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We propose an open/closed string duality in general backgrounds extending previous ideas about open
string completeness by Ashoke Sen. Our proposal sets up a general version of holography that works in
gravity as a tomographic principle. We argue, in particular, that previous expectations of a supergravity/
Dirac-Born-Infeld (DBI) correspondence are naturally embedded in this conjecture and can be tested in a
well-defined manner. As an example, we consider the correspondence between open string field theories on
extremal D-brane setups in flat space in the large-N, large ’t Hooft limit, and asymptotically flat solutions in
ten-dimensional type II supergravity. We focus on a convenient long-wavelength regime, where specific
effects of higher-spin open string modes can be traced explicitly in the dual supergravity computation. For
instance, in this regime we show how the full Abelian DBI action arises from supergravity as a
straightforward reformulation of relativistic hydrodynamics. In the example of a (2þ 1)-dimensional open
string theory this reformulation involves an Abelian Hodge duality. We also point out how different
deformations of the DBI action, related to higher-derivative corrections and non-Abelian effects, can arise
in this context as deformations in corresponding relativistic hydrodynamics.
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I. INTRODUCTION

The primary goal of this paper is to flesh out the
possibility of a general holographic connection between
open and closed strings in generic backgrounds (including
flat space). We will formulate an open/closed string duality
based on the conjecture that open string theories are self-
consistent quantummechanical systems without the need to
include explicitly couplings to closed strings. The idea of
open string completeness has appeared previously in work
by Sen in the context of unstable D-branes [1,2], and is
closely related to previous observations in studies of open
string field theory. We will review Sen’s proposal in Sec. II.
In the context of large-N type II open string theories in

flat space we postulate a conjecture that opens the road to
an extension of standard examples of the AdS/CFT
correspondence beyond the low-energy/near-horizon limit.
We emphasize that this extension is conceptually distinct
from previous attempts to formulate holography in flat
space by seeking the rules of a suitable holographic
dictionary on an asymptotic boundary (see e.g. attempts
[3–6] based on the Bondi-Metzner-Sachs (BMS) group
[7,8], or other attempts like [9,11]).
Similar ideas based on open/closed string duality have

been proposed by several authors in the past in the context
of the AdS/CFT correspondence and extensions of the
correspondence beyond anti–de Sitter (AdS). A character-
istic (but not exhaustive) sample of previous works that are
closely related to our proposal include [10,12–21]. We
propose that Sen’s completeness conjecture helps stream-
line and extend certain aspects of previous discussions.
Testing a duality between open and closed strings in

critical higher-dimensional spacetimes is admittedly a

complicated task. We will attempt to uncover favorable
evidence for a precise dictionary in a convenient long-
wavelength regime in the large-N, large ’t Hooft limit in a
special subsector of the full dynamics (related to Abelian
singleton dynamics). Unlike the low-energy/near-horizon
limit, in the long-wavelength regime of interest it will be
possible to keep explicitly effects from the whole open
string tower on the open string side. At the same time, the
standard large-N, large ’t Hooft limit facilitates a tractable
description on the closed string side in terms of classical
supergravity.
We can summarize the main elements of the evidence we

provide in the following way. Taking the traditional path of
the 1990s that led to the AdS/CFT correspondence, we
consider the properties of extremal (multicharge) p-brane
solutions in supergravity. In a specific derivative expansion
scheme of the gravitational equations of motion we argue
that the study of the long-wavelength perturbations of
p-brane solutions leads naturally to an effective (pþ 1)-
dimensional screen outside the near-horizon region where
an Abelian effective action can be formulated. Following
previous discussions in the context of the blackfold
formalism [22,23] we postulate that there is a one-to-one
correspondence between the solutions of the equations of
motion of this effective action and a certain class of regular
solutions of the full-fledged gravitational equations. For
extremal solutions in flat space we prove that the action on
the gravitational effective screen is identical to the Abelian
Dirac-Born-Infeld (DBI) action. We argue that the latter is
the Abelian part of the Wilsonian effective action of the
holographically dual large-N open string theory making a
precise connection between gravity and open strings. We
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discuss how non-Abelian effects are incorporated into this
picture.
Our general conjecture for a duality between open and

closed strings is formulated in Sec. III. In the same section
we describe some of the anticipated features of the
Wilsonian effective action of open strings, the specifics
of the long-wavelength expansions of interest and the
implementation of these expansions on the gravitational
side. Our main task in this section is to collect and organize
the accumulating observations over the years into a
coherent story under a single framework. For many of
the underlying technical details of the topics that enter this
subject we direct the reader to the appropriate references.
One of the main technical tasks of this paper is to verify

that the Abelian theory on the gravitational effective screen
coincides with the one expected on the open string side. In
complete analogy to the fluid-gravity correspondence in
AdS/CFT [24], we find that the effective theory that
emerges naturally in gravity is formulated in the form of
relativistic hydrodynamics. Consequently, open/closed
string duality in this context requires a connection between
relativistic hydrodynamics and open string effective
actions. At zero temperature and finite chemical potential,
we show that there is indeed such a direct connection
involving the DBI action. Specifically, in Sec. VII we
recover the Abelian DBI action from an (anisotropic)
hydrodynamic theory of fluids on dynamic elastic hyper-
surfaces. Sections IV, V and VI prepare the connection
between hydrodynamics and gauge theory from a purely
hydrodynamic point of view (that as far as we know
is novel).
The emergence of the Abelian DBI theory in the context

of extremal p-brane solutions in supergravity has a long
history and its relation to a putative open/closed string
duality has been widely anticipated. Sometimes this rela-
tion is referred to in the literature as the supergravity/DBI
correspondence. From this perspective two of the main new
contributions in this paper are the following.

(i) We propose that the supergravity/DBI correspon-
dence can be made into an algorithmic map within
the general formalism of blackfolds in supergravity
(extending the proposal of our recent work [25]). In
the present paper we provide an important part of
this map: the explicit relation between the fluid
dynamical variables of the gravitational long-wave-
length description and the gauge-theoretic degrees of
freedom of the open string description, and the
precise relation between the equations of motion
that both degrees of freedom obey at extremality. To
the best of our knowledge, the details of this relation
have not been exhibited before. In fact, the key role
that long-wavelength expansions in supergravity
play in this connection has not been appre-
ciated. Previous investigations have focused, almost
unanimously, on exact (mostly supersymmetric)

supergravity solutions, where the connection with
Abelian DBI (see Refs. [26–28] for some examples)
and DBI-related structures (e.g. calibrations [29])
has been noticed more on the level of observation
and less on the level of a systematic exploration.

As we pointed out in [25] there is a related old
approach (first applied to string theory in [30]) that
identifies the Abelian part of the brane degrees of
freedom in supergravity as collective coordinates
associated with large gauge transformations (for a
review see [31]). A notable improvement of the
blackfold approach is that it encodes rather easily the
full nonlinear nature of the DBI action, which is hard
to achieve with the techniques of [30].

(ii) The AdS/CFT correspondence is embedded natu-
rally in the big picture that we postulate by taking the
standard low-energy/near-horizon limit of Malda-
cena [32]. Several authors in the past have pointed
out the importance of the singleton degrees of
freedom for physics outside the near-horizon throat.
We reemphasize the key role played by singleton
degrees of freedom and point out that the Abelian
effective actions that we discuss are singleton
effective actions embedded naturally within the full
non-Abelian Wilsonian effective action of a dual
open string theory. The discussion at this point is
closely related to the pre-AdS/CFT considerations of
Ref. [33]. We sketch how non-Abelian effects can
be incorporated into the singleton descriptions by
integrating out interactions between Abelian and
non-Abelian degrees of freedom.

Finally, the emergence of hydrodynamics in the above
story is interesting for independent reasons. For example,
there has been renewed interest in recent investigations, e.g.
[34–36], in potential reformulations of fluid dynamics in
terms of a Lagrangian variational principle. Our results
provide an explicit illustration of an extremal hydrody-
namic system where the passage to an action principle is
facilitated by a convenient change of variables to a new set
of degrees of freedom. The latter are clearly the degrees of
freedom favored in the Wilsonian effective description of
the underlying (open string) microscopics.
The interplay between hydrodynamics and open string

theory holds the promise of interesting lessons about both
frameworks. For example, from the gravitationally derived
hydrodynamics we learn about various deformations of the
Abelian DBI action induced by large-N non-Abelian
effects. Moreover, the exact gravitational solutions provide
an efficient resummation of all the DBI higher-derivative
corrections. Conversely, by studying higher-derivative
corrections of the DBI action in open string theory we
can make predictions using open/closed string duality
about higher-derivative corrections of hydrodynamics that
have not yet been computed in supergravity. A preliminary
study of this aspect appears in Sec. VIII.
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II. SEN’S OPEN STRING COMPLETENESS
REVISITED

Before we go into the specifics of our proposal, let us
briefly recall a closely related circle of ideas about open/
closed string duality put forward by Sen in Ref. [1] in the
context of unstable D-branes in string theory.
Unstable D-branes exhibit a rapid time-dependent decay

into closed strings [37–39]. During this process closed
strings with typical energies of order 1=gs are copiously
produced until the end of the process where the D-brane
(and the open strings on it) completely disappear. Yet, it
was observed at tree level (in the limit where gs → 0) that
the open string description of this process in terms of a
rolling tachyon manages to reproduce correctly many of the
features of this process at all times without the need to
include explicit open/closed string couplings. A review of
this evidence can be found in [2]. This led Sen to conjecture
in Ref. [1] that there is a quantum open string field theory
(OSFT) that describes the full dynamics of the unstable
D-brane without an explicit coupling to closed strings.
This statement is consistent with independent studies of

open string field theory demonstrating formally that the
perturbative expansion of OSFT around the maximum of
the tachyon potential is complete [40–42], and that open
string amplitudes have the correct poles associated with
intermediate closed string states [43–45] (see also [46–48]).
The validity of the above conjecture was further tested
by Sen in the context of unstable D0-branes in two-
dimensional noncritical string theory using the correspon-
dence with double-scaled matrix models.
The assumption that theOSFTon aD-brane setup is a self-

consistent quantum mechanical system implies that OSFT
contains complete information about the closed strings
produced by the D-brane, and therefore suggests that states
in closed string theory can be described holographically in a
nongravitational language. This does not imply that a given
OSFT can describe any closed string state. It can only
describe those states produced by the decaying D-brane.
This introduces an interesting way to think about closed
string theory and gravitational dynamics, where we split
closed string solutions into separate, quantummechanically
self-consistent, superselection sectors. In this manner, Sen’s
open/closed string duality works as tomography, where
differentOSFTs slice through different subsectors of thevast
configuration space of gravity and closed strings.
There are several apparent differences between this

version of open/closed string duality and the more familiar
gauge/gravity dualities in the AdS/CFT correspondence.
For instance, in the example of Sen there is no large-N
limit, and closed strings are produced via a time-dependent
process. The correspondence is expected to work even for a
single unstable D-brane with an Abelian OSFT. Instead, in
the large-N limit of standard AdS/CFT examples closed
strings are produced by heavy, typically static and stable,
D-brane configurations. Finally, in AdS/CFT there is a

clear holographic screen (boundary) where the dual non-
gravitational theory is naturally envisioned. No such screen
is visible in Sen’s proposal.
In the next section, we conjecture a general framework

based on Sen’s ideas that attempts to bridge the gap
between these apparent disparities.

III. OPEN/CLOSED STRING DUALITY AND FLAT
SPACE HOLOGRAPHY AS A SPECIAL CASE

A universally expected feature of any type of duality
between two theories, A and B (including holographic dual-
ities), is an equality between their respective effective actions,

SA½ΦA;J A� ¼ SB½ΦB;J B�; ð1Þ

under a specific map between the collection of vacuum
expectation values ΦA and ΦB that label the vacuum state
on both sides and the generic sources J A and J B that
represent deformations of the two theories. In quantum
mechanical systems with standard Lagrangian formulations
the (Wilsonian) effective action is defined formally by a path
integral over field configurations ϕ of the form

S ¼ − logZ ¼ − log

�Z
½dϕ�e−

R
L½ϕ�
�
: ð2Þ

For example, in the supergravity regime of the standard
AdS/CFT correspondence theory A is a large-N quantum
gauge theory, and theory B is a classical supergravity
theory in asymptotically AdS spacetimes. The quantities
ΦA are vacuum expectation values (vev’s) of gauge-
invariant operators OA, i.e. ΦA ¼ hOAi, and J A’s are
external sources for the same operators. The quantities ΦB
label the classical profiles of the supergravity fields in
gravitational solutions with specified asymptotics J B. The
standard holographic dictionary in AdS/CFT explains how
one translates the pairs ðΦA;J AÞ to the pairs ðΦB;J BÞ.

A. The proposed conjecture

We would like to conjecture a more general holographic
duality with the following ingredients. Theory A is a (non-
Abelian) open string field theory on a stack of D-branes
embedded in a specified closed string background Ψ.1

Theory B is a closed string field theory2 that has Ψ as a

1The specification of a closed string background in the form of
a given two-dimensional world sheet conformal field theory is a
standard basic ingredient in all known formulations of open string
field theory including Witten’s cubic open string field theory [49]
and subsequent extensions.

2A workable formulation of closed string field theory is a
notoriously hard technical problem, see [50] for a review of early
attempts. Here, we refer to closed string field theory as a putative
quantum mechanically consistent framework for closed strings,
which we assume to exist beyond the standard first-quantized
perturbative formulations.
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vacuum state and theoryA as one of its allowed open string
sectors. We add the following requirement: the D-brane
configuration should guarantee the existence of an asymp-
totic region where the D-brane backreaction on closed
strings is negligible and the closed string fields asymptote
to Ψ. In general, this requirement puts constraints on the
codimension of the D-brane configuration, and introduces
two standard features of holography: a holographic radial
direction, and an asymptotic region that does not change
under normalizable deformations.
In this context ΦA’s are gauge-invariant vev’s of open

string fields and J A’s are the open/closed string couplings
induced by placing the open string theory on the back-
ground Ψ. On the other hand, ΦB’s label the profiles of
closed string field vev’s in states with asymptotics defined
by Ψ, and J B coincides with the asymptotic closed string
state Ψ.
As a concrete example, let us consider the open string

theory that resides on a D-brane setup in flat space in
perturbative ten-dimensional type II string theory (e.g. open
string theory on a stack of D3-branes in flat space). In open/
closed string theory we can compute bulk-boundary cou-
plings by evaluating the two-point functions of one open
string going to one closed string. From the world sheet
point of view, at leading order in gs, this involves the disk
two-point function hVopenVclosedidisk, where Vopen is a vertex
operator inserted at the boundary of the disk and Vclosed is a
vertex operator inserted at the center of the disk. Hence,
in a small deformation of flat space with nonvanishing
profile J B of the closed string fields these couplings
dictate uniquely how open string fields are sourced, i.e.
they determine the external couplings that we called
collectively J A.
Consequently, given a collection J B we can, in princi-

ple, compute independently two separate quantities: (i) the
quantum effective action SA of the open string theory
(without explicit coupling to closed strings) in the presence
of the sources J A (deduced from the profile of J B), in an
open string vacuum labeled by ΦA, and (ii) the quantum
effective action SB of closed string theory (without any
coupling to open strings) in a vacuum where the closed
string fields asymptote to J B. We conjecture that there is a
one-to-one map between the open and closed string vacua
in points (i) and (ii) such that SA and SB are identical.
In the following subsections we will explore the validity

of the above conjecture in a technically convenient large-N,
long-wavelength regime, where the description on the
closed string side reduces to standard classical supergravity,
but the open string side is stringy and we can keep track of
explicit open string effects at all orders in α0.

B. Quantum open string effective actions

On the open string side we consider the Wilsonian
effective action S ≡ SA½ΦA;J A� of a non-Abelian open
string theory on a stack of D-branes. For concreteness and

simplicity of the presentation we will concentrate on the
special case of N coincident Dp-branes ðp < 6Þ in flat
space in perturbative ten-dimensional type II string theory.
The dynamics of open strings in such setups is described by
a non-Abelian open string field theory where the open
string fields are fields in the adjoint representation ofUðNÞ.
At low energies this theory reduces to a UðNÞ super-
symmetric gauge theory. Besides the rank of the gauge
group N, the other free parameter that characterizes the
open string theory in this setup is the string coupling gs,
which is part of the sources J A (determined by the closed
string background).
For reasons that are clear already in standard AdS/CFT

discussions (and will be repeated in the next subsection)
it is convenient to consider the large-N ’t Hooft limit
where N ≫ 1, gs ≪ 1 and λ ¼ gsN is a fixed tunable
parameter.
The UðNÞ open string field theory on the D-branes is a

complicated quantum mechanical system with an infinite
tower of interacting open string modes. The Wilsonian
effective action in a generic open string vacuum is
computed formally from a complicated path integral in
string field theory of the general abstract form (2). In a
weak ’t Hooft coupling expansion (valid when λ ≪ 1) this
action, which is a function of the open string field vev’sΦA,
is expressed by a series of the form

S½ΦA; λ; N� ¼
X∞
n¼0

λ−1þnSn½ΦA;N�

¼
X∞

g¼0;h¼1

Nhg2g−2þh
s Sg;h½ΦA�

¼
X∞

g¼0;h¼1

N2−2gλ2g−2þhSg;h½ΦA�: ð3Þ

From the world sheet point of view Sg;h½ΦA;N� is an off-
shell partition function on a Riemann surface with g
handles and h holes [51]. At low energies the corrections
in this expansion arise from perturbative loop diagrams in
quantum gauge theory. Nonplanar diagrams contribute
terms with subleading 1=N dependence in the large-
N limit.
In the opposite regime, at strong ’t Hooft coupling, we

expect that the more appropriate description of the effective
action is not in terms of the “elementary” open string vev’s
ΦA, but in terms of vev’s of gauge-invariant composites,
let us call them ~ΦA. Accordingly, we expect a different
expansion in inverse powers of λ of the form

S½ ~ΦA; λ; N� ¼
X∞
n¼0

λα−n ~Sn½ ~ΦA;N�; ð4Þ

where α is an appropriate constant. Soon we will suggest
that the value of α is −1.
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In an effort to be more concrete about the evaluation of
these expansions, let us concentrate for starters on the first
term, S0, of the weak coupling expansion. This term is
essentially classical, and as we mentioned, it can be
computed in string perturbation theory from the disk
partition function ðg ¼ 0; h ¼ 1Þ. Although the exact gen-
eral result of this computation is not known, in the past it
has been extremely useful to think about S0 in a long-
wavelength expansion of the vev’s ΦA around a suitably
symmetric vacuum.
In this approach an open string vacuum is characterized

by the vev’s of the low-lying massless open string fields,
which include among other things the non-Abelian gauge
field Aa and transverse scalars X⊥. The indices a ¼
0; 1;…; p are D-brane worldvolume indices and ⊥ sum-
marizes collectively the background spacetime indices
perpendicular to the brane. The massive open string modes
are integrated out and their quantum effects are incorpo-
rated in higher-order interactions between the massless
fields.
The vacuum around which the long-wavelength

expansion is set up must be an exact open string
vacuum. In the Abelian case it is known that the vacua
with arbitrary constant transverse velocities ∂aX⊥ and
constant gauge field strength Fab are such vacua. The
long-wavelength expansion is an expansion in deriva-
tives of these quantities3

S0½Aa; X⊥;N� ¼ S0½Fab; ∂aX⊥� þ Shigher−order½∂nF; ∂mX�:
ð5Þ

The leading term S0 on the rhs is exactly on the field
strength F and the velocities ∂X⊥ at all orders in α0 and
Shigher−order is a perturbative expansion in higher deriv-
atives of F and ∂X⊥. A well-defined computation in
open string theory determines S0 as the Abelian DBI
action (see [52] for a review and a list of original
references)

SDBI ¼ T p

Z
dpþ1x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðημν∂aXμ∂bXν þ 2πα0FabÞ

q
;

ð6Þ

where T p ¼ 1

gs
ffiffiffi
α0

p 1

ð2π
ffiffiffi
α0

p
Þp is the Dp-brane tension, and

μ; ν ¼ 0; 1;…; 9 are indices for the flat spacetime back-
ground with Minkowski metric ημν.
The non-Abelian case is richer and comparatively less

understood. It is natural to look for a non-Abelian extension
of the above expansion as an expansion in small gauge-
covariant derivatives,Da, of the velocitiesDaX⊥ and gauge
field strength Fab:

S0½Aa; X⊥;N� ¼ S0½Fab;DaX⊥� þ Shigher−order½DnF;DmX�:
ð7Þ

However, it is already apparent from the identity

½Da;Db�Fcd ¼ ½Fab; Fcd� ð8Þ

that the leading term S0 is now ambiguous. Moreover,
because of (8) an expansion in small covariant deriv-
atives will be also an expansion around commuting
field strengths. Isolating the symmetric covariant deriv-
atives in Shigher−order and using (8) S0 comprises two
pieces—one with F commutators and one without.4

Reference [53] proposed that the part of S0 without
F commutators is a non-Abelian version of the DBI
action (6) with a symmetric trace prescription. For a
nice summary of the problems and progress on the
non-Abelian DBI action we refer the reader to [54].
Despite the above-mentioned technical difficulties, there

are a few robust features expected from the putative non-
Abelian S0, for gauge group UðNÞ, that are useful to
highlight for later purposes.
When expanded in a series of powers in F and

DX⊥, the leading term in S0 is quadratic. In the
quadratic interactions the vector Uð1Þ and SUðNÞ parts
completely decouple. The SUðNÞ part includes the
(pþ 1)-dimensional non-Abelian super-Yang-Mills
action. At higher orders in this power series the Uð1Þ
and SUðNÞ degrees of freedom are coupled by higher-
dimension interactions. From this point of view we can
write S0 schematically as a sum of three terms,

S0 ¼ S0;Uð1Þ½Φ� þ S0;SUðNÞ½Φ� þ S0;mixed½Φ;Φ�; ð9Þ

where we have denoted compactly the Abelian degrees
of freedom by (a normal font) Φ and their non-Abelian
counterparts by (a bold font) Φ. Setting Φ ¼ 0 [by
which we mean explicitly F ¼ 0, DX⊥ ¼ 0 for the
SUðNÞ vev’s] we deduce that S0;Uð1Þ is simply N times
the Abelian DBI action (6):

S0;Uð1Þ ¼ NSabelianDBI: ð10Þ

S0;mixed involves interactions at cubic and higher order
between Φ and Φ.
Varying separately with respect to Φ andΦ to determine

the Abelian and non-Abelian vacuum expectation values,
we find two coupled sets of equations,

3S0 also includes terms for the action of the superpartner
fermions that will be kept implicit in the following discussion.

4Terms that involve the covariant velocities DaX⊥ can be
decided by T-duality from the ten-dimensional open string
effective action.
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δS0;Uð1Þ
δΦ

½Φ� þ δS0;mixed

δΦ
½Φ;Φ� ¼ 0;

δS0;SUðNÞ
δΦ

½Φ� þ δS0;mixed

δΦ
½Φ;Φ� ¼ 0; ð11Þ

where δ denotes the standard Euler-Lagrange variation.
Since terms in S0;mixed have to be at least quadratic in the
non-Abelian fields, setting Φ ¼ 0 is a consistent Ansatz
that satisfies automatically the second equation in (11) and
leaves

δS0;Uð1Þ
δΦ

½Φ� ¼ 0 ð12Þ

from the first equation.
Notice the following important property. In a state

with a nontrivial Abelian part that solves (12), the higher-
dimension interactions in S0;mixed are not infrared irrelevant.
In other words, around a nontrivial Abelian vacuum the
non-Abelian dynamics does not implicate only terms from
S0;SUðNÞ but also terms from S0;mixed.
We postulate that the structure (9) applies to the full

effective action S, not just the classical contribution S0. For
example, in the regime of strong ’t Hooft coupling the vev’s
of gauge-invariant operators are separated naturally into
vev’s of the Abelian fields ~Φ, and vev’s of the non-Abelian
fields ~Φ. We expect that it is possible to express the
equations of motion of the strong coupling effective action
(4) in a form analogous to (11), and that the trivial non-
Abelian vev’sΦ ¼ 0, or ~Φ ¼ 0, are a consistent Ansatz for
the full effective action S. We will refer to the vacua with
trivial non-Abelian vev’s as the origin of the Coulomb
branch of the open string field theory.

1. Main aim of the paper

We focus first and foremost on the dynamics of the
Abelian part of the effective action S at the origin of the
Coulomb branch in the long-wavelength approximation,
and compare descriptions of this sector at weak and strong
’t Hooft coupling.
The first thing to notice about the Abelian sector in the

long-wavelength approximation is that the Abelian vev’s
of F and ∂X⊥ are automatically gauge invariant. Hence,
there is potential for a direct relation between the weak
coupling description of these degrees of freedom and their
corresponding strong coupling description.
Restricting our attention to the origin of the Coulomb

branch (Φ ¼ 0), the small ’t Hooft coupling expansion (3)
becomes an expansion in terms of the Abelian vev’s Φ.
Naively the effective action receives corrections from world
sheets with an arbitrary number of handles and holes [each
one being of the order OðNhg2g−2þh

s Þ]. Nevertheless, we
will soon find from a direct supergravity analysis valid at
the strong ’t Hooft coupling limit that at leading order in the

long-wavelength derivative expansion the leading term in
the 1=N expansion of (4) is identical to the leading term in
the 1=N expansion of the weak coupling series (3), namely

S0jleading 1=N;leading derivative;Uð1Þ

¼ ~S0jleading 1=N;leading derivative;Uð1Þ: ð13Þ

This observation suggests the possibility of an even
stronger relation valid at all orders of the derivative
expansion

S0jleading 1=N;Uð1Þ ¼ ~S0jleading 1=N;Uð1Þ: ð14Þ

This equation implies a nonrenormalization theorem of the
open string effective action at the origin of the Coulomb
branch, where the corrections from world sheets with more
than one hole ðh > 1Þ are vanishing and the action
(expressed in terms of N and gs) has a trivial linear
dependence on N at all values of λ. Moreover, (13) [or
the stronger (14)] suggest that the value of the constant α in
(4) is −1.
Currently, we are not aware of a conclusive proof of this

nonrenormalization theorem. For the purposes of Eq. (14) it
would be sufficient to have a proof of the cancellation of the
open string corrections coming from world sheets with
h > 1 at zero genus, g ¼ 0. Although such a cancellation
may sound plausible in supersymmetric configurations
notice that we observe (13) for any extremal configuration
irrespective of supersymmetry. Assuming the existence of
such a nonrenormalization theorem, the derivation of (14)
from supergravity would constitute a direct test of the open/
closed string duality formulated in the beginning of this
section.
We note that Eq. (13) is an integral part of the long-

anticipated correspondence between solutions of the DBI
action and extremal supergravity configurations, which was
observed experimentally in many examples in the past. In
what follows, we describe a framework where such a
correspondence can be formulated in a more organized
manner.

C. Closed strings: Long-wavelength expansions
and effective actions in supergravity

Having discussed some of the features on the open string
side of the putative open/closed string duality of Sec. III A
we now pass to a corresponding discussion on the closed
string side. We continue to focus on the leading order in the
large-N, large ’t Hooft coupling limit, where standard
arguments in the context of the AdS/CFT correspondence
show that the low-energy effective field theory description
of closed string field theory, SB, is the ten-dimensional
supergravity action.
The trivial vacua of the open string theory on a stack of

N ≫ 1Dp-branes that we want to consider (as zeroth-order
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configurations in subsequent long-wavelength derivative
expansions) are captured holographically on the super-
gravity side by extremal p-brane solutions with translation
invariance in the worldvolume directions. To incorporate
more features, these solutions may also involve homo-
geneous fluxes sourced by lower-dimensional branes
smeared along the p-brane worldvolume, e.g. the p-brane
solution may be an F1-Dp bound state (corresponding to a
planar stack of Dp-branes with a constant worldvolume
Abelian electric field turned on), or a more complicated

multicharge bound state. Let us call this solution Φð0Þ
B . In

this case the metric and all other supergravity fields depend
nontrivially only on the radial coordinate r. Specific
examples will be discussed below. In what follows we
want to consider configurations away from the trivial
homogeneous vacuum, and to explore if these have a
chance to map holographically to solutions of the open
string field theory according to the conjecture of Sec. III A.
As we mentioned near the end of the previous sub-

section, our primary goal is to compare the open string
effective action SA in the long-wavelength expansion to the
closed string (supergravity) effective action SB in a
corresponding expansion. Hence, on the supergravity side
it is natural to look for extremal inhomogeneous p-brane
configurations of the form

ΦB ¼ ΦBðxμÞ; ð15Þ
expanded in small derivatives with respect to the p-brane
worldvolume coordinates σa (a ¼ 0; 1;…; p),

ΦB ¼ Φð0Þ
B ðrÞ þ εΦð1Þ

B ðr; σaÞ þ ε2Φð2Þ
B ðr; σaÞ þ � � � : ð16Þ

The dummy variable ε keeps track of the number of
worldvolume derivatives ∂a. This expansion is inserted
into the partial differential equations (PDEs) of super-
gravity which are solved perturbatively order by order.
Our open/closed string conjecture states that there is a

unique on-shell map between the open string vev’s ~ΦA and
the closed string (supergravity) vev’s ΦB. Under this map
the on-shell value of the open string effective action (4) (at
leading order in the 1=N and 1=λ expansion, which is the
regime of interest here) should equal the on-shell value of
the supergravity action SB at all orders in the long-wave-
length derivative expansion.
We discussed why Abelian deformations at the origin of

the Coulomb branch is a computationally opportune con-
text. What is the corresponding description of this sector on
the supergravity side?

The zeroth-order supergravity profile Φð0Þ
B , which cor-

responds to an open string vacuum at the origin of the
Coulomb branch, is labeled by a set of constants that
parametrize the asymptotic charges, e.g. mass, angular
momentum, brane charges. These parameters, and other
parameters associated with the breaking of the global

symmetries of the asymptotic background by the p-brane
solution, can be viewed as collective coordinates of the
supergravity solution. A restricted class of supergravity

solutions can be constructed perturbatively aroundΦð0Þ
B with

a supergravity Ansatz that promotes the collective coordi-
nates into slowly varying functions of the worldvolume
coordinates. This is a special case of the general expansion
(16). It was argued long ago [33] (and also more recently in
[25]) that the above collective modes are the supergravity
manifestation of the massless Uð1Þvector degrees of freedom
of the dual open string theory. Consequently, we propose
that the supergravity deformations within this sector are the
holographic duals of the open string configurations with
vanishing non-Abelian vev’s.
A systematic development of long-wavelength expan-

sions of the type we have just described in general (super)
gravity theories has been initiated in recent years in the
context of the blackfold formalism starting with
Refs. [22,23]. We refer the reader to the existing literature
for a more detailed technical exposition of current results in
this (still developing) framework. Here it will be useful to
highlight some of the key conceptual features of the
formalism that play a role in our general discussion.
(a) (Super)gravity expansions.—Perturbative supergravity

solutions in the blackfold approach are constructed
using the method of matched asymptotic expansions
(MAEs) (see [55] for an instructive application of
MAEs to caged black holes). An exact zeroth-order p-
brane solution is perturbed in a near-zone region
(r ≪ R, where R is the typical scale of the long-
wavelength perturbation) by promoting the collective
modes to slowly varying functions of the worldvolume
coordinates. At the same time the supergravity fields
are corrected appropriately to achieve a perturbative
solution of the full set of supergravity equations of
motion. The Ansatz in this region is performed in a
very similar way conceptually to analogous construc-
tions for AdS black branes in the fluid-gravity corre-
spondence in AdS/CFT [24]. Simultaneously, an
independent computation is performed in a Newtonian
approximation far from the horizon in the far-zone
region (r ≫ rH, where rH is the typical near-horizon
radius of the p-brane solution; for extremal p-brane
solutions this is the charge radius that appears explic-
itly in Sec. VII). A matched asymptotic expansion is
performed order by order by matching the near-zone
and far-zone solutions in the large overlap region
rH ≪ r ≪ R, whose existence is the basis of the long-
wavelength expansion.

(b) Collective mode equations.—During this process
one discovers that a part of the supergravity equat-
ions (constraint equations in the near-zone
analysis) reduces to a system of (pþ 1)-dimensional
equations for the collective coordinates. These lower-
dimensional equations, which we call blackfold, or
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collective mode, equations, are expressed naturally as
conservation equations for a set of currents; these
include the energy-momentum tensor Tab, and q-form
currents Ja1���aq related to the charges of the p-brane
solution. In general bound state solutions there are
several different values of q ≤ p. These equations are
naturally formulated as hydrodynamic equations for
fluids propagating on dynamical hypersurfaces.
One of the main technical computations below will

be to exhibit the precise relation between these super-
gravity collective mode equations and the Abelian
DBI equations of motion making a part of the relation
(14) manifest within the postulated open/closed string
duality.
Finally, it has been conjectured [23] that solutions

of the blackfold equations are in one-to-one corre-
spondence with solutions of the full supergravity
equations order by order in the long-wavelength
expansion. A general proof of this conjecture (referred
to as the blackfold conjecture below) is not available at
the moment. However, a proof in special cases at first
order in the derivative expansion has appeared in
[56–58].

(c) Dynamical holographic screen.—Similar to the AdS/
CFT correspondence, where the dual theory is natu-
rally thought of as a theory residing on the asymptotic
boundary of AdS, in the present case the dual open
string theory is naturally thought of as a theory
residing on a D-brane stack embedded in the given
asymptotic background. In the main examples of this
paper the asymptotic background is flat space. This
feature is emerging almost automatically from gravity
in the long-wavelength blackfold expansions. The
currents whose conservation defines a set of lower-
dimensional dynamical equations in supergravity
(collective mode equations) are computed in the
overlap region, which can be viewed as the asymptote
of the near-zone region deep inside the asymptotically
flat far-zone region. Hence, in the long-wavelength
approximation we discover naturally within super-
gravity the emergence of a dynamical lower-
dimensional holographic screen embedded in the
asymptotic background.

(d) Higher-derivative corrections.—The order-by-order
solution of the gravitational PDEs results in a pertur-
bative higher-derivative modification of the blackfold
equations in a fixed background. In extremal setups we
postulate that such derivative corrections are in direct
correspondence with the derivative corrections to the
Abelian DBI action which can be computed from
standard calculations on the disk world sheet of the
dual open string theory. This postulate assumes the
validity of the nonrenormalization relation (14). A
preliminary discussion of this correspondence appears
in Sec. VIII below.

It is also interesting to note in this context that we
can interpret an exact inhomogeneous p-brane solu-
tion in gravity (with flat space asymptotics) as the dual
of a nonperturbative resummation of the derivative
expansion of the open string effective action including
all stringy effects in the leading order in the 1=N and
1=λ expansions.

(e) Low-energy/near-horizon limits.—The low-energy
(small field-strength) limit on the open string side
corresponds to the near-horizon limit of the (de-
formed) supergravity solutions. As we discussed in
Sec. III B, around the trivial undeformed vacuum the
low-energy limit on the open string side results in a
decoupling of the SUðNÞ and Uð1Þ sectors. The
SUðNÞ part is strongly interacting and has a dual
AdS/CFT description in terms of gravity in the near-
horizon region of the homogeneous zeroth-order
supergravity solution. The Uð1Þ part also has a
well-known description in the near-horizon limit. It
corresponds to singleton degrees of freedom that are
topological in the bulk and are fully supported on
the boundary. From this point of view, it is natural to
think of the blackfold effective field theory that
we formulate as a singleton effective field theory
[25,33].
In accordance with the discussion in Sec. III B, the

near-horizon limit around a deformed solution does
not have to lead to a complete infrared decoupling of
the singleton degrees of freedom. In fact, in some
cases a deformed brane solution may not even have a
single near-horizon limit as BIon-type solutions in
supergravity exhibit [27,59,60].

(f) Non-Abelian effects.—The holographic encoding of
the strongly interacting non-Abelian degrees of free-
dom of the open string theory is admittedly one of the
most interesting aspects of the proposed open/closed
string duality. One expects that the full non-Abelian
physics is captured in the bulk by the most general
asymptotically flat p-brane solution. In this context
the virtues of the near-horizon limit are well known
and much studied in the context of the AdS/CFT
correspondence. In this paper we work outside the
near-horizon limit and we have chosen to focus on the
Abelian part around a trivial non-Abelian vacuum,
which provides a comparatively more tractable sit-
uation. Yet, we can easily imagine more complicated
cases where non-Abelian effects play a pronounced
role.
From the point of view of the long-wavelength

expansions, we can imagine a zeroth-order super-
gravity solution that captures holographically a vac-
uum with nontrivial non-Abelian properties. It is
possible to extract interesting information about
non-Abelian physics by studying the Abelian sector
around this more general vacuum with a suitable
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modification of the above-mentioned long-wavelength
expansions in supergravity.
One example would be to consider an extremal

zeroth-order solution with a nonvanishing non-Abelian
condensate. The analysis of Sec. III B suggests that the
supergravity Ansatz is now more complicated with
additional degrees of freedom and additional inter-
actions. Indeed, as an illustration, deformations of
multicenter solutions do exhibit these features. It would
be very interesting to analyze such examples in more
detail, and to attempt to probe further our open/closed
string conjecture in this direction. Classifying zeroth-
order solutions by their near-horizon AdS/CFT de-
scription might prove to be a useful approach.
Another example involvesp-brane solutions at finite

temperature. Around such vacua the Abelian open
string effective theory incorporates thermal non-
Abelian effects and is no longer the standard DBI
action. Typically, it is hard to compute these effects
explicitly on the open string side. On the gravitational
side, however, we are instructed to repeat the blackfold
derivative expansion around a finite-temperature
zeroth-order solution. The blackfold equations provide
a relatively easy way to compute the corresponding
modifications of the DBI equations of motion. For
instance, finite-temperature modifications of the DBI
action have been considered in this way in [61–64]. In
the case of finite-temperature configurations at the
trivial Abelian vacuum the low-energy/near-horizon
limit of the resulting effective theory is expected to
reduce to the fluid dynamical effective description of
non-Abelian dynamics that is familiar from the fluid-
gravity correspondence. A related illustration of this
statement appeared in [65].

D. Open/closed string duality
in a long-wavelength regime

Closing this section it is useful to summarize some of the
most prominent features of the above discussion high-
lighting some obvious parallels with the discussion of open
string completeness by Sen. We continue to focus on the
long-wavelength regime of the proposed open/closed string
duality and the Abelian sector at the origin of the Coulomb
branch.
In the long-wavelength regime we are postulating a

picture where the blackfold equations act as a useful
mediator between gravity and open string theory. This
occurs in the way schematically summarized in Fig. 1.
Within the blackfold expansion scheme a part of the
supergravity equations reduces to a set of lower-dimensional
equations of motion for the collective modes of the super-
gravity solution, which are naturally formulated as hydro-
dynamic equations. We will show explicitly in the ensuing
sections (for extremal configurations) that these equations
can be reformulated as equations ofmotion of a recognizable

dual open string effective action. This direct link between
gravity and open string theory is represented by the left
arrow, labeled change of variables, in Fig. 1.
The second ingredient of the construction (the right

arrow in Fig. 1) is the conjecture mentioned above, which
we dub the blackfold conjecture, stating that solutions of
the blackfold equations are in one-to-one correspondence
with a class of regular p-brane solutions.
Combining these two ingredients we obtain a manifest

long-wavelength realization of the proposed open/closed
string duality: solutions of the Abelian action are in one-to-
one correspondence with brane supergravity solutions. In
this form, we set the stage for an explicit algorithmic
formulation of the long-anticipated supergravity/DBI cor-
respondence, which has been implicit in many previous
investigations of brane solutions in supergravity.
In the beginning we argued that it is natural to view this

construction as a large-N manifestation of Sen’s open string
completeness. As an obvious similarity to the examples
analyzed by Sen [2], we note that the Abelian open string
quantum effective action that we consider in the context of
blackfolds is, as in [2], a natural description of configu-
rations at energies of the order of the D-brane tension,
namely energies of the order Oð1=gsÞ. The production of
closed strings is large and the gravitational solution is
deformed, but we postulate that the open string description
is in itself self-consistent and there is no need to consider a
coupled system of open and closed strings. In the blackfold
derivative expansion this statement is related to the claim
that constraint equations can be phrased as equations for the
collective modes in a fixed supergravity background at all
orders in the perturbative expansion.
More generally, in complete analogy with Sen’s pro-

posal, we do not attempt to set up a holographic relation in
terms of a universal boundary theory that captures all
possible gravity (closed string theory) configurations in the
bulk, but rather we set up holography as a tomographic
principle that works in superselection sectors. Different

FIG. 1. A diagrammatic depiction of the main components of
our open/closed string conjecture in a long-wavelength derivative
expansion.
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open string theories capture holographically different sub-
sectors in closed string configuration space. An open string
theory can only capture those closed string configurations
that are sourced by the D-brane setup on which the open
string theory resides.
This picture has interesting implications for closed string

theory and gravity as quantum mechanical theories. A
viewpoint that pronounces the role of open strings suggests
that we should separate closed string solutions into differ-
ent quantum mechanically consistent subsectors, each one
with its own nonperturbative microscopic definition in
terms of a dual open string theory. On the other hand, a
viewpoint centered around a putative single quantum
mechanically consistent formulation of closed strings
and gravity would suggest that we should view closed
string theory as an overarching theory of theories for
diverse quantum open string theories (and related quantum
field theories) in different subsectors.

IV. RELATIVISTIC FLUIDS AS A LINK BETWEEN
OPEN AND CLOSED STRINGS

Our next task is to exhibit the direct relation between the
blackfold equations (derived from gravity as collective
mode equations) and the Abelian Dirac-Born-Infeld action,
making explicit the change-of-variables link depicted in
Fig. 1. We focus on extremal configurations.
We noted already that the blackfold equations are

naturally formulated as conservation equations of a set
of currents which are functionals of the collective modes.
With specific constitutive relations provided by the thermo-
dynamics of the zeroth-order solution, these equations are
automatically formulated within gravity as hydrodynamic
equations for a fluid that propagates on an elastic medium
[23]. In generic situations of multicharge p-branes this is an
anisotropic fluid parametrized by several conserved
charges, equivalently chemical potentials [66]. As we will
verify soon in explicit examples, the resulting hydrody-
namic description is nontrivial even at zero temperature if
there are nonvanishing chemical potentials.
The passage from hydrodynamics to the DBI theory,

described by the change-of-variables arrow in Fig. 1, is also
interesting for another reason. The long-standing problem
of Lagrangian reformulations of hydrodynamic systems has
been revisited recently in several works with promising
results, e.g. [34–36]. Our analysis provides a different
example of such a reformulation. At leading order in the
derivative expansion, where we encounter ideal relativistic
fluids, we discover a reformulation of hydrodynamics in
terms of a gauge theory with a generalized BF-type
interaction. At higher orders in the derivative expansion
the expected connection to open string theory predicts
hydrodynamics with specific higher-derivative corrections.
In the examples that we consider, we find (see Sec. VIII
below) that these corrections are different in superstring
theory compared to the bosonic string, and do not have any

second-order dissipative terms (as one might have antici-
pated from extremal systems).

V. STANDARD IDEAL RELATIVISTIC FLUIDS

Before delving into the details of the hydrodynamic
systems that arise in (super)gravity expansions it will be
useful first to set useful notation and quickly remind the
reader of some pertinent facts from the theory of ideal
relativistic fluids. This topic is very familiar (for a review
we refer the reader to [67–69]), and does not warrant a
special introduction. We slightly generalize the typical
setup and consider (pþ 1)-dimensional ideal fluids on a
dynamical hypersurface propagating in an ambient (dþ 1)-
dimensional spacetime. We will denote the metric of the
ambient spacetime by gμν (μ; ν ¼ 0; 1…; d), and the
induced metric on the fluid hypersurface by γab ¼
gμν∂aXμ∂bXν (a; b ¼ 0; 1;…; p).5 Xμ are the embedding
scalars of the (pþ 1)-dimensional hypersurface inside the
(dþ 1)-dimensional spacetime. To recover the fluid on a
fixed background geometry we can simply freeze the
dynamics of these scalars.
It is well known that the equations of motion of an

irrotational6 relativistic ideal fluid can be formulated as the
Euler-Lagrange equations of the action

S ¼
Z

dpþ1x
ffiffiffiffiffiffi
−γ

p ½Ja∂aθ þ fð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−JaJa

p
Þ þ baðJa − ρuaÞ

þ λðuaua þ 1Þ�: ð17Þ

The fields ba, λ are Lagrange multipliers enforcing the
standard relation between the fluid current Ja, the fluid
density ρ and the unit timelike fluid velocity vector ua. The
equations of motion of ρ and ua set the on-shell values of
the Lagrange multipliers λ ¼ 0, ba ¼ 0, and the function f
is an arbitrary function that controls the precise equation of
state of the fluid (in a manner to be specified momentarily).
There are three remaining equations of motion. The first

one comes from the variation of the current Ja,

∂aθ ¼ Jaffiffiffiffiffiffiffiffi
−J2

p f0ð
ffiffiffiffiffiffiffiffi
−J2

p
Þ; ð18Þ

where f0 denotes the derivative of f with respect to its
argument and J2 ¼ JaJa. Indices are lowered and raised
with the use of the induced metric γab. In differential form
language this equation implies

5Throughout the paper we will use small greek letters μ; ν;…
for the ambient spacetime indices, and small Latin letters a; b;…
for indices of the fluid hypersurface. The determinant of the
induced metric detðγabÞ will be denoted as γ.

6The extention beyond irrotational fluids is also known and
requires replacing ∂aθ with ∂aθ þ α∂aβ in the action given here,
where α and β are extra fields. We will focus on the irrotational
case that is most relevant for our purposes below.
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d

�
f0ð

ffiffiffiffiffiffiffiffi
−J2

p
Þffiffiffiffiffiffiffiffi

−J2
p J

�
¼ 0: ð19Þ

d is the exterior derivative and J the current 1-form.
The second equation of motion that follows from the

variation of θ provides the conservation equation of the
current

DaJa ¼ 0; equivalently d � J ¼ 0: ð20Þ

Da is the covariant derivative with respect to γab. � denotes
the (pþ 1)-dimensional Hodge dual of a differential form
with respect to the same metric.
Finally, we can vary the embedding scalars Xμ that

express the induced metric. The resulting equations [23]
can be massaged into the form (from Carter [70])

Kab
îTab ¼ 0; ð21Þ

where Tab is the energy-momentum tensor of the fluid and
Kab

î is the extrinsic curvature tensor. The latter is expressed
in terms of the second derivatives of the embedding scalars
(for explicit formulas see for example [23]), and î is a
spacetime index along directions perpendicular to the fluid
hypersurface.
The energy-momentum tensor of the fluid is [after the

use of the (λ; ρ; ua; ba) equations of motion]

Tab ¼ 2ffiffiffiffiffiffi−γp δS
δγab

¼ ðεþ PÞuaub þ Pγab ð22Þ

with energy density

ε ¼ fðρÞ ð23Þ

and pressure

P ¼ ρf0ðρÞ − fðρÞ: ð24Þ

We can see that the arbitrary, but given from the start,
function f controls the equation of state of the fluid.
Equations (23) and (24) constitute the standard equation of
state of relativistic fluids that guarantees constant specific
entropy [71]. It is straightforward to verify that the
equations of motion (19) and (20) imply the conservation
of the energy-momentum tensor Tab.
Equivalently, it is common to summarize the full set of

fluid equations as the conservation equations,7

DaTab ¼ 0; Kab
îTab ¼ 0: ð25Þ

Since we are considering irrotational flow we need to
supplement these equations with the irrotational flow
condition (19)

d

�
f0ðρÞ
ρ

J

�
¼ 0; ð26Þ

which is only partially encoded by the energy-momentum
conservation condition.

VI. DUALITY IN 2þ 1 DIMENSIONS AS A MAP
FROM FLUID DYNAMICS TO GAUGE THEORY

Actions of the form (17) have a close relation to classical
actions of Abelian gauge theories. This relation is most
straightforward in 2þ 1 dimensions. In that case we can
dualize the current Ja into a 2-form Fab

Fab ¼ ffiffiffiffiffiffi
−γ

p
εabcJc; or equivalently F ¼ �J; ð27Þ

where εabc denotes the Levi-Civita antisymmetric symbol
ðε012 ¼ 1). Then, we notice that the current conservation
equation (20) translates into the Bianchi identity

dF ¼ 0 ð28Þ

and for that reason we can reinterpret F as the field
strength of an Abelian (2þ 1)-dimensional gauge field
A, namely F ¼ dA.
With these specifications we can reformulate the ideal

relativistic fluid (17) in terms of a modified Abelian Yang-
Mills action on a dynamical membrane

S ¼
Z

d2þ1x
ffiffiffiffiffiffi
−γ

p
"
f

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
FabFab

r !

þ BabðFab − ρεabcucÞ þ λðuaua þ 1Þ
#
: ð29Þ

Having assumed (27) and (28), the term Ja∂aθ is now a
total derivative and up to surface terms it does not
contribute. Bab is the Hodge dual of the Lagrange multi-
plier ba, i.e. b ¼ �B.
The Euler-Lagrange equations of the action (29) provide

an alternative derivation of the ideal fluid equations of the
previous section (in 2þ 1 dimensions). In particular, the
gauge field equations reproduce Eq. (19), which was
closely tied to the irrotational nature of the fluid.
The reader should appreciate that because of the

Lagrange multiplier Bab our system is not simply an
Abelian gauge theory; it is an Abelian gauge theory with
a specific magnetic Ansatz for the gauge field

Fab ¼ ρεabcuc: ð30Þ
7The elastic equation Kab

îTab ¼ 0 can also be formulated as
energy-momentum conservation with an index in directions
transverse to the fluid hypersurface [70].
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Because of the BF coupling we can also view (29) as a
generalized BF-type gauge theory.
It is probable that this simple gauge theory reformulation

of ideal relativistic hydrodynamics in 2þ 1 dimensions has
been noticed before, but I am not aware of an explicit
presentation of this observation in the literature. Clearly, the
duality with a gauge field is specific to 2þ 1 dimensions
and would not work in exactly the same manner in other
dimensions. Nevertheless, we will soon see that there are
other types of fluids that have a close connection with
Abelian gauge theory in arbitrary spacetime dimensions.

A. Special case I: Maxwell theory

In the special case where fðρÞ ¼ 1
8
ρ2, we obtain the

ordinary Maxwell theory with a magnetic Ansatz. In the
Maxwell case the energy density and pressure are both
positive and equal, ε ¼ P ¼ 1

8
ρ2.

B. Special case II: Dirac-Born-Infeld theory

Another interesting case with a different equation of
state,

ε ¼ −
c2

P
; ð31Þ

where c is an arbitrary constant and the pressure P is
negative, can be obtained by setting

fðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ ρ2

q
: ð32Þ

Because of the identity

1

c
det ðcδab þ Fa

bÞ ¼ c2 þ 1

2
FabFab ð33Þ

in three dimensions, one can easily show that the fluid
equations of motion in the case at hand can be written
equivalently as the Euler-Lagrange equations of the Dirac-
Born-Infeld action

S ¼
Z

d2þ1x
ffiffiffiffiffiffi
−γ

p
"
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
δab þ

1

c
Fa

b

�s

þ BabðFab − ρεabcucÞ þ λðuaua þ 1Þ
#
: ð34Þ

In type IIB string theory this action (with the appropriate
overall rescaling) has a familiar connotation: it describes
the Abelian dynamics of extremal D2-branes with dis-
solved D0 charge flowing along the velocity vector ua

inside the D2-brane worldvolume. In the next section we
will reencounter this fluid from a rather different point of

view, that of the supergravity (blackfold) analysis of the
extremal D0-D2 solution.

VII. DBI RECONSTRUCTION FROM
SUPERGRAVITY

After this short detour on relativistic hydrodynamics we
return to the long-wavelength expansions of interest in
supergravity. To exhibit the relation with the DBI action we
will consider in detail two representative examples. The
first is based on the D0-D2 bound state that we encountered
already in the previous section. The second example is
based on the analysis of the F1-Dp bound state in
flat space.
We will see that different bound states reconstruct the

DBI action in different subclasses of configurations. In this
sense the DBI action arises as a master action for whole
families of effective hydrodynamic descriptions that arise
from supergravity.

A. D0-D2 deformations

1. Supergravity analysis

The homogeneous planar D0-D2 bound state in ten-
dimensional flat space that forms the zeroth-order solution
in the long-wavelength expansions of interest is [72,73]

ds2 ¼ ð−H−1
2fuaub þDH−1

2ðγab þ uaubÞÞdσadσb
þH

1
2ðdr2 þ r2dΩ2

6Þ;
e2ϕ ¼ H

1
2;

B2 ¼ tanϑðH−1D − 1Þ � u;
C1 ¼ sinϑ coth αðH−1 − 1Þu;
C3 ¼ secϑ coth αðH−1D − 1Þ � 1; ð35Þ

where

fðrÞ ¼ 1 −
�
r0
r

�
5

; HðrÞ ¼ 1þ
�
r0
r

�
5

sinh2α;

D−1ðrÞ ¼ cos2ϑþ sin2ϑH−1: ð36Þ

The solution, which has been boosted with a general
SOð1; 2Þ transformation along the 2-brane worldvolume
coordinates ðσ0; σ1; σ2Þ, is parametrized by the scalars

ϑ ∈ ½0; 2πÞ; α ∈ R; r0 ∈ Rþ; ð37Þ

and the unit velocity vector

ua; uaua ¼ −1: ð38Þ

These parameters constitute part of the collective modes
of the solution. In the metric and B2, C1, C3 potentials we
can also see collective coordinates associated with the
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breaking of the transverse SOð7Þ symmetry, which appear
through the induced metric γab [to which the Hodge star (�)
refers]. These collective modes comprise seven transverse
scalars Xî. As usual, it is more convenient to formulate
these modes more covariantly using ten scalars Xμ, in terms
of which the induced worldvolume metric takes the form

γab ¼ gμν∂aXμ∂bXν: ð39Þ

In our problem gμν is the background Minkowski metric
ημν. In the planar solution (35) the transverse scalars have a
fixed constant value and the induced worldvolume metric is
the three-dimensional flat space metric ηab. Writing explic-
itly γab instead of ηab in (35) is useful, because it prepares
us for the types of supergravity Ansätze that lead to
deformed brane solutions [25].
In the extremal limit, which will be the main case of

interest in this paper,

r0 → 0; α → ∞; with rnH ≔ rn0sinh
2α held fixed:

ð40Þ

In this limit the temperature vanishes and the solution is
1=2-BPS.
As explained in previous sections, we want to set up a

derivative expansion in supergravity where inhomogeneous
extremal (but not necessarily supersymmetric) solutions are
constructed order by order around (35). The supergravity
Ansatz is based on the promotion of the above-mentioned
collective coordinates to slowly varying functions of the
worldvolume coordinates σa [22,23]. Analyzing the con-
straint equations of supergravity within this Ansatz at
leading order in the derivative expansion, one arrives at
the extremal blackfold equations [74]

DaTab ¼ 0; Kab
îTab ¼ 0; ð41Þ

d � ~J ¼ 0; d � J ¼ 0; d � J3 ¼ 0; ð42Þ

with currents

Tab ¼ −Cr5Hð−sin2ϑuaub þ cos2ϑγabÞ; C ≔
5Ωð6Þ
16πG

;

ð43Þ

J ¼ C sin ϑr5Hu; ~J ¼ cosϑ � J; ð44Þ

J3 ¼ C cosϑr5H � 1: ð45Þ

ΩðdÞ ¼ 2π
d−1
2

Γðd−1
2
Þ is the volume of the unit round d-sphere. The

presence of the 1-, 2-, 3-form currents J; ~J; J3 is closely
related to the fact that in (35) the solution sources the 1-, 2-,
3-form potentials C1, B2, C3.

We notice that the last equation, d � J3 ¼ 0, in (42) is
expressing trivially the fact that the 2-brane charge, which
is a quantized quantity, is a worldvolume constant

∂aðr5H cosϑÞ ¼ 0 ⇔ r5H ¼ c
C cosϑ

: ð46Þ

Here c is an integration constant whose precise value will
not play an important role in the ensuing. Consequently, rH
is not a true collective mode, and should be substituted into
Eqs. (41) and (42) in terms of ϑ. Equation (46) is consistent
with the proposal that open/closed string duality works
within superselection sectors. The superselection sectors in
this case are labeled by the value of the integration
constant c.
To summarize, after the substitution (46) the leading

order collective mode (blackfold) equations for D0-D2
solutions deduced from supergravity are comprised of the
energy-momentum conservation equations

DaTab ¼ 0; Kab
îTab ¼ 0;

Tab ¼ ðεþ PÞuaub þ Pγab; ð47Þ

with energy ε and pressure P,

εðϑÞ ¼ cðcosϑÞ−1; PðϑÞ ¼ −c cos ϑ; ð48Þ

and the current equations

dðcosϑJÞ ¼ 0; d � J ¼ 0; J ¼ ρu; ð49Þ

with charge density

ρ ¼ c tanϑ: ð50Þ

This is a complete set of dynamical equations for the
unknown functions ϑ; ua; Xμ. The blackfold conjecture
states that solutions of this system are in one-to-one
correspondence with regular first-order corrected inhomo-
geneous D0-D2 solutions within the blackfold Ansatz.8 In
higher orders of the derivative expansion the conserved
currents are corrected with higher-derivative terms, but the
background asymptotic geometry gμν ¼ ημν is not modi-
fied. We will discuss higher-order corrections in Sec. VIII.

2. Equivalence with DBI

It is evident that the collective mode equations of the
supergravity analysis reduce at leading order to the hydro-
dynamic equations of a standard charged ideal fluid on a
dynamical surface similar to the one reviewed in Sec. V.
The constitutive relations are those of an extremal irrota-
tional fluid with

8This is a natural generalization of the corresponding statement
in the fluid-gravity correspondence for large AdS black holes.
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ε ¼ fðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ ρ2

q
: ð51Þ

The irrotational flow condition (26) coincides with the
supergravity equation dðcos ϑJÞ ¼ 0 in (49). As we noted
in Sec. V not all equations in (47) and (49) are independent.
It is enough to consider Eq. (47) combined with the
irrotational flow condition.
In this case the relation to DBI is explained at the end of

Sec. VI as special case II. The Abelian duality of the current
J to a gauge field strength (27) converts the hydrodynamic
equations (which are part of the supergravity equations
here) to the equations of motion of the DBI action with
Lagrange multipliers (29). The basic gauge/gravity map is
expressed by Eq. (30), which translates an open string
degree of freedom—the Uð1Þ gauge field with a magnetic
Ansatz—to the quantities ρ, ua that express components of
the gravitational fields.

B. F1-Dp deformations

We now move to a different example in a (pþ 1)-
dimensional open string theory ðp > 1Þ with an electric
gauge field explicitly turned on.

1. Supergravity analysis

Our starting point, as a zeroth-order solution in our long-
wavelength expansion, is the homogeneous, planar F1-Dp
bound state in ten-dimensional flat space. This involves the
following supergravity profiles [73,75]:

ds2 ¼ ðD−1
2H−1

2ðð1 − fÞuaub þ ĥabÞ
þD

1
2H−1

2⊥̂abÞdσadσb þD−1
2H

1
2ðdr2 þ r2dΩ2

8−pÞ;
e2ϕ ¼ D

p−5
2 H

3−p
2 ;

B2 ¼ sin ϑ cothαðH−1 − 1Þu∧v;
Cp−1 ¼ ð−Þp tanϑðH−1D − 1Þ � ðu∧vÞ;
Cpþ1 ¼ ð−Þp cos ϑ cothαDðH−1 − 1Þ � 1; ð52Þ

where

fðrÞ ¼ 1 −
�
r0
r

�
n
; HðrÞ ¼ 1þ

�
r0
r

�
n
sinh2α;

D−1 ¼ cos2ϑþ sin2ϑH−1; n ¼ 7 − p: ð53Þ

As in the previous section, the solution has been boosted
with a general SOð1; pÞ transformation along the p-brane
worldvolume coordinates ðσ0;…; σpÞ. Accordingly, it is
parametrized by the scalars

ϑ ∈ ½0; 2πÞ; α ∈ R; r0 ∈ Rþ; ð54Þ

and the orthogonal vectors

ua; va; ðuaua ¼ −1; vava ¼ 1; vaua ¼ 0Þ ð55Þ

that define the projectors

ĥab ¼ −uaub þ vavb; ⊥̂ab ¼ γab − ĥab: ð56Þ

The induced metric γab, which is flat in the zeroth-order
solution, incorporates the dependence on the 9 − p trans-
verse scalars Xî. The Hodge star (�) is defined with respect
to this metric.
Once again, we will focus on the extremal limit

r0 → 0; α → ∞; with rnH ≔ rn0sinh
2α held fixed;

ð57Þ

where the temperature vanishes and the zeroth-order
solution is 1=2 BPS.
Reanalyzing the leading constraint equations in super-

gravity one arrives at the extremal blackfold equations [74]

DaTab ¼ 0; Kab
îTab ¼ 0; ð58Þ

d � Jp−1 ¼ 0; d � J2 ¼ 0; d � Jpþ1 ¼ 0; ð59Þ

with currents

Tab ¼ −CnrnHðsin2ϑĥab þ cos2ϑγabÞ;

Cn ≔
nΩðnþ1Þ
16πG

; n ¼ 7 − p; ð60Þ

J2 ¼ Cn sinϑrnHu∧v; Jp−1 ¼ cosϑ � J2; ð61Þ

Jpþ1 ¼ Cn cos ϑrnH � 1: ð62Þ

There are three currents expressed as 2-, (p − 1)- and
(pþ 1)-forms corresponding to three spacetime potentials
of the corresponding degree.
The last equation, d � Jpþ1 ¼ 0, in (59) is expressing the

fact that the p-brane charge is a worldvolume constant

∂aðrnH cos ϑÞ ¼ 0 ⇔ rnH ¼ c
Cn cos ϑ

: ð63Þ

We solve it in terms of the integration constant c that
captures the quantized Dp-brane charge. Then, rH is
substituted into Eqs. (58) and (59) in terms of ϑ.
After this substitution the leading order F1-Dp blackfold

equations are

DaTab ¼ 0; Kab
îTab ¼ 0;

Tab ¼ ðεþ PTÞuaub − ðPT − PLÞvavb þ PTγab; ð64Þ

with energy, transverse and longitudinal pressures
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εðϑÞ ¼ c
1

cosϑ
; PTðϑÞ ¼ −c cosϑ;

PLðϑÞ ¼ −c
1

cosϑ
; ð65Þ

and the current conservation equations

dðcosϑJ2Þ ¼ 0; d � J2 ¼ 0;

J2 ¼ c tanϑu∧v: ð66Þ
The blackfold conjecture states that solutions of this

system are in one-to-one correspondence with regular first-
order corrected inhomogeneous F1-Dp solutions in the
blackfold Ansatz.

2. Equivalence with DBI

In this case we obtain a set of dynamical equations for an
augmented set of unknown functions ϑ; ua; va; Xμ. They
are hydrodynamic equations for an anisotropic fluid propa-
gating on a dynamical (pþ 1)-dimensional hypersurface.
The general fluid of this type obeys the relations [66]

εþ PT ¼ T sþ μq; PT − PL ¼ μq; ð67Þ

where T is the local temperature, s the entropy density, μ
the string chemical potential and q the string charge
density. As is evident in (67) the relation ε ¼ −PL is a
consequence of extremality ðT ¼ 0Þ.
Generalizing the arguments of Sec. VI in a slightly

different direction, which is not merely an Abelian Hodge
duality, we will now show that the dynamical system (64),
(65), (66) is classically equivalent to the equations of
motion of the DBI action with an electric field constraint
imposed by a 2-form Lagrange multiplier

S ¼
Z

dpþ1x
ffiffiffiffiffiffi
−γ

p ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðδab þ Fa

bÞ
p

þ BabðFab − sinϑðuavb − vaubÞÞ
þ λ1ðuaua þ 1Þ þ λ2ðvava − 1Þ þ λ3uava�: ð68Þ

The electric field Ansatz

F ¼ sinϑu∧v ð69Þ
is the expected DBI description of the F1-Dp system. The
specific form of the field strength (69) arises if we do an
arbitrary pointwise spacetime-dependent Lorentz transfor-
mation of the constant electric field F01 ¼ sin ϑ that
describes the planar, homogeneous F1-Dp solution. sinϑ
is being used to express the familiar fact that F (being
electric) cannot grow larger than the critical value F01 ¼ 1
where the determinant inside the square root vanishes.9 The

orthonormality of the vectors u, v, which is part of the
definition of (69), is enforced by the variation of the
Lagrange multipliers λ1, λ2, λ3.
The remaining equations of motion of the action (68) are

TabKab
î ¼ 0; ð70Þ

Da

�
1

cosϑ
Fab

�
¼ 0: ð71Þ

In addition, we have the Bianchi identity

dF ¼ 0: ð72Þ

With the Ansatz (69) these equations are obviously the
same as the hydrodynamic equations (64), (65), (66).
To verify this, first we notice that the energy-momentum

tensor of this system (after the use of the λ1;2;3, ua, va, Bab,
ϑ equations) is

Tab ¼ sin2 ϑ
cosϑ

ðuaub − vavbÞ − cosϑγab; ð73Þ

the same as that encountered in the blackfold equations.
Second, since

J2 ¼
c

cos ϑ
F ð74Þ

we observe that the gauge field equation (71) is identical to
the string current conservation equation d � J2 ¼ 0. The
Bianchi equation (72), which is identical to the first
equation in (66), dðcosϑJ2Þ ¼ 0, can be viewed as a
property closely related to the irrotational condition (19)
of standard relativistic fluids in Sec. V.

C. Extensions

More general configurations of p-brane bound states
with dissolved lower-dimensional charges in flat space
admit a similar analysis. The constraint equations of the
perturbative supergravity analysis always reduce to a
hydrodynamic system, which admits a direct reformulation
at extremality as a DBI action along the lines described
above.
Let us summarize several interesting extensions of the

exercises of the previous two subsections. An important
extension concerns the higher-derivative corrections. There
are such corrections both on the blackfold supergravity
analysis and on the open string side as corrections to the
Abelian DBI effective action. We will discuss the latter in
the next section.
Another interesting direction, which was highlighted

already in Sec. III, concerns the incorporation of non-
Abelian effects. The imprint of such effects in the Abelian
sector and its effective description can be captured in a9We restrict ϑ ∈ ½− π

2
; π
2
�.
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conceptually straightforward manner in the blackfold
supergravity approach by redoing the perturbative analysis
around other zeroth-order p-brane solutions.
For instance, we can consider flat p-brane bound

states at finite temperature. In the above-mentioned
D0-D2, F1-Dp examples, this introduces an additional
degree of freedom [both r0 and α participate without the
scaling (57)]. It is interesting to ask whether there is a
finite-temperature deformation of the DBI action that
reproduces the on-shell finite-temperature hydrodynamic
equations. This question was considered for stationary
configurations in Refs. [61–63]. However, the question
of a general deformation of the DBI action independent
of stationarity remains open. Recent advances, e.g. in
Ref. [35], could prove a useful avenue for this problem.
We should point out that thermal small temperature
corrections to the DBI action have been computed at
weak coupling in Ref. [63], yet the exact form of finite-
temperature corrections in open string theory is hard to
obtain.10

Deformations of the Abelian DBI action can also be
obtained from supergravity at extremality by considering
other exact p-brane solutions at zeroth order. For
instance, deformations of the zeroth-order solution will
appear necessarily under external forcing, i.e. when a
p-brane solution is embedded in a nonflat asymptotic
background with fluxes. As a concrete example consider
brane solutions in AdS.11 In this case the hydrodynamic
blackfold equations are modified in two different ways
compared to the equations in flat space. First, there is a
background-induced deformation of the conserved cur-
rents. Second, there are extra force terms in the
equations, which are analogs of the Wess-Zumino
couplings in the DBI action. A general formulation of
such couplings in the blackfold expansion will appear in
[74]. Further studies of such effects should contribute
significantly to the understanding of the open/closed
string duality proposed in Sec. III.

VIII. HIGHER-ORDER HYDRODYNAMICS
FROM HIGHER-DERIVATIVE

CORRECTIONS TO DBI

The DBI action is the leading term in a long-wavelength
derivative expansion of open string field theory. Open
string theory dictates very specific higher-derivative cor-
rections to the DBI action. Such corrections were deter-
mined in flat space in [79–82] using the S-matrix or
σ-model approach (for a review see [52]). Since we make

a connectionwith hydrodynamics it is interesting to ask how
such corrections translate into the hydrodynamic language.
In what follows we will assume the validity of the

nonrenormalization relation (14). Combined with open/
closed string duality this relation allows us to translate
information from a weak coupling open string analysis into
a set of predictions for appropriate supergravity solutions in
a long-wavelength derivative expansion.
Before we go into the details of the connection

between open string and fluid dynamical higher-derivative
connections, it is useful to recall that the subject of
higher-derivative (dissipative) corrections in relativistic
hydrodynamics has a long history. The mere addition of
first-order derivative corrections to the energy-momentum
tensor and the current [83,84] is well known to be
inadequate and leads to unacceptable problems with
causality and stability. These problems are amended in
the Israel-Stewart approach [85–87], where higher-order
corrections are added, or in other formalisms like Carter’s
canonical formalism (for a review see e.g. [67,68]).
The embedding of the DBI action in open string theory

and its map to gravity suggests a class of hydrodynamic
systems with higher-derivative corrections derived from
string theory. The consistency of the latter implies that
the usual issues with causality observed in generic (low
order) hydrodynamic constructions should be absent here.
Keep in mind that compared to the generic case discussed
in the hydrodynamics literature, in this paper we have
focused mainly on zero-temperature, finite-density fluids.
This necessarily entails some obvious differences com-
pared to the standard discussion of finite-temperature
relativistic fluids that will become apparent soon.
Following [80] one finds from an open string theory

computation that the general form of the leading higher-
derivative corrections to the DBI action in superstring
theory in flat space is12

Ssuper ¼
Z

dpþ1x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðηab þ FabÞ

p
½1þ F klmnabcd

× ðFÞ∂k∂lFmn∂a∂bFcd þOð∂6Þ�: ð75Þ

For simplicity, in (75) we have frozen the background
geometry and the transverse scalar dynamics. The trans-
verse scalar dynamics can be derived from this action in ten
dimensions by T-duality.13 We notice that the leading
higher-derivative correction comes at the order of four
derivatives. The function F ðFÞ ∼ F2 þ F4 þ � � � has an in
principle computable expansion in powers of the field
strength F. For example, a four-vector superstring ampli-
tude calculation on the disk gives up to orderOð∂4F6Þ [80]

10For a discussion of thermal corrections to gauge theory from
a D-brane probe analysis in the context of the AdS/CFT
correspondence see [76].

11AdS black holes in the blackfold approximation were
considered in [77,78].

12We drop factors of π and α0 that can be easily reinstated.
13It would be interesting to work out these corrections

explicitly and compare them with the general theory of relativistic
elasticity discussed in [88–92].
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F klmnabcd∂k∂lFmn∂a∂bFcd

¼ −
1

96

�
∂a∂bFmn∂a∂bFnlFlrFrm

þ 1

2
∂a∂bFmnFnl∂a∂bFlrFrm

−
1

4
∂a∂bFmnFmn∂a∂bFlrFlr

−
1

8
∂a∂bFmn∂a∂bFmnFlrFlr

�
þOð∂4F6Þ: ð76Þ

Interestingly, the corrections are different in the bosonic
string.14 Quoting [79,80]

Sbosonic ¼
Z

dpþ1x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðηab þ FabÞ

p
× ½1þ F kmnacdðFÞ∂kFmn∂aFcd þOð∂4Þ�: ð77Þ

From a four-vector amplitude on the disk one finds

F kmnacdðFÞ∂kFmn∂aFcd

¼ −
1

48π
½FklFkl∂aFmn∂aFmn

þ 8FklFlm∂aFmn∂aFnk

− 4FlaFlb∂aFmn∂bFmn þOð∂2F6Þ�: ð78Þ

In this case the derivatives start at a lower order,
Oð∂2Þ.
The strategy developed in the previous sections sug-

gests a natural connection of these actions (supplemented
with specific Ansätze for the gauge field strength) with
higher-derivative hydrodynamic systems. For example, a
D0-D2–type higher-derivative fluid in three dimensions
arises from the action

S ¼ SOS −
Z

d2þ1x
ffiffiffiffiffiffi
−γ

p ½BabðFab − ρεabcucÞ

þ λðuaua þ 1ÞÞ�; ð79Þ

where SOS is the open string–derived DBI action with
higher-derivative corrections (Ssuper or Sbosonic above). As
we noted previously the Lagrange multiplier Bab enforces
the Ansatz Fab ¼ ρεabcuc and then the Bianchi identity
dF ¼ 0 guarantees the current conservation d � J ¼ 0,
where Ja ¼ ρua. This particular identification of the
current (unchanged by the presence of the derivative
corrections) means that we have chosen to work in the
Eckart frame.

A significant part of the gauge field equations can be
reexpressed as the energy-momentum conservation con-
ditions DaTab ¼ 0. As an illustration let us consider the
higher-derivative corrections to the energy-momentum
tensor that arise in the case of the bosonic string. After
the implementation of the Bab; λ; ρ; ua equations the
energy-momentum tensor of the resulting fluid takes the
following form up to Oð∂2Þ:

Tab ¼ Tab
ideal þ Tab

higher−derivative ð80Þ

with

Tab
ideal ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

p ðρ2uaub − γabÞ ð81Þ

and

Tab
higher−derivative

¼
�
Tab
ideal

~Fkl
mn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

q
½ ~Fkl

mn�ab
�
∂kðρumÞ∂lðρunÞ:

ð82Þ

The tensor structures

~Fkl
mn ¼ εdemεfgnF kdelfg;

× ½ ~Fkl
mn�ab∂kðρumÞ∂lðρunÞ

¼ εdemεfgn
∂

∂γab ½F
kdefglDkðρumÞDlðρunÞ� ð83Þ

are functions of ρ and u without derivatives. At the
order of Eq. (78) we obtain the more specific
expressions

~Fkl
mn∂kðρumÞ∂lðρunÞ

¼ ρ2

12π
ð−3∂aρ∂aρþ ρ2∂aub∂aub þ ua∂aρub∂bρ

− 2ρ2ua∂aucub∂bucÞ; ð84Þ

½ ~Fkl
mn�ab∂kðρumÞ∂lðρunÞ

¼ ρ2

6π
ðAabðð∂ρÞ2Þ þ ρBabð∂ρ∂uÞ þ ρ2Cabðð∂uÞ2ÞÞ;

ð85Þ

where14I would like to thank E. Kiritsis for emphasizing this point.
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Aab ¼ ∂aρ∂bρ − 2⊥̂abuc∂cρud∂dρ − 4uða∂bÞρuc∂cρ

þ 2εactεbdsutus∂cρ∂dρ;

Bab ¼ 4∂cρ∂cuðaubÞ − 4uc∂cρud∂duðaubÞ;

Cab ¼ ∂cua∂cub þ ∂auc∂buc − 3uaub∂cud∂cud

− 2uc∂cuaud∂dub

þ 4uða∂bÞuduc∂cud þ 2γabuc∂cueud∂due

þ 4εaksεbmtusut∂cuk∂cum

− 2εactεbdsutus∂cue∂due: ð86Þ

To derive these expressions we promoted the worldvolume
metric ηab to γab covariantizing all couplings in (77) and
(78), then took a derivative with respect to γab and finally
set γab ¼ ηab. Potential higher-derivative couplings of the
worldvolume metric do not affect this computation.
Several comments are in order at this point.
(i) We observe that the usual dissipative corrections at

order Oð∂Þ associated with the shear and bulk
viscosity are absent. This is due to the extremal
nature of the configurations that we are considering.
At nonzero temperature such corrections are ex-
pected to appear. In fact we would expect that the
ratio of the shear viscocity over the entropy density,
η
s, is nonvanishing at nonzero temperature. The
connection with gravity in previous sections sug-
gests that this ratio is the constant 1=4π. Then, for
the system at hand we expect that as we take the
zero-temperature limit η=s remains nonvanishing,
while both η and s go simultaneously to zero.

(ii) The leading corrections occur atOð∂2Þ. Qualitatively
these are corrections of the same general form as the
corrections in the Israel-Stewart formalism [85–87].

(iii) It is interesting to ask how field redefinitions affect
the above formulas. For instance, in a different
frame, e.g. the Landau frame, where the current J
is ρua þOð∂Þ corrections, the action (77) will also
receive derivative corrections from the expansion of

the DBI square root. Notice that the leading correc-
tions remain Oð∂2Þ.

Repeating the same exercise with the superstring action
(75) we find a different set of higher-derivative corrections.
For example, in the case of the D0-D2 configurations the
above analysis would yield a fluid whose energy-
momentum tensor receives its leading higher-derivative
contributions at Oð∂4Þ. It would be interesting to know if
this feature is related to the improved convergence proper-
ties of DBI solutions in superstring theory that have been
observed throughout the literature over the years, e.g. the
BIon solutions [93].
A similar analysis of open string–derived derivative

corrections can be performed for the F1-Dp configurations
(which require the Ansatz F ¼ sinϑu∧v), or other more
general configurations of the gauge field that lead to
anisotropic fluids. We will not spell out the details here.
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