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We analytically consider the spontaneous formation of a fermionic crystalline geometry in a gravity
background with Lifshitz scaling and/or hyperscaling violation. A fermionic vortex lattice solution sourced
by the lowest Landau level has been obtained. Thermodynamic analysis shows that the fermionic vortex
lattice favors an equilateral triangular configuration, regardless of the values of the Lifshitz scaling z and the
hyperscaling violation exponent θ. Our results also show that the larger z or lower θ leads to deeper minima
in the free energy.
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I. INTRODUCTION

Gauge/gravity duality [1–3] has attracted a lot of
attention in the past few years, especially after the discov-
ery of consistent holographic results, RHIC experiments on
the viscosity/entropy-density ratio [4–6] and more recent
fruitful results of applications of holography to condensed
matter physics [7–10]. Due to the nature of the duality, it is
a promising way of studying gauge theories in the strongly
coupled regime, where the usual perturbative methods fail
to apply. Many phenomena in the condensed strongly
coupled systems, such as the high-Tc superconductivity,
the superfluidity and the non-Fermi liquid behavior, have
been addressed in the holographic framework. However,
most of these works only focus on the systems which are of
conformal invariance. Triggered by Son’s pioneer work on
nonrelativistic holography [11], recently there has been a
great interest in extending gauge/gravity duality to holo-
graphic description of QFTs without the conformal
invariance. Such extension has been fulfilled to Lorentz-
symmetry breaking field theories which exhibit dynamical
scaling [12,13] and more recently to theories with hyper-
scaling violation [14,15].1 Nevertheless, all these theories
still possess translational and spatial rotational symmetries.
As a consequence, many crucial features of the real world
materials, say, the effect of the momentum dissipation of
charge carries in optical conductivity [30,31], are still far
from being achieved.
To build more realistic condensed matter system in the

holographic framework, the spatial translational invariance
in the bulk must be broken so as to introduce the

momentum dissipation. There are several ways to achieve
this:

(i) The first way is to induce a holographic lattice by
imposing a spatially inhomogeneous periodic source
for a scalar field coupled to an Einstein-Maxwell
theory [30], or alternatively by considering the
backreaction of a periodic chemical potential on
the metric [31].

(ii) The second approach is achieved by introducing a
uniform chemical potential into the model [32–35].
Translational invariance in these models is broken,
but they have a Bianchi VII0 symmetry, which is
associated with the helical order.

(iii) The third one is to treat the massive gravity as a
holographic framework of describing theories with
broken translational symmetry [36–39].

(iv) The fourth mechanism was proposed in [40–42]
where the translational symmetry is broken by
introducing massless scalars which lead to a
linear dependence on the spatial coordinates of
the boundary.

(v) Recently there has been a novel approach which was
first proposed in [43] and then generalized to the
fermionic case [44] and gravity duals with Lifshitz
and/or hyperscaling violation [45]. The bulk geom-
etry of this model is an AdS2 × R2 space supported
by a magnetic field, which breaks the translational
symmetry. Systems of this type exhibit nonpertur-
bative instabilities of a probe charged scalar field
coupled to the magnetic field, and the vortex lattice
can be constructed via the instabilities. Notably, a
distinguished difference between the first mecha-
nism [30,31] and this one lies in their behavior at IR.
Different from the current case where the effect of
the lattice could persist deep in the IR, the first case
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cannot since the background charge carriers screen
the spatially modulated chemical potential in the IR.
This feature gives merit to fully understanding the
formation of the vortex geometry deep in the IR.
Another advantage of this approach is that the
backreacted crystalline geometry can be achieved
analytically.

In this paper we adopt the last approach and consider the
crystalline geometry in gravity duals with Lifshitz scaling
and/or hyperscaling violation, which is probed by a charged
Dirac fermion. We are interested in the spontaneous
formation of a fermionic crystalline geometry sourced by
the lowest Landau level solutions. We analytically solve the
corresponding coupled PDEs for the metric and the gauge
field. We obtain the same result as [44], which is different
from the one obtained in [43] where a lattice structure
induced by a charged scalar condensate only corrects the
background magnetic field. In the fermionic case, however,
the backreaction of the fermionic lattice will lead to an
emergent electric field and in turn yields an effective charge
density. Furthermore, we also investigate influences of the
scaling exponent and the hyperscaling violation exponent
on the spontaneous formation of the crystalline geometry.
To achieve this, we carefully analyze the thermodynamic
quantities of the systems. Our results show that lattices with
larger z or lower θ are more stable thermodynamically.
The other main motivation of this paper is to find out

which configuration of the holographic vortex lattice
prefers to form in our model. This is important because
configuration is one of the major properties of the lattice
and it provides a way to compare the holographic model
with the traditional one (say, the Abrikosov lattice [46]).
Most of the previous works [43–45], for the sake of
simplification, made an assumption that the vortex lattice
is rectangular. This is a very unnatural assumption consid-
ering the experimental result of the traditional vortex lattice
which is usually triangular. In this paper, we investigate this
problem very carefully. Our results show that the fermionic
vortex favors an equilateral triangular configuration, regard-
less of the values of z and θ. This result provides an
alternative confirmation of the holographic model.
The organization of this paper is as follows: in the next

section we will discuss the background geometry in
question. Equations of motion are obtained and the
Dirac field as a probe has been considered and the
corresponding Dirac equation in this background has been
achieved. In Sec. III, we solve these differential equations
and construct a vortex lattice solution. The radial behavior
of the wave functions is also discussed. In Sec. IV we
consider linear backreactions of the fermionic vortex on the
background and the gauge field. Some thermodynamical
variables such as free energy of the lattice will be discussed
in Sec. V, where we find that the vortex lattice tends to a
triangular configuration. The full fourth-order free energy
strongly suggests an equilateral triangular configuration.

Some thermodynamic behavior of the lattice affected by z
and θ has also been discussed there. We give conclusions in
the last section. Calculations of double Fourier series are
given in Appendix A and the computation of the full
on-shell action is given in Appendix B.

II. BACKGROUND SETUP

In this section, we will discuss the basic ingredients to
build the model of a fermionic lattice with a hyperscaling
violation exponent. Our starting point is the Einstein-
Maxwell-dilaton (EMD) model:

S1 ¼ −
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g
p

×

�
R −

1

2
ð∂ϕÞ2 þ VðϕÞ − ZðϕÞ

4
F2

�
; ð1Þ

where the dilaton ϕ is dual to the scalar relevant operator of
the system that drives a nontrivial renormalization group
(RG) flow from the UV to the IR. It can either be a constant
or running in the IR. The Uð1Þ gauge field coupled to the
dilaton is required to give the anisotropic scaling. Since we
are interested in spontaneous formation of the crystalline
geometries, the translational invariance should be broken.
In this scheme, we achieve this by placing a magnetic field
along the x direction, so the gauge field is restrained as

Fxy ¼ Qmdx∧dy; ð2Þ
where Qm can be viewed as the magnetic charge, and we
assume that Qm ≥ 0 throughout this paper.
We assume that VðϕÞ and ZðϕÞ have exponential

asymptotics. In particular, we are considering the following
forms:

VðϕÞ ¼ V0eγϕ; ZðϕÞ ¼ eλϕ: ð3Þ
The model can be supported by an extremal black brane

whose near-horizon geometry is given by the hyperscaling
violating Lifshitz (hvLif) metric

ds2 ¼ L2rθ
�
−
dt2

r2z
þ dr2

r2
þ dx2 þ dy2

r2

�
; ð4Þ

eϕðrÞ ¼ eϕ0r−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2−2zðθ−2Þ−4
p

; ð5Þ

γ ¼ θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2 − 2zðθ − 2Þ − 4

p ; ð6Þ

λ ¼ 4 − θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2 − 2zðθ − 2Þ − 4

p ; ð7Þ

L ¼ Qmeλϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz − 1Þð2þ z − θÞp ; ð8Þ
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V0 ¼
1

2
ðz − 1Þð1þ z − θÞð2þ z − θÞ2Q2

meðλ−γÞϕ0 ; ð9Þ

where z denotes the Lifshitz scaling, θ is the hyperscaling
violation exponent, and r → 0 and r → ∞ correspond to
UV and IR respectively. For simplification, we have set
ϕ0 ¼ 0 in the following argument.
The null energy condition imposes constraints on the

allowed values for z and θ [15]:

ðiÞ For 1 ≤ z ≤ 2∶ θ ≤ 2ðz − 1Þ or 2 ≤ θ ≤ 2þ z;

ð10Þ

ðiiÞ For 2 ≤ z ≤ 4∶ θ ≤ 2; or 2ðz − 1Þ ≤ θ ≤ 2þ z;

ð11Þ

ðiiiÞ For z > 4∶ θ ≤ 2: ð12Þ

In order to study the spontaneous formation of a
crystalline geometry sourced by the lowest Landau levels,
we consider a massive charged Dirac field as a probe in the
hvLif background (4) [44]

SD ¼
Z

d4x
ffiffiffiffiffiffi
−g
p

iΨ

�
1

2
ðeμaΓaD

!
μ − D
 

μe
μ
aΓaÞ −m

�
Ψ;

ð13Þ

where Dμ ≡ ∂μ þ 1
8
ωab;μ½Γa;Γb� þ iqAμ, Ψ ¼ Ψ†Γt, while

ωab;μ is the spin connection and eμa is the vierbein. Before
proceeding, we choose the basis for the Dirac matrices as

Γt ¼
�
−iσ3 0

0 −iσ3

�
; Γr ¼

�
0 −iσ2

iσ2 0

�
;

Γx ¼
�
σ2 0

0 −σ2

�
; Γy ¼

�
σ1 0

0 σ1

�
; ð14Þ

and the chiral gamma matrix Γ5 ≡ iΓrΓtΓxΓy.
Variation of S1 þ SD leads to the following equations of

motion,

ðΓμDμ −mÞΨ ¼ 0; ð15Þ

∇μðeλϕFμνÞ ¼ jν ¼ qhΨ̂ΓνΨ̂i; ð16Þ

∇μð∂μϕÞ þ V0γeγϕ ¼
λeλϕ

4
FμνFμν; ð17Þ

Gμν ¼ Tμν; ð18Þ

where

Tμν¼
1

4
gμν

�
V0eγϕ −

1

2
ð∂ϕÞ2

�
þ 1

4
∂μϕ∂νϕþ

1

4
eλϕFμρFν

ρ

−
1

16
gμνeλϕF2−

i
8
½hΨ̂eaμΓaDνΨ̂iþH:c:�þðμ ↔ νÞ:

ð19Þ

In deriving the above equations, we have replaced the
classical fermionic currents with their quantum mechanical
ones, following what Allais et al. did in their paper [47].
The reason is that the zero-temperature fermionic system
cannot be treated as the classical gas due to Pauli’s
exclusion principle. Therefore, as one considers the back-
reaction of the charged fermions on the holographic
geometry, the current generally cannot be treated as the
classical one.2

In order to impose the boundary conditions, it is
convenient to introduce two sets of projection operators
[50],

P� ¼
1

2
ð1� ΓrÞ; Qð�Þ ¼

1

2
ð1� iΓxΓyÞ; ð20Þ

under which the spinor can be decomposed into four
components Ψ�ð�Þ. Ψ

−
ð�Þ are interpreted as sources, while

Ψþð�Þ are responses. The subscript ð�Þ refers to spin-up and
spin-down states respectively.
Following [44], the boundary conditions can be imposed

as the following:
(i) At the UV, we require that Ψ− ¼ 0 or Ψþ ¼ 0 for

standard or alternative quantization respectively.
After adding a boundary term to the action such
that it has a well-defined variation principle, the UV
boundary condition can be translated into the fol-
lowing form:

�
ξþ ¼ 0; χ− ¼ 0; for standard quantization;

ξ− ¼ 0; χþ ¼ 0; for alternative quantization:

ð21Þ

where ξ� ¼ ΨþðþÞ �Ψþð−Þ, χ� ¼ Ψ−
ðþÞ �Ψ−

ð−Þ.
(ii) At the IR boundary, as the background metric does

not include horizon, it is necessary to consider a
cutoff in the IR boundary if we want to obtain a
nontrivial solution for the fermion in the entire bulk
geometry. One possible choice is to impose a hard
wall that abruptly cuts the geometry at some finite
r ¼ r0. After considering the variation principle, our
boundary condition on the hard wall is the same as
the one given in [44]:

2There is another way of dealing with this current. One can
treat the fermions as an ideal fluid and use a fermionic equation of
state as Hartnoll et al. did in their electron star papers [48,49].
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� ~ξ− ¼ 0; ~χþ ¼ 0; for standard quantization;

~ξþ ¼ 0; ~χ− ¼ 0; for alternative quantization;

ð22Þ

where

� ~ξþ
~ξ−

�
¼

�
cos ϑ

2
sin ϑ

2

sin ϑ
2

− cos ϑ
2

��ΨþðþÞ
Ψþð−Þ

�
;

�
~χþ
~χ−

�
¼

�− cos ϑ
2

sin ϑ
2

sin ϑ
2

cos ϑ
2

��Ψ−
ðþÞ

Ψ−
ð−Þ

�
;

where ϑ ∈ ð−π; π� is a chiral angle.

III. VORTEX LATTICE SOLUTION

A. Droplet solution

In this subsection, we will discuss the fermionic vortex
lattice with hyperscaling violation exponent. According to
[44], the IR instability will lead to a crystalline ground
state. So it is convenient to obtain a degenerated Ψ ¼ 0
solution with a vortex lattice solution.
To proceed, we consider the backreaction of the fer-

mionic field on the background which can be achieved by
expanding the fermionic field and the gauge field around
the critical point,

Ψðx; r; tÞ ¼ ϵΨ1ðx; r; tÞ þ ϵ3Ψ3ðx; r; tÞ þ � � � ð23Þ

Aμðx; rÞ ¼ Að0Þμ ðx; rÞ þ ϵ2Að2Þμ ðx; rÞ þ ϵ4Að4Þμ ðx; rÞ þ � � � :
ð24Þ

Neglecting the backreaction of Ψ on the gauge sector,
as well as rescaling the fermionic field Ψ1ðr; x; yÞ ¼
ð−hÞ−1=4ψðr; x; yÞ, the Dirac equation in the hyperscaling
violation metric is

ðΓr∂r þ Γxð∂x þ iqQmyÞ þ Γy∂y −mLr
θ
2
−1Þψ ¼ 0: ð25Þ

By acting ðΓμDμ þmLr
θ
2
−1Þ operator on the equation, we

obtain a second-order differential equation

�
∂2
r þ ∂2

x þ ∂2
y þ 2iqQmy∂x − q2Q2

my2 þ iqQmΓyΓx

−m2L2rθ−2 −mL

�
θ

2
− 1

�
Γrr

θ
2
−2
�
ψðr; x; yÞ ¼ 0: ð26Þ

To solve the equation, we notice that ΓyΓx commutes with
Γr. As a result we can expand the field as ψ�ðr; x; yÞ ¼
ρðrÞgðyÞeikxC� where the simultaneous eigenstates C�
should satisfy the condition that iΓyΓxC� ¼ �C�

and ΓrC� ¼ �C�. Therefore the normalized C� can be
found as

Cþ ¼
ffiffiffi
2
p

2

0
BBB@

0

1

1

0

1
CCCA; C− ¼

ffiffiffi
2
p

2

0
BBB@

1

0

0

1

1
CCCA: ð27Þ

After doing so, Eq. (26) reduces to a set of ordinary
differential equations,

ρ�00ðrÞ þ
�
λn�∓mL

�
θ

2
− 1

�
r
θ
2
−2 −m2L2rθ−2

�
ρ�ðrÞ ¼ 0

ð28Þ

g00n�ðYÞ − gn�

�
Y2 þ λn�

Qm
� 1

�
¼ 0; ð29Þ

where λn� are constants corresponding to Landau levels
and we have introduced a new variable Y ¼ ffiffiffiffiffiffiffi

Qm
p ðyþ k

Qm
Þ.

An interesting fact is that both Eqs. (28) and (29) are
independent of the dynamical exponent z, which means that
the exponent z contributes to the vortex only through a
prefactor h.
The general solution of the above equation is nothing but

the familiar Hermite function

gn�ðYÞ ∼ e
−Y2
2 Hn�ðYÞ; ð30Þ

and the corresponding eigenvalues are given by λn� ¼
−2Qmðn� þ 1

2
� 1

2
Þ. It should be mentioned that the above

Eqs. (28) and 29 are second order, while the original Dirac
equation is first order. It may impose a constraint on the
eigenvalues λn� . It turns out in [44] that this is given by
λnþ ¼ λn− , implying that n− ¼ nþ þ 1 ¼ n. In what fol-
lows, these relations always hold. Therefore, when we refer
to the Landau level it always represents n.

B. Vortex solution

It was found in [51] that the vortex lattice can be
constructed from the droplet solution at the lowest
Landau level. One therefore has

ψ lat
0 ¼

X∞
l¼−∞

Cleiklxψ0ðy; klÞ; ð31Þ

where Cl ≡ e
−iπa2

a2
1

l2

, kl ¼ 2πl
a1

ffiffiffiffiffiffiffi
Qm
p

and ψ0 ¼ e−
Qm
2
ðyþ kl

Qm
Þ2 .

After using the alternative elliptic theta function

Θ3ðν; τÞ ¼
X∞
l¼−∞

ql
2

Z2l; ð32Þ

the vortex lattice solution can be rebuilt as
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ψ lat
0 ¼ −e−

Qmy2

2 Θ3ðυ; τÞ; ð33Þ

where q ¼ eiτπ , Z ¼ eiπυ with υ ¼
ffiffiffiffiffi
Qm
p ðxþiyÞ

a1
and τ ¼ 2πi−a2

a2
1

.

A well-known fact is that the elliptic theta function has
two special properties. The first one is that Θ3 has a
pseudoperiodicity

Θ3ðυþ 1; τÞ ¼ Θ3ðυ; τÞ; ð34Þ

Θ3ðυþ τ; τÞ ¼ e−2πiðυþτ
2
ÞΘ3ðυ; τÞ ð35Þ

implying that the function ψ lat
0 which depends on the form

of Θ3 has the property of the invariance of translation
according to the lattice generators,

~b1 ¼
1ffiffiffiffiffiffiffi
Qm
p a1∂x; ð36Þ

~b2 ¼
1ffiffiffiffiffiffiffi
Qm
p

�
2π

a1
∂y þ

a2
a1

∂x

�
: ð37Þ

The second property is that theΘ3 function will vanish at

~χm;n ¼
�
mþ 1

2

�
~b1 þ

�
nþ 1

2

�
~b2 m; n ∈ N ð38Þ

and the phase of hOi rotates by 2π. So the core of the vortex
is located at ~χm;n.

C. Radial equation

Since we are focusing on the lowest Landau level
solutions, we have λþ ¼ λ− ¼ 0. Substituting this into
Eq. (28), we get

ρ00� þ
�
∓mL

�
θ

2
− 1

�
r
θ
2
−2 −m2L2rθ−2

�
ρ�ðrÞ ¼ 0: ð39Þ

Notice that equations for ρþ and ρ− are related through a
transformation mL → −mL. Therefore one can always
obtain ρ− from ρþ by inverting the value of mL, and vice
versa. In what follows, we only consider the equation for
ρþ, and we omit the subscript as well,

ρ00 −
�
mL

�
θ

2
− 1

�
r
θ
2
−2 þm2L2rθ−2

�
ρðrÞ ¼ 0: ð40Þ

1. θ= 0

This case reduces to a Lifshitz spacetime without hyper-
scaling violation. The radial equation (40) becomes

ρ00ðrÞ
ρðrÞ þmLr−2 −m2L2r−2 ¼ 0: ð41Þ

The above equation admits a power-law solution

ρ ¼ c1rαþ þ c2rα− ; ð42Þ

where

α� ¼ �
�
mL −

1

2

�
:

Translating it into the fermionic field, we obtain

Ψ1ðr; x; yÞ ¼
1

L3=2 ðc1rΔþ þ c2rΔ−Þψ lat
0 ðx; yÞCþ; ð43Þ

whereΔ� ¼ 1þ z
2
þ α�. The above solution has two radial

modes. For the case wheremL > 3þz
2
one can only consider

the standard quantization,3 while for mL < 3þz
2

the alter-
native quantization is also available.

2. θ ≠ 0

For this case, we first define a function φðrÞ≡ ρ0ðrÞ
ρðrÞ ,

and then Eq. (40) becomes a Ricatti equation,

φ0ðrÞ þ φ2ðrÞ − ½ðmLr
θ
2
−1Þ0 þ ðmLr

θ
2
−1Þ2� ¼ 0; ð44Þ

which admits a special power-law solution,

φ0ðrÞ ¼ mLr
θ
2
−1: ð45Þ

We therefore get an exponential form of ρ,

ρðrÞ ¼ ρ0 exp

�
2mL
θ

r
θ
2

�
; ð46Þ

where ρ0 ¼ ρðr ¼ 0Þ is a constant.
Actually, making use of the special solution φ0ðrÞ from

Eq. (45), more general solutions of Eq. (44) can be found
with the assumption φðrÞ ¼ uðrÞ þ φ0ðrÞ. Substituting this
into Eq. (44), one gets a solution for uðrÞ,

uðrÞ ¼ λθ exp ð−ðλrÞθ2Þ
bλθ − 2Γð2θ ; ðλrÞ

θ
2Þ ; ð47Þ

where b is an integration constant and

λ≡
�
4mL
θ

�2
θ

: ð48Þ

We therefore obtain a general solution of ρ by
integrating

3This corresponds to Δ− < 0. Since we are considering
spontaneous formation of the lattice, we should turn off the
source term and leave a scaling dimension of the boundary
operator to be ΔðΨ1Þ ¼ Δþ.
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ρðrÞ ¼ ρ0 exp

�
2mL
θ

r
θ
2 þ

Z
uðrÞdr

�
: ð49Þ

Near the UV boundary (r → 0), the above function for
θ > 0 can be expanded as

ρðrÞ ¼ d1 þ d2rþOðrÞ ð50Þ

where

d1 ¼ ρ0

�
1þ θ

2

��
bλθ
2

−Γ
�
2

θ

��
; d2 ¼

ρ0
2

�
1þ θ

2

�
θ:

ð51Þ

Translating it into the fermionic field, we obtain

Ψ1ðr; x; yÞ ¼
1

L3=2 ðd1rΔ− þ d2rΔþÞψ lat
0 ðx; yÞCþ; ð52Þ

where Δ� ¼ 6þ2z−3θ
4
� 1

2
. For the case where 3θ − 2z > 4

one can only consider the standard quantization, and we
turn off the source term, leaving ΔðΨ1Þ ¼ Δþ. From now
on, we pay attention to this case and for simplification we
briefly denote Δþ as Δ.

IV. LINEAR BACKREACTIONS

In this section, the backreactions of the fermionic vortex
on the metric, the gauge field and dilaton will be discussed.
The backreactions are sourced by the fermions at the matter
current and energy-momentum tensor at order Oðϵ2Þ. It
shows that the only nontrivial sources at orderOðϵ2Þ are Ttx

and Tty. So the following Ansätze for the backreacted
metric, gauge field and dilaton, respectively, are

ds2 ¼ L2rθ
�
−
dt2

r2z
þ dr2

r2
þ dx2 þ dy2

r2

�

þ L2ϵ2rβ½aðr; x; yÞdtdxþ bðr; x; yÞdtdy� ð53Þ

A ¼ Qmydxþ ϵ2rαat2ðr; x; yÞdt ð54Þ

ϕðr; x; yÞ ¼ ϕ1ðrÞ þ ϵ2ϕ2ðr; x; yÞ ð55Þ

where β ¼ 3
2
θ − z, α ¼ θ

2
− zþ 4 and ϕ1ðrÞ is given in (5).

At order Oðϵ2Þ, the nontrivial Einstein equations (com-
ing from Gtr, Gtx, Gty); gauge field equation; and dilation
equation are shown as (we have set Qm ¼ 1 in the
following argument)

ðβ þ 2zþ 2Δ − θÞð∂xaþ ∂ybÞ ¼ 0; ð56Þ

Ma ¼ −2i½hΨ̂1∂xΨ̂
†
1i − hΨ̂†

1∂xΨ̂1i − 2iyhΨ̂†
1Ψ̂1i�; ð57Þ

Mb ¼ −2i½hΨ̂0∂yΨ̂
†
1i − hΨ̂†

1∂yΨ̂1i�; ð58Þ

Qat2 þ
1

2
ð∂xb − ∂yaÞ ¼ 2L3hΨ̂†

1Ψ̂1i; ð59Þ

r2∂2
rϕ2 þ rðθ − z − 1Þ∂rϕ2 þ Pϕ2 ¼ 0; ð60Þ

where

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz − 1Þð2þ z − θÞp ð−4 − 10z2 þ 16ΔðΔþ θÞ þ θðθ þ 6þ 6zÞ − zð8Δþ 6ÞÞffiffiffi

2
p ; ð61Þ

Q ¼ −
1

4
ð2z − 4Δ − θ − 8Þð4Δþ 3θ − 2Þ; ð62Þ

P¼ð2þ z−θÞð−32þ16θ−3θ2þθ3þ zð32−16θþθ2ÞÞ
2ð2z−θ−2Þðθ−2Þ :

ð63Þ

The above equations have several nontrivial features.
First of all, the equation governing ϕ2 is completely
decoupled from other variables, which means that the
second-order corrections of the dilation, if it exists, are
neither sourced by the vortex lattices directly nor affected
through other fields like a, b and at2 indirectly. In other
words, the vortex lattice does not impose any influences on
the dilaton at this order. This reminds us that ϕ2 ¼ 0 is a
reasonable solution to (60). Secondly, all the functions

except ϕ2ðr; x; yÞ are sourced by hΨ̂†
1Ψ̂1i which scales as

r2Δ near the boundary. It is very natural to assume that
aðr; x; yÞ; bðr; x; yÞ and at2ðr; x; yÞ all scale as r2Δ where Δ
is given by

Δ ¼
�
mLþ 1þz

2
; for θ ¼ 0;

2þ z
2
− 3θ

4
; for θ > 0;

ð64Þ

as what have shown in the last section. As a consequence
we suppose that

fiðr; x; yÞ ¼ r2Δfiðx; yÞ ð65Þ
where fiðr; x; yÞ ¼ a; b; at2.
Considering that the vortex lattice is periodic in both the

x and y directions with periodicity j~b1j in the x direction

and j~b2j in the y direction, we therefore perform the
following double Fourier series:
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fiðx; yÞ ¼
1

L3=2

X
k;l;j

a1e
2πikx
j~b1 j e

2πijy

j~b2 j egðk;l;jÞ ~fiðk; l; jÞ; ð66Þ

where gðk; l; jÞ ¼ − π2k2

a2
1

− iπ a2
a2
1

ð2l − kÞk − iπkj − a2
1
j2

4
.

After inserting the above series into Eqs. (56)–(60), we
obtain a set of algebraic equations for ~fiðk; l; jÞ. A trick
here is that to avoid doing a double Fourier series of
derivatives appearing in the equations, one should first
translate them into functions of Ψ1 or Ψ†

1 and their
derivatives (one can find detailed calculations in the
appendixes). In the end we get the following solutions:

~a ¼ ija1ffiffiffi
π
p

M
; ð67Þ

~b ¼ −2i
ffiffiffi
π
p

k
Ma1

; ð68Þ

~at2 ¼ W ¼ 1ffiffiffi
π
p

Q

�
L3 þ 2a21j

2

M
−
8π2k2

a21M

�
; ð69Þ

ϕ2 ¼ 0: ð70Þ

Substituting the above solutions into (66) one obtains
solutions in coordinate space.

V. FREE ENERGY

In order to see which configuration the vortex lattice
prefers to form, in this section we would like to discuss the
effects of the lattice formation on the thermodynamic
functions. Particularly, we will compute corrections to
the free energy of the vortex lattice solution via the
on-shell value of the bulk action

F ∼ TSon-shell ð71Þ
where T is the energy scale. Following [43,45] we interpret
r0 as a confinement scale Λ−1 in the wall geometry. In this
way we substitute r0 ∼ T−1

z so as to get temperature
dependence. Direct calculations show that

Sð0Þon-shell ¼
2þ 5zþ z2 − 3θ − 3zθ

θ − z − 2
rθ−z−2; ð72Þ

Sð2Þon-shell ¼ 0: ð73Þ

Several remarkable remarks are as follows:
(i) There are vanishing corrections of free energy at the

second order. This is different from the AdS2 × R2

case as shown both in fermionic crystalline geom-
etry [44] and in scalar crystalline geometry [43], and
is different even from the case where the background
spacetime is a Lifshitz one with hyperscaling
violation [45].

(ii) Straightforward calculations show that the free
energy decreases, almost linearly, with z for fixed
hyperscaling violation exponent θ, while it increases
with θ for some fixed z. This indicates that the vortex
lattice has more stable thermodynamic stability for
larger z or lower θ. The detailed behavior can be
found in Fig. 1.

A. The fourth-order free energy

Due to the vanishing free energy at the second order, we
have to consider it up to fourth order. It is given by

Sð4Þon-shell ¼
1

16M2π

X∞
k;l;j¼−∞

e
4πikx
j~b1 j
þ4πijy

j~b2 j
þ2gðk;j;lÞ

× ðA1 þ A2r2Þr8þz−θ; ð74Þ

where

A1 ¼ −
4L2π2k2 þ L2b41j

2

8þ z − θ

�
56Δ2 þ 4z2 þ 5θ2 þ 14β2

− 16θβ − 32Δθ − 10zθ þ 56Δβ þ 16zβ þ 32zΔ

− 8θ þ 8β þ 8zþ 16Δþ 1þ ðθ − 2Þ

× ðθ − 2zþ 2Þ − 4

L2
− 2L2V0

�
; ð75Þ

2 4 6 8 10

1.2

1.0

0.8

0.6

0.4

0.2

0.0

z

F

8 6 4 2 0 2

0.25

0.20

0.15

0.10

0.05

0.00

0.05

F

FIG. 1. The zeroth-order free energy plotted as a function of the Lifshitz scaling z (left plot) and hyperscaling violation exponent θ
(right plot). It decreases (almost linearly) with increasing z as shown in the left plot and increases with increasing θ as shown in the right
plot.
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A2 ¼
�
56L2π2

�
4π2k4

b21
þ b41j

4

b22
þ 4πb1j2k2

b2

�

− 32πM2W2

�
ðαþ 2ΔÞ2 − 4π2

�
k2

b21
þ j2

b22

��

− 64MWπ3=2
�
b21j

2

b2
þ 2πk2

b1

��
1

10þ z − θ
; ð76Þ

with b1 ¼ j~b1j ¼ a1, b2 ¼ j~b2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ 4π2

p
=a1. As a

result, up to order ϵ4, the on-shell action is

Son-shell ∼ rθ−z−20 ½1þ ϵ4ðA1r
10þ2z−2θ
0 þ A2r

12þ2z−2θ
0 Þ þ…�:

ð77Þ

The free energy is then given by

F ∼ T2þ2−θz ½1þ ϵ4ðA1T
−1
z ð10þ2z−2θÞ þ A2T

−1
z ð12þ2z−2θÞÞ þ…�:

ð78Þ

An interesting feature at this order is that the vortex
lattice favors a triangular configuration, regardless of the
values of z and θ. To learn this more explicitly, a plot of free
energy vs lattice constant a1 (a2 ¼ 1

2
a21) has been drawn

(Fig. 2). From those figures, we see that the free energy has
a minimum value for different z and θ. Remarkably, all the
minima are located very close to a1 ¼ 2. It is well known
that an equilateral triangular lattice has a lattice constant

a1 ¼
2

ffiffiffi
π
p

3
1
4

≃ 2.69: ð79Þ

There is a discrepancy between this value and our mini-
mum location a1 ¼ 2. This discrepancy possibly comes
from the fact that our on-shell action at the fourth order is
not complete. The complete fourth-order on-shell action
includes not only the quadratic terms of the second-order
ones like a, b, at2, but also those terms that are further

backreacted by these backreactions a, b and at2. In the
present subsection we have only considered the first
contributions. The second one refers to solving higher-
order differential equations for fields like Ψ3ðr; x; yÞ and
Að4Þμ ðr; x; yÞ in Eqs. (23) and (24) and therefore has not yet
been taken into account. Although it is complicated, it is
possible to do that, following what we have done in a recent
paper on vortex lattice formation of a d-wave supercon-
ductor [52]. We will confirm this point in the next
subsection.
One less important observation in Fig. 2 is that it seems

that a larger z or θ has a larger minimum near a1 ¼ 2. This
implies that trends to form a triangular lattice decrease with
increasing z and θ. For the special case θ ¼ 0, we have
behavior similar to the nonvanishing ones, as plotted
in Fig. 3.

B. The full fourth-order free energy

In the last subsection we find that there is a discrepancy
between the lattice constant of an equilateral triangular lattice
and our minimum location and argue that this discrepancy
comes from the fact that our on-shell action at the fourth order

=3.6
=3.3

=3

0 1 2 3 4
0.3

0.2

0.1

0.0

0.1

0.2

0.3

a1

F

z 4

z=3.9

z=4

z=4.2

0 1 2 3 4

0.2

0.1

0.0

0.1

0.2

a1

F

3

FIG. 2. The fourth-order free energy plotted as a function of a1 with a2 ¼ a2
1

2
. The left plot corresponds to curves of fourth-order free

energy vs a1 for different θ, while the right one refers to the corresponding curves for different z. Both plots show a minimum located at
the neighbor of a1 ¼ 2.

z=1.4

z=1.5

z=1.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
30

20

10

0

10

20

30

a1

F

0

FIG. 3. The fourth-order free energy plotted as a function of a1
with a2 ¼ a2

1

2
for different z, but with fixed exponent θ ¼ 0.
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is not complete. In this subsection we fix the discrepancy by
considering the full fourth-order on-shell action, which
includes the following two contributions:
(a) the quadratic terms of the second-order ones like a, b,

at2, which have been calculated in the last subsection;
(b) the terms that are further backreacted by these back-

reactions a, b and at2. These terms refer to solving
higher-order differential equations for fields like

Ψ3ðr; x; yÞ and Að4Þμ ðr; x; yÞ in Eqs. (23) and (24).
The main task in this subsection is to calculate the

second contribution and to show that the lattice configu-
ration is equilateral triangular.
As the first step, let us rewrite the third-order fermion

field in (23) as Ψ3 ¼ Γ0ðCþΨð1Þ3 þ C−Ψ
ð2Þ
3 Þ, where C� is

given by (27). We find that in our following discussion we

do not need the explicit expression of Ψð2Þ3 . The Dirac

equation yields the equation of Ψð1Þ3 ,

�
∂2
r þ ∂2

x þ ∂2
y þ 2iqQmy∂x þ qQm − q2Q2

my2 −m2L2rθ−2

−mL

�
θ

2
− 1

�
r
θ
2
−2
�
Ψð1Þ3 ðr; x; yÞ ¼ iqð∂rat2ÞΨ1; ð80Þ

where we have assumed r is small in the rhs of the equation.
We can solve the above equation by assuming that

Ψð1Þ3 ¼ r3Δ−1

L3=2

P∞
k;m e

2πiðkþmÞx
b1 g3ðyÞ. This leads to

g003ðYÞ − g3ðY2 þ 1Þ ¼ Ωðθ; z; k; j; lÞe−1
2
Y2þ2πij

jb2 jy ð81Þ

where Y ¼ yþ 2πðkþmÞ
b1

and Ωðθ;z;k;j; lÞ¼ ffiffiffi
2
p

Δb2
1
i

π egðk;l;jÞ.
We therefore have the following approximate solution:

g3ðyÞ ¼ ð1þ ΩyÞe1
2
ðyþ2πðkþmÞ

b1
Þ2 :

Next one can compute the backreactions of Ψ3 to the
gauge field, the metric and the dilaton. Similar to

Eqs. (53)–(55), the backreacted metric, gauge field and
the dilaton at Oðϵ4Þ are given, respectively, by4

ds2 ¼ L2rθ
�
−
dt2

r2z
þ dr2

r2
þ dx2 þ dy2

r2

�

þ L2rβ½ðϵ2aðr; x; yÞ þ ϵ4σðr; x; yÞÞdtdx
þ ðϵ2bðr; x; yÞ þ ϵ4χðr; x; yÞÞdtdy�
þ L2ϵ4hðr; x; yÞdr2 ð82Þ

A ¼ Qmydxþ rα½ϵ2at2ðr; x; yÞ þ ϵ4at3ðr; x; yÞ�dt ð83Þ

=3

=3.5=3.9

0 1 2 3 4

0.6

0.4

0.2

0.0
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0.8
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z 3

z=3.1

z=2.7 z=2.9

0 1 2 3 4

0.5

0.0
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1.0

a1

F

3

FIG. 4. The fourth-order free energy plotted as a function of a1 with a2 ¼ a2
1

2
. The left plot corresponds to curves of full fourth-order

free energy vs a1 for different θ with fixed z ¼ 3, while the right one refers to the corresponding curves for different z with fixed θ ¼ 3.
Both plots show a minimum located in the neighborhood of a1 ≈ 2.69, which implies an equilateral triangular configuration.

4From (17) and (18), we have

�
eλϕF2

4

�
¼ 1

λ
ð∇μð∂μϕÞ þ V0γeγϕÞð4Þ; Rð4Þ ¼ −ðgμνGμνÞð4Þ

¼ −ðgμνTμνÞð4Þ

¼ −
�
V0eγϕ −

1

4
ð∂ϕÞ2 − i

4
gμνTDirac

μν

�ð4Þ
;

where TDirac
μν ¼ h ˆ̄ΨeaμΓaDνΨ̂i þ H:c: Substituting them into (1)

we get the fourth-order on-shell action from the fourth-order
backreactions:

Sð4Þon-shell ¼ −
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q ��
1

λ
−
1

4

�
ð∂ϕÞ2 − V0γeγϕ

þ i
4
gμνTDirac

μν

�ð4Þ
:

Notice that ðð∂ϕÞ2Þð4Þ ¼ ðgrrÞð4Þð∂rϕÞ2, and TDirac
μν only has

nonzero ðtxÞ and ðtyÞ components, and the only nontrivial
current in (16) is jt. It therefore suggests that at order ϵ4

we only need to consider the following backreactions:
gð4Þrr ðr;x;yÞ;gð4Þtx ðr;x;yÞ;gð4Þty ðr;x;yÞ;Að4Þt ðr;x;yÞ and ϕð4Þðr; x; yÞ.
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ϕðr; x; yÞ ¼ ϕ1ðrÞ þ ϵ2ϕ2ðr; x; yÞ þ ϵ4ϕ3ðr; x; yÞ: ð84Þ

Direct computation shows that the second contribution to
the fourth-order on-shell action is given by (the details can
be found in Appendix B)

~Sð4Þon-shell ¼
ð4 − λÞ½θ2 − 2zðθ − 2Þ − 4�N3

128λπL2ð8þ z − θÞð2N1θ þ N2Þ
r8þz−θ

×
X
k;j;p;q

Hðk; 0; j; p; qÞ; ð85Þ

where Niði ¼ 1; 2; 3Þ and Hðk; l; j; p; qÞ are given in
Appendix B.
Sum over ~Sð4Þon-shell and S

ð4Þ
on-shell in (74) gives rise to the full

fourth-order on-shell action. Based on this full on-shell
action we can obtain the full expression of the free energy.
Figure 4 is a plot of the full free energy as a function of a1 for
different parameters. The full free energy has a minimum
value for different z and θ as expected. Remarkably, all the
minima are located very close to a1 ≈ 2.69, which agrees
verywell with the value given in (79). The contour plot of the
free energy as a function of a1 and a2 is also in favor of this
statement as shown in Fig. 5. This strongly suggests an
equilateral triangular configurationof the holographic lattice.

VI. CONCLUSIONS

In this paper we have considered the spontaneous
formation of a fermionic crystalline geometry in bulk
geometry with Lifshitz scaling and/or hyperscaling viola-
tion. A fermionic vortex lattice solution sourced by the
lowest Landau level has been obtained. The main results of
this work are as follows:

(i) The same result as [44] has been obtained, that is,
different from the one in [43] where a lattice
structure induced by a charged scalar condensate
only corrects the background magnetic field; in our
case the backreaction of the fermionic lattice will
lead to an emergent electric field and an effective
charge density.

(ii) Contrary to the AdS2 × R2 case in [43] and [44], and
the hyperscaling violation case in [45], the free
energy in our case receives vanishing corrections at
the second order.

(iii) Influences of the scaling exponent and the hyper-
scaling violation exponent to the spontaneous for-
mation of the crystalline geometry are shown in
Fig. 1. It can be seen that larger z or lower θ has
deeper minima in the free energy.

(iv) Our calculation on the free energy shows that the
fermionic vortex strongly favors an equilateral
triangular configuration, regardless of the values
of z and θ.

One important point is that in this work we have only
considered the vortex solution sourced by the lowest
Landau level where the fermionic current can be reduced
to a classical one as shown in Eq. (A8). However, it is
possible to generalize our results to any Landau level where
the fermionic current cannot be treated classically and
should be replaced by (A5) and (A6). The corresponding
free energy becomes

F ∼ T2þ2−θ
z

X
n

½θð−λnÞ þ θð−λnÞ2ϵ4

× ðAnT
−1
z ð10þ2z−2θÞ þ BnT

−1
z ð12þ2z−2θÞÞ þ…�; ð86Þ

where An and Bn are some constants.
Further investigations and generalizations of this work

are possible. It is interesting to study the formation of the
crystalline geometries for spacetimes with a black brane
horizon. In addition, it is also possible to consider the
crystalline geometry in the framework of modified gravity,
such as the Hořava-Lifshitz (HL) gravity [53] proposed
recently by Hořava. Indeed, it was found that HL gravity is
a minimal holographic dual for the field with Lifshitz
scaling [54]. Our recent works [55–57] found that various
Lifshitz spacetimes are possible even without matter fields.
It is of particular interest to see how to construct the
crystalline geometry in this framework.
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FIG. 5. The contour plot of the fourth-order free energy as a
function of a1 and a2 for fixed z ¼ 3, θ ¼ 3. The minimum is
located around a1 ¼ 2.69 and a2 ¼ a21=2≃ 3.61 as expected.
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APPENDIX A: DOUBLE FOURIER SERIES

In this appendix we list several key procedures in doing
the double Fourier series. Firstly, we expand

Ψ̂†
1Ψ̂1 ∼

1

L3=2

X
l

e
−iπa2l

2

a2
1 e

2πil
j~b1 j

x
e−

1
2
ðyþ2πl

a1
Þ2

·
X
~k¼l−k

e
iπ

a2
~k2

a2
1 e

−2πi~k
j~b1 j

x
e−

1
2
ðyþ2π ~k

a1
Þ2

¼ 1

L3=2

X
k;l

e
−iπa2

a2
1

½l2−ðl−kÞ2�
e
2πik
j~b1 j

x
hðyÞ ðA1Þ

where hðyÞ can be described as
P

jhðjÞe
2πijy

j~b2 j in which

hðjÞ ¼ 1

j~b2j

Z
dyh

�
y

j~b2j
2π

a1

�
e
−2πijy

j~b2 j

¼ a1
2

ffiffiffi
π
p eAðk;l;jÞ; ðA2Þ

where

Aðk; l; jÞ ¼ −
π2k2

a21
− iπkj −

a21j
2

4
:

We therefore have

Ψ̂†
1Ψ̂1 ∼

1

L3=2

X
k;l;j

a1
2

ffiffiffi
π
p e

2πik
j~b1 j

x
e
2πij

j~b2 j
y
egðk;l;jÞ ≡X

k;l;j

Ψ†
k;l;jΨk;l;j

ðA3Þ

where

gðk; l; jÞ ¼ Aðk; l; jÞ − iπ
a2
a21
½l2 − ðl − kÞ2�

¼ −
π2k2

a21
− iπ

a2
a21
ð2l − kÞk − iπkj −

a21j
2

4
: ðA4Þ

According to [47], we have

hΨ̂†
1Ψ̂1i ¼ Δnn;k;l;j ¼ nn;k;l;jjQm

− nn;k;l;jjQm¼0 ¼ nn;k;l;j;

ðA5Þ

where

nn;k;l;j ¼
X
n;k;l;j

θð−λnÞΨ†
k;l;jΨk;l;j; ðA6Þ

and

θðxÞ ¼
�
0; x < 0;

1; x ≥ 0;
ðA7Þ

is the step function and λn is the Landau level. For the
lowest Landau level λ0 ¼ 0 we have

hΨ̂†
1Ψ̂1i ¼ Δnn;k;l;j ¼

X
n;k;l;j

Ψ†
k;l;jΨk;l;j ¼ Ψ̂†

1Ψ̂1: ðA8Þ

And we get that

hΨ̂1∂yΨ̂
†
1i − hΨ̂†

1∂yΨ̂1i ¼
2πð−lþ kþ lÞ

a1
hΨ̂†

1Ψ̂1i

¼ 2πk
a1
hΨ̂†

1Ψ̂1i; ðA9Þ

hΨ̂1∂xΨ̂
†
1i − hΨ̂†

1∂xΨ̂1i − 2iyhΨ̂†
1Ψ̂1i

¼
�
2πið−2lþ kÞ

a1
þ 4iπ

a1

��
l −

k
2

�
þ ia21j

4π

��
hΨ̂†

1Ψ̂1i

¼ −a1jhΨ̂†
1Ψ̂1i; ðA10Þ

∂xa ¼
2i
M
hΨ̂1∂2

xΨ̂
†
1i − hΨ̂†

1∂2
xΨ̂1i − 2iy½hΨ̂1∂xΨ̂

†
1i

þ hΨ̂†
1∂xΨ̂1i� ¼

2
ffiffiffi
π
p

k
M

ja1hΨ̂†
1Ψ̂1i; ðA11Þ

∂yb ¼
2i
M
hΨ̂1∂2

yΨ̂
†
1i − hΨ̂†

1∂2
yΨ̂1i

¼ 2
ffiffiffi
π
p

k
M
ð−ja1ÞhΨ̂†

1Ψ̂1i; ðA12Þ

∂ya ¼
2i
M
h∂yΨ̂1∂xΨ̂

†
1i þ hΨ̂1∂x∂yΨ̂

†
1i − h∂yΨ̂

†
1∂xΨ̂1i

− hΨ̂†
1∂x∂yΨ̂1i − 2ihΨ̂1Ψ̂

†
1i

− 2iy½hΨ̂1∂yΨ̂
†
1i − hΨ̂†

1∂yΨ̂1i�i

¼ −
2a21j

2

M
hΨ̂†

1Ψ̂1i; ðA13Þ

∂xb ¼
2i
M
h∂xΨ̂1∂yΨ̂

†
1i þ hΨ̂1∂x∂yΨ̂

†
1i − h∂xΨ̂

†
1∂yΨ̂1i

− hΨ̂†
1∂x∂yΨ̂1i ¼

8π2k2

a21M
hΨ̂†

1Ψ̂1i: ðA14Þ

APPENDIX B: FOURTH-ORDER
ON-SHELL ACTION

In this appendix we would like to derive the second
part of the fourth-order on-shell action. Let us substitute
the Ansatz (82)–(84) into the equations of motion and
the following differential equations are obtained (for
small r):

ðβ þ 2zþ 4Δ − 1 − θÞð∂xσ þ ∂yχÞ ¼ 0; ðB1Þ
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M2σ ¼ −2iL3½hΨ̂†
1∂xΨ̂

ð1Þ
3 i − hΨ̂ð1Þ3 ∂xΨ̂

†
1i

þ hΨ̂ð1Þ†3 ∂xΨ̂1i − hΨ̂1∂xΨ̂
ð1Þ†
3 i�; ðB2Þ

M2χ ¼ −2iL3½hΨ̂†
1∂yΨ̂

ð1Þ
3 i − hΨ̂ð1Þ3 ∂yΨ̂

†
1i

þ hΨ̂ð1Þ†3 ∂yΨ̂1i − hΨ̂1∂yΨ̂
ð1Þ†
3 i�; ðB3Þ

Q2at3 þ
1

2
ð∂xχ − ∂yσÞ ¼ 2L4hΨ̂†

1Ψ̂
ð1Þ
3 i; ðB4Þ

r2∂2
rϕ3 þ rðθ þ z − 1Þ∂rϕ3 þ

�
V0γ

2L2 −
λγ

2L2

�
ϕ3 ¼ 0;

ðB5Þ

rN1∂rhþ N2h ¼ r2θN3ða2 þ b2Þ; ðB6Þ

where

M2 ¼ 4L2½ð4Δ − 1Þð4Δþ 2β þ z − θ − 1Þ
þ ðzβ − θβ þ β2 þ zθ − θ2=2þ 4θ − 2z2 − 6Þ�

þ 2L4V0 −
L2θ2

λ2
− 1; ðB7Þ

Q2 ¼ ð4Δ − 1Þð4Δþ 2αþ zþ θ − 7Þ þ αðαþ zþ θ − 6Þ;
ðB8Þ

N1 ¼ 4ðθ − 2Þ; ðB9Þ

N2 ¼ 8 − 2θ2 þ 2L2V0 −
1

2
V0 þ

�
θ − 4

2λL

�
2

þ Q2
m

2L4
;

ðB10Þ

N3 ¼ 2Δð3θ − 5β − 2z − 2 − 5ΔÞ

þ
�
2z2 þ 3βθ −

5

2
β2 −

1

2
θ2 − 2βz

− 2β − 2z − 2 −
Q2

m

4L2

�
: ðB11Þ

Following what we have done before, we perform a
double Fourier series:

fiðr; x; yÞ ¼
r4Δ−1

L3=2

×
X

k;l;j;m;n

e
2πiðkþm−lÞx

b1 e
2πiðjþn−kÞy

b2

× eg2ðk;l;j;m;nÞ ~fiðk; l; j; m; nÞ; ðB12Þ

where fi ¼ σ; χ; at3 and

g2ðk; j; l; m; nÞ ¼ −iπ
a2
a21

l2 −
4π2

a21
ðkþm − lÞ2

−
a21
4
ðjþ n − kÞ2

þ iπðkþmþ lÞðjþ n − kÞ: ðB13Þ

Meanwhile, we have the Fourier series for the source

hΨ̂†
1Ψ̂
ð1Þ
3 i for the lowest Landau level

hΨ̂†
1Ψ̂
ð1Þ
3 i ¼

X
k;l;j;m;n

�
b1
2

ffiffiffi
π
p −

ffiffiffi
π
p

Ωðθ; z; k; j; lÞ

×

�
1

2
ðkþmþ lÞ þ ib21

4π
ðjþ n − kÞ

��
·

× eg2ðk;l;j;m;nÞe
2πiðkþm−lÞ

b1
xe

2πiðjþn−kÞ
b2

y: ðB14Þ

The leading contribution of the Fourier series corre-
sponds to l ¼ 0 which implies from (B1) that m ¼ −k,
m ¼ nþ j. We therefore have

~σ ¼ ~χ ¼ ϕ3 ¼ 0;

~at3 ¼
Lb1ffiffiffi
π
p

Q2

; ðB15Þ

hðr; x; yÞ ¼ r4Δþ2θN3

2N1θ þ N2

×
X
k;j;p;q

Hðk; 0; j; p; qÞ; ðB16Þ

where

Hðk; l; j; p; qÞ≡
�
jqa41
π
þ 4πkp

�

×
1

L3M2
e
2πiðkþpÞ

a1
xe

2πiðjþqÞ
b2

y

× egðk;l;jÞþgðp;l;qÞ: ðB17Þ

The second contribution to the fourth-order on-shell action
is therefore given by

~Sð4Þon-shell ¼
ð4 − λÞ½θ2 − 2zðθ − 2Þ − 4�N3

128λπL2ð8þ z − θÞð2N1θ þ N2Þ
r8þz−θ

×
X
k;j;p;q

Hðk; 0; j; p; qÞ: ðB18Þ
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