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We investigate finite α0 effects in string theory on a black hole background. By explicitly computing tree-
level scattering amplitudes, we confirm a duality between seemingly different states recently conjectured by
Giveon, Itzhaki, and Kutasov. We verify that the relevant 3-point functions factorize in such a way that the
duality between oscillator and winding states becomes manifest. This leads us to determine the precise
normalization of the dual vertex operators, and confirms at the level of the interacting theory the identification
of states suggested by the analysis of the spectrum. This result implies a duality between two seemingly
distinct mechanisms driving the violation of the string winding number in the black hole atmosphere.
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I. INTRODUCTION

String theory on a two-dimensional black hole geometry
represents an exact solution of the theory [1,2] that permits
to explore the black hole physics in the deep stringy regime
[3–9]; see also [10–13] and references therein. One of the
most interesting properties of this setup is the so-called
Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality
[14–16], a particular kind of strong/weak duality that
associates the string σ-model on the black hole to a two-
dimensional conformal field theory (CFT) consisting of
Liouville theory coupled to the sine-Gordon theory, and
which consequently receives the name of sine-Liouville
theory. Among other results, FZZ duality has been crucial
in the formulation of the black hole matrix model [15],
which is actually based on the sine-Liouville description.
From the geometrical point of view, FZZ duality can

be thought of as a T-duality that associates the string theory
on the Euclidean black hole geometry to the theory
formulated on a linear dilaton background and a nonho-
mogeneous tachyon condensate. In terms of the tachyonic
picture, several nonperturbative phenomena in the black
hole admits a much simpler interpretation, and as it usually
happens with strong/weak dualities, it is necessary to
consider the two alternative descriptions simultaneously
in order to accomplish a fully satisfactory picture.
Recently, the FZZ duality has been reconsidered and was

used to investigate the structure of the black hole horizon in
string theory [3], and this led to the discovery of interesting
effects: It has been observed in [3] that string states perceive
the presence of the horizon in different manners depending
on whether or not the momentum in the radial direction is
larger than certain critical value set by the string scale
1=

ffiffiffiffi
α0

p
. While at low energy the states experience the

horizon in a way that agrees with the semiclassical analysis,

at energies sufficiently high the strings start to perceive the
horizon as if it had a smeared structure, and this affects the
phase-shift in a way that deviates from the behavior of
general relativity (GR). The simplest way to see this
phenomenon is looking at the reflection coefficient, given
by the 2-point function in the black hole geometry. Since in
two dimensions the model is exactly solvable, the expres-
sion of the 2-point function in known at finite α0 [17]; it
exhibits a α0-dependent factor that develops poles at high
momentum and produces the anomalous phase-shift. It
turns out that such pole conditions, responsible for the
stringy behavior, are understood in a much simpler way
from the perspective of the FZZ dual picture: In terms of the
sine-Liouville model, such poles are seen to come from the
integration over the zero-mode of the Liouville direction in
the linear dilaton background. This can be rephrased by
saying that string states with sufficiently high momentum
see the horizon as if it was replaced by the tachyonic
profile, which is what causes the stringy effects and makes
them to appear as if they were originated in a region of the
moduli space that is behind the horizon [3]. This example
shows how the FZZ duality results as useful to work out the
peculiar details of black hole stringy physics.
In a recent paper [9], a generalization of the FZZ

correspondence between the black hole geometry and
the tachyonic picture has been proposed. This follows
from the observation that the string spectrum in the two-
dimensional Euclidean black hole background exhibits an
intriguing duality between oscillator states and winding
string states. As expressed in [9], this means that normal-
ized states in the black hole geometry have support at
widely separated scales, and states that are extended over
the black hole atmosphere have a component that is
localized near the horizon. While low energy strings
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probing the black hole see the so-called low lying states as
oscillator states in the black hole atmosphere, at large
excitation levels such states are seen as strings with nonzero
winding number around the Euclidean time direction. This
relates two seemingly different normalizable modes on the
Euclidean background, and it can be seen as a high/low
energy correspondence that generalizes FZZ.
At the level of the spectrum, the duality is related to a

particular symmetry of the Hilbert space, the spectral flow
symmetry. The string σ-model on the black hole corre-
sponds to the Wess-Zumino-Witten (WZW) theory for the
coset SLð2;RÞ=Uð1Þ, and the spectral flow symmetry is an
automorphism of the ŝlð2Þk affine Kac-Moody (KM)
algebra that organizes the states in the theory [18]. If we
denote by Φj;m;m̄ the vertex operators that create the KM
primaries of the jj; mi ⊗ jj; m̄i representation of
SLð2;RÞ ⊗ SLð2;RÞ, then the duality between states
referred to above translates into the relation between the
vertex operators

ðJþÞlðJ̄þÞl̄Φlþl̄
2
−1;−lþl̄

2
;−lþl̄

2
ð1:1Þ

and the vertex operators

Φk−l−l̄
2

−1;k−lþl̄
2

;kþl−l̄
2

× e−
iffiffiffi
2k

p ððk−lþl̄ÞX−ðkþl−l̄ÞX̄Þ ð1:2Þ

where Jþ in (1.1) is the current associated to the upper-
triangular generators of SLð2;RÞ, and X in (1.2) is an
auxiliary field that represents the Uð1Þ direction of the
SLð2;RÞ=Uð1Þ coset model [19]. The latter field can be
associated to the time compact direction.
The association between operators (1.1) and (1.2) is at

first sight surprising. While operators (1.1) represent
oscillator states of the gravitational string multiplet, oper-
ators (1.2) correspond to tachyonlike string states with both
momentum and winding number around the Euclidean time
direction (see Fig. 1). These two types of states have, in
particular, quite different behaviors in the asymptotic far
region. This makes the relation between the two pictures
particularly interesting.
The idea of the present paper is to test the generalized

FZZ duality proposed in [9] at the level of the interacting
theory. That is, we are interested in investigating whether
the identification between states (1.1) and (1.2) persists
when interactions are taken into account. The way we will
study this is by explicitly computing 3-point string scatter-
ing amplitudes in the Euclidean black hole geometry,
considering cases in which both operators (1.1) and
(1.2) are present. This will enable us to verify whether
the expressions corresponding to the processes that involve
each of the two states actually match. We will begin by
briefly reviewing the black hole background and the string
spectrum in Secs. II and III. In Sec. IV, we will compute
tree-level string amplitudes involving each of the two
operators above and compare the results obtained.

Despite the seemingly different interpretation of the oscil-
lator states and winding strings, we will obtain a remark-
able matching at the level of 3-point functions. We also
discuss the n-point functions of operators (1.1), which are
shown to admit an expression in terms of n-point corre-
lation functions of Liouville field theory.

II. STRINGS ON BLACK HOLES

The Euclidean black hole solution is given by the
following metric and dilaton field:

ds2 ¼ 2l2ðdr2 þ tanh2r dθ2Þ; e−Φ ¼ e−Φ0 cosh r;

ð2:1Þ

where l2 is a length scale that controls the size of the
asymptotic cylinder to which the geometry tends when the
radial direction r is large. Euclidean time θ has a period that
makes the real Euclidean section of the space to be smooth
at the horizon, r ¼ 0. The constantΦ0 gives the value of the
dilaton at the horizon, and it is associated to the mass of the
black hole, M, as we will discuss below.
The string σ-model on the background (2.1) corresponds

to the WZW model for the coset SLð2;RÞ=Uð1Þ [1], and
thus it enjoys KM affine symmetry. The central charge of
this model is

c ¼ 2þ 6

k − 2
; ð2:2Þ

where k ¼ l2=α0 is the level of the WZW action and thus
controls the quantum effects in the world sheet theory.
Large k describes a weakly curved black hole, and one
expects the semiclassical intuition to be valid in that limit.

black hole
horizon

black hole
atmosphere asymptotic regionwinding string

FIG. 1. The Euclidean black hole geometry resembles a semi-
infinite cigar whose compact direction represents the periodic
Euclidean time. The black hole horizon is located at the tip of the
cigar (r ¼ 0). The black hole atmosphere corresponds to the cap,
a region where the curvature in string units is of order 1=k.
Asymptotically, the geometry tends to a cylinder of radius

ffiffiffi
k

p
in

string units. Strings can have nonzero winding number around the
time direction θ. Such winding numbers, however, can be
violated in a scattering process due to the topology of the space.
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III. STRING SPECTRUM

The spectrum of string states in the Euclidean black hole
geometry (2.1) is parameterized by indices j, m, m̄ that
labels the vectors jj; mi ⊗ jj; m̄i that form representations
of SLð2;RÞ ⊗ SLð2;RÞ. More precisely, one has that the
momentum of the states along the compact direction θ and
the winding number around that direction are given by

p ¼ m̄ −m; ω ¼ m̄þm
k

; ð3:1Þ

respectively; the momentum in the radial direction is given
by j. The winding number ω is a conserved quantity only at
large r, while it can be violated for states that probe the tip
of the Euclidean geometry (see Fig. 1).
The representations of ŝlð2Þk affine algebra that give the

Hilbert space of the theory are defined by how the KM
modes Jan, J̄an (with a ¼ �; 3) act on the vectors; namely

J�0 jj;mi¼ð�j�1−mÞjj;m�1i; J�n>0jj;mi¼0; ð3:2Þ

J30jj; mi ¼ mjj;mi; J3n>0jj; mi ¼ 0; ð3:3Þ

together with the antiholomorphic (bared) counterparts.
This defines highest-weight KM representations. Unitarity
and redundancy due to the spectral flow isomorphism
demand the constraint −1 ≤ 2j ≤ k − 3, with m − j and
m̄ − j being positive integers. In addition, the construction
of the coset theory requires J3 and J̄3 to vanish on the
physical states. We will see below how to implement this
constraint in an efficient way.
Conditions (3.2)–(3.3) can be rephrased in terms of the

operator product expansion (OPE) between the local
currents

JaðzÞ ¼
X
n∈Z

Janz−1−n; ð3:4Þ

and the vertex operators Φj;m;m̄ðzÞ that create the states
jj; mi ⊗ jj; m̄i from the vacuum of excitations. That is,

J�ðzÞΦj;m;m̄ðwÞ¼
ð�j�1−mÞ

ðz−wÞ Φj;m�1;m̄ðwÞþ���; ð3:5Þ

J3ðzÞΦj;m;m̄ðwÞ ¼
m

ðz − wÞΦj;m;m̄ðwÞ þ � � � ð3:6Þ

and the antiholomorphic counterpart; here, the ellipses
stand for regular terms.
A convenient realization of this algebra is given by the

Wakimoto free field representation [20], which suffices to
realize the KM currents Ja, J̄a in terms of a free scalar field
ϕ with background charge, and a ðβ; γÞ ghost system;
namely

Jþ ¼ β; J− ¼ βγ2 þ 2

Q
γ∂ϕþ k∂γ;

J3 ¼ −βγ −
1

Q
∂ϕ

ð3:7Þ

with the free field correlators hϕðzÞϕðwÞi ¼ − logðz − wÞ,
hβðzÞγðwÞi ¼ 1=ðz − wÞ, and with the background charge
Q given by

Q ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

k − 2

r
: ð3:8Þ

Currents (3.7) can be shown to realize the ŝlð2Þk affine
algebra. The vertex operators Φj;m;m̄ in terms of the
Wakimoto representation take the form

Φj;m;m̄ ¼ γ−1−j−mγ̄−1−j−m̄e−Qðjþ1Þϕ ð3:9Þ

which can be seen to coincide with the large ϕ behavior of
normalizable fields in the SLð2;RÞ WZW model. These
operators realize the OPE (3.6).
In terms of Wakimoto free fields, the action of the

SLð2;RÞ WZW model reads

SSLð2;RÞ ¼
1

4π

Z
d2zð∂ϕ∂̄ϕ −QRϕþ β∂̄γ þ β̄∂ γ̄

− 4πMββ̄e−QϕÞ: ð3:10Þ

The last term in the Lagrangian is responsible for the
interaction, which becomes weak in the large ϕ region. In
these variables, large ϕ corresponds to the region far from
the black hole horizon. In this spacetime interpretation of
the coset, the constant M is associated to the black hole
mass. Its value can be set to 1 by shifting the zero-mode of
ϕ. This is why we said before that M is related to the value
of the dilaton at the horizon, namely δ logM ¼ −δΦ.
As mentioned above, in order to construct the theory on

the coset one has to impose that both J30 and J̄30 annihilate
the physical states. A practical way of implementing this
condition is to consider an extra free scalar field X and a
ðB;CÞ ghost system [17,19,21,22]. This allows to define
the Becchi-Rouet-Stora-Tyutin (BRST) charge operator

QUð1Þ ¼
I

dz CðJ3 þ i
ffiffiffiffiffiffiffiffi
k=2

p ∂XÞ; ð3:11Þ

and define the vertex operators for the theory on the coset
by dressing the operators Φj;m;m̄ as follows:

Vj;m;m̄ ¼ Φj;m;m̄ × e−i
ffiffi
2
k

p
ðmX−m̄ X̄Þ: ð3:12Þ

This operators have vanishing Uð1Þ charge and have the
right conformal dimension for the coset theory, namely
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Δ ¼ −
jðjþ 1Þ
k − 2

þm2

k
; Δ̄ ¼ −

jðjþ 1Þ
k − 2

þ m̄2

k
:

ð3:13Þ
Other operators of the coset theory that play a crucial role

in the discussion are
~Vl;l̄ ¼ ðJþÞlðJ̄þÞl̄Φlþl̄

2
−1;−lþl̄

2
;−lþl̄

2
: ð3:14Þ

These are the oscillator operators mentioned in the
Introduction. These have conformal dimension

Δ ¼ l −
ðlþ l̄Þðlþ l̄ − 2Þ

4ðk − 2Þ ;

Δ̄ ¼ l̄ −
ðlþ l̄Þðlþ l̄ − 2Þ

4ðk − 2Þ ;

ð3:15Þ

which coincides with the conformal dimension of a state of
momenta j ¼ ðk − l − l̄Þ=2 − 1, m ¼ ðk − lþ l̄Þ=2,
m̄ ¼ ðkþ l − l̄Þ=2; in other words, (3.14) has the same
observables that a state with winding number ω ¼ 1 and
momentum p ¼ l − l̄ around the θ direction. This is the
origin of the identification between states proposed in [9].
At the level of the spectrum, the operator (3.14) and the
operator Vðk−l−l̄Þ=2−1;ðk−lþl̄Þ=2;ðkþl−l̄Þ=2 exhibit similar
properties despite the fact that the spacetime interpretation
of each of them is quite different.
Operator (3.14) also admits a simple representation in

terms of the Wakimoto free fields; namely

~Vl;l̄ ¼ NlNl̄β
lβ̄l̄e−

Q
2
ðlþl̄Þϕ ð3:16Þ

whereNl is a normalization factor. This follows from (3.7).
This type of operator was originally considered in [19] in
the context of the stringy black hole. More recently, a
similar representation has been considered in relation to
string theory on AdS3 space [23–25]. According to [9],
operator (3.14) would be dual to the tachyonlike operator

Vk−l−l̄
2

−1;k−lþl̄
2

;kþl−l̄
2

¼ γl−kγ̄l̄−keQðlþl̄−k
2

Þϕ−i
ffiffi
k
2

p
ðX−X̄Þþiðl−l̄Þffiffiffi

2k
p ðXþX̄Þ;

ð3:17Þ

which represents a winding state. Notice that, in particular,
these two operators exhibit totally different behavior at
large ϕ. Aimed at verifying whether the identification
between oscillator and winding states discussed in [9] also
holds when one includes interactions, here we will calculate
string amplitudes that involve both operators (1.1) and
(1.2). Having the explicit representation (3.16)–(3.17) at
hand, we are in principle able to compute such amplitudes
explicitly.

IV. STRING AMPLITUDES

Let us begin by computing string amplitudes that involve
states associated to operators (3.16). One such an amplitude
is given by

Al1;j2;j3;…;jn ¼
Z Yn

j¼1

d2zj
VolPSLð2;CÞ

�
∶ðJþÞl1ðJ̄þÞl1Φl1−1;l1;l1ðz1Þ∶

Yn
i¼2

∶Vji;mi;m̄i
ðziÞ∶

�
ð4:1Þ

where the correlation function is defined for the theory
(3.10) on the Riemann sphere. However, this is not exactly
the correlator we have to take a look at. Correlator (4.1)
describes a process in which

P
n
i¼2 mi ¼

P
n
i¼2 m̄i ¼ 0,

while what we are interested in here is a process involving
~Vl1;l1 in which the conservation law is ratherP

n
i¼2mi ¼

P
n
i¼2 m̄i ¼ −k=2, meaning 1þPn

i¼2 ωi ¼ 0.
This is because the comparative analysis we want to
perform is between a correlator involving ~Vl1;l̄1 and a
correlator involving the state Vk=2−1−l1;k=2;k=2, and the latter
has winding number ω1 ¼ 1. Therefore, we have to modify
the correlator ~Al1;…;jn above in such a way that it allows for
the violation of the total winding number in one unit. As
already mentioned, in this scenario the violation of the total
winding number

P
n
i¼1 ωi does not represent any concep-

tual problem, as it can be understood in a simple way due to
the contractibility of the Euclidean black hole geometry.
However, from the technical point of view, computing
winding violating correlators is nontrivial. There is, how-
ever, a very interesting prescription for defining such

correlators proposed by Fateev and the brothers Zamolod-
chikov in an unpublished paper [14] (see also [26]). The
method proposed by FZZ amounts to introduce in the
3-point correlation function a fourth operator of conformal
dimension zero. Such operator is interpreted as a conjugate
identity operator, and in the Wakimoto free field repre-
sentation it reads

V−k
2
;k
2
;k
2
¼ γ−1γ̄−1e

ϕ
Q−i

ffiffi
k
2

p
ðX−X̄Þ: ð4:2Þ

One can easily verify that this operator satisfiesΔ ¼ Δ̄ ¼ 0
and is a good operator on the coset. The recipe [14] is to
introduce (4.2) inside the correlator and then remove the
factor that depends on its inserting point z4. That is to say,
the relevant 3-point function we are interested in is

~Al1;j2;j3 ¼ h ~Vl1;l1
ð0ÞVj2;m2;m̄2

ð1ÞV−k
2
;k
2
;k
2
ðz4ÞVj3;m3;m̄3

ð∞Þi;
ð4:3Þ
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which now satisfies the desired charge condition
m2 þm3 ¼ m̄2 þ m̄3 ¼ −k=2. Here, we have set z1 ¼ 0,
z2 ¼ 1, z3 ¼ ∞ in order to cancel the volume of the
conformal Killing group. Hereafter, we omit the symbols
:: of normal ordering.
A notable simplification follows from choosing in (4.3)

the kinematical configuration m2 ¼ m̄2 ¼ −1 − j2. This
renders the combinatorics of the Wick contraction of ðβ; γÞ
fields much simpler without representing a severe loss of
generality.
The particular correlators (4.3) has not been computed in

the literature. However, its calculation is accessible with the
techniques developed in [17,22–25,27], which amounts to
perform a Coulomb gas computation using Wakimoto
representation (3.9) and (3.16). It is a common misunder-
standing to think that such a computation would not yield
the exact result but merely an approximation valid at large
ϕ. In fact, it has been shown in Ref. [27] that this approach
actually reproduces the exact expressions [28]. The reason
why the Coulomb gas computation suffices to give the

exact result is that, despite the fact that treating the
interaction term in the action as a perturbation is only
valid at large ϕ, it turns out that the integration over the
zero-mode of ϕ in the path integral calculation yields a δ
function that singles out only one term in the expansion of
the exponentiation of the interaction. This implies that no
large ϕ approximation is actually needed. As a result, the
problem of solving the correlator reduces to that of
performing a multiple integrals of the Fateev-Dotsenko
type [29] and, after that, analytically continuing the result
to generic values of the external momenta. Such analytic
continuation is under control and it has been successfully
carried out in the literature in diverse examples. In the case
of correlator (4.3), the integral representation reads

Al1;j2;j3 ¼ Γð−sÞMsN2
l1
Γ2ð−j3 −m3ÞI sðl; j2Þ ð4:4Þ

with

I sðl1; j2Þ ¼
Z Ys

r¼1

d2wr

Ys
t¼1

�
jwtj− 4

k−2l1 j1 − wtj− 4
k−2ðj2þ1ÞYt−1

r¼1

jwr − wtj− 4
k−2

�
: ð4:5Þ

In this expression, the amount of integrals to be
performed is given by s ¼ k=2 − 2 − l1 − j2 − j3. This
means that, as it is written in (4.5), the expression only
make sense for l1 þ j2 þ j3 − k=2 ∈ Z<−1. However, this
restriction can be easily circumvented as we discuss below.
A remarkable property of operator (4.2) is that its OPE

with the interaction term in the action does not produce
singularities at z4 → wr. This is because the contribution of
the field ϕ and of the ghost system to the poles mutually
cancel. More precisely, we have

Vε−k
2
;k
2
;k
2
ðz4Þ ~V1;1ðwrÞ≃ jz4 − wrj− 4ε

k−2: ð4:6Þ

The relevant effect produced by the presence of operator
V−k=2;k=2;k=2 is that of affecting the integration over the
zero-mode of the fields in such a way that the charge
compensation condition becomes 1þ ω2 þ ω3 ¼ 0, as
desired.
It turns out that the multiple integral (4.5) can be solved

explicitly [29]. It yields

~Al1;j2;j3 ¼ Γð−sÞΓðsþ 1ÞΓ2ð−j3 −m3ÞN2
l1
πsMs Γ

sð1þ 1
k−2Þ

Γsð− 1
k−2Þ

Ys
t¼1

�
Γð− t

k−2Þ
Γð1þ t

k−2Þ
Γð− 2j3þ1þt

k−2 ÞΓð1 − 2l1−1þt
k−2 ÞΓð1 − 2j2þ1þt

k−2 Þ
Γð1þ 2j3þ1þt

k−2 ÞΓð2l1−1þt
k−2 ÞΓð2j2þ1þt

k−2 Þ

�
:

ð4:7Þ
As for (4.5), this expression only makes sense for values such that s ∈ Z>0. Amplitudes that correspond to other values of

s then require analytic continuation. In order to perform such a continuation, it is convenient to write the result in terms of
the special function ϒ, introduced by the brothers Zamolodchikov in Ref. [30] in the context of Liouville field theory.
Defining ϒ̂ðxÞ≡ϒðbxÞ with b−2 ¼ k − 2, the final expression for the correlator above reads

~Al1;j2;j3 ¼ −N2
l1
Γ2ð−j3 −m3Þ

 
−πMðk − 2Þ 1

k−2
Γð1þ 1

k−2Þ
Γð1 − 1

k−2Þ

!
k=2−2−l1−j2−j3

×
ϒ0ð0ÞΥ̂ð2l1Þ

ϒ̂ðl1 þ j2 þ j3 − k=2þ 2Þϒ̂ð−l1 þ j2 þ j3 þ k=2þ 1Þ

×
ϒ̂ð2j2 þ 2Þϒ̂ð2j3 þ kÞ

ϒ̂ðl1 − j2 þ j3 þ k=2 − 1Þϒ̂ðl1 þ j2 − j3 − k=2þ 1Þ ð4:8Þ
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where ϒ0ðxÞ ¼ d
dxϒðxÞ. Function ϒ̂ðxÞ has its zeros at x ¼

−mðk − 2Þ − n and x ¼ ðmþ 1Þðk − 2Þ þ ðnþ 1Þ with
m; n ∈ Z>0.
The next step in our analysis is to compute a second

correlator; namely, the correlator that is dual to (4.3) in the
sense of being defined by replacing the vertex ~Vl1;l1 by the
vertex Vk=2−1−l1;k=2;k=2. That is, we want to compute

Al1;j2;j3 ¼ hVk
2
−1−l1;

k
2
;k
2
ð0ÞVj2;−1−j2;−1−j2ð1ÞVj3;m3;m̄3

ð∞Þi:
ð4:9Þ

This can be done in a similar way as before. The integral
representation obtained in this case, however, presents

several difference with respect to that of ~Al1;j2;j3 . The
main differences are three: First, the factor in jwrj− 4

k−2l1 in
the integrand (4.5) now changes to jwrj 4

k−2ðl1−k=2Þ−2, with the
last −2 in the new exponent coming from the contraction of
the fields γ in (3.17), which are absent in the case of (3.16).
Second, the amount of integrals to be performed in the case
of Al1;j2;j3 is not s, but sþ 2l1 − kþ 1. In the third place,
the m-dependent multiplicity factor coming from the
combinatorics of the Wick contraction of the ðβ; γÞ fields
also changes.
Remarkably, despite all these differences, after a rela-

tively lengthy computation one obtains

Al1;j2;j3 ¼
Γð−j3 −m3ÞΓðl1 − kþ 1Þ
Γð1þ j2 þm3ÞΓðk − l1Þ

�
πMðk − 2Þ 1

k−2
Γð1þ 1

k−2Þ
Γð1 − 1

k−2Þ
�

−k=2−1þl1−j2−j3

×
ϒ0ð0Þϒ̂ð2l1 − kþ 1Þ

ϒ̂ðl1 þ j2 þ j3 − k=2þ 2Þϒ̂ð−l1 þ j2 þ j3 þ k=2þ 1Þ

×
ϒ̂ð2j2 þ 2Þϒ̂ð2j3 þ kÞ

ϒ̂ðl1 − j2 þ j3 þ k=2 − 1Þϒ̂ðl1 þ j2 − j3 − k=2þ 1Þ ; ð4:10Þ

which actually looks pretty similar to the result
(4.8), at least regarding the dependences in the ϒ̂
functions.
In order to further simplify the expressions, one may set

the value of the black hole mass as follows:

M ¼ 1

πðk − 2Þ
Γð− 1

k−2Þ
Γð 1

k−2Þ
; ð4:11Þ

which is easily achieved by shifting the zero mode of ϕ. We
already mentioned that the value of the dilaton at the
horizon controls the black hole mass.
Now, with the final expressions of both correlators

at hand, it only remains to make the comparative analysis.
Taking into account that Γð1þ z − nÞ ¼ ð−1ÞnΓð1þ zÞ
Γð−zÞ=Γðn − zÞ for z ∈ C, n ∈ Z≥0, and using the proper-
ties of ϒ function under shift of its argument in b�1 units,
one arrives to the formula

~Al1;j2;j3 ¼
N2

l1
ðk − 2Þ2Γ2ðk − l1Þ

ð2l1 − 1Þ
Γð2l1−1

k−2 ÞΓð2l1 − kþ 1Þ
Γð− 2l1−1

k−2 ÞΓðk − 2l1Þ
Al1;j2;j3 : ð4:12Þ

This means that, remarkably enough, the quotient
~Al1;j2;j3=Al1;j2;j3 happens to depend only on the momen-
tum l1, whose dependence can be absorbed in the
normalization of the vertices. All dependences of the other
momenta cancel out. This factorization implies, in particu-
lar, that the pole structure that allows to extract physical
information from the correlators, such as the fusion rules, is
the same in both cases. This manifestly shows that the
correspondence between states (1.1) and (1.2) gets realized
at the level of string amplitudes.

Let us notice that the relative factor in (4.12) is
reminiscent of the reflection coefficient of Liouville field
theory, usually denoted by RðαÞ, provided one identifies
α ¼ bl1 and b ¼ Q=

ffiffiffi
2

p
. We can see that this is actually

not an accident: So far, we have been concerned with
3-point functions. This is because 3-point functions are the
simplest nontrivial observables that one is able to compute
using (4.5) and express explicitly in terms of known
functions. However, there are interesting properties of
the n-point functions that can be read from the integral
representation even when a closed expression in terms of
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special functions is not available for n > 3. One such
property is the fact that the n-point functions involving
operators (3.16) in the coset theory admit to be expressed in

terms of the n-point function in Liouville field theory (LFT)
in a remarkably simple manner. The precise relation is
given by the formula

�Yn−1
i¼1

~Vli;liðziÞVln;0;0ð∞Þ
�

SLð2;RÞ
Uð1Þ

¼
Yn
j¼1

Γ2ðlj þ 1Þ
�Yn−1

i¼1

VL
αiðziÞVL

QL−αnð∞Þ
�

LFT
ð4:13Þ

with the dictionary

QL ¼ bþ 1

b
; b2 ¼ 1

k − 2
; αj ¼ blj;

Nlj
¼ Γðlj þ 1Þ;

ð4:14Þ

where VL
α ¼ e

ffiffi
2

p
αφ are the exponential primary operators of

Liouville field theory, the latter being defined by the
Liouville action

SL ¼ 1

4π

Z
d2zð∂φ∂̄φþQLRφ − 4πe

ffiffi
2

p
bφÞ: ð4:15Þ

From (4.14), one verifies that the conformal dimension of
the fields in the correlator on the left-hand side coincides
with the conformal dimension of Liouville theory,
Δ ¼ αðQL − αÞ. Relation (4.13) is reminiscent of the

Hþ
3 -Liouville correspondence [31]. A relation closely

related to (4.13) has been discussed in the context of string
theory on AdS3 space in [24,25]. This provides a tool to
study properties of string amplitudes in the Euclidean
black hole geometry in terms of the much better understood
Liouville CFT. In the case of the 3-point amplitudes,
here this led us to provide evidence for the identification
of states (1.1) and (1.2) at the level of the interacting
theory.
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