 4% + 64344)

qa)
+a3+3(q2 = 43— 04)q1 — (43 + q4)* = 3a3(q3 + 44) +302(43 + 64495 + 43))
+sgn(qr + g~ gz + a1 + @2~ a3+ 4)*(a3(a + 2~ a3+ @4)* — a1 (a1 + @2 — 95 + 44)°
~ (g1 + 92— 93+ 94)° = quq1 + @2 — 43+ 44)* + 124162(q3 — q4) + 12(q1 + 92)9394)
+sgn(qr — @+ g3+ qu)(q1 — 2+ 43+ 44)*(02(q1 — 42 + 43 + @4)* — q1(q1 — 42 + g3 + 44)°
~q3(q1 = 92+ a3+ 44)* = 44(q1 — @2 + 43 + 94)* + 12q192(q5 + q4) + 12(q2 — 41)4394)
+5gn(q1 + 42+ 43 = 44) (91 + @2+ 45 — 94)*(3(43 + 64392 + G3)q4 — 41 — 3(92 + 43 — q4)q}
=3(q5 + 6430, + 45 + 45 = 6(q2 + q3)qa)q1 — (02 + q3)* + 4§ = 3(q2 + 43)43)
+sgn(q1 = ¢2 = g3 + 94) (91 — 42 = 43 + 44)*(q7 + 3(43 + 64392 + 43)q4 — 3(q2 + 45 — q4)q}
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+3(q3 + 64392 + 43 + 45 — 6(q2 + 43)94) a1 — (42 + 43)° + 43 — 3(q2 + 43)43)

+sgn(qr — g2+ 43 = 94) (01 — @2 + 43 — 44)* (41 — 362(43 — 644q5 + q3) = 3(92 — 45 + q4) 47
+3(q5 +6(94 — 43)92 + 43 + 43 — 643q4) 91 — 43 + (43 — 44)” + 345(q3 — 44))

+5gn(q1 — 92— 43 — 44)(=q1 + @2 + 43 + 4)*(3q2(q5 + 64495 + q3) — 41 +3(q2 + g3 + 44)q7

=3(g3+6(q3+ q4)q2 + B3 + 43 + 693q2)q1 + @3 + (g3 + q4)® +343(q3 + 44)))-

As discussed in [22], there are four different cases of
physical interest for which these expressions simplify
considerably. They are listed in (A.15)-(A.25) of that
paper and can be checked explicitly using e.g.
Mathematica. For completeness, let us repeat those expres-
sions here.

Assuming for all cases (without loss of generality) that
q, > g, and g3 > g4, we have [22] the following.

Case 1.—q1+4q2>q3+qs, q1+4qs>¢qy+q; and
g1 2 g2+ g3+ qq:

1
D, 25(6124‘6]34'6]4—6]1)’ (D4a)
1
D, = E((éh - 0) +2(a3 + q3)
-3(q1 — 92)(43 + 43))- (D4b)

|
=g lai- 50163 + 54793 — 45 — 54143 + 54343
+ 54143 + 54343 — @3 — 543195 + 59345

+ 54343 + 54143 + 50343 + 54345 — 43)-

D5

(D4c)

The unphysical case q; > g, + g3 + g4 yields D; =
D, = D3 = 0 here.
Case 2—q, + q> > q3 + q4 and q; + g4 < > + q5:

D = qu, (D5a)

(D3)
P

D2 - ?4 5 (D5b)
i

Dy =22(5¢7 +5¢5 +543 — ¢3). (D5c)

30

Case 3—q +q><q3+qs, q1+qs<g,+qg; and

93 < q1+ g2+ q4:

1

D, :5(41 + g2+ 44— q3). (D6a)
1
D, = E(_(QI + 1) =243 + 243
+3(q1 + 92)(q5 + 43)), (D6b)

and D5 equals Eq. (D4c) with variables g; <> g3, g5 <> g4
exchanged. The unphysical case g3 > q; + ¢, + g4 yields
D, = D, = D; =0 here.

Case 4.—q; + g2 < g3 + q4 and g1 + g4 > q> + g5:

D, = g, (D7a)
q

Dy="2 (343 +3¢; -3¢i —43).  (DTb)
7

Dy =22(5¢1 + 543+ 5435 — 43). (D7c)

30
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