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We study the properties of a D6-brane probe in the Aharony-Bergman-Jafferis-Maldacena (ABJM)
background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature
and nonvanishing charge density, we show that the system undergoes a quantumphase transition inwhich the
topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored
background the phase transition is of second order and takes place when the charge density vanishes. We
determine the corresponding critical exponents and show that the scaling behavior near the quantum critical
point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase
transition is of first order and occurs at nonzero charge density. In this case we compute the discontinuity of
several physical quantities as functions of the number Nf of unquenched quarks of the background.
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I. INTRODUCTION

Quantum phase transitions are transitions that happen at
zero temperature and that are induced by quantum fluctua-
tions. They occur when some control parameters are varied
and tuned to critical values, at which the ground state of the
system undergoes a macroscopic rearrangement and the
energy levels develop a nonanalytic behavior on these
parameters. Although the quantum phase transitions occur
at zero temperature, they determine the behavior of the
system at low temperature in the so-called quantum critical
regime, which is a region of the phase diagram surrounding
the quantum critical point (see, e.g., [1,2] for reviews).
Strong coupling is a natal environment, where one

expects quantum phase transitions. Therefore, a natural
question is whether holography could be useful to search
and characterize new types of quantum critical matter.
Indeed, it is extremely important to develop new theoretical
models which could shed light on the nature of quantum
criticality and could serve to establish new paradigms to
describe these phenomena.
In recent years different holographic models displaying

quantum phase transitions have been studied in the liter-
ature (see, for example, [3–10]). We are especially inter-
ested in top-down models, for which the field theory dual is
clearly identified. In particular, we will deal with probe
flavor D-branes in a gravitational background that corre-
sponds, in the field theory side, to adding fields on the
fundamental representation of the gauge group which act as

charge carriers. When Nf flavor D-branes are added to a
geometry generated by Nc color branes with Nf ≪ Nc, we
can use the probe approximation and neglect the back-
reaction of the flavor branes on the geometry. This
precludes the fundamentals being dynamical, and they
are treated as quenched in the field theory.
The world volume dynamics of the flavor branes is

governed by an action which has two pieces. The first one
is the standard Dirac-Born-Infeld (DBI) action, which
contains a gauge field. The other one is the Wess-
Zumino (WZ) action which couples the brane to the
Ramond-Ramond potentials of the background. The effects
from the latter typically lead to far reaching consequences.
In this probe brane setup it is rather simple to generate a
configuration dual to a compressible state with nonzero
charge density [11–15]. Indeed, the charge density is dual
to a radial electric field on the world volume. When the
density is nonvanishing all consistent embeddings reach the
horizon, i.e., are black hole embeddings, whereas at zero
density there could also be Minkowski embeddings which
always stay outside the horizon.1 It was shown in [3] for the
D3–D7 and D3–D5 systems that a quantum phase tran-
sition takes place at zero temperature at the point where the
charge density vanishes, which corresponds to the chemical
potential being equal to the quark mass. This phase
transition is of second order and is realized in the holo-
graphic dual as a topology change of the embedding (from
the black hole to Minkowski). In [18] the critical exponents
of the transition were found, corresponding to a non-
relativistic scale invariant field theory with hyperscaling
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1Suitable WZ terms would allow regular Minkowski embed-
dings even at nonzero charge density [16,17].
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violation. These results were generalized in [19] to generic
Dp − Dðpþ 4Þ and Dp − Dðpþ 2Þ intersections.
Our aim is to study the quantum phase transitions of

brane probes in the gravity dual of the ABJM Chern-
Simons matter theory, especially in the Veneziano limit.
This is an UðNÞ ×UðNÞ Chern-Simons gauge theory in
2þ 1 dimensions with levels (k, −k) and bifundamental
fields transforming in the (N,N) and (N,N) representations
of the gauge group. This theory was proposed in [20] as the
low energy theory of N coincident M2-branes at a C4=Zk
singularity. When N and k are large, the theory admits a
supergravity description in the ten-dimensional type IIA
theory. The corresponding geometry is of the form
AdS4 × CP3 with fluxes (see [21–24] for reviews of several
aspects of the ABJM model).
The flavors in the ABJM theory are fields transforming

in the fundamental representations (N, 1) and (1, N) of
the gauge group. In the holographic dual these flavors are
introduced by means of D6-branes extended in AdS4 and
wrapping an RP3 cycle inside the CP3 internal manifold
[25,26]. In the probe approximation these holographic
quarks have been studied in [27–31]. Moreover, by using
the smearing technique when Nf is large, one can obtain
simple analytic geometries encoding the effects of dynami-
cal quarks in holography (see [32] for a review of this
general method).
In general, in order to obtain the gravity dual of a field

theory with unquenched flavor, one has to solve the
equations of motion of supergravity with brane sources.
If the flavor branes are localized, the sources have Dirac
δ-functions and the problem of solving the equations of
motion is extremely difficult. In the smearing approach this
difficulty is overcome by considering a continuous distri-
bution of flavor branes in the internal space. In many cases
this simplification allows one to find simple solutions of
the equations of motion of the gravity-plus-branes system.
The price one has to pay for this simplification is the
modification of the field theory dual. First of all, the
amount of supersymmetry preserved by the smearing
background is less than the one preserved by the localized
setup. Moreover, the smeared flavor branes are not coinci-
dent, and, therefore, the flavor symmetry for Nf flavors
is Uð1ÞNf rather than UðNfÞ. Finally, the fact that we are
superimposing branes with different orientations implies
that we are modifying the R-symmetry of the theory.
The geometry generated by the backreaction of massless

flavors in ABJM has been obtained in [33] at zero
temperature and generalized in [34] to nonvanishing
temperature. The backreaction affects the ABJM geometry
rather mildly since the metric differs from the unflavored
one by constant squashing factors which depend onNf. For
massive quarks this construction was carried out in [35]
(see also [36]), leading to bigger modifications of the
background geometry. In the case of the ABJM model with
massless flavors, the backreacted geometry is of the form

AdS4 ×M6, whereM6 is a squashed deformation of CP3.
Since the massless flavored metric continues to have an
anti–de Sitter factor, it is straightforward to find its finite
temperature deformation by simply including a blackening
factor in the anti–de Sitter part, without modifying the
internal metric. This is a particular simplification of the
ABJM model which does not occur in other theories (see
[37] for the analysis of the D3–D7 black hole background).
In [34] it was checked that the nonzero temperature
flavored ABJM background gives rise to a consistent
thermodynamics and passes some highly nontrivial con-
sistency tests.
In this paper we probe the ABJM background (with and

without massless dynamical quarks included) with a flavor
D6-brane corresponding to a massive quark. We study the
dynamics of this probe at zero temperature and nonvanish-
ing charge density. This dynamics is governed by the
DBI action, with the WZ term playing a fundamental role.
We are interested in the phase structure of the system as the
charge density is varied and, in particular, in analyzing
the phase transition that occurs when the charge density
is small.
We first study the probe in the unflavored ABJM

background. Working at zero temperature, we find a
continuous quantum phase transition at the point where
the charge density vanishes. This transition is similar to the
one that happens in the Dp − Dq systems in [18,19] and
corresponds to passing from a black hole to a Minkowski
embedding. However, the scaling behavior of the probe
near the critical point differs from the ones found in [18,19].
Indeed, we find that the corresponding critical exponents
are different and, in addition, our system displays multi-
plicative logarithmic corrections to the scaling behavior.
We also study the effects due to the presence of

unquenched dynamical quarks in the background. In
general, the inclusion of the flavor backreaction in holog-
raphy is quite challenging. However, in the ABJM model
the deformation of the geometry due to massless flavors
seems quite mild, and this gives us a unique opportunity to
explore the different flavor effects. What we found below is
that the influence on the phase transition of the unquenched
case is not so moderate as their effects of the geometry
could suggest. Indeed, we show below that the flavored
black hole to Minkowski phase transition occurs at nonzero
density and, moreover, it is of first order. The phase
diagram at zero temperature is summarized in Fig. 1.
We have been able to compute several quantities character-
izing this discontinuous transition, such as its latent heat
and the speed of sound close to the transition point.
The rest of this paper is organized as follows. In Sec. II

we review the ABJM background with unquenched flavor.
In Sec. III we study the embeddings of flavor D6-branes, at
both zero and nonzero temperature. Section IV is devoted to
the analysis of the zero temperature thermodynamics and
to the exploration of the quantum phase transitions in the
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unflavored and flavored cases. In Sec. V we determine the
charge susceptibility and diffusion constants at nonzero
temperature. In Sec. VI we analyze the fluctuations of the
probe and, in particular, we calculate the speed of its zero
sound mode. In Sec. VII we summarize our results and
discuss possible future research directions. The paper is
completed with two appendixes. In Appendix A we give
further details of the flavored background and of the
embeddings of the probes. Finally, in Appendix B we
carry out in detail the analysis of the fluctuations of the
D6-brane.

II. THE FLAVORED ABJM BACKGROUND

Let us review the geometry of the ABJM model with
smeared massless flavors at nonzero temperature [33,34].
Further details are provided in Appendix A. The
ten-dimensional metric, in string frame, has the form

ds2 ¼ L2ds2BH4
þ ds26; ð2:1Þ

where L is constant (the radius of curvature), ds2BH4
is the

metric of a black hole in four-dimensional anti–de Sitter,
given by

ds2BH4
¼ −r2hðrÞdt2 þ dr2

r2hðrÞ þ r2½dx2 þ dy2�; ð2:2Þ

and ds26 is the metric of the compact six-dimensional
manifold. In (2.2) the function hðrÞ is the blackening factor,

hðrÞ ¼ 1 −
r3h
r3

; ð2:3Þ

where rh is the horizon radius, which is proportional to the
temperature as T ¼ 3rh=4π. The six-dimensional internal
metric ds26 in (2.1) can be written as an S2-bundle over S4.
If ds2S4 is the standard metric of the unit round S4 and zi

(i ¼ 1, 2, 3), with
P

iðziÞ2 ¼ 1, are the components of a
unit three-vector which parametrize a unit two-sphere, then
the line element ds26 is

ds26 ¼
L2

b2
½qds2S4 þ ðdzi þ ϵijkAjzkÞ2�: ð2:4Þ

Here Ai are the components of the non-Abelian one-form
connection corresponding to an SUð2Þ instanton in S4, and
b and q are constant squashing factors which depend on the
numbers of flavors and colors (Nf and N) and on the
Chern-Simons level k through the combination,

ϵ̂≡ 3Nf

4k
¼ 3

4

Nf

N
λ: ð2:5Þ

The factor 3=4 is introduced for convenience. In the last
step we have introduced the ’t Hooft coupling λ ¼ N=k. In
terms of the deformation parameter ϵ̂, the squashing factors
q and b are

q ¼ 3þ 3

2
ϵ̂ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ̂þ 9

16
ϵ̂2

r
;

b ¼ 2q
qþ 1

: ð2:6Þ

Notice that in the unflavored ABJM background ϵ̂ ¼ 0 and
b ¼ q ¼ 1. In this case the internal metric (2.4) becomes
the canonical Fubini-Study metric of CP3 with radius 2L in
the so-called twistor representation, and (2.1) is the line
element of the ABJM model at a nonzero temperature
without flavors. The backreaction of the delocalized
D6-brane sources deforms the internal metric by squashing
the CP3 relative to the AdS4, and deforms internally the
CP3, preserving the S4 − S2 split. These flavor deforma-
tions are encoded in the q and b parameters. As functions of
ϵ̂, q, and b are monotonically increasing functions, which
approach the values q → 5=3 and b → 5=4 as ϵ̂ → ∞.
Moreover, the AdS4 radius L also depends on ϵ̂ as

L2 ¼ π
ffiffiffiffiffi
2λ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4 − 3bÞð2 − bÞb3
2ðb − 1Þð1þ ϵ̂Þ þ b

s
: ð2:7Þ

Notice that L2 ¼ π
ffiffiffiffiffi
2λ

p
in the unflavored geometry, which

means that the flavor effects on L are contained in the
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FIG. 1. The phase diagram of the unquenched ABJM model at
zero temperature separates two different domains. At high
enough chemical potential to quark mass ratios, the system is
in the so-called black hole phase, which corresponds to a metallic
behavior. The lower domain stands for the Minkowski phase,
where the system is gapped to charged excitations and resembles
an insulating phase. The two domains are separated by a curve of
first order phase transitions, whose location depends on the
amount of flavor in the background ϵ̂ ∝ Nf [see (2.5)] for a given
chemical potential. The curve ends at the second order critical
point in the quenched limit Nf → 0. Interestingly, the corre-
sponding critical exponents characterizing the continuous phase
transition exhibit multiplicative logarithmic corrections.
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second square root in (2.7). The complete solution of
type IIA supergravity with sources is endowed with
Ramond-Ramond (RR) two- and four-forms F2 and F4,
as well as with a constant dilaton ϕ (whose value depends
on N, Nf, and k). Their explicit expressions are given in
Appendix A.

III. PROBES ON THE FLAVORED ABJM

We are interested in analyzing the behavior of a flavor
D6-brane probe in the background described in Sec. II. This
flavor brane is extended along the AdS4 coordinates (xμ, r)
and wraps a compact three-dimensional submanifold of the
internal space. The precise embedding of this submanifold
in the flavored squashed CP3 can be found in Appendix A.
The induced metric on the world volume of the flavor
D6-brane is

ds27
L2

¼ r2½−hðrÞdt2 þ dx2 þ dy2� þ 1

r2

�
1

hðrÞ þ
r2θ02

b2

�
dr2

þ 1

b2
½qdα2 þ qsin2 α dβ2 þ sin2 θðdψ þ cos αdβÞ2�;

ð3:1Þ

where α, β, and ψ are angles taking values in the ranges
0 ≤ α < π, 0 ≤ β, ψ < 2π, and θ ¼ θðrÞ is an angle which
determines the profile of the probe brane. We want to deal
with a system with nonzero baryonic charge density.
Therefore, we should have a nonzero value of the tr
component of the world volume gauge field strength
F ¼ dA. Accordingly, we will adopt the following ansatz:

θ ¼ θðrÞ; A ¼ L2AtðrÞdt: ð3:2Þ

The D6-brane probe is governed by the standard
DBIþWZ action,

S ¼ SDBI þ SWZ; ð3:3Þ

where SDBI and SWZ are given by

SDBI ¼ −TD6

Z
M7

d7ζe−ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgþ FÞ

p
:

SWZ ¼ TD6

Z
M7

�
Ĉ7 þ Ĉ5 ∧ F þ 1

2
Ĉ3 ∧ F ∧ F

þ 1

6
Ĉ1 ∧ F ∧ F ∧ F

�
: ð3:4Þ

In (3.4) g is the induced metric on the world volume, and
the Ĉp’s are the pullbacks of the different RR potentials
of the background. In the flavored ABJM background
dF2 ≠ 0, and, therefore, the RR potential C1 is not well
defined. In this unquenched case one should work directly
with the equations of motion of the probe derived from S,

which contain the RR field strengths Fp (and do not contain
the potentials) (see [36]). Nevertheless, to determine the
embedding corresponding to the ansatz (3.2), only the term
with C7 in (3.4) is relevant (the explicit expression of C7

can be found in [33,34]).
We will use the following system of world volume

coordinates ζa ¼ ðxμ; r; α; β;ψÞ. After integrating over the
internal coordinates, we can write the action in the form

S ¼
Z

d3xdrL; ð3:5Þ

where L is the Lagrangian density of the probe, given by

L ¼ −N r2 sin θ
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2ð1 − A02
t Þ þ r2hθ02

q
− b sin θ − r cos θθ0

i
: ð3:6Þ

Here and in the following the prime denotes differentiation
with respect to r. In (3.6) N is a constant given by

N ¼ 8π2L7TD6e−ϕ

b4
q: ð3:7Þ

In the Lagrangian (3.6) the variable At is cyclic, and its
equation of motion can be integrated once as

r2 sin θ
A0
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − A02
t þ r2

b2 hθ
02

q ¼ d; ð3:8Þ

where d is a constant, which is proportional to the charge
density. This equation can be inverted to give

A0
t ¼

d
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r2hθ02

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4sin2θ

p : ð3:9Þ

According to the standard AdS=CFT dictionary the chemi-
cal potential μ is identified with the value of At at the UV,

μ ¼ Atðr → ∞Þ: ð3:10Þ

For a black hole embedding one can write an expression for
At as an integral over the radial variable r. Indeed, in this
case we integrate (3.9) with the condition Atðr ¼ rhÞ ¼ 0,
namely,

AtðrÞ ¼
d
b

Z
r

rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ~r2hθ02

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ~r4sin2θ

p d~r: ð3:11Þ

Then, it follows that the chemical potential μ for a black
hole embedding is
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μ ¼ d
b

Z
∞

rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r2hθ02

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4sin2θ

p dr: ð3:12Þ

Let us now write the equation of motion for θðrÞ,

∂r

�
r4h sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − A02
t þ r2

b2 hθ
02

q θ0
�

− br2 cos θ

"
ð3 − 2bÞ sin θ þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A02

t þ r2

b2
hθ02

s #

¼ 0: ð3:13Þ

Using (3.9) to eliminate A0
t, we can rewrite (3.13) as

∂r

�
r2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4sin2θ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r2hθ02

p θ0
�

− r2 cos θ sin θ

�
3 − 2bþ r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r2hθ02

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4sin2θ

p
�
¼ 0:

ð3:14Þ

Equation (3.14) must be solved numerically, except in
the case of vanishing temperature and density, where an
analytic supersymmetric solution is available [33]. All
solutions of (3.14) reach the UV with an angle which
approaches asymptotically the value θ ¼ π=2. Actually, for
large r the deviation of θ with respect to this asymptotic
value can be represented as

π

2
− θðrÞ ∼ m

rb
þ c
r3−b

þ…; ð3:15Þ

where b is the constant (depending on the flavor deforma-
tion parameter ϵ̂) defined in (2.6) andm and c are constants
related to the quark mass and the condensate, respectively.

The precise holographic dictionary for our probes has been
worked out in [34]. For our purposes it is sufficient to recall
that the physical quark mass mq is proportional to m

1
b.

This nontrivial exponent is related to the anomalous mass
dimension γm ¼ b − 1, which enters in the (holographic)
Callan-Zymanzik equation [38].
The different solutions of (3.14) are obtained by impos-

ing suitable boundary conditions at the IR. We will study
them in the next two subsections, starting with the
embeddings at zero temperature. There are three different
kinds of embeddings, sketched in Fig. 2. They are intro-
duced one by one in the following subsection.

A. Embeddings at zero temperature

Let us now consider Eq. (3.14) for T ¼ 0 (i.e., for
h ¼ 1). One can verify by numerical integration that (3.14)
admits a family of solutions in which the embeddings reach
the origin r ¼ 0 at any given value of θ0 ¼ θðr ¼ 0Þ,
quantities which we shall denote as initial angles. These
solutions are called black hole embeddings as they are
continuously connected with their T ≠ 0 counterparts.
Actually, one can solve (3.14) for h ¼ 1 in a power series
expansion near r ¼ 0 as

θðrÞ ¼ θ0 þ bð3 − 2bÞ sin θ0 cos θ0
6d

r2 þ…: ð3:16Þ

These solutions can be found numerically by imposing the
initial conditions θðr ¼ 0Þ ¼ θ0 and θ0ðr ¼ 0Þ ¼ 0.
The mass parameter m of the embedding (determined by
the value of rb cos θ at r → ∞) is related to the initial angle
θ0. Given the embedding, the chemical potential can be
obtained by evaluating the integral (3.12). When θ0 → π=2,
the mass approaches zero. In fact, the whole embedding
becomes trivial with constant angle. When θ0 → 0, on the
other hand, the embedding becomes increasingly spiky and
the corresponding chemical potential approaches the value

lim
θ0→0

μ ¼ m
1
b; ð3:17Þ

where the mass parameter is kept fixed.
We have verified the limit in (3.17) numerically. This

result can also be easily demonstrated analytically as
follows. Let us first introduce the Cartesian-like coordi-
nates (ρ, R), related to (θ, r) as

R ¼ rb cos θ; ρ ¼ rb sin θ: ð3:18Þ

In these coordinates the black hole embeddings start in the
IR at the origin R ¼ ρ ¼ 0 with a certain angle θ0 with
respect to the R axis, and they end at the UVat R ¼ m with
ρ → ∞ (see Fig. 4). If the initial angle θ0 is very small, the
embeddings are very spiky and approach the maximal value
R ¼ m very fast for very small values of the coordinate ρ.

FIG. 2. We sketch the three possible embeddings available in
the model at nonzero chemical potentials at nonvanishing mass
parameter at zero temperature. The leftmost profile corresponds
to Minkowski embeddings, where the D6-brane does not enter
the Poincaré horizon, displayed as the black dot. The middle
profile corresponds to that of a black hole embedding penetrating
the horizon, while the rightmost profile stands for D6-anti-D6-
brane embeddings. This figure is adapted from the one in [3], in
the context of a D3–D7 model, where a clean flat space
interpretation can be given.
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Instead of parametrizing the embedding as θ ¼ θðrÞ, it is
more convenient in this situation to represent it as
ρ ¼ ρðRÞ. It is then straightforward to demonstrate that
μ is given by the integral

μ ¼ d
b

Z
m

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdρdRÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðρ2 þ R2Þ1−1

b þ ρ2ðρ2 þ R2Þ1b
q dR: ð3:19Þ

For θ0 → 0 the coordinate ρ is very close to zero except
when R ≈m, and we can approximate the integral (3.19) by
taking ρ ≈ 0 in the integrand. We get

μ ≈
1

b

Z
m

0

R
1
b−1dR ¼ m

1
b; ð3:20Þ

in agreement with (3.17). For a fixed value of the mass
parameter m, the limiting value (3.17) corresponds to
sending d → 0. Actually, the dependence of μ on d for
fixed m can be obtained numerically by performing the
integral (3.12). The result is shown in Fig. 3, where we
notice an important difference between the unflavored and
flavored cases. Indeed, whenNf ¼ 0 the chemical potential
μ grows monotonically with d, starting from its minimal
value μ ¼ m at d ¼ 0. When d is large, the chemical
potential grows as μ ∝ d

1
2, which is the behavior expected in

a conformal theory in 2þ 1 dimensions. On the contrary,
when the backreaction of the flavors is added, μ decreases
for small values of d until it reaches a minimum at a
nonzero value of d, and then it grows and converges
eventually to the unflavored case. The presence of the
minimum in the μ ¼ μðdÞ curve means that the charge
susceptibility χ ¼ ∂d=∂μ diverges at d ≠ 0, signaling a

discontinuous phase transition at a nonzero density. Wewill
confirm this fact below.
The black hole embeddings considered above are not

the only possible ones. Indeed, there are also two other
configurations in which the brane does not reach the
r ¼ 0 origin. The so-called brane-antibrane embeddings
are characterized by the initial boundary conditions

θðr0Þ ¼
π

2
; θ0ðr0Þ ¼ ∞; ð3:21Þ

where r0 is the minimal value of r. In terms of the (ρ, R)
variables the brane is orthogonal to the ρ axis in the IR (at
ρ ¼ ρ0 ¼ rb0, R ¼ 0) and becomes parallel to the ρ axis as ρ
becomes large (see Fig. 4). Notice that dR=dρ diverges at
ρ ¼ ρ0, which indicates that the brane has a turnaround
point where the brane jumps to a second branch.
A third class of configurations is the so-called

Minkowski embeddings, in which the brane reaches the
R axis at some nonzero value of R, as shown in Fig. 4.
Because of charge conservation these embeddings are
consistent only if the density d is zero. When this is the
case there are analytic solutions which preserve some
amount of supersymmetry [33]. In terms of the (r, θ)
variables, these embedding are

cos θðrÞ ¼ m
rb

; ðd ¼ 0Þ: ð3:22Þ

Equivalently R ¼ m. Notice that in this case the minimal
value of r is r0 ¼ m

1
b. Moreover, when d vanishes, it

follows from (3.9) that A0
t ¼ 0 and, therefore, the gauge

field At is an arbitrary constant, which equals the chemical
potential μ. Thus, the SUSYembeddings (3.22) correspond
to d ¼ 0, with μ being a free parameter.
Notice that, in this zero temperature case, the mass

parameter m can be scaled out by a suitable change of the
radial variable followed by some redefinitions. Indeed,

0.5 1.0 1.5 2.0
d

1.0

1.5

2.0

2.5

FIG. 3. We plot the chemical potential μ as a function of the
density d for fixed quark mass. The continuous black curve
corresponds to the unflavored case (b ¼ 1), the dashed curve is
for b ¼ 1.1, while the dotted curve is for b ¼ 1.25 (correspond-
ing to ϵ̂ → ∞). All curves are for m ¼ 1. The continuous red
curve corresponds to the conformal D3–D5 system with massless
quarks, for which μ ¼ γd

1
2, with γ ¼ 1

4
ffiffi
π

p Γð1=4Þ2.

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5
R

FIG. 4. We depict the profiles of the three possible types of
embeddings in the (ρ, R) coordinates defined in (3.18) at zero
temperature. The topmost curve corresponds to the Minkowski
embedding, while the middle curve entering in the Poincaré
horizon corresponds to the black hole embedding. The bottom
curve stands for one of the branches of the brane-antibrane
embeddings.
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from (3.15) we conclude that m can be taken to be one if
one changes variables from r to ~r ¼ r=m

1
b. Then, it follows

from (3.12) thatm can be eliminated from this last equation
if d and μ are written in terms of the rescaled quantities ~d
and ~μ, defined as ~d ¼ d=m

2
b and ~μ ¼ μ=m

1
b.

In Sec. IV we will determine which of these three types
of embeddings at zero temperature is thermodynamically
favored. We will carry out this analysis by comparing
their thermodynamic potentials Ω in the grand canonical
ensemble.

B. Embeddings at finite temperature

As will become clear later, we need to extend some of
our analysis to small and nonzero temperatures. All three
types of embeddings, as discussed in the preceding section,
extend continuously to T ≠ 0. However, as our main
motivation in this work are the quantum critical phenom-
ena, we will restrict our attention in the black hole phase.
Let us thus only consider the black hole embeddings at
nonzero temperature. These embeddings reach the horizon
r ¼ rh with some angle θ ¼ θ0. Near r ¼ rh we can solve
(3.14) in powers of r − rh. The first two terms in this
expansion are

θðrÞ ¼ θ0 þ θ1ðr − rhÞ þ…; ð3:23Þ

where the constant θ1 is given by

θ1 ¼ b
cos θ0 sin θ0½br2h þ ð3 − 2bÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ r4hsin
2θ0

p �
3ðd2 þ r4hsin

2θ0Þ
rh:

ð3:24Þ

To get the full θðrÞ function we need to integrate numeri-
cally (3.14) with the initial condition at r ¼ rh given by
(3.24). Notice that (3.14) depends explicitly on rh through
the blackening factor h. It turns out that the horizon radius
rh can be scaled out by an appropriate change of variables
followed by a redefinition of the density d. Indeed, let us
define the reduced variable r̂ and density d̂ as

r̂ ¼ r
rh

; d̂ ¼ d
r2h

: ð3:25Þ

Then, it is readily verified that the embedding equation in
terms of r̂ is just (3.14) with rh ¼ 1 and d substituted by d̂.
Other quantities can be similarly rescaled. Indeed, let us
define μ̂ and m̂ as

μ̂ ¼ μ

rh
; m̂ ¼ m

rbh
: ð3:26Þ

It is straightforward to find an expression of μ̂ in terms of
the rescaled quantities

μ̂ ¼ d̂
b

Z
∞

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r̂2hðr̂Þðdθdr̂Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d̂2 þ r̂4sin2θ

p dr̂: ð3:27Þ

Notice also that the ratio m̂
1
b=μ̂ does not depend on rh,

m̂
1
b

μ̂
¼ m

1
b

μ
: ð3:28Þ

IV. ZERO TEMPERATURE THERMODYNAMICS

The zero-temperature grand canonical potential Ω is
given by minus the on-shell action of the probe brane,

Ω ¼ −Son−shell: ð4:1Þ

Notice that, as pointed out in [34], the on-shell action of our
ABJM system is finite and does not need to be regulated.
Indeed, the WZ term of the action serves as a regulator of
the DBI term, giving rise to consistent thermodynamics.
The explicit expression ofΩ at zero temperature is given by

Ω ¼ N
Z

∞

r0

r2 sin θ

�
r2 sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r2θ02

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4sin2θ

p

− b sin θ − r cos θθ0
�
dr: ð4:2Þ

Other thermodynamic properties at T ¼ 0 can be obtained
from (4.2). For example, the pressure P is just

P ¼ −Ω: ð4:3Þ

Moreover, we can evaluate Ω for the different embeddings
and determine the one that is favored at different values of
the chemical potential. One can verify by plugging (3.22) in
(4.2) that Ω ¼ 0 for the SUSY embeddings (3.22) which
have zero density d and arbitrary μ. In the case of the black
hole embeddings the situation varies greatly when the
backreaction is included. Indeed, for the unflavored back-
ground with b ¼ 1 the grand canonical potential of the
black hole embeddings is always negative and grows
monotonically as μ decreases toward its minimal value
μ↘m, where Ω ¼ 0 and d ¼ 0 (see Fig. 5, left). On the
contrary, in the flavored backgrounds with b > 1, the grand
canonical potential is negative for large values of μ and
vanishes for some μ ¼ μc which corresponds to a nonzero
density d ¼ dc (see Fig. 5, right). From this point on,
Ω ≥ 0, reaching a maximum positive value, which corre-
sponds to the minimum value of the chemical potential μ.
It is at this point where the black hole embedding ceases to
exist as it annihilates with another (unstable) black hole
embedding. This latter black hole branch is the one which
connects with the Minkowski embeddings at larger μ,
i.e., until the grand potential reaches the value Ω ¼ 0 when
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μ ¼ m
1
b and d ¼ 0. The grand canonical potential for the

brane-antibrane embeddings is always non-negative and
decreases monotonically as μ grows (μ ≤ m

1
b for these

embeddings). This structure in the (μ, Ω) plane is the well-
known swallowtail shape, typical of first-order phase
transitions.
From the numerical results displayed in Fig. 5 it is clear

that the black hole embeddings are thermodynamically
preferred for values of μ such that their grand canonical
potential Ωbh is negative. Moreover, when μ is such that
Ωbh > 0, the Minkowski embeddings (with d ¼ Ω ¼ 0) are
preferred. Notice also that the brane-antibrane configura-
tions are always thermodynamically disfavored. Therefore,
at μ ¼ μc such that ΩbhðμcÞ ¼ 0 there is a black hole–
Minkowski embedding phase transition. In Fig. 5 we see
that the nature of this quantum phase transition for the
unflavored model is very different from that of the back-
reacted background. Indeed, in the quenched unflavored
case we have a continuous second order phase transition in
which the density d vanishes in both phases at the transition
point μc ¼ m. In Sec. IVA we will study in detail this
quantum critical point, and we will characterize the scaling
of the different physical quantities near the transition.
In the unquenched flavored model the phase transition at

μ ¼ μc is discontinuous since d jumps from a nonzero
value in the black hole phase to d ¼ 0 in the Minkowski
phase. Therefore, we have a first-order phase transition, for
which we will determine the latent heat and other quantities
in Sec. IV B.
Once the grand canonical potential Ω is known, we can

determine other thermodynamic functions. Indeed, the
charge density ρch is given by

ρch ¼ −
∂Ω
∂μ : ð4:4Þ

By computing numerically the derivative in (4.4) at fixed
mass m, we have checked that ρch is related to d as

ρch ¼ N bd; ð4:5Þ

whereN is the normalization constant (3.7). Equation (4.5)
confirms our identification of the constant d. The energy
density ϵ can be obtained as

ϵ ¼ Ωþ μρch: ð4:6Þ

More explicitly, after using (4.2), (3.12), and (4.5), we have
the following integral expression for ϵ:

ϵ ¼ N
Z

∞

r0

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r2θ02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4sin2θ

p
− br2sin2θ − r3 sin θ cos θθ0

i
dr; ð4:7Þ

where r0 is the minimal value of r for the embedding.
In Fig. 6 we plot ϵ for black hole embeddings as a function
of μ, for both the quenched and the unquenched models.
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FIG. 5. We plot the grand canonical potential Ω as a function of the chemical potential μ for the unflavored (left) and flavored (right)
models. The black (red) curve corresponds to the black hole (brane-antibrane) embedding. The supersymmetric Minkowski embeddings
ΩðμÞ ¼ 0 we have represented with a blue curve on the horizontal axis. The curves for the flavored model on the right have been
obtained for b ¼ 1.25. All curves are with m ¼ 1.
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FIG. 6. We depict the internal energy ϵ as a function of the
chemical potential μ for the unflavored model (continuous curve)
and for the flavored model with b ¼ 1.1 (dashed curve) and b ¼
1.25 (dotted curve). In all the cases we have used m ¼ 1.
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We notice that the energy density in the quenched theory
grows monotonically with the chemical potential, starting
from the value ϵ ¼ 0 at the transition point at μ ¼ m.
On the contrary, when dynamical quarks are added to
the background, the function ϵbh is not monotonic and
becomes double-valued, with a point where ∂ϵ=∂μ ¼
μ∂ρch=∂μ blows up. This is, of course, consistent with
the results plotted in Fig. 3.
The speed of the first sound is defined as

u2s ¼
∂P
∂ϵ : ð4:8Þ

We evaluated numerically the derivative in (4.8) for black
hole embeddings by using (4.3) and (4.2). The results are
represented in Fig. 7, for both the quenched and the
unquenched cases. Again, they are very different in these
two cases. In the quenched model u2s is always non-
negative and decreases monotonically when m=μ varies
in the physical interval [0, 1]. In Fig. 7 (left) we compare u2s
for our quenched system with the corresponding values for
the D3–D5 model [18,19]. In the unquenched case u2s is not
monotonic and becomes negative for small μ, which again
signals a discontinuous phase transition.

A. The unflavored transition

We have shown above that the unflavored system
experiences a continuous phase transition at μ ¼ m and
T ¼ 0. In this section we look in more detail at the behavior
of the system near this quantum critical point. Accordingly,
let us define μ as

μ ¼ μ −m: ð4:9Þ

Clearly μ ¼ 0 is the location of the phase transition.
Therefore, we expect that the grand canonical potential
Ω behaves in a nonanalytic form near μ ¼ 0. We assume

that the system displays a scaling behavior near the critical
point. The goal of this section is to characterize this
behavior in terms of a set of critical exponents.
Let us consider a system with hyperscaling violation

exponent θ and dynamical exponent z in n spatial dimen-
sions (n ¼ 2 in our case). Recall that in such a system n − θ
is the effective number of spatial dimensions near the
critical point and z is the effective dimension of the energy.
Therefore ½μ� ¼ z and the energy densities (such as our
grand canonical potential Ω) should have a dimension
equal to n − θ þ z. These dimension assignments allow us
to write Ω near μ ¼ 0 as

Ω ≈ −Cμ
nþz−θ

z

����� log μ

m

����
�

−ζ
; ð4:10Þ

where C > 0 is a constant. Equation (4.10) is a generali-
zation of the expression written in [18] by including a
logarithmic multiplicative term with some new exponent ζ.
We show below that ζ cannot be zero in our ABJM case.
This is to be compared with the Dp − Dq systems studied
in [18,19], where ζ ¼ 0. Similar multiplicative logarithmic
corrections to the scaling has been studied in general in [39]
for thermal phase transitions.
The charge density ρch ¼ N d is obtained by computing

the derivative of Ω with respect to μ. We get

N d ≈ Cμ
n−θ
z

����� log μ

m

����
�

−ζ
�
1þ n − θ

z
þ ζ

j log μ
m j

�
: ð4:11Þ

Let us next consider, following [18], the nonrelativistic
energy density e, defined as

e ¼ ϵ − ρchm ¼ Ωþ ρchμ: ð4:12Þ

Near the critical point, e behaves as
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FIG. 7. Left: We plot u2s as a function of m=μ for the unflavored background (blue curve). We compare with the same quantity for the
D3–D5 model (black curve). Right: We plot u2s for different numbers of flavors: b ¼ 1 (blue line), b ¼ 1.1 (red line), and b ¼ 1.25
(purple line). In both plots the points are the values of the square of the speed of zero sound obtained by integrating the fluctuation
equations of Sec. VI; we conclude that the speeds of first and zero sounds agree in this model.
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e ≈ Cμ
nþz−θ

z

����� log μ

m

����
�

−ζ
�
n − θ

z
þ ζ

j log μ
m j

�
; ð4:13Þ

and it is very convenient to consider the ratio e=P, which is
given by

e
P
≈
n − θ

z
þ ζ

j log μ
m j

: ð4:14Þ

If θ ≠ n, the ratio e=P reaches a constant nonvanishing
value as μ → 0. This is clearly not the case for our system,
as illustrated in Fig. 8. Therefore, our system should have
θ ¼ 2. Moreover, the logarithmic exponent ζ should be
nonzero and positive.2 Therefore we get the following
leading behavior for our system:

ρch ¼ N d ≈
C

ðj log μ
m jÞζ

;
e
P
≈

ζ

j log μ
m j

: ð4:15Þ

We can also compute the speed of sound us near the critical
point by using (4.8), with the result

u2s ≈
1

ζ

μj log μ
m j

mþ μ

�
1 −

1

1þ ζ þ j log μ
m j

�
; ð4:16Þ

which, at leading order for μ → 0, becomes simply

u2s ≈
1

ζ

μ

m

���� log μ

m

����: ð4:17Þ

To determine the value of the exponent ζ we can fit the
numerical values of e=P and u2s near μ ¼ 0 to our scaling

expressions (4.15) and (4.17). Because of the logarithmic
behavior of these quantities, we must explore very small
values of μ. The results of these fits are shown in Fig. 8. The
values of ζ obtained are in the range ζ ¼ 0.65 − 0.75.
Let us determine, following the reasoning in [18], the

dynamical critical exponent z by dimensional analysis of
the dispersion relation of the sound mode, which is of the
form ω ¼ usk, where us is given by (4.17) near the critical
point μ ¼ 0. Actually, we will see that the speed of the zero
sound, obtained by numerical integration of the fluctuation
equations of the probe brane, is exactly the same as the one
determined by (4.8). Near μ ¼ 0 Eq. (4.17) tells us that
us ∼

ffiffiffi
μ

p
(times a logarithmic correction) and, since ½ω� ¼

½μ� ¼ z and ½k� ¼ 1, the dimensional consistency of the
dispersion relation ω ¼ usk implies that z ¼ 2. Therefore,
the values of θ and z for our system are

θ ¼ 2; z ¼ 2: ð4:18Þ

Notice that the value of θ just found differs from the value
θ ¼ 1 obtained in [18] for the conformal systems D3–D7
and D3–D5.
Let us now consider the system at small nonzero temper-

ature T ≪ μ. We can evaluate the free energy f at first order
in T by using the results of [40]. Notice that at T ¼ 0, f ¼ ϵ.
Indeed, according to the analysis of [40], whenT is small, the
free energy density can be approximated as

fðμ; m; TÞ ¼ fðμ; m; T ¼ 0Þ þ πρchT þOðT2Þ: ð4:19Þ

Then, the nonrelativistic free energy density is given by

fnon−relðμ; m; TÞ ¼ fðμ; m; TÞ − ρchm

¼ eþ πρchT þOðT2Þ: ð4:20Þ

Evaluating the right-hand side of (4.20) for our system, we
get the following expression of fnon−rel for small μ and T=μ:

0.000 0.002 0.004 0.006 0.008 0.010

0.06

0.08

0.10

0.12

0.14

0.002 0.004 0.006 0.008 0.010

0.01

0.02

0.03

0.04

0.05

0.06

FIG. 8. On the left we plot the numerical values of the ratio e=P as a function of μ̄. The continuous line is a fit to the expression written
in (4.15). The value of ζ obtained in this fit is ζ ¼ 0.65575. On the right we plot the values of u2s , together with the scaling expression
(4.17) for ζ ¼ 0.74689.

2Indeed, if we had θ ¼ 2 and ζ ¼ 0 the charge density d in
(4.11) would be nonzero at the critical point, which is not the case
for our ABJM system.
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fnon−relðμ; m; TÞ ¼ C
μ

ðj log μ
m jÞζþ1

�
ζ þ π

���� log μ

m

����Tμ þ…

�
:

ð4:21Þ

On general grounds, near a quantum phase transition the free
energy density should behave as a homogeneous function
when the control parameter μ and the temperature T are
scaled asμ → Λ

1
νμ,T → ΛzT, whereν is the critical exponent

that characterizes the divergence of the correlation length
ξ ∼ ðT − 0Þ−ν [2]. Equation (4.21) is the first order term of a
Taylor expansion of the scaling function of fnon−rel. If we
disregard the logarithmic terms in (4.21) (which give rise to
subleading termswhenμ → 0), it follows thatT andμ should
be scaled by the samepower of the scale factorΛ. Since z ¼ 2
for our system, we must have ν ¼ 1=2. Equation (4.21) also
determines the value of the exponent α which characterizes
the scaling of the heat capacity cV ∼ ðT − 0Þ−α. Indeed,
according to the analysis of [18] the global power of μ in
fnon−relðμ; m; TÞ should be 2 − α. If we ignore again the
logarithmic correction, this prescription gives α ¼ 1.
Therefore, we have obtained that the critical exponents α
and ν are given by

α ¼ 1; ν ¼ 1

2
: ð4:22Þ

Notice that the values of θ, z, α, and ν listed in (4.18)
and (4.22) satisfy the hyperscaling relation

ðnþ z − θÞν ¼ 2 − α; ð4:23Þ

with n ¼ 2.

B. The flavored transition

We already pointed out above that the black hole–
Minkowski phase transition with dynamical quarks in
the background is of first order. At the transition point
the density jumps from being d ¼ dc ≠ 0 in the black hole
phase to d ¼ 0 in the Minkowski phase. We have

investigated numerically the dependence of dc on ϵ̂ and
m, and we found that, with big accuracy, this dependence
can be written as

dcðϵ̂; mÞ ¼ ~dcðϵ̂Þm2
b ¼ ~dcðϵ̂Þm2

q; ð4:24Þ

where mq ¼ m
1
b is proportional to the physical mass of the

quarks. Notice that the dependence onmwritten in (4.24) is
the one expected by the rescaling argument given at the end
of Sec. III A.
The flavor dependent coefficient of the quadratic law

(4.24) grows monotonically with ϵ̂, as shown in Fig. 9
(left). For small ϵ̂ this growth is very fast and saturates very
quickly for larger values of the deformation parameter.
The phase transition occurs at a critical chemical

potential μc < m
1
b ¼ mq. Actually, the ratio μc=mq is a

decreasing function of ϵ̂ which approaches the value
μc=mq ≈ 0.9 when ϵ̂ → ∞. It is also interesting to point
out that the value of μ where the speed of sound vanishes
(see Fig. 7) corresponds to the turning point of Ω as a
function of μ for a black hole embedding, i.e., to the
minimum value of μ for such embeddings. The phase
transition occurs for a value of μ close to its lowest value
where u2s is still positive. Moreover, it follows from the

above discussion that μc ∼ d
1
2
c.

We also studied the latent heat of the phase transition,
i.e., the difference Δϵ of the internal energy of the two
phases. Notice that, as Ω ¼ 0 in both phases at the
transition point and ρch ¼ 0 in the Minkowski phase, Δϵ
is simply obtained by evaluating μρch at the black hole side
of the transition,

Δϵ ¼ ðμρchÞbh: ð4:25Þ

The behavior of this quantity with the number of flavors
when m ¼ 1 is displayed in Fig. 9 (right). We notice that
the latent heat resembles the behavior of the critical density.
We have also verified that Δϵ grows with the quark mass
as Δϵ ∼m3

q ¼ m
3
b.
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FIG. 9. Left: We plot the function ~dcðϵ̂Þ introduced in (4.24) atm ¼ 1. Right: We depict the latent heatΔϵ form ¼ 1 as a function of ϵ̂.
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Most of the figures that we have presented above have
been produced usingm ¼ 1. It is, however, simple to obtain
the results for any value of m by using the rescaling
argument presented above. Indeed, one can readily show
that the different quantities scale with mq ¼ m

1
b as

ϵ ∼ Ω ∼m3
q; μ ∼mq; d ∼m2

q: ð4:26Þ

We have checked that this behavior is confirmed by our
numerical results.

V. CHARGE SUSCEPTIBILITY
AND DIFFUSION CONSTANT

Let us now consider the system at nonzero temperature
and compute the charge susceptibility, which is defined as

χ ¼ ∂ρch
∂μ : ð5:1Þ

Taking into account that the charge density ρch is related to
d as ρch ¼ N bd (4.5), we can rewrite this last expression as

χ−1 ¼ 1

Nb
∂μ
∂d : ð5:2Þ

We now evaluate explicitly the derivative in (5.2) as

∂μ
∂d ¼

Z
∞

rh

∂A0
t

∂d dr: ð5:3Þ

The derivative inside the integral in (5.3) can be computed
directly. We get

∂A0
t

∂d ¼
ffiffiffiffi
Δ

p

b
r2 sin θ

d2 þ r4sin2θ

�
1 − d

�
cot θ

∂θ
∂d −

r2hθ0

Δ
∂θ0
∂d

��
;

ð5:4Þ

where Δ is defined as

Δ≡ b2ð1 − A02
t Þ þ r2hθ02 ¼ r4sin2θðb2 þ r2hθ02Þ

d2 þ r4sin2θ
: ð5:5Þ

Thus, the charge susceptibility can be written in the form

χ−1 ¼ 1

N

Z
∞

rh

dr

ffiffiffiffi
Δ

p

b2
r2 sin θ

d2 þ r4sin2θ

×
�
1 − d

�
cot θ

∂θ
∂d −

r2hθ0

Δ
∂θ0
∂d

��
: ð5:6Þ

The charge diffusion constant D can be related to the
charge susceptibility and to the direct current (DC) con-
ductivity σ by the Einstein relation,

D ¼ σχ−1: ð5:7Þ

The value of σ can be obtained from the two-point
correlators of the transverse currents. This calculation is
performed in detail in Appendix B. Alternatively, σ can be
computed by employing the Karch-O’Bannon method [41],
as was done for the ABJM model in [36]. The results
obtained by these two methods agree and are given by

σ ¼ N
b
r2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4hsin

2θh

q
: ð5:8Þ

We can now plug (5.6) and (5.8) into the right-hand side of
(5.7) to get the diffusion constant D. The final result is
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FIG. 10. We plot the rescaled diffusion constant D̂ ¼ rhD as a function of the ratio of the mass and the chemical potential. Left: We
plot the values of D̂ for the unflavored theory for different values of the rescaled density d̂ ¼ d=r2h. The values of d̂ in this plot are d̂ ¼ 1,
10, 100, 1000 (bottom up). Right: We plot the values of D̂ for d̂ ¼ 10 and for different numbers of flavors: b ¼ 1 (blue line), b ¼ 1.1
(red line), and b ¼ 1.25 (purple line), inside-out. The continuous curves are obtained by the Einstein relation, and the points correspond
to the diffusive fluctuation modes of the probe.
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D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4hsin

2θh
p

br2h

Z
∞

rh

dr
r2 sin θ

ffiffiffiffi
Δ

p

d2 þ r4sin2θ

×

�
1 − d

�
cot θ

∂θ
∂d −

r2hθ0

Δ
∂θ0
∂d

��
: ð5:9Þ

In the case of massless quarks, the embedding is just
θ ¼ const ¼ π=2 and the integral (5.9) can be evaluated in
analytic form. We get

Dm¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4h

p
r3h

F

�
3

2
;
1

2
;
5

4
;−

d2

r4h

�
: ð5:10Þ

In the general case of massive quarks we have evaluated
(5.9) numerically for the unflavored and flavored back-
grounds as a function of the chemical potential. The results
of these calculations are displayed in Fig. 10. In the
unflavored background D is always non-negative and
vanishes when μ ¼ m (see Fig. 10, left). In contrast, when
Nf ≠ 0, the diffusion constant is maximal for a large
chemical potential [and given by the massless value
(5.10)] and becomes negative after μ reaches its minimal
value, which means that the system becomes unstable and
that the first-order phase transition at T ¼ 0 survives at a
nonzero temperature. In the next section we obtain the
diffusion constant by looking at the fluctuation modes of
the probe in the hydrodynamical regime. The correspond-
ing values of D are also plotted in Fig. 10, where we notice
that they agree perfectly with the values found above by
using the Einstein relation.

VI. FLUCTUATIONS

Wenowwant to carry out a dynamic (i.e., time-dependent)
study of our system, to complement the static analysis
performed so far. Accordingly, let us consider the generic
T ≠ 0 background and let us allow the probe brane to
fluctuate around the black hole embeddings described in
Sec. III. In general, the equations of motion of these
fluctuations are very complicated since the different fluc-
tuationmodes are coupled. However, there are certainmodes
that can be decoupled from the rest, and, therefore, they
constitute a consistent truncation of the general system of
equations. In this sectionwewill study one of these restricted
sets of fluctuations, which involves the gauge field A and the
transverse scalar θ. These fields take the form

A ¼ L2½AtðrÞdtþ atðt; x; rÞdt
þ axðt; x; rÞdxþ arðt; x; rÞdr�;

θ ¼ θðrÞ þ λðt; x; rÞ; ð6:1Þ
where at, ax, ar, and λ are the first-order perturbations. One
can check that the ansatz (6.1) is indeed a consistent
truncation of the equations of motion. These truncated
equations can be derived from a second order Lagrangian
density Lð2Þ, which is derived in detail in Appendix B.
The expression for Lð2Þ is

Lð2Þ ¼ −N r2 sin θ
ffiffiffiffi
Δ

p �
1

4
GnmGpqfmqfnp

þ L2

2b2

�
1 −

r2hθ02

Δ

�
Gmn∂mλ∂nλ

þ
��

b −
3

2

�
sin θffiffiffiffi
Δ

p þ r2hθ02 − Δ
2sin2θΔ

�
λ2

−
d2θ02

2b2r4sin2θΔ
ð∂tλÞ2 þ

dθ0

br2 sin θ
ffiffiffiffi
Δ

p Gmn∂mλfnt

þ bd cot θ

L2r2 sin θ
ffiffiffiffi
Δ

p λftr

�
; ð6:2Þ

whereGmn is the open stringmetric defined in (B3),fmn is the
field strength for am (f ¼ L2da), andΔ is given by (5.5). Let
us now write the different equations of motion which can be
derived from the total Lagrangian (6.2). The nonzero values
ofGmn arewritten in (B5). First of all,wewrite the equation of
motion for ar (in the ar ¼ 0 gauge),

b2 þ r2hθ02

hΔ
∂ta0t

− ∂xa0x −
d

b sin θ
ffiffiffiffi
Δ

p
�
θ0∂tλ

0 −
Δ
r2h

cot θ∂tλ

�
¼ 0:

ð6:3Þ
The equation of motion for at is

∂r

�
b2r2 sin θ

Δ3
2

ðb2 þ r2hθ02Þa0t þ db

�
cot θλ −

r2hθ0

Δ
λ0
��

þ sin θðb2 þ r2hθ02Þ
r2h

ffiffiffiffi
Δ

p ∂xð∂xat − ∂taxÞ −
dθ0

br2
∂2
xλ ¼ 0;

ð6:4Þ
while the equation of motion for ax becomes

∂r

�
b2r2h sin θffiffiffiffi

Δ
p a0x

�
þ sin θðb2 þ r2hθ02Þ

r2h
ffiffiffiffi
Δ

p

× ∂tð∂xat − ∂taxÞ −
dθ0

br2
∂t∂xλ ¼ 0: ð6:5Þ

Finally, the equation of motion for the scalar λ is

∂r

�
r2 sin θhffiffiffiffi

Δ
p

�
r2
�
1 −

r2hθ02

Δ

�
λ0 þ bdθ0

sin θ
ffiffiffiffi
Δ

p a0t

��

þ bd cot θa0t þ
dθ0

br2
∂xð∂xat − ∂taxÞ þ r2 sin θ

ffiffiffiffi
Δ

p

×

�
ð3 − 2bÞ sin θffiffiffiffi

Δ
p þ Δ − r2hθ02

sin2θΔ

�
λ

þ sin θ

b2
ffiffiffiffi
Δ

p
�ðb2 þ r2hθ02Þðr2hθ02 − ΔÞ

hΔ
−

d2θ02

r2sin2θ

�

× ∂2
t λþ

sin θ
ffiffiffiffi
Δ

p

b2

�
1 −

r2hθ02

Δ

�
∂2
xλ ¼ 0: ð6:6Þ
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Let us next Fourier transform the gauge field and the scalar to
momentum space as

aνðr; t; xÞ ¼
Z

dωdk
ð2πÞ2 aνðr;ω; kÞe

−iωtþikx;

λðr; t; xÞ ¼
Z

dωdk
ð2πÞ2 λðr;ω; kÞe

−iωtþikx; ð6:7Þ

and define the electric field E as the following gauge-
invariant combination:

E ¼ kat þ ωax: ð6:8Þ

Then, the equation of motion for ar in momentum space is

b2 þ r2hθ02

hΔ
ωa0t þ ka0x −

ωd

b sin θ
ffiffiffiffi
Δ

p
�
θ0λ0 −

Δ
r2h

cot θλ

�
¼ 0: ð6:9Þ

We now combine this last equation with the definition of E.
We get a0t and a0x as functions of E and λ,

a0t ¼
khΔ

Δhk2 − ðb2 þ r2hθ02Þω2
E0

−
ω2hd

ffiffiffiffi
Δ

p

b½Δhk2 − ðb2 þ r2hθ02Þω2� sin θ

×
�
θ0λ0 −

Δ
r2h

cot θλ
�
;

a0x ¼
−ðb2 þ r2hθ02Þω

Δhk2 − ðb2 þ r2hθ02Þω2
E0

þ ωkhd
ffiffiffiffi
Δ

p

b½Δhk2 − ðb2 þ r2hθ02Þω2� sin θ

×

�
θ0λ0 −

Δ
r2h

cot θλ

�
: ð6:10Þ

After using these equations, it is easy to check that (6.4)
and (6.5) become equivalent and equal to the following
differential equation for the electric field E:

∂r

�
b2r2h

ðb2 þ r2hθ02Þω2 − Δhk2

×

�
sin θffiffiffiffi
Δ

p ðb2 þ r2hθ02ÞE0 −
kdh
b

�
θ0λ0 −

Δ
r2h

cot θλ

���

þ sin θðb2 þ r2hθ02Þ
r2h

ffiffiffiffi
Δ

p E −
dθ0

br2
kλ ¼ 0: ð6:11Þ

Let us now write the equation of motion for the scalar field λ
in momentum space as

0 ¼ ∂r

�
r2 sin θhffiffiffiffi

Δ
p

�
r2
�
1 −

r2hθ02

Δ

�
λ0 þ bdθ0

sin θ
ffiffiffiffi
Δ

p a0t

��

þ bd cot θa0t − k
dθ0

br2
Eþ r2 sin θ

ffiffiffiffi
Δ

p

×
�
ð3 − 2bÞ sin θffiffiffiffi

Δ
p þ Δ − r2hθ02

sin2θΔ

�
λ

− ω2
sin θ

b2
ffiffiffiffi
Δ

p
�ðb2 þ r2hθ02Þðr2hθ02 − ΔÞ

hΔ
−

d2θ02

r2sin2θ

�
λ

− k2
sin θ

ffiffiffiffi
Δ

p

b2

�
1 −

r2hθ02

Δ

�
λ; ð6:12Þ

where it should be understood that a0t is given by the first
equation in (6.10). The fluctuation equations (6.11)
and (6.12) depend explicitly on the horizon radius rh through
the blackening factor h. This dependence can be eliminated
by performing the familiar rescaling of the radial variable and
of the different quantities appearing in the equations. Indeed,
let us rescale the radial variable r and the density d as in
(3.25). Moreover, we also define the rescaled frequency and
momentum as

ω̂ ¼ ω

rh
; k̂ ¼ k

rh
: ð6:13Þ

Then, one can easily verify that the resulting equations of
motion are independent of rh if the fieldsE and λ are rescaled
appropriately. Actually, since only the relative power of rh in
these two fields matters, we can decide not to rescale the
electric fieldE. The rescaling of the scalar λ that allows us to
eliminate rh is

λ̂ ¼ r2hλ: ð6:14Þ

The resulting equations of motion are just (6.11) and (6.12)
with rh ¼ 1 and with all quantities replaced by their hatted
counterparts.
The collective excitations of the brane system are dual to

the quasinormal modes of the probe. The latter can be
obtained by solving (6.11) and (6.12) for low ω and k by
imposing infalling boundary conditions at the horizon and
the vanishing of the source terms at the UV. At low
temperature, in the so-called collisionless quantum regime,
the dominant excitation is the holographic zero sound
[42,43] (see also [44–49]), whose dispersion relation has
the form

ω̂ ¼ �csk̂ − iΓðk̂; d̂Þ: ð6:15Þ

In (6.15) cs is the speed of zero sound and Γ is the
attenuation. We have integrated numerically the fluctuation
equations when d̂ is large (i.e., at low temperature), and we
have found the value of cs, both for the unflavored and the
flavored backgrounds. The main conclusion from this
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calculation is that cs is equal to the speed of the first sound
us [given by (4.8)]. As shown in Fig. 7, cs reaches its
maximal value (c2 ¼ 1=

ffiffiffi
2

p
) when m=μ ¼ 0, where the

system is conformally invariant. In the unflavored case cs is
always positive and vanishes at the quantum critical point at
μ ¼ m (see Fig. 7, left). When dynamical quarks are
included cs becomes imaginary when μ reaches its minimal
value, which occurs when the Minkowski embeddings are
thermodynamically favored.
At higher temperature (i.e., with small d̂ ) the system

enters into the hydrodynamic diffusive regime. The dom-
inant mode in this case has purely imaginary frequency and
a spectrum of the form

ω̂ ¼ −iD̂k̂2; ð6:16Þ

where D̂ is the rescaled diffusion constant,

D̂ ¼ rhD: ð6:17Þ

As in the zero sound case, this dynamic calculation of the
diffusion constant yields the same result as the static one.
Indeed, the results obtained by numerical integration of
(6.11) and (6.12) coincide with the ones obtained from the
Einstein relation (5.9), as shown in Fig. 10.
Let us finish this section with the following observation.

A careful reader would have expected some discussion on
the possible instability as the WZ action has a term
C1 ∧ F ∧ F ∧ F which is the source of striping via a
generic mechanism introduced in [50]. Indeed, the occur-
rence of tachyonic fluctuations have been confirmed in
similar brane models [43,49], with the subsequent con-
struction of the striped ground state [51]. In the current
work, we analyzed the fluctuations of the transverse gauge
field, where such an instability is expected. In this sector,
one needs to analyze the coupled fluctuations of the internal
gauge field a and the transverse Minkowski gauge field ay
at nonvanishing momentum. The corresponding equations
of motion are presented in Appendix B. 1. While we did see
the precursor of the instability, a purely imaginary mode
first ascending toward the upper half of the complex ω
plane and then descending as a function of k, we were
unsuccessful in finding parameter values for which case the
mode would have actually become unstable. We expect that
in the case in which an internal flux is turned on at the
unperturbed level, where the contribution of the pullback of
Ĉ1 at the background level is nonvanishing, the relevant
WZ term can become sizable and thus imply striping in
some range of parameters.

VII. SUMMARY AND OUTLOOK

In this paper we studied the phase diagram of a D6-brane
probewith nonvanishing chargedensity in a backgrounddual
to the ABJM Chern-Simons matter theory with dynamical

massless flavors at zero temperature. We analyzed the phase
transition between black hole andMinkowski embeddings at
zero temperature and nonvanishing chemical potential. This
transition is a holographic model of a conductor-insulator
phase transition between a gapless (black hole) phase and a
gapped (Minkowski) phase.
In the unflavored background we found that this tran-

sition occurs when the charge density vanishes and is of
second order. Moreover, we were able to characterize the
scaling behavior of the probe near the critical point.
Interestingly, we found logarithmic multiplicative correc-
tions. In the background with dynamical quarks the
transition of the probe is of first order and takes place
when the density is nonzero. Therefore, we have shown
that, even if the change of the metric due to the back-
reaction to the flavor is seemingly mild, the physical effects
are very important.
It is interesting to compare our results with the one

corresponding to the (2þ 1)-dimensional D3–D5 intersec-
tion [3,18]. When the mass m of the quarks is zero, the
gravitational descriptions of both systems are equivalent
and have the same thermodynamic quantities. However, for
nonconformal embeddings with m ≠ 0, the ABJM probe
action gets a nontrivial contribution from the Wess-Zumino
term. This term is responsible for the different critical
behaviors of the systems even in the absence of backreaction.
Let us now discuss some possible extensions of our

work. First of all, it would be interesting to extend our study
of the Minkowski–black hole embedding phase transition
to nonzero temperature, in order to completely determine
the phase diagram of the model. In the absence of the
chemical potential μ ¼ 0, this analysis was performed in
[34]. Another possible generalization would be to consider
the case of massive dynamical quarks. The supergravity
solution of ABJM with massive unquenched quarks at zero
temperature was constructed in [35]. This solution contains
a scale (the mass of the sea quarks), and it would be very
interesting to explore how it affects the results found here.
Turning on a suitable Neveu-Schwarz (NSNS) flat B

field in the ABJM supergravity solution, we get the so-
called ABJ background, which is dual to a Chern-Simons
matter theory with gauge group UðN þMÞ × UðNÞ [52].
The B field breaks parity in 2þ 1 dimensions. The
embedding of flavor brane probes in the ABJ background
has been analyzed in [36], and the relation to the quantum
Hall effect was doped out. It would be interesting to
analyze possible quantum phase transitions in this ABJ
system.
One of the main motivations of our work was the

analysis of the effects of the dynamical quarks in the phase
diagram of holographic compressible matter. We achieved
this objective only partially since our backreacted back-
ground did not include the effect of the charge density on
the flavor brane. It is tempting to speculate that the smeared
background at nonzero charge density would undergo a
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quantum phase transition similar to the one we found here.
On general grounds, one would expect having a Lifshitz
geometry in the IR of such a background. Indeed, this is
precisely what happens in the geometry recently found in
[53], corresponding to an intersection of color D2-branes
and flavor D6-branes. The study of the quantum phase
transitions, as well as the collective excitations of the flavor
brane, in this background is of great interest.
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APPENDIX A: MORE ON THE BACKGROUND

In this appendix we write in detail, following [33,34],
the solution of type IIA supergravity with sources that
corresponds to the ABJM theory with smeared flavor
branes. Let us begin by introducing three SUð2Þ left-
invariant one-forms ωi (i ¼ 1, 2, 3) which satisfy
dωi ¼ 1

2
ϵijkωiωk. We will use the ωi’s, together with a

new angular coordinate α, to parametrize the line element
of the four-sphere S4 in (2.4). We have

ds2S4 ¼ dα2 þ sin2 α
4

½ðω1Þ2 þ ðω2Þ2 þ ðω3Þ2�; ðA1Þ

where 0 ≤ α < π. The SUð2Þ instanton one-forms Ai which
fiber the S2 over the S4 in (2.4) can be written in these
coordinates as

Ai ¼ − sin2
�
α

2

�
ωi: ðA2Þ

Let us next parametrize the zi coordinates of the S2 in (2.4)
by means of two angles θ and φ (0 ≤ θ < π, 0 ≤ φ < 2π),
namely,

z1 ¼ sin θ cosφ; z2 ¼ sin θ sinφ; z3 ¼ cos θ:

ðA3Þ

Then, one can easily prove that the S2 part of the metric
(2.4) can be written as

ðdxi þ ϵijkAjzkÞ2 ¼ ðE1Þ2 þ ðE2Þ2; ðA4Þ

where E1 and E2 are the following one-forms:

E1 ¼ dθ þ sin2
�
α

2

�
½sinφω1 − cosφω2�;

E2 ¼ sin θ
�
dφ − sin2

�
α

2

�
ω3

�

þ sin2
�
α

2

�
cos θ½cosφω1 þ sinφω2�: ðA5Þ

Thus, the internal metric (2.4) can be written as

ds26 ¼
L2

b2

�
q2dα2 þ q2sin2α

4
½ðω1Þ2 þ ðω2Þ2 þ ðω3Þ2�

þ ðE1Þ2 þ ðE2Þ2
�
: ðA6Þ

The flavored ABJM background also has nonvanishing
values of the RR two-forms F2 and F4. In order to
write down their expressions, let us first rotate the ωi’s
by the two S2 angles ðθ;φÞ. We define three new one-forms
Si (i ¼ 1, 2, 3) as

S1 ¼ sinφ ω1 − cosφ ω2;

S2 ¼ sin θ ω3 − cos θðcosφ ω1 þ sinφ ω2Þ;
S3 ¼ − cos θ ω3 − sin θðcosφ ω1 þ sinφ ω2Þ: ðA7Þ

Next, we define the one-forms Sα and Si as

Sα ¼ dα; Si ¼ sin α
2

Si; ði ¼ 1; 2; 3Þ; ðA8Þ

in terms of which the metric of the four-sphere is just
ds2S4 ¼ ðSαÞ2 þP

iðSiÞ2. With these definitions, we can
write the RR two-form F2 for the flavored background as

F2 ¼
k
2
½E1 ∧ E2 − ð1þ ϵ̂ÞðSα ∧ S3 þ S1 ∧ S2Þ�; ðA9Þ

where k is the Chern-Simons level. It is important to notice
that the two-form F2 in (A9) is not closed. Indeed, one
can check that dF2 ¼ 2πΩ, where Ω is the following
three-form:

Ω ¼ ϵ̂
k
4π

½E1 ∧ ðSξ ∧ S2 − S1 ∧ S3Þ
þ E2 ∧ ðSξ ∧ S1 þ S2 ∧ S3Þ�; ðA10Þ

which does not vanish unless ϵ̂ ¼ 0, i.e., when Nf ¼ 0.
This violation of the Bianchi identity for F2 is due to the
presence of delocalized flavor D6-branes (Ω is the so-called
smearing form). The solution is completed by a constant
dilaton ϕ given by
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e−ϕ ¼ b
4

1þ ϵ̂þ q
2 − q

k
L
; ðA11Þ

and a RR four-form F4 whose expression is

F4 ¼
3k
4

ð1þ ϵ̂þ qÞb
2 − q

L2ΩBH4
; ðA12Þ

where Ω4 is the volume form of the four-dimensional black
hole (2.2).
The flavor D6-branes are extended along the four

directions of AdS4 and wrap a compact three-cycle inside
the internal manifold. In order to parametrize this internal
cycle, let us represent the forms ωi in terms of three angular
coordinates ðθ̂; φ̂; ψ̂Þ as

ω1 ¼ cos ψ̂ dθ̂ þ sin ψ̂ sin θ̂dφ̂;

ω2 ¼ sin ψ̂ dθ̂ − cos ψ̂ sin θ̂dφ̂;

ω3 ¼ dψ̂ þ cos θ̂dφ̂; ðA13Þ
with 0 ≤ θ̂ ≤ π, 0 ≤ φ̂ < 2π, 0 ≤ ψ̂ ≤ 4π. The three-cycle
we are looking for is topologically RP3 ¼ S3=Z2. It was
shown in [33] that it can be characterized by the conditions

θ̂; φ̂ ¼ const; ðA14Þ
with the coordinate θ defined in (A3) being a function of
the radial coordinate r. The induced metric on the world
volume of the D6-brane can be written as in (3.1), where α
is the same angle as in (A1). The relation of the two other
angles β and ψ with those introduced in (A3) and (A13) is
the following:

β ¼ ψ̂

2
; ψ ¼ φ −

ψ̂

2
: ðA15Þ

APPENDIX B: FLUCTUATION ANALYSIS

Let us consider fluctuations of the gauge field A and the
embedding function θ as in (6.1). We expand the induced
metric g and the gauge field strength as

g ¼ gð0Þ þ gð1Þ þ gð2Þ; F ¼ Fð0Þ þ f; ðB1Þ

where gð0Þ is the metric written in (3.1) and Fð0Þ is the field
strength of the unperturbed gauge connection (3.2), while
f ¼ L2da and the first and second order induced metrics
gð1Þ and gð2Þ are given by

gð1Þij dζidζj ¼ L2

b2
½2θ0ðλ0drþ ∂tλdtþ ∂xλdxÞdr

þ λ sinð2θÞðdψ þ cos αdβÞ2�;

gð2Þij dζidζj ¼ L2

b2
½ðλ0drþ ∂tλdtþ ∂xλdxÞ2

þ λ2 cosð2θÞðdψ þ cos αdβÞ2�: ðB2Þ

Let us next write the inverse of the zeroth-order DBI matrix
gð0Þ þ Fð0Þ as

ðgð0Þ þ Fð0ÞÞ−1 ¼ G−1 þ J ; ðB3Þ
where G−1 is the symmetric part (the inverse open string
metric) and J is the antisymmetric part. In order to write
the different elements of G and J it is quite convenient to
introduce the quantity Δ defined in (5.5). In terms of Δ, the
equation for the embedding takes the form

∂r

�
r4h sin θffiffiffiffi

Δ
p θ0

�
− r2 sin θ cos θ

�
3 − 2bþ

ffiffiffiffi
Δ

p

sin θ

�
¼ 0:

ðB4Þ
Then, the nonvanishing components of the open string
metric are

Gtt ¼ −
b2 þ r2hθ02

L2r2hΔ
; Gxx ¼ Gyy ¼ 1

L2r2
;

Grr ¼ b2r2h
L2Δ

; Gαα ¼ b2

L2q
; Gββ ¼ b2

L2qsin2α
;

Gβψ ¼ −
b2 cos α
L2qsin2α

; Gψψ ¼ b2

L2q

�
cot2αþ q

sin2θ

�
:

ðB5Þ
The only nonvanishing components of the antisymmetric
tensor are

J tr ¼ −J rt ¼ −
db

L2r2 sin θ
ffiffiffiffi
Δ

p : ðB6Þ

At second order in the fluctuations, the DBI action is

Sð2ÞDBI ¼ −TD6

Z
d7ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgð0Þ þ Fð0ÞÞ

q

×

�
1

2
TrðG−1gð2ÞÞ þ 1

8
ðTrðG−1gð1ÞÞ þ TrðJ fÞÞ2

−
1

4
Tr½ðG−1gð1ÞÞ2 þ ðJ gð1ÞÞ2 þ 4G−1gð1ÞJ f

þ ðG−1fÞ2 þ ðJ fÞ2�
�
: ðB7Þ

To evaluate this expression we use

TrðG−1gð2ÞÞ ¼ L2

b2
Gmn∂mλ∂nλþ ðcot2θ − 1Þλ2;

TrðG−1gð1ÞÞ ¼ 2L2

b2
θ0Grrλ0 þ 2 cot θλ;

Tr½ðG−1gð1ÞÞ2� ¼ 4L4

b4
θ02ðGrrÞ2ðλ0Þ2 þ 4cot2θλ2

þ 2L4

b4
θ02GrrGmn∂mλ∂nλ; ðB8Þ
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where the indices n and m run over the Minkowski and
radial directions. After integrating over the internal angles,
we get the following second-order DBI Lagrangian:

Lð2Þ
DBI ¼ −N r2 sin θ

ffiffiffiffi
Δ

p

×

�
1

4
GnmGpqfmqfnp þ

L2

2b2

�
1 −

L2

b2
θ02Grr

�

× Gmn∂mλ∂nλ −
1

2
λ2 þ L2

b2
θ0 cot θGrrλ∂rλ

−
1

2

�
A0
tθ

0

Δ

�
2

ð∂tλÞ2 þ
A0
tθ

0

Δ
Gmn∂mλfnt

þ b2

L2

A0
t

Δ
cot θλftr

�
: ðB9Þ

The WZ term at second order yields the following
Lagrangian density:

Lð2Þ
WZ ¼ N r2b

�
r
b
cosð2θÞλ∂rλ

þ
�
cosð2θÞ − r

b
sinð2θÞθ0

�
λ2
�
: ðB10Þ

Let us now simplify these expressions. First of all, we
should eliminate A0

t. With this purpose we notice that

A0
t

Δ
¼ d

br2 sin θ
ffiffiffiffi
Δ

p : ðB11Þ

Second, we rewrite the terms with λ∂rλ by integrating by
parts and neglecting the total derivative generated in this
process. In the WZ Lagrangian we use

r3

b
cosð2θÞλ∂rλ ¼

�
r3

b
sinð2θÞθ0 − 3

2

r2

b
cosð2θÞ

�
λ2

þ ∂r

�
1

2

r3

b
cosð2θÞλ2

�
: ðB12Þ

The resulting WZ Lagrangian takes the form

Lð2Þ
WZ ¼ N r2b

�
1 −

3

2b

�
cosð2θÞλ2: ðB13Þ

In the DBI part, we first write

r4 sin θhffiffiffiffi
Δ

p θ0 cot θλ∂rλ ¼ −
1

2
∂r

�
r4 sin θhffiffiffiffi

Δ
p θ0 cot θ

�
λ2

þ ∂r

�
r4 sin θh

2
ffiffiffiffi
Δ

p θ0 cot θλ2
�
: ðB14Þ

It follows that we can make the following substitution in
LDBI:

r4 sin θhffiffiffiffi
Δ

p θ0 cot θλ∂rλ → −∂r

�
r4 sin θh

2
ffiffiffiffi
Δ

p θ0 cot θ
�
λ2

¼ −∂r

�
r4 sin θh

2
ffiffiffiffi
Δ

p θ0
�
cot θλ2 þ r4hθ02

2 sin θ
ffiffiffiffi
Δ

p λ2; ðB15Þ

which, after using Eq. (3.13) for θðrÞ, can be written as

r4 sin θhffiffiffiffi
Δ

p θ0 cot θλ∂rλ →

��
b −

3

2

�
r2cos2θ

þ r2
r2hθ02 − cos2θΔ

2 sin θ
ffiffiffiffi
Δ

p
�
λ2: ðB16Þ

Taking these results into account, it is straightforward to

verify that the total Lagrangian density Lð2Þ ¼ Lð2Þ
DBI þ Lð2Þ

WZ
can be written as in (6.2).

1. Transverse fluctuations

We now consider fluctuations of the gauge field along
the transverse direction y. It turns out that these fluctuations
are coupled to those along the internal directions. Actually,
we can write the following consistent ansatz:

A ¼ L2½AtðrÞdtþ e−iωtþikxayðrÞdy
þ e−iωtþikxaðrÞðcos αdβ þ dψÞ�; ðB17Þ

where ay and a are first-order fluctuations. The equation of
motion for ay is given by

∂r

�
b2r2h sin θffiffiffiffi

Δ
p a0y

�
þ sin θ

r2h
ffiffiffiffi
Δ

p ½ω2ðb2 þ r2hθ02Þ − k2hΔ�ay

þ 2ikd cot θ
r2

b2ð2 − qÞη
qðqþ ηÞ

ffiffiffiffi
Δ

p
a ¼ 0; ðB18Þ

whereas that for a is

∂r

�
bqr4h

sin θ
ffiffiffiffi
Δ

p a0
�
þ 3br2a −

b
q
r2 sin θ

ffiffiffiffi
Δ

p
a

þ ω2
q
b
b2 þ r2hθ02

sin θh
ffiffiffiffi
Δ

p a − k2
q
b

ffiffiffiffi
Δ

p

sin θ
a

−
2ikd cot θ

r2
ð2 − qÞη
ðqþ ηÞb

ffiffiffiffi
Δ

p
ay ¼ 0: ðB19Þ

For our purposes, it is enough to consider the fluctuations at
zero momentum (k ¼ 0). In this case the equation for ay is
decoupled from the internal fluctuation a and becomes

∂r

�
b2r2h sin θffiffiffiffi

Δ
p a0y

�
þ sin θ

r2h
ffiffiffiffi
Δ

p ω2ðb2 þ r2hθ02Þay ¼ 0:

ðB20Þ
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Explicitly, this equation for ay can be written as

a00y þ ∂r log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4sin2θ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r2hθ02

p h

�
a0y þ ω2

b2 þ r2hθ02

b2r4h2
ay ¼ 0:

ðB21Þ

Let us expand this equation near r ¼ rh. First, we expand
the embedding as in (3.23),

θðrÞ ¼ θh þ θ0hðr − rhÞ þ…; ðB22Þ

where θ0h is given by [see (3.24)]

θ0h ¼
brh
3

sin θh cos θh
d2 þ r4hsin

2θh

h
br2h þ ð3 − 2bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4hsin

2θh

q i
:

ðB23Þ

The coefficients of (B21) will be expanded as

∂r log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4sin2θ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r2hθ02

p h

�

¼ 1

r − rh
þ d1 � � �ω2

b2 þ r2hθ02

b2r4h2

¼ A
ðr − rhÞ2

þ c2
r − rh

þ…; ðB24Þ

where A, d1, and c2 are

A ¼ ω2

9r2h
;

d1 ¼ −
2

rh

d2

d2 þ r4hsin
2θh

þ r4h sin θh cos θh
d2 þ r4hsin

2θh
θ0h −

3rh
2b2

ðθ0hÞ2;

c2 ¼
ðθ0hÞ2
3b2rh

ω2: ðB25Þ

We now solve the equation of motion for ay in a Frobenius
series around r ¼ rh as

ayðrÞ ¼ ðr − rhÞαð1þ βðr − rhÞ þ…Þ; ðB26Þ

where, for infalling boundary conditions, the exponent α is
given by

α ¼ −
iω
3rh

: ðB27Þ

We will also perform a low frequency expansion by
considering k ∼OðϵÞ and ω ∼Oðϵ2Þ. Then one can show
that β ∼Oðϵ2Þ and is given by

β ≈ −αd1: ðB28Þ

Let us now take the limits in opposite order. First, we
consider the low frequency limit. At leading order, we can
neglect the last term in (B20) and write the equation for
ay as

∂r

�
b2r2h sin θffiffiffiffi

Δ
p a0y

�
¼ 0: ðB29Þ

This equation can be immediately integrated,

a0y ¼ C

ffiffiffiffi
Δ

p

b2r2h sin θ
≡ C

GðrÞ ; ðB30Þ

where C is a constant of integration and, in the last step, we
have defined the function GðrÞ. This solution can be
expanded near the horizon r ¼ rh as

a0y ¼ C
rh

3b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4h sin

2 θh
p 1

r − rh
þ…: ðB31Þ

Let us now compare this near-horizon expansion with the
one written in (B26) for low frequency. First, we compute
a0y by direct differentiation of the expansion (B26),

a0y ¼ αðr − rhÞα−1ð1þ βðr − rhÞ þ…Þ
þ ðr − rhÞαðβ þ…Þ: ðB32Þ

Taking into account that α ∼Oðϵ2Þ and β ∼Oðϵ2Þ, we get,
at leading order in ϵ, that

a0y ¼
α

r − rh
þ…: ðB33Þ

Thus, matching (B33) and (B31), we get that the constant C
is given by

C ¼ 3b
rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4h sin

2 θh

q
α ¼ −i

b
r2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4h sin

2 θh

q
ω:

ðB34Þ

Therefore, we can write

a0y ¼ −
i

GðrÞ
b
r2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4hsin

2θh

q
ω: ðB35Þ

Let us now obtain the hJyJyi correlator from these results.
The term in the Lagrangian density depending on ay is
given by

LðayÞ ¼ −N r2 sin θ
ffiffiffiffi
Δ

p
GyyGrrðfyrÞ2: ðB36Þ

Taking into account that fry ¼ L2a0y and that
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r2 sin θ
ffiffiffiffi
Δ

p
GyyGrr ¼ GðrÞ

L4
; ðB37Þ

we arrive at

LðayÞ ¼ −F ða0yÞ2; ðB38Þ

where F is given by

F ¼ −NGðrÞ: ðB39Þ

Therefore, the on-shell boundary action of ay is

Son−shellðayÞ ¼
Z

d3xðFaya0yÞr→∞: ðB40Þ

The two-point function of the transverse currents, at zero
momentum, is given by

hJyðkÞJyð−kÞijk¼0 ¼ ðFa0yÞr→∞ ≡NΓωiω; ðB41Þ

where we have defined the quantity Γω. From the explicit
expressions of F and ay, we get

Fa0y ¼ N
b
r2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4h sin

2 θh

q
iω: ðB42Þ

Thus Γω is given by

Γω ¼ b
r2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4h sin

2 θh

q
: ðB43Þ

From this result we get the DC conductivity, namely,

σ ¼ NΓω ¼ N
b
r2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r4hsin

2θh

q
; ðB44Þ

which is just the result written in (5.8).
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