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We investigate the potential of the long-baseline Deep Underground Neutrino Experiment (DUNE) to
study large-extra-dimension (LED) models originally proposed to explain the smallness of neutrino masses
by postulating that right-handed neutrinos, unlike all standard model fermion fields, can propagate in the
bulk. The massive Kaluza-Klein (KK) modes of the right-handed neutrino fields modify the neutrino
oscillation probabilities and can hence affect their propagation. We show that, as far as DUNE is concerned,
the LED model is indistinguishable from a (3þ 3N)-neutrino framework for modest values of N; N ¼ 1 is
usually a very good approximation. Nonetheless, there are no new sources of CP-invariance violation other
than one CP-odd phase that can be easily mapped onto the CP-odd phase in the standard three-neutrino
paradigm. We analyze the sensitivity of DUNE to the LED framework and explore the capability of DUNE
to differentiate the LED model from the three-neutrino scenario and from a generic (3þ 1)-neutrino model.
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I. INTRODUCTION

Neutrino oscillation experiments have revolutionized our
understanding of the neutrino sector of the standard model
(SM). It is now established that at least two of the three
known neutrinos are massive and that the mass and flavor
eigenstates are distinct. There are still several unanswered
questions in neutrino physics, including the neutrino mass
hierarchy, the potential existence of new neutrino states,
and the status of CP invariance in the lepton sector. To
address these questions and further investigate the neutrino
oscillation phenomenon, we need a new generation of
neutrino oscillation experiments. The long-baseline Deep
Underground Neutrino Experiment (DUNE) in the United
States [1,2] and the Hyper-Kamiokande (HyperK) experi-
ment in Japan [3] are proposed to answer these and several
other questions and are poised to provide qualitatively
better and more precise tests of the current three-massive-
neutrinos paradigm.
Although the absolute neutrino masses are not yet

determined, we can indirectly infer from cosmic surveys
that the known neutrino masses are below the eV-scale [4].
Similar bounds, albeit weaker but more direct, come from
kinematical probes of nonzero neutrino masses [5,6]. The
fact that neutrino masses are much smaller than all known
fermion masses in the SM is widely interpreted as evidence
that the mechanism behind neutrino masses is different
from that of all other known particles. The hypothesis that
there are more, compactified dimensions of space and that
these are large (i.e., much larger than the inverse of the

Planck mass) was introduced in order to address the
infamous SM hierarchy problem [7–9] and also provides
a mechanism for understanding why neutrino masses are
parametrically smaller than charged-fermion masses. In
these large-extra-dimension (LED) models, it is natural to
assume that singlets of the SM gauge group, such as the
graviton or the right-handed neutrino states, can propagate
unconstrained in all dimensions, while the SM-charged
objects are confined to a four-dimensional spacetime. If
there are right-handed neutrino fields that propagate in
the bulk (or a subset of the bulk), the equivalent four-
dimensional neutrino Yukawa couplings are suppressed
relative to charged-fermion Yukawa couplings by a factor
proportional to the volume of the extra dimensions [10,11].
In these scenarios, neutrinos are very light for the same
reason gravity appears to be very weakly coupled.
The Kaluza-Klein (KK) modes of the higher-

dimensional right-handed neutrino fields behave as an
infinite tower of sterile neutrinos. If these are light enough,
one expects deviations from the three-massive-neutrinos
paradigm in neutrino oscillation experiments. The neutrino
oscillation phenomenology of LED models has been
extensively studied in the literature (see, for example,
Refs. [12–18]). It has also been proposed [19] that the
reactor anomaly can be explained within the LED frame-
work. More generically, the equivalence between the LED
model and a framework with several sterile neutrinos was
discussed in [20]. Other phenomenological aspects of LED
models and their application to nonzero neutrino masses
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have also been explored in depth in the literature (see for
example, Refs. [21,22]).
We study the potential of the Deep Underground

Neutrino Experiment (DUNE) to exclude or observe the
effects of the LED model and investigate how well DUNE
can constrain the LED parameters. Highlights include the
discussion of CP-invariance violation phenomena in the
LED model using the DUNE experiment. Several other
new physics scenarios can be studied using the precise
measurements of the DUNE experiment. The capability of
DUNE to test the one-sterile-neutrino hypothesis was
recently explored in detail in Ref. [23,24] while the effects
of nonstandard interactions (NSI) of neutrinos were inves-
tigated in [25–28]. Here, we also explore the ability of
DUNE to differentiate the LED hypothesis from the three-
neutrino and the four-neutrino hypotheses.
The paper is organized as follows: We discuss the LED

formalism and the related neutrino oscillation probabilities
in Sec. II. The sensitivity of DUNE to the LED hypothesis
is studied in Sec. III, and we demonstrate the capability of
DUNE to measure nonzero LED parameters in Sec. IV.
Section V is devoted to studying the ability of DUNE to
differentiate qualitatively distinct scenarios. We summarize
our results and offer some conclusions in Sec. VI.

II. FORMALISM AND OSCILLATION
PROBABILITIES

In this section we discuss the neutrino oscillation
probabilities in LED models and restrict our discussion
to models with one relevant extra dimension. We extend the
SM with three massless five-dimensional gauge singlet
fermions Ψα ≡ ðψα

L;ψ
α
RÞ associated to the three active

neutrinos ναL. The indices α correspond to e, μ, τ, in spite
of the fact that there are no charged leptons associated to
Ψα. The fifth dimension is compactified with periodic
boundary conditions in such a way that, from a four-
dimensional point of view, Ψα can be decomposed into a

tower of Kaluza-Klein (KK) states ψ ðnÞ
L;Rðn ¼ 0;�1;…;

�∞Þ. Redefining the new fields as ναð0ÞR ≡ ψαð0Þ
R and

ναðnÞL;R ≡ ðψαðnÞ
L;R þ ψαð−nÞ

L;R Þ= ffiffiffi
2

p
; ðn ¼ 1;…;∞Þ, the mass

terms of the Lagrangian, after electroweak symmetry
breaking, are [10,11,29]

Lmass ¼ mD
αβ

�
ν̄αð0ÞR νβL þ

ffiffiffi
2

p X∞
n¼1

ν̄αðnÞR νβL

�

þ
X∞
n¼1

n
RED

ν̄αðnÞR ναðnÞL þ H:c:;

≡X3
i¼1

N̄ i
RMiN i

L þ H:c:; ð2:1Þ

where mD is the Dirac mass matrix proportional to the
neutrino Yukawa couplings and RED is the radius of

compactification. Note that all massive fermions are
Dirac fermions. It is convenient to define pseudo mass
eigenstates N i

LðRÞ by rotating the neutrino states to a basis

in which mD is diagonal:

N i
LðRÞ ¼ ðνið0Þ; νið1Þ; νið2Þ; � � �ÞTLðRÞ; and

Mi ¼

0
BBBBB@

mD
i 0 0 0 …ffiffiffi

2
p

mD
i 1=RED 0 0 …ffiffiffi

2
p

mD
i 0 2=RED 0 …

..

. ..
. ..

. ..
. . .

.

1
CCCCCA
; ð2:2Þ

where mD
i are the elements of the diagonalized Dirac mass

matrix ðmDÞd ¼ diagðmD
1 ; m

D
2 ; m

D
3 Þ. The relation between

the active neutrinos in the SM and the corresponding
pseudo mass eigenstates is given by

ναL ¼
X3
i¼1

Uαiνið0ÞL ; ðα ¼ e; μ; τÞ; ð2:3Þ

where the 3 × 3 unitary matrix U describes the mismatch
between the flavor and pseudo mass eigenstates of neu-
trinos. This matrix is parametrized by three mixing angles
ðθ12; θ13; θ23Þ and one Dirac CP-violating phase δ13. In the
limit where mD × RED → 0, the KK modes and the active
neutrinos decouple, and U is the standard neutrino mixing
matrix for Dirac neutrinos. We are interested in values of
RED such that R−1

ED is larger than mD
i , but small enough that

nontrivial effects might be observed in long-baseline
oscillation experiments.
The true neutrino masses are found by diagonalizing the

n × n matrix M†
i Mi with an n × n unitary matrix S as:

S†i M
†
i MiSi. Therefore, the true mass eigenstates are

N 0
iL ¼ ðν0ð0Þi ; ν0ð1Þi ; ν0ð2Þi ; � � �ÞTL ¼ S†iN iL. Using Eq. (2.3)

we can obtain a relation between the active neutrinos of
the SM and the mass eigenstates of the KK neutrinos,

ναL ¼
X3
i¼1

Uαiν
ð0Þ
iL ¼

X3
i¼1

Uαi

X∞
n¼0

S0ni ν0ðnÞiL ; ðα ¼ e; μ; τÞ;

ð2:4Þ

where

ðS0ni Þ2 ¼ 2

1þ π2ðmD
i REDÞ2 þ ðλðnÞi Þ2=ðmD

i REDÞ2
: ð2:5Þ

Above, ðλðnÞi Þ2 are the eigenvalues of the matrices
R2
EDM

†
i Mi and are obtained by solving the following

transcendental equation [10,12,29]:

λðnÞi − πðmD
i REDÞ2 cot ðπλðnÞi Þ ¼ 0: ð2:6Þ
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The roots of this transcendental equation satisfy the relation

n ≤ λðnÞi ≤ ðnþ 1=2Þ, so the masses of the neutrino states
in the LED model are

mðnÞ
i ¼ λðnÞi

RED
≃ n

RED
; ðn ¼ 0; 1; � � �Þ; ð2:7Þ

where n ¼ 0 and n ≥ 1 correspond to the mostly active and
mostly sterile neutrinos, respectively. As mentioned earlier,
we are interested in R−1

ED ≫ mD.
The Dirac masses (mD

1 , m
D
2 , m

D
3 ) which appear in the

Hamiltonian are not the masses of the mostly active
neutrinos. They are, however, related to the mostly active
neutrino masses and are hence constrained by neutrino
oscillation data, along with RED. The solar and atmospheric
mass-squared differences are

Δm2
sol ≡ Δm2

21 ¼
ðλð0Þ2 Þ2 − ðλð0Þ1 Þ2

R2
ED

and

Δm2
atm ≡ jΔm2

31j ¼
���� ðλ

ð0Þ
3 Þ2 − ðλð0Þ1 Þ2

R2
ED

����: ð2:8Þ

We can solve the equations above and replace two among
(mD

1 , mD
2 , mD

3 , RED) with Δm2
21 and Δm2

31, which are
constrained by the experiment.1 Hence, the LED frame-
work can be characterized by the standard oscillation
parameters—θ12, θ13, θ23, δ13, Δm2

21, and Δm2
31—and

two new free parameters, which we choose to be m0 ≡
mD

1ð3Þ and RED, for the NH (IH) case.
Neutrino flavor evolution in the LED model is governed

by the following equation [20]:

i
d
dr

N iL ¼
�

1

2Eν
M†

i MiN iL þ
X3
j¼1

�
Vij 01×n

0n×1 0n×n

�
N jL

�
n→∞

; Vij ¼
X

α¼e;μ;τ

U�
αiUαjðδαeVCC þ VNCÞ; ð2:9Þ

where VCC ¼ ffiffiffi
2

p
GFNe and VNC ¼ −

ffiffiffi
2

p
=2GFNn are the

charged- and neutral-current matter potentials, GF is the
Fermi constant and NeðnÞ is the electron (neutron) number
density along the trajectory of the neutrinos. For the
purposes of this manuscript, we assume the electron and
neutron number densities to be the same and constant. As
usual, Uαi ↔ U�

αi and the sign of the matter potentials are
reversed when one considers the flavor evolution of
antineutrinos.
The equivalence between the LEDmodel and a ð3þ 3NÞ

sterile framework with N KK modes was explored in detail
in Ref. [20]. The flavor and mass eigenstates in a (3þ 3N)
framework are related by a ð3þ 3NÞ × ð3þ 3NÞ unitary
matrix W,

N αL ¼
X3þ3N

l¼1

WαlN 0
lL; ð2:10Þ

where N αL ¼ ðνe; νμ; ντ; νs1 ; νs2 ; νs3 ; � � �ÞTL, in which
νsi are the sterile eigenstates. Comparing Eqs. (2.4)
and (2.10),

ναL ¼
X3
i¼1

Uαi

XN
n¼0

S0ni ν0ðnÞiL ¼
X3
i¼1

XN
n¼0

Wαðiþ3nÞν
0ðnÞ
iL ;

ðα ¼ e; μ; τÞ; ð2:11Þ

so

Wαðiþ3nÞ ¼ UαiS0ni ; ði ¼ 1; 2; 3Þ; ðα ¼ e; μ; τÞ;
ðn ¼ 0; 1;…; NÞ: ð2:12Þ

For R−1
ED ≫ mD we have jS0ni j2 ∝ n−2, so KK modes slowly

decouple as they get heavier. This implies that there is a
finite value of N above which the 3þ 3N model is
indistinguishable from the LED model. In practice, we
have considered 2 KK modes in our calculations and have
verified that the inclusion of more KK modes does not
change our results. In fact, we have verified that, for the
simulations performed here, 1 KK mode is sufficient. We
further justify this approximation below.
When matter effects can be ignored, the oscillation

probabilities are

Pðνα → νβÞ

¼ δαβ − 4
X
l>m

ℜ½WαlW�
βlW

�
αmWβm�sin2

�
Δm2

lmL
4Eν

�

þ 2
X
l>m

ℑ½WαlW�
βlW

�
αmWβm� sin

�
Δm2

lmL
2Eν

�
;

ðl; m ¼ 1;…; 3þ 3NÞ; ð2:13Þ

1We follow the discussion in [16]. Explicitly, for the normal
hierarchy (NH) case (λð0Þ1 < λð0Þ2 < λð0Þ3 ), we use Eq. (2.6) to find
λð0Þ1 as a function of (mD

1 , RED) while Eq. (2.8) is used to express
λð0Þ
2ð3Þ as a function of λð0Þ1 . Equation (2.6) then provides a relation
between mD

2ð3Þ and (mD
1 , RED). For the inverted hierarchy (IH)

case (λð0Þ3 < λð0Þ2 < λð0Þ1 ) we follow the same procedure to express
mD

1ð2Þ as a function of (mD
3 , RED). Note that the equations above

only have solutions for 0 ≤ λð0Þi ≤ 0.5.
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where L is the oscillation baseline, Eν is the neutrino

energy, and Δm2
lm ≡m2

l −m2
m with ml¼iþ3n ≡mðnÞ

i ¼ λðnÞi
RED

.
Matter effects will modify the oscillation probabilities in a
well-known way.2

CP-invariance violation in the neutrino sector manifests
itself as an asymmetry between the oscillation probabilities
of neutrinos and antineutrinos. In the three-neutrino sce-
nario, the only source of CP violation (if the neutrinos are
Dirac particles, which is the case here) is the phase δ13 in
the leptonic mixing matrix U. In a generic 3þ 3N massive
Dirac neutrinos framework there are ð3N þ 2Þð3N þ
1Þ=2 − 1 CP-odd phases beyond δ13 associated to the ð3þ
3NÞ × ð3þ 3NÞ unitary mixing matrix. In the LED model,
however, the ð3þ 3NÞ × ð3þ 3NÞ unitary matrixW is not

generic. As we can see from Eq. (2.12), all the elements of
W are proportional to Uαi so all the new CP phases are
functions of δ13. Hence, while many of the elements of W
have nonzero CP-odd phases, no new CP-violating param-
eters are introduced within the LED framework. In other
words, CP-violating phenomena are governed by the
higher-dimensional neutrino Yukawa couplings, which
define a 3 × 3 matrix. This is identical to the familiar
four-dimensional case when the neutrinos are Dirac
fermions.
For illustrative purposes, we evaluate the S matrix

numerically for RED ¼ 5 × 10−5 cm ¼ ð0.38 eVÞ−1 and
m0 ¼ 5 × 10−2 eV. The corresponding neutrino mixing
matrix W is, for the NH and IH, respectively,

WðNHÞ
αi ¼

0
BBBBB@

0.97Ue1 0.97Ue2 0.94Ue3 0.18Ue1 0.19Ue2 0.27Ue3 0.09Ue1 0.09Ue2 0.14Ue3 …

0.97Uμ1 0.97Uμ2 0.94Uμ3 0.18Uμ1 0.19Uμ2 0.27Uμ3 0.09Uμ1 0.09Uμ2 0.14Uμ3 …

0.97Uτ1 0.97Uτ2 0.94Uτ3 0.18Uτ1 0.19Uτ2 0.27Uτ3 0.09Uτ1 0.09Uτ2 0.14Uτ3 …

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
.

1
CCCCCA
;

WðIHÞ
αi ¼

0
BBBBB@

0.95Ue1 0.94Ue2 0.97Ue3 0.26Ue1 0.27Ue2 0.18Ue3 0.13Ue1 0.14Ue2 0.09Ue3 …

0.95Uμ1 0.94Uμ2 0.97Uμ3 0.26Uμ1 0.27Uμ2 0.18Uμ3 0.13Uμ1 0.14Uμ2 0.09Uμ3 …

0.95Uτ1 0.94Uτ2 0.97Uτ3 0.26Uτ1 0.27Uτ2 0.18Uτ3 0.13Uτ1 0.14Uτ2 0.09Uτ3 …

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
.

1
CCCCCA
;

ð2:15Þ

where Uαi are parametrized by θij, i; j ¼ 1; 2; 3; i < j, in
the usual way [31]. From Eq. (2.15), it is easy to see that
Wαi ∼Uαi for the mostly active states (i ¼ 1, 2, 3), while
the top-left (3 × 3)-submatrix ofW is not quite unitary. The
slow decrease of S as the KK-number increases can be
readily observed. It is also easy to see that the effects of the
mass eigenstates 7,8,9, proportional to jUj2, are suppressed
relative to those of states 4,5,6 by a factor of four. One can
quickly check that all are significantly smaller than jUe3j2
[j0.14Ue1j2 ∼ 0.01 is the largest jUαij for i ¼ 7, 8, 9 in
Eq. (2.15)]. Furthermore, the oscillation frequencies asso-
ciated to these states are also four times larger than those

from the first KK mode and, for the RED values of interest,
their effects always average out at long-baseline experi-
ments like DUNE. For all these reasons, one set of KK
modes is, for DUNE neutrino energies and LED parameters
of interest, a good proxy for the LED scenario. As
mentioned earlier, all results discussed henceforth were
computed including the effects of two KK modes (hence a
3þ 6 model).
When simulating data consistent with the LED hypoth-

esis, we have to include input values for the θij parameters.
When doing that we try to emulate as well as possible the
current best-fit values, which we take to represent the
existing neutrino data. In order to do that, we assume that
the information that the current data provide for the three-
neutrino mixing matrix elements Uαi applies to Wαi for
i ¼ 1, 2, 3. Hence, the best-fit value for the LED parameter
sin2 θ13, for example, is not identical to that of the three-
neutrino parameter sin2 θ13 ¼ 0.0219 [31]. They are, how-
ever, similar and related. For R−1

ED ¼ 0.38 eV, m0 ¼ 5×
10−2 eV, and the NH, the best fit value for ðsin2 θ13ÞLED ¼
0.0219=0.942 ¼ 0.025 [see Eq. (2.15)]. This recipe cannot
be followed exactly, so we decide on the best-fit, input
values for the LED θij parameters by equating the

2Matter effects can lead to resonant flavor conversion. For the
effective two-neutrino system ν0ðnÞi − ν0ð0Þi in the LED model,
the resonance condition occurs for very high neutrino energies
[20,30]:

Eres
ν ¼ ðλðnÞi Þ2 − ðλð0Þi Þ2

2VNCR2
ED

≃ n2

2VNC

R−1
ED

2 eV
≃ n2 TeV: ð2:14Þ

Weare interested in theDUNEexperiment,whereneutrinoenergies
areoforder1GeVandhencedonotneed toworryabout the resonant
conversion of the active states into sterile KK modes.
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jWe2j; jWe3j; jWμ3j to the best-fit values of jUe2j; jUe3j;
jUμ3j obtained in the three-neutrino framework.
To understand the effect of the LED parameters on the

oscillation of neutrinos, we show in Fig. 1 the probabilities
of νμ → νe (top-left) and ν̄μ → ν̄e (top-right) as well as the
survival probabilities of νμ (bottom-left) and ν̄μ (bottom-
right) in the energy range of DUNE for the three-neutrino
scheme and the LED formalism with dashed and solid
curves, respectively. In all the panels we have fixed the
parameter Δm2

j1, j ¼ 2, 3 and θij, i; j ¼ 1; 2; 3; i < j to the

best fit values reported in Ref. [31] (see also Table I), for
three different values of δ13. For the LED hypothesis, we
further choosem0¼5×10−2eV andR−1

ED¼ð5×10−5cmÞ−1¼
0.38eV. We see that for fixed values of θij, the oscillation
probabilities in the LED case are suppressed with respect
to the three-flavor scenario, as discussed above. This
effect can be partially remedied by increasing the values
of the LED θij parameters. Figure 1 also clearly depicts
the fast oscillations associated to the presence of the
KK modes.

III. EXCLUDING THE LED HYPOTHESIS

In this section we investigate the sensitivity of DUNE to
the model described in Sec. II. We assume, as laid out in
[1,2], that DUNE is comprised of a 34-kiloton liquid argon
detector located 1300 km from the neutrino source at
Fermilab. The neutrino or antineutrino beam is produced by
directing a 1.2 MW beam of protons onto a fixed target. We
use the neutrino fluxes and reconstruction efficiencies
reported in Ref. [32]3 to calculate event yields, as well

TABLE I. Best-fit values of three-neutrino mixing parameters
assuming the normal or inverted mass hierarchy. Values come
from the 2015 update to Ref. [31], and the parameter jUe2j2,
which is used later in our analysis, is derived from the fits to
sin2 θ12 and sin2 θ13. While there exist, currently, weak con-
straints on the CP-odd parameter δ13, we work under the
assumption that it is unconstrained.

Parameter Normal hierarchy Inverted hierarchy

sin2 θ12 0.304� 0.014 0.304� 0.014
sin2 θ13 ð2.19� 0.12Þ × 10−2 ð2.19� 0.12Þ × 10−2

sin2 θ23 0.514þ0.055
−0.056 0.511� 0.055

Δm2
21 ð7.53�0.18Þ×10−5 eV2 ð7.53�0.18Þ×10−5 eV2

Δm2
31 ð2.51�0.06Þ×10−3 eV2 −ð2.41�0.06Þ×10−3 eV2

jUe2j2 0.297� 0.014 0.297� 0.014

FIG. 1. Oscillation probabilities assuming a three-neutrino framework (dashed) and an LED hypothesis with m0 ¼ 5 × 10−2 eV and
R−1
ED ¼ 0.38 eV (RED ¼ 5 × 10−5 cm) for the normal neutrino mass hierarchy, Δm2

13 > 0. The values of the other oscillation parameters
are tabulated in Table I, see text for details. The top row displays appearance probabilities Pðνμ → νeÞ (left) and Pðν̄μ → ν̄eÞ (right) and
has curves shown for δ13 ¼ −π=2 (green), δ13 ¼ 0 (gray), and δ13 ¼ π=2 (purple). The bottom row displays disappearance probabilities
Pðνμ → νμÞ (left) and Pðν̄μ → ν̄μÞ (right).

3These are similar but not identical to the ones discussed in
Ref. [2]. Ref. [2] reports updated reconstruction efficiencies
which lead to reduced neutral current backgrounds for the
appearance channels. In this light, our results can be viewed
as somewhat conservative.
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as the neutrino-nucleon cross sections reported in Ref. [33].
The neutrino energies range from 0.5 to 20.0 GeV with
maximum flux at around 3.0 GeV. Events are binned in
0.25 GeV bins from 0.5 to 8.0 GeV, resulting in 30
independent counting measurements for each of the four
data samples discussed below. Our analysis thus contains
120 degrees of freedom before subtracting the number of
parameters describing any particular hypothesis. We sim-
ulate a detector resolution of σ½GeV� ¼ 0.15=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½GeV�p

for
electrons and σ½GeV� ¼ 0.20=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½GeV�p

for muons and
assume three years of operation each for the neutrino beam
and the antineutrino beam.
When generating data assuming the standard three-

neutrino framework, we assume the best-fit values for
the oscillation parameters from Ref. [31], summarized in
Table I. Since the neutrino mass hierarchy is unknown, we
simulate data using either the normal hierarchy (NH) or
inverted hierarchy (IH). We assume, however, that the
hierarchy will be known by the time DUNE collects data

and therefore analyze the simulated data with the correct
hierarchy hypothesis.
Figure 2 displays expected event yields for neutrino

appearance (Pðνμ → νeÞ, top-left), antineutrino appear-
ance (Pðν̄μ → ν̄eÞ, top-right), neutrino disappearance
(Pðνμ → νμÞ, bottom-left), and antineutrino disappearance
(Pðν̄μ → ν̄μÞ, bottom-right). In each panel, the expected
event yield at DUNE is displayed for a three-neutrino
hypothesis with parameters from Table I for the normal
hierarchy, δ13 ¼ 0, and for a nonzero LED hypothesis with
all homonymous parameters the same plus m0 ¼ 5×
10−2 eV and ðREDÞ−1 ¼ 0.38 eV.4 The dominant back-
grounds are neutral-current scattering of muon-neutrinos

FIG. 2. Expected event yields at DUNE assuming three years of either neutrino-beam mode (left) or antineutrino-beam mode (right).
The top row displays νe and ν̄e appearance yields, and the bottom row displays νμ and ν̄μ disappearance yields. In each panel, we show
the expected yield assuming a three-neutrino hypothesis with parameters from Table I for the normal hierarchy in blue, with error bars
representing statistical uncertainties, and assuming a nonzero LED hypothesis with m0 ¼ 5 × 10−2 eV and R−1

ED ¼ 0.38 eV in black.
The contribution of events associated to opposite-sign muons and electrons is included in the signal. Backgrounds are discussed in the
text and shown under the expected signals.

4This is done for illustrative purposes only. The set of LED
parameters that best mimics the three-flavor paradigm will have
best-fit values of, for example, θij, i; j ¼ 1; 2; 3; i < j, that are
different from the input three-flavor values for θij, as discussed
earlier.
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(“νμ NC”); charged-current scattering of tau-neutrinos
(“νμ → ντ CC”); neutral-current scattering of unoscillated
muon-type neutrinos (“νμ → νμ NC”); and charged-
current scattering of unoscillated, contaminant electron-
type neutrinos (“νe → νe CC”). The rates of these
processes are estimated from Ref. [32] and are not
recalculated in our analyses for different hypotheses, as
1% signal and 5% background normalization uncertainties
overwhelm any noticeable effects.
We analyze pseudodata simulated under the standard

three-neutrino framework plus δ13 ¼ 0 with the LED
hypothesis. The resulting 95% confidence level (C.L.)
limit in the R−1

ED −m0 plane is shown in black in
Fig. 3(a) for the NH and in Fig. 3(b) for the IH. In the
analysis, following Refs. [23,27], we include priors on the
solar parameters in order to take constraints from solar and
KamLAND data into account. More concretely, we add
Gaussian priors on Δm2

21 using the information in Table I
and on jWe2j2 using the information for jUe2j2 tabulated in
Table I. In the analysis, we marginalize over all parameters
not made explicit in the figures. We have repeated the
analysis for several nontrivial input values of δ13 and find
the corresponding exclusion limits to be similar to the ones
depicted in Fig. 3.
The dashed mauve and blue curves in Fig. 3 show the

exclusion limits at 95% CL from IceCube-40 data and
IceCube-79 data, respectively, as calculated in Ref. [20].

The dashed gold curves are the same for a combined
analysis of T2K and Daya Bay performed in Ref. [18]. The
green regions are preferred at 95% C.L. by short-baseline
oscillation experiments according to analysis published in
Ref. [19]. All these curves have, to zeroth order, the same
shape as the exclusion curve we obtain for DUNE. This
happens because the ratio of m0 and R−1

ED, when small, can
be mapped into an effective mixing angle which governs
most oscillation phenomena, as discussed in Ref. [20].
The dot-dashed burgundy curves in Fig. 3 show the

expected 90% C.L. exclusion limit of the β-decay experi-
ment KATRIN, estimated in Ref. [16]. The dependence
on m0 and on R−1

ED is more complicated for β-decay
experiments than for oscillation experiments as the former
rely on kinematic information from the electrons emitted in
the decay.
The gray shaded regions are excluded on the basis of the

mass-squared differences Δm2
21 and Δm2

31. As discussed in
Sec. II, Δm2

i1, i ¼ 2, 3 characterize the differences
between the lowest-lying5 physical masses-squared

differences, ½ðλð0Þi Þ2 − ðλð0Þ1 Þ2�=R2
ED. The transcendental

FIG. 3. Exclusion limits in the R−1
ED −m0 plane, assuming either (a) a normal hierarchy or (b) an inverted hierarchy of neutrino masses.

The exclusion regions are to the top left of the relevant curves. Shown are the 95% C.L. lines from DUNE (black), IceCube-40 (mauve)
and Ice-Cube79 (blue) [20], and a combined analysis of T2K and Daya Bay (gold) [18]. We also include the 90% C.L. line from
sensitivity analysis of KATRIN (burgundy) [16]. The shaded green regions are preferred at 95% C.L. by the reactor anomaly seen in
reactor and Gallium experiments [19]. The gray shaded regions are excluded by the measurements of Δm2

i1, as explained in the text. The

dotted gray lines are curves along which
P

im
ð0Þ
i ¼ 0.25 eV. Higher values of

P
im

ð0Þ
i correspond to the regions above and to the right

of the dotted gray lines.

5Observed oscillations cannot be due to mixing among mass
states from different KK modes. The mixing with the other low-
lying state(s) would be large enough to produce a deviation from
the three-standard-paradigm that is inconsistent with existing
neutrino oscillation data.
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equation Eq. (2.6) can only be satisfied if 0 < λð0Þi < 0.5.
Therefore, a point in the R−1

ED −m0 plane is only physical if

all λð0Þi implied by Δm2
21 and Δm2

31 meet this requirement;
the unphysical points define the gray shaded regions [16].
The dotted gray lines are curves along which the sum of

the masses of the three mostly active eigenstates,
P

im
ð0Þ
i , is

0.25 eV. This value is roughly the same as the current upper
bound on the sum of the neutrino masses from PLANCK
[4]. A proper analysis of the cosmology of the LED
framework is outside the scope of this work. However,
we believe the dotted gray lines capture the spirit of
potential cosmological bounds in the R−1

ED −m0 plane,
especially if one allows for possible extensions of the
LED scenario under consideration here.

IV. MEASURING LED PARAMETERS

In this section we simulate data consistent with the LED
hypothesis and investigate how well DUNE is capable of
measuring the new physics parameters m0 and R−1

ED in
tandem with the other oscillation parameters, introduced in
Sec. II. As input, we use the values for Δm2

i1, i ¼ 2, 3
tabulated in Table I, for the normal and inverted hierarchies,
and choose δ13 ¼ π=3, m0 ¼ 5 × 10−2 eV, and R−1

ED ¼
0.38 eV. We choose these values to be in the region
excluded by DUNE shown in Fig. 3. As discussed earlier,
we choose θij, i; j ¼ 1; 2; 3; i < j, such that jWe2j; jWe3j;
jWμ3j agree with the best-fit values of jUe2j; jUe3j; jUμ3j
under the three-flavor hypothesis. As discussed in Sec. III,

we add Gaussian priors for the solar parameters, identified
here as Δm2

21 and jWe2j2. The results of these fits are
depicted in Fig. 4. In the analysis, we marginalize over all
parameters not made explicit in the figures.
Figure 4 reveals that, at least at 99% C.L., a lower bound

on R−1
ED can be obtained in both the normal and inverted

hierarchy scenarios, while a lower bound on m0 can be set
at least at 95% C.L. for both mass hierarchies. Additionally,
if one were to place an independent bound on different
combinations of neutrino masses (from, e.g., precision
measurements of beta-decay spectra), a 99% C.L. upper
bound on R−1

ED (or a lower bound on RED) could be
obtained.
Finally, we have verified that the presence of the LED

parameters m0, R−1
ED does not significantly impact the

sensitivity with which the standard oscillation parameters
are measured (see, e.g., Refs. [23,32] for more details). This
includes the CP-odd parameter δ13. We have also checked
that this result does not depend strongly on the input value
of δ13.

V. DIFFERENTIATING NEW PHYSICS
SCENARIOS

In this section we address the capabilities of DUNE to
identify whether there is physics beyond the three-flavor
paradigm and identify the nature of the new physics,
assuming new physics is indeed present. To that effect,
in Sec. VA, we first simulate data consistent with the LED
hypothesis, as we did in Sec. IV, and try to fit the data with

FIG. 4. Expected sensitivity to a nonzero set of LED parameters as measured by DUNE, assuming three years each of neutrino
and antineutrino data collection. Figure 4(a) assumes the normal mass hierarchy (NH), and Fig. 4(b) assumes the inverted mass hierachy
(IH). The LED parameters assumed here are m0 ¼ 5 × 10−2 eV and R−1

ED ¼ 0.38 eV, while δ13 ¼ π=3. The input values of Δm2
i1,

i ¼ 1, 2 are in Table I. The input values for the mixing angles are, for the NH, sin2 θ12 ¼ 0.322, sin2 θ13 ¼ 0.0247, sin2 θ23 ¼ 0.581,
and, for the IH, sin2 θ12 ¼ 0.343, sin2 θ13 ¼ 0.0231, sin2 θ23 ¼ 0.541.
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the three-neutrino hypothesis. We then ask whether it is
possible to differentiate the LED hypothesis from other new
physics scenarios. In particular, we compare the LED
hypothesis with that of a fourth neutrino mass eigenstate.
In Sec. V B, we address whether a four-neutrino model can
mimic the LED hypothesis, while in Sec. V C we ask the
opposite question: Can the LED hypothesis mimic generic
four-neutrino models?

A. Three-neutrino fit to the LED scenario

In order to gauge whether DUNE can rule out the
standard paradigm, we simulate data assuming the LED
hypothesis is correct, exactly as described in Sec. IV, and
attempt to fit the data assuming the standard, three-neutrino
paradigm. The fit is performed for two simulated data sets,
consistent with the normal and inverted hierarchies respec-
tively. In order to gauge the quality of the fit, we calculate
the minimum of the χ2 function, χ2min and compare it to the
number of degrees of freedom, DOF. We define an
equivalent nσ discrepancy between the data and hypothesis
assuming a χ2 distribution function with DOF degrees of
freedom. In the fits, we include the Gaussian priors on
jUe2j2 and Δm2

21, as discussed in the previous sections (see
also [23,27]).
For the normal hierarchy, the result of the fit is

χ2min=DOF ¼ 210=114, or a 5.3σ discrepancy—a very poor
fit. For the inverted hierarchy, the fit is χ2min=DOF ¼
208=114, or a 5.2σ discrepancy—also a very poor fit.
These results are, of course, not surprising. According to
Fig. 3, the input values of R−1

ED and m0 are far inside the
region of LED parameter space DUNE can exclude
at 95% C.L.

B. Four-neutrino fit to the LED scenario

If data are consistent with the LED hypothesis so the
standard paradigm is ruled out, it is not obvious that DUNE
can establish that there are extra dimensions. The LED
hypothesis is identical to a 3þ 3N active-plus-sterile-
neutrinos scenario for large enough N. In fact, we argued
in Sec. II that, for the values of the parameters of relevance
here, N ¼ 1 is already a good approximation to the LED
model. Here, we attempt to fit the simulated LED model to
a four-neutrino hypothesis, using the framework described
in Ref. [23].6 While four neutrinos is less than the six
neutrinos that are known to be a good approximation to the
LED hypothesis, there is reason to suspect that, at DUNE
and given the values of m0 and R−1

ED of interest, the four-
neutrino hypothesis is also a good approximation to the

LED model. The reason is as follows. At the DUNE
baseline and given DUNE neutrino energies, oscillation
effects associated to the KK modes average out. The same
effect can be mimicked by a 3þ 1 scenario in the limit
where the new mass-squared difference is large. The map
between the 3þ 1 and the LED scenario is not completely
straightforward, but there are enough relevant degrees of
freedom in the 3þ 1 model to accommodate all LED
effects assuming there are no new resolvable mass-squared
differences.7

For both the NH and IH, we find a good fit (i.e.,
χ2min ≃ DOF). The results of these fits, one for each
hierarchy hypothesis, are summarized in Table II. For
both hierarchies, the four-neutrino hypothesis favors
Δm2

41 > 0.1 eV2, the range in which oscillations associated
with the extra neutrino average out for the energies of
interest at DUNE. For this reason, we expect little sensi-
tivity to the new, potentially observable, CP-violating
phase ηs ≡ η2 − η3.
Figure 5 displays the result of the fit performed assuming

the normal hierarchy in the sin2ϕ14-Δm2
41 and

sin2ϕ24-Δm2
41 planes. We find a qualitatively similar result

when performing the fit assuming the neutrino mass
hierarchy is inverted. Note that the data are consistent with
sin2 ϕ14 ¼ 0 at 68.3% C.L., but sin2 ϕ24 ¼ 0 is excluded at
more than 99% C.L. On the other hand, while it is possible
to establish that the new oscillation frequency is large
(Δm2

41 > 0.1 eV2 at a high confidence level), it is not

TABLE II. Results of four-neutrino fits to data generated
according to the LED hypotheses discussed in Sec. IV. Best-fit
values are the result of a 10-dimensional minimization, while
quoted 95% C.L. ranges are from the marginalized one-
dimensional resulting χ2 distributions for each parameter. The star
on sin2 ϕ34 is a reminder that we are not including ντ-appearance
information and hence have no sensitivity to sin2 ϕ34. For this
reason, we fix it to zero. See Ref. [23] for more information.

Parameter Normal hierarchy (NH) Inverted hierarchy (IH)

sin2 ϕ12 0.311þ0.028
−0.033 0.287þ0.051

−0.010
sin2 ϕ13 ð2.28þ0.60

−0.40 Þ × 10−2 ð1.95þ0.73
−0.31 Þ × 10−2

sin2 ϕ23 0.523þ0.030
−0.042 0.532þ0.022

−0.056
sin2 ϕ14 ð6.20þ16.13

−6.20 Þ × 10−3 ð9.06þ13.27
−9.06 Þ × 10−3

sin2 ϕ24 ð5.65þ1.15
−1.31 Þ × 10−2 ð6.76þ0.36

−2.41 Þ × 10−2

sin2 ϕ⋆
34

0 0
Δm2

21 ð7.50þ0.45
−0.33 Þ×10−5 eV2 ð7.68þ0.27

−0.51 Þ×10−5 eV2

Δm2
31 ð2.69þ0.02

−0.03 Þ×10−3 eV2 ð−2.58þ0.03
−0.04 Þ×10−3 eV2

Δm2
41 ð0.57þ1.42

−0.37 Þ eV2 ð0.56þ1.44
−0.36 Þ eV2

η1 ð0.54þ0.04
−0.36 Þπ ð0.38þ0.16

−0.1320Þπ
ηs ≡ η2 − η3 ð−0.03þ1.03

−0.97 Þπ ð−0.04þ1.04
−0.96 Þπ

6We denote the six mixing angles in a four-neutrino hypothesis
as ϕij (i; j ¼ 1; 2; 3; 4; i < j) to emphasize that they are not
equivalent to the θij of a three-neutrino hypothesis. The CP-
violating phase η1 is equivalent to δ13, and the new phases η2 and
η3 contribute in the appearance channel in the combination
ηs ≡ η2 − η3.

7Seven, ϕ12, ϕ13, ϕ23, ϕ14, ϕ24, η1, ηs in the 3þ 1 case,
compared to six, θ12, θ13, θ23, δ1, m0, RED, in the LED case.
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possible to place an upper bound on the new mass-squared
difference.

C. LED fit to four-neutrino scenarios

Here, we generate data assuming four neutrinos exist and
attempt to fit this simulated data under the LED hypothesis.
While it is easy to show that the LED hypothesis, under the
circumstances of interest, can be mimicked by a four-
neutrino scenario, the converse is by no means obvious. In
the LED hypothesis, the elements of the (infinitely large)
neutrino mixing matrix are all related and can be uniquely
determined once a handful of parameters are fixed, as
described in Sec. II. This means that the LED hypothesis
can only perfectly mimic a four-neutrino scenario if the
mixing angles and CP-odd parameters are related in
nontrivial ways. In summary, at least at the oscillation
probability level, a generic four-neutrino scenario cannot be
mimicked by the LED hypothesis.
We pursue the issue by perturbing around the best-fit

solutions discussed in the previous subsection and tabu-
lated in Table II. First, we generate data assuming the four-
neutrino parameters listed in Table II. In this case, for both
the normal and inverted hierarchies, we find that the LED
hypothesis generates a good (χ2min ≃ DOF) fit, with
m0=ðREDÞ−1 ≃ 0.13, which is what we expect given the
original LED hypothesis we assumed in Sec. IV.
Next, we generate data assuming the four-neutrino

parameters listed in Table II but with Δm2
41 ¼ 10−2 eV2,

a value studied more in-depth in Ref. [23]. For this value of
Δm2

41, we expect the new oscillations due to the fourth
neutrino to be relevant for the energies of interest at DUNE.
In this case, for the normal hierarchy, we obtain a fit that

has χ2min=DOF ¼ 349=112, which corresponds to a dis-
crepancy larger than 8σ—a very poor fit. For the inverted
hierarchy, the fit has χ2min=DOF ¼ 402=112, corresponding
to a larger than 8σ discrepancy—also a very poor fit. In
either case, DUNE would be able to rule out both the three-
flavor hypothesis and the LED hypothesis, while the four-
neutrino hypothesis would provide an excellent fit to
the data.
We repeat the exercise, this time assuming the input

values of all the four-neutrino parameters are those listed
in Table II, except for the new mixing angles. If the input
values of sin2 ϕ14 and sin2 ϕ24 are 0.1 and 0.01, respec-
tively, the LED hypothesis also fails to fit the 3þ 1

scenario, for either mass hierarchy: χ2min=DOF¼ 213=112
(6.0σ) for the NH, χ2min=DOF ¼ 241=112 (6.7σ) for the IH.
In summary, at DUNE, the LED hypothesis can always be
mimicked by the 3þ 1 scenario, but the converse is, by no
means, generically true.

VI. CONCLUSIONS

The long-baseline Deep Underground Neutrino
Experiment (DUNE) [32] has been proposed to address
several outstanding issues in neutrino physics, including
the search for new sources of CP-invariance violation and
precision tests of the validity of the standard three-massive-
neutrinos paradigm. In this work, we addressed the ability
of DUNE to probe large-extra-dimension (LED) models.
These are scenarios where the smallness of neutrino masses
is, at least partially, attributed to the existence of one extra
compactified dimension of space which is accessible to the
right-handed neutrino fields but inaccessible to all fields
which are charged under the standard model gauge group.

FIG. 5. Results of a four-neutrino fit to data generated assuming an LED hypothesis with m0 ¼ 5 × 10−2 eV and R−1
ED ¼ 0.38 eV

assuming the normal hierarchy. Contours shown are 68.3% (blue), 95% (orange), and 99% (red) CL. All unseen parameters are
marginalized over.
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From a four-dimensional point of view, the Kaluza-Klein
(KK) expansion of the right-handed neutrinos translates
into towers of massive sterile neutrino states, with masses
inversely proportional to the size RED of the extra
dimension.
We discussed in some detail the phenomenon of neutrino

oscillations at long-baseline experiments in a five-
dimensional LED model. We argued that the LED model,
for all practical purposes, maps into a 3þ 3N-neutrino
scenario and that modest values of N − N ¼ 1 or N ¼ 2
capture the details of the LED effects at long-baseline
oscillation experiments. Nonetheless, we emphasized that
the LED model does not map into a generic 3þ 3N model.
Instead, the number of new independent mixing parameters
is small—six, including four that can be interpreted, to
leading order, as the familiar three-neutrino mixing param-
eters θ12, θ23, θ13, δ13. Furthermore, we highlighted the fact
that in LED models, there are no new CP-invariance
violating parameters; the only source is the CP-odd phase
δ13, which, to zeroth order, plays the same role in the three-
neutrino scenario.
We investigated the sensitivity of DUNE to the LED

framework. Assuming that the future DUNE data are
consistent with the three-neutrino paradigm (assuming
three years of operation each in neutrino and antineutrino
modes), the LED paradigm can be excluded at 95% C.L.
if R−1

ED ≤ 0.54 eV (R−1
ED ≤ 0.48 eV) assuming a normal

(inverted) hierarchy for the mostly active neutrinos.
More stringent limits are obtained if m0, related to the
mass of the mostly active states, turns out to be large
(m0 ≳ 0.01 eV). The reach of DUNE is compared to that of
existing and future probes in Fig. 3.
We also investigated whether DUNE can measure the

new physics parameters if its data turn out to be consistent
with the LED model. We found that there are values of m0

and R−1
ED for which DUNE can establish, at least at the

68% C.L., that m0 is not zero and that the extra dimension
has a finite size. One concrete example is depicted in
Fig. 4.
Finally, assuming DUNE data are inconsistent with the

three-neutrino paradigm, we explored whether they can

reveal the nature of the new physics. We found that data
consistent with LEDmodels are inconsistent with the three-
neutrino model if the new physics effects are strong
enough. Nonetheless, we also found that, as far as
DUNE is concerned, there are four-neutrino scenarios
which mimic the LED model very effectively. We showed,
however, that the converse is not true. If DUNE data are
consistent with a four-neutrino scenario, it is likely that the
data cannot be explained by an LED scenario. In a nutshell,
the LED model, in spite of the fact that it contains an
infinite number of new neutrino states, has fewer relevant
free parameters than a generic four-neutrino model.
The key distinguishing features of LED models are the

existence of several sterile neutrinos with hierarchical
masses (the new masses are, roughly, R−1

ED, 2R−1
ED,

3R−1
ED, …) and strongly correlated elements of the infinite

mixing matrix (Uα4 ∝ Uα1,Uα5 ∝ Uα2, etc, for all α ¼ e, μ,
τ). Both are very difficult to establish experimentally in
long-baseline experiments because, in those experiments,
the effects of the new oscillation frequencies average
out. On the other hand, once new physics effects in νμ
disappearance and νμ → νe appearance are established,
the LED hypothesis translates into very concrete
predictions for all other oscillation channels, including
νμ → ντ appearance. This is not the case for a generic
3þ 1 scenario, where the new physics effects in the
ντ-appearance channel cannot be constrained by precision
measurements of νμ-disappearance and νe-appearance.
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