
Moving mirrors and the fluctuation-dissipation theorem

D. Jaffino Stargen,* Dawood Kothawala, and L. Sriramkumar
Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India

(Received 15 February 2016; published 29 July 2016)

We investigate the random motion of a mirror in (1þ 1)-dimensions that is immersed in a thermal bath
of massless scalar particles which are interacting with the mirror through a boundary condition. Imposing
the Dirichlet or the Neumann boundary conditions on the moving mirror, we evaluate the mean radiation
reaction force on the mirror and the correlation function describing the fluctuations in the force about the
mean value. From the correlation function thus obtained, we explicitly establish the fluctuation-dissipation
theorem governing the moving mirror. Using the fluctuation-dissipation theorem, we compute the mean-
squared displacement of the mirror at finite and zero temperature. We clarify a few points concerning the
various limiting behavior of the mean-squared displacement of the mirror. While we recover the standard
result at finite temperature, we find that the mirror diffuses logarithmically at zero temperature, confirming
similar conclusions that have been arrived at earlier in this context. We also comment on a subtlety
concerning the comparison between zero temperature limit of the finite temperature result and the exact
zero temperature result.
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I. INTRODUCTION

Brownian motion refers to the random motion of small
particles immersed in a large bath. Classic examples of
Brownian motion would include the random motion of
particles floating in a liquid and the motion of dust particles
illuminated by a ray of sunlight. The motion of a Brownian
particle is effectively described by the Langevin equation
(see, for instance, Ref. [1]). In the Langevin equation, the
force experienced by the particle is decomposed into two
components: one, an averaged force which is dissipative in
nature, and another that is rapidly fluctuating. The combi-
nation of the dissipative and the fluctuating forces leads to
the diffusion of the Brownian particle through the bath.
The amplitude of the dissipative force and the correlation

function describing the fluctuating component are related
by the fluctuation-dissipation theorem (see, for example,
Refs. [2–4]). The theorem can also be utilized to evaluate
the mean-squared displacement of the Brownian particle
and thereby illustrate the diffusive nature of the particle. It
is well known that, in a bath maintained at a finite
temperature, the mean-squared displacement of the
Brownian particle grows linearly with time at late times.
An interesting question that seems worth addressing is
whether the Brownian particle diffuses even at zero temper-
ature (in this context, see Refs. [5–7]).
A point mirror moving in a thermal bath provides a

splendid example for studying these issues and, in fact, the
system has been considered earlier in different contexts
(see, for instance, Refs. [8–14]; also see the following
reviews [15,16]). Our goal in this work is to reconsider the
random motion of the mirror immersed in a thermal bath.

Specifically, our aims can be said to be twofold. Our first
goal is to evaluate the average force on the moving mirror
as well as the correlation function characterizing the
fluctuating component and explicitly establish the fluc-
tuation-dissipation theorem relating these quantities. Our
second aim is to utilize the fluctuation-dissipation theorem
to calculate the mean-squared displacement of the mirror
both at finite and zero temperature and, in particular,
examine the nature of diffusion at zero temperature. In
order for the problem to be analytically tractable, as is
usually done in this context, we shall work in (1þ 1)-
spacetime dimensions and assume that the mirror is
interacting with a massless scalar field (for the original
discussion, see Refs. [17–20]). Importantly, one finds that,
under these simplifying assumptions, it proves to be
possible to calculate all the quantities involved explicitly
using the standard methods of quantum field theory.
A few clarifying remarks concerning the prior efforts in

these directions are in order at this stage of our discussion.
The earliest efforts in the literature had primarily focused on
carrying out the quantum field theory of a massless scalar
field in the presence of amovingmirror in (1þ 1)-spacetime
dimensions [17,18]. It was immediately followed by efforts
to evaluate the regularized stress-energy tensor associated
with the quantum field in the vacuum state, i.e., at zero
temperature [19,20]. These efforts had also arrived at the
corresponding radiation reaction force on themovingmirror.
About a decade after these initial efforts, it was recognized
that the system provides a tractable scenario to examine the
validity of the fluctuation-dissipation theorem and the
behavior of the mean-squared displacement of the mirror.
The fluctuation-dissipation theorem at zero temperaturewas
established in this context and the behavior of the mean-
squared displacement of the mirror at large times was also*jaffino@physics.iitm.ac.in
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arrived at [8,15]. More recently, the radiation reaction force
on the moving mirror at a finite temperature has been
calculated as well (in this context, see Ref. [12]).
However, to the best of our knowledge, this is the first time
that the correlation function governing the radiation reaction
force is being evaluated and the associated fluctuation-
dissipation theorem is being explicitly established for the
case of the moving mirror at a finite temperature (though we
should clarify that the possibility has been briefly discussed
in Ref. [7]). Moreover, we believe this is the first effort
towards obtaining complete analytical expressions for the
mean-squared displacements of the mirror that is valid at
all times.
This article is organized as follows. In the following

section, we shall quickly review the quantization of a
massless scalar field in the presence of a moving mirror in
(1þ 1)-spacetime dimensions, and evaluate the regularized
stress-energy tensor of the scalar field at a finite temper-
ature. We shall use the result to arrive at the radiation
reaction force on the moving mirror. In Sec. III, we shall
evaluate the correlation function governing the fluctuating
component of the radiation reaction force. Using the
radiation reaction force and the correlation function char-
acterizing the fluctuating component, we shall establish the
fluctuation-dissipation theorem in Sec. IV. In Secs. V and
VI, using the fluctuation-dissipation theorem, we shall
calculate the mean-squared displacement of the mirror at
finite and zero temperature. Finally, in Sec. VII, we shall
close with a brief discussion on the results we have
obtained. We shall relegate the details concerning some
of the calculations to four Appendices. Specifically, in the
final Appendix, we shall clarify a subtle point concerning
the zero temperature limit of the finite temperature result
for the mean-squared displacement of the mirror.
Note that we shall work in units such that

c ¼ ℏ ¼ kB ¼ 1. An overdot shall denote differentiation
with respect to the Minkowski time coordinate. Unless we
mention otherwise, overprimes above functions shall re-
present differentiation of the functions with respect to their
arguments. Angular brackets shall, in general, denote
expectation values evaluated at a finite temperature, barring
in Sec. VI, where it shall represent expectation values at
zero temperature (i.e. in the quantum vacuum). Lastly,
subscripts and superscripts R and L shall denote quantities
to the right and the mirror, respectively.

II. RADIATION REACTION ON A MIRROR
MOVING IN A THERMAL BATH

In this section, we shall first discuss the quantization of a
massless scalar field in (1þ 1)-spacetime dimensions in the
presence of a moving mirror. We shall impose Dirichlet or
Neumann boundary conditions on the mirror and evaluate
the regularized stress-energy tensor for the scalar field at a
finite temperature. From this result, we shall obtain the
radiation reaction force on the mirror.

A. Boundary conditions, modes and quantization

Consider a massless scalar field, say, ϕ, which is
governed by the following equation in (1þ 1)-dimensional
flat spacetime:

∂2ϕ

∂t2 −
∂2ϕ

∂x2 ¼ 0: ð1Þ

Let a mirror be moving along the trajectory x ¼ zðtÞ, such
that j_zðtÞj < 1, and let us assume that the scalar field ϕ
satisfies either the Dirichlet or the Neumann boundary
conditions on the moving mirror. In the case of the Dirichlet
boundary condition, we require that

ϕ½t; x ¼ zðtÞ� ¼ 0; ð2Þ

whereas, in the case of the (covariant) Neumann condition,
we shall require

ni∇iϕ

����
x¼zðtÞ

¼
�∂ϕ
∂x þ _x

∂ϕ
∂t

�
x¼zðtÞ

¼ 0; ð3Þ

where ni is the vector normal to the mirror trajectory zðtÞ.
The mirror divides the spacetime into two completely
independent regions, to the left (L) and the right (R) of
the mirror.
Let uRωðt; xÞ and uLωðt; xÞ denote the normalized modes of

the scalar field in the regions to the right and the left of the

FIG. 1. The mirror moving along the trajectory zðtÞ divides the
spacetime into two distinct regions to the right and the left of the
mirror. Note that τu and τv denote the times when the incoming
waves are reflected by the mirror and converted into outgoing
waves to the right and the left of the mirror, respectively.
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mirror, respectively. These modes can be expressed in
terms of the null coordinates u ¼ t − x and v ¼ tþ x as
follows [10,12,17–19]:

uRωðt; xÞ ¼
1ffiffiffiffiffiffiffiffiffi
4πω

p ½κe−iωv þ κ�e−iωp1ðuÞ�; ð4aÞ

uLωðt; xÞ ¼
1ffiffiffiffiffiffiffiffiffi
4πω

p ½κe−iωu þ κ�e−iωp2ðvÞ�: ð4bÞ

The functions p1ðuÞ and p2ðvÞ are given by

p1ðuÞ ¼ 2τu − u; ð5aÞ

p2ðvÞ ¼ 2τv − v; ð5bÞ

where τu and τv denote the times at which the null lines u
and v intersect the mirror’s trajectory to the right and the
left of the mirror (see the accompanying figure). The
quantities τu and τv are determined by the conditions τu −
zðτuÞ ¼ u and τv þ zðτvÞ ¼ v. The quantity κ is a constant
and its value depends on the boundary condition, with κ ¼
i and κ ¼ 1 corresponding to the Dirichlet and the
Neumann conditions.
On quantization, the scalar field operator ϕ̂ to the right

and the left of the mirror can be decomposed in terms of the
corresponding normal modes as follows:

ϕ̂ðt; xÞ ¼
Z

∞

0

dω½âωuωðt; xÞ þ â†ωu�ωðt; xÞ�; ð6Þ

where âω and â†ω are the annihilation and the creation
operators which obey the standard commutation relations.
It should be emphasized that there exist a separate set of
operators defining the vacuum state and characterizing the
corresponding Fock space on either side of the mirror.

B. Stress-energy tensor at finite temperature

Let us now turn to the evaluation of the expectation value
of the stress-energy tensor of the quantum scalar field at a
finite temperature T. In (1þ 1)-dimensions, the different
components of stress-energy tensor are given by

T00 ¼ T11 ¼
1

2

��∂ϕ
∂t

�
2

þ
�∂ϕ
∂x

�
2
�
; ð7aÞ

T01 ¼ T10 ¼
1

2

�∂ϕ
∂t

∂ϕ
∂x þ ∂ϕ

∂x
∂ϕ
∂t

�
; ð7bÞ

with the indices (0,1) and corresponding to the spacetime
coordinates ðt; xÞ. It is now a matter of substituting the
decomposition (6) of the quantum scalar field in the above
expression for the stress-energy tensor and evaluating the
expectation values at a finite temperature T on either side of
the mirror. All the expectation values can be arrived at from
the basic result (see, for instance, Ref. [21])

hâ†ωâω0 i ¼ δð1Þðω − ω0Þ
eβω − 1

; ð8Þ

where β ¼ 1=T denotes the inverse temperature.
Since the stress-energy tensor involves two-point func-

tions in the coincidence limit, as is well known, one will
encounter divergences in calculating the quantity (see, for
example, Ref. [22]). In flat spacetime, these divergences
correspond to contributions due to the Minkowski vacuum
and they can be easily identified and regularized using, say,
the method of point-splitting regularization [19]. The
regularized stress-energy tensor to the right and the left
of the mirror can be obtained to be

hT̂00
R i ¼ −

1

24π

�
p1

000ðuÞ
p0
1ðuÞ

−
3

2

�
p1

00ðuÞ
p0
1ðuÞ

�
2
�

þ π

12β2
½1þ p0

1
2ðuÞ�; ð9aÞ

hT̂01
R i ¼ −

1

24π

�
p1

000ðuÞ
p0
1ðuÞ

−
3

2

�
p1

00ðuÞ
p0
1ðuÞ

�
2
�

−
π

12β2
½1 − p0

1
2ðuÞ�; ð9bÞ

hT̂00
L i ¼ −

1

24π

�
p2

000ðvÞ
p0
2ðvÞ

−
3

2

�
p2

000ðvÞ
p0
2ðvÞ

�
2
�

þ π

12β2
½1þ p0

2
2ðvÞ�; ð9cÞ

hT̂01
L i ¼ 1

24π

�
p2

000ðvÞ
p0
2ðvÞ

−
3

2

�
p2

00ðvÞ
p0
2ðvÞ

�
2
�

þ π

12β2
½1 − p0

2
2ðvÞ�; ð9dÞ

where, recall that, the overprimes denote differentiation of
the functions with respect to the arguments. Three points
concerning the above expressions require emphasis. To
begin with, note that the terms appearing in the first line of
the above expressions for the components of the stress-
energy tensor are independent of β. These terms represent
the vacuum contribution [19], while the terms appearing in
the second lines are the contributions arising due to the
finite temperature. It should be mentioned here that the
finite temperature terms include the contributions that arise
even in the absence of the mirror. Second, note that the
stress-energy tensor is a function only of u and v to the right
and the left of the mirror, respectively. The moving mirror
excites the scalar field and the terms that depend on p1ðuÞ
and p2ðvÞ describe the stress-energy associated with the
radiation emitted by the mirror due to its motion. Evidently,
the vacuum contribution can be considered as spontaneous
emission by the mirror, while the finite temperature
contributions can be treated as stimulated emission.
Third, one finds that the stress-energy tensor is completely
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independent of the boundary condition (actually it depends
on jκj2, which is unity for the Dirichlet and the Neumann
conditions).
The quantities p1ðuÞ and p2ðvÞ and their derivatives with

respect to their arguments can be expressed in terms of the
velocity of the mirror and its two time derivatives. It can be
shown that the components of the stress-energy tensor can
be expressed in terms of _z, ̈z, and z

⃨
as follows:

hT̂00
R i ¼ −

1

12π

�
z
⃨

ð1 − _zÞ2ð1 − _z2Þ þ
3_z̈z2

ð1 − _zÞ2ð1 − _z2Þ2
�

þ π

6β2
1þ _z2

ð1 − _zÞ2 ; ð10aÞ

hT̂01
R i ¼ −

1

12π

�
z
⃨

ð1 − _zÞ2ð1 − _z2Þ þ
3_z̈z2

ð1 − _zÞ2ð1 − _z2Þ2
�

þ π

3β2
_z

ð1 − _zÞ2 ; ð10bÞ

hT̂00
L i ¼ 1

12π

�
z
⃨

ð1þ _zÞ2ð1 − _z2Þ þ
3_z̈z2

ð1þ _zÞ2ð1 − _z2Þ2
�

þ π

6β2
1þ _z2

ð1þ _zÞ2 ; ð10cÞ

hT̂01
L i ¼ −

1

12π

�
z
⃨

ð1þ _zÞ2ð1 − _z2Þ þ
3_z̈z2

ð1þ _zÞ2ð1 − _z2Þ2
�

þ π

3β2
_z

ð1þ _zÞ2 ; ð10dÞ

where the velocity and its time derivatives are to be
evaluated at the retarded times (i.e. τu or τv) when the
radiation was emitted by the mirror. At this stage, it is
useful to note that, while the vacuum terms depend on the
velocity _z, the acceleration ̈z as well as the time derivative
of the acceleration z

⃨
[19,20], the finite temperature term

involves only the velocity _z.

C. Radiation reaction force on the moving mirror

The energy emitted by the moving mirror due to its
interaction with the scalar field leads to a radiation
reaction force on the mirror. The radiation reaction force
can be obtained from the conservation of the total momen-
tum of the mirror and the scalar field. The operator
describing the radiation reaction force on the mirror can
be expressed as [20]

F̂rad ¼ −
dP̂x

dt
; ð11Þ

where P̂x is the momentum operator associated with the
scalar field and is given by

P̂x ≡
Z

zðtÞ

−∞
dxT̂01

L þ
Z

∞

zðtÞ
dxT̂01

R : ð12Þ

The mean value of the radiation reaction force, evaluated at
a finite temperature, can be arrived at from the expectation
values of the stress-energy tensor we have obtained above.
One finds that the mean radiation reaction force can be
expressed as

hF̂radi ¼
1

6π

1

ð1 − _z2Þ1=2
d
dt

�
̈z

ð1 − _z2Þ3=2
�

−
2π

3β2
_z

1 − _z2
; ð13Þ

with the first line representing the vacuum term [15,20] and
the second line characterizing the finite temperature term.
Let us emphasize here a few points regarding the

radiation reaction force that we have obtained above.
The procedure that we have adopted to arrive at the
radiation reaction force is the same as the method that
had been considered earlier (in this context, see Ref. [20]).
The earlier effort had arrived at the radiation reaction force
in the quantum vacuum (i.e. at zero temperature), which
matches with our result (provided a suitable Lorentz factor
is accounted for). As is well known, the radiation reaction
force on the mirror in the quantum vacuum has exactly the
same form as the radiation reaction force on a nonuni-
formly moving charge that one encounters in electromag-
netism [15,20]. We should point out here that the procedure
we have adopted and the complete relativistic result we
have obtained for the radiation reaction force is different
from another prior effort in this direction (see Ref. [12]).
Nevertheless, we find that the results for the radiation
reaction force match in the nonrelativistic limit [6,12,19],
which is the domain of our primary interest in the latter part
of this article.
Until now, the results have been exact, and we have made

no assumptions on the amplitude of the velocity of mirror.
When analyzing the Brownian motion of the mirror in the
latter sections, we shall be working in the nonrelativistic
limit. In such a limit (i.e. when j_zj ≪ 1), the above mean
radiation reaction force simplifies to

hF̂radi ¼
1

6π
z
⃨
−

2π

3β2
_z; ð14Þ

where we have ignored factors of order _z2. Note that at large
temperatures, it is the second term that proves to be the
dominant one. The term describes the standard dissipative
force proportional to the velocity that is expected to arise as
a particle moves through a thermal bath.
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III. CORRELATION FUNCTION
DESCRIBING THE FLUCTUATING

COMPONENT

As we discussed in the introductory section, apart from
the dissipative component, a particle moving through a
thermal bath also experiences a fluctuating force. We have
evaluated the dissipative force on the moving mirror in the
last section. Let us now turn to the calculation of the
correlation function that governs the fluctuating component
of the radiation reaction force.
The fluctuating component of the force on the moving

mirror is clearly given by the deviations from the mean
value. The operator describing the random force on the
mirror can be defined as

R̂ðtÞ≡ F̂rad − hF̂radi ¼ −
dP̂x

dt
þ dhP̂xi

dt
; ð15Þ

where P̂x is the momentum operator associated with the
scalar field as given by Eq. (12). Upon using the operator
version of the conservation of the stress-energy tensor, one
can show that the random force acting on the moving mirror
can be expressed in terms of the components of the stress-
energy tensor as follows:

R̂ðtÞ ¼ −_zðtÞ½T̂ 01
R ðt; zÞ − T̂ 01

L ðt; zÞ�
þ T̂ 00

R ðt; zÞ − T̂ 00
L ðt; zÞ; ð16Þ

where the quantity T̂ abðt; xÞ is defined as

T̂ abðt; xÞ ¼ T̂abðt; xÞ − hT̂abðt; xÞi: ð17Þ

Therefore, the correlation function describing the fluctuat-
ing force R̂ðtÞ can be written as

hR̂ðtÞR̂ðt0Þi ¼ _z_z0½hT̂ 01
R ðt; zÞT̂ 01

R ðt0; z0Þi þ hT̂ 01
L ðt; zÞT̂ 01

L ðt0; z0Þi� − _z½hT̂ 01
R ðt; zÞT̂ 00

R ðt0; z0Þi þ hT̂ 01
L ðt; zÞT̂ 00

L ðt0; z0Þi�
− _z0½hT̂ 00

R ðt; zÞT̂ 01
R ðt0; z0Þi þ hT̂ 00

L ðt; zÞT̂ 01
L ðt0; z0Þi� þ hT̂ 00

R ðt; zÞT̂ 00
R ðt0; z0Þi þ hT̂ 00

L ðt; zÞT̂ 00
L ðt0; z0Þi; ð18Þ

where z ¼ zðtÞ and z0 ¼ zðt0Þ.
The quantity hT̂ abðt; xÞT̂ cdðt0; x0Þi is essentially the so-called noise kernel corresponding to the stress-energy tensor of

the scalar field (in this context, see, for instance, Refs. [23,24]). Upon using the decomposition (6), the modes (4) and the
expressions (7) for the stress-energy tensor, the noise kernel in the regions to the right and the left of the mirror can be
calculated to be

hT̂ ab
R ðt;xÞT̂ cd

R ðt0;x0Þi¼ π2

8β4
fð−1Þaþbþcþdcosech4½πðv−v0Þ=β�þð−1Þaþbp0

1
2ðu0Þcosech4½π½v−p1ðu0Þ�=β�

þð−1Þcþdp0
1
2ðuÞcosech4½π½p1ðuÞ−v0�=β�þp0

1
2ðuÞp0

1
2ðu0Þcosech4½π½p1ðuÞ−p2ðu0Þ�=β�g; ð19Þ

hT̂ ab
L ðt; xÞT̂ cd

L ðt0; x0Þi ¼ π2

8β4
fcosech4½πðu − u0Þ=β� þ ð−1Þcþdp0

2
2ðv0Þcosech4½π½u − p2ðv0Þ�=β�

þ ð−1Þaþbp0
2
2ðvÞcosech4½π½p2ðvÞ − u0�=β�

þ ð−1Þaþbþcþdp0
2
2ðvÞp0

2
2ðv0Þcosech4½π½p2ðvÞ − p2ðv0Þ�β�

�
; ð20Þ

where, as we had defined, u ¼ t − x and v ¼ tþ x, while u0 ¼ t0 − x0 and v0 ¼ t0 þ x0. Note that the indices ða; b; c; dÞ take
on the values zero and unity corresponding to t and x, respectively. Along the trajectory of the mirror zðtÞ, the noise kernels
to the right and the left of the mirror simplify to

hT̂ ab
R ðt; zÞT̂ cd

R ðt0; z0Þi ¼ π2

8β4

�
ð−1Þaþbþcþd þ ð−1Þaþb

�
1þ _z0

1 − _z0

�
2

þ ð−1Þcþd

�
1þ _z
1 − _z

�
2

þ
�
1þ _z
1 − _z

�
2
�
1þ _z0

1 − _z0

�
2
�
cosech4½πðΔtþ ΔzÞ=β�; ð21aÞ

hT̂ ab
L ðt; zÞT̂ cd

L ðt0; z0Þi ¼ π2

8β4

�
1þ ð−1Þaþb

�
1 − _z
1þ _z

�
2

þ ð−1Þcþd

�
1 − _z0

1þ _z0

�
2

þ ð−1Þaþbþcþd

�
1 − _z
1þ _z

�
2
�
1 − _z0

1þ _z0

�
2
�
cosech4½πðΔt − ΔzÞ=β�; ð21bÞ
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where Δt ¼ t − t0 and Δz ¼ z − z0. These quantities can be
used in theexpression(18) toarriveat thecorrelationfunction
describing the fluctuating component of the radiation reac-
tion force. Until now, the expressions we have obtained are
exact.Our aim is to arriveat the correlation functionwhen the
mirror is moving nonrelativistically. If one consistently
ignores terms of order _z2, it can be shown that the correlation
function simplifies to (for details, see Appendix A)

hR̂ðtÞR̂ðt0Þi ¼ π2

β4
cosech4½πðt − t0Þ=β�: ð22Þ

This correlation function is a sharply peaked function about
t ¼ t0with awidthof theorder ofβ. In the limitβ → ∞ (i.e. in
the quantum vacuum), this correlation function reduces to

hR̂ðtÞR̂ðt0Þi ¼ 1

π2
1

ðt − t0Þ4 ; ð23Þ
which is what can be expected from general arguments in
(1þ 1)-spacetime dimensions.

IV. ESTABLISHING THE FLUCTUATION-
DISSIPATION THEOREM

Having obtained the average radiation reaction force on
the moving mirror and having evaluated the correlation
function describing the fluctuating component, let us now
turn to establishing the fluctuation-dissipation theorem
relating these quantities. In this section, we shall first
explicitly establish the theorem for the problem of the
moving mirror in the frequency domain and then go on to
also establish it in the time domain.

A. The fluctuation-dissipation theorem
in the frequency domain

The fluctuation-dissipation theorem is a general result in
statistical mechanics, which is a relation between the
generalized resistance and the fluctuations of the general-
ized forces in linear dissipative systems [2–4]. Before
discussing the fluctuation-dissipation theorem let us define
some essential quantities which are needed to state the
fluctuation dissipation theorem.
Let us define the correlation function of an operator Â as

CAðtÞ≡ hÂðt0ÞÂðt0 þ tÞi: ð24Þ

The symmetric and antisymmetric correlation functions, i.e.
Cþ
A ðtÞ and C−

AðtÞ, of the operator Â can be defined to be [4]

Cþ
A ðtÞ≡ 1

2
ðhÂðt0ÞÂðt0 þ tÞi þ hÂðt0 þ tÞÂðt0ÞiÞ

¼ 1

2
½CAðtÞ þ CAð−tÞ�; ð25aÞ

C−
AðtÞ≡ 1

2
ðhÂðt0ÞÂðt0 þ tÞi − hÂðt0 þ tÞÂðt0ÞiÞ

¼ 1

2
½CAðtÞ − CAð−tÞ�: ð25bÞ

Given a function fðtÞ, let the Fourier transform ~fðωÞ be
defined as

~fðωÞ ¼
Z

∞

−∞
dtfðtÞe−iωt: ð26Þ

The fluctuation-dissipation theorem describing the random
function ÂðtÞ can be stated as the following relation between
the Fourier transforms ~Cþ

A ðωÞ and ~C−
AðωÞ [4]:

~Cþ
A ðωÞ ¼ cothðβω=2Þ ~C−

AðωÞ; ð27Þ
with ω > 0.
In the rest of this section, our aim will be to establish the

relation (27) for the fluctuating component of the radiation
reaction force on the moving mirror, viz. R̂ðtÞ. Note that
the quantity CRðtÞ can be written as [cf. Eq. (22)]

CRðtÞ ¼
π2

β4
cosech4½πðtþ iϵÞ=β�; ð28Þ

where, as is usually done in the context of quantum field
theory, we have suitably introduced an iϵ factor (with
ϵ → 0þ) to regulate the two-point function in the coinci-
dence limit. The Fourier transform of the correlation
function CRðtÞ is, evidently, given by

~CRðωÞ ¼
π2

β4

Z
∞

−∞
dtcosech4½πðtþ iϵÞ=β�e−iωt: ð29Þ

To evaluate this integral, it proves to be convenient to
express the function CRðtÞ as a series in the following
fashion (for details, see Appendix B):

CRðtÞ ¼
π2

β4
cosech4½πðtþ iϵÞ=β� ¼ −

2

3β2

�
1

ðtþ iϵÞ2 þ
X∞
n¼1

1

ðtþ inβÞ2 þ
X∞
n¼1

1

ðt − inβÞ2
�

þ 1

π2

�
1

ðtþ iϵÞ4 þ
X∞
n¼1

1

ðtþ inβÞ4 þ
X∞
n¼1

1

ðt − inβÞ4
�
: ð30Þ
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Upon using this series representation, the integral (29)
can be carried out as a contour integral in the complex ω-
plane. Since ω > 0, the contour has to be closed in the
lower half plane. The contour encloses the poles at −iϵ and
−inβ, so that only the first two terms within the square
brackets in the above series representation for CRðtÞ
contribute. Their contributions can be summed over to
obtain that [6,7,10,12,15]

~CRðωÞ ¼
2

ð1 − e−βωÞ

�
ω3

6π
þ 2πω

3β2

�
: ð31Þ

The quantities ~Cþ
R ðωÞ and ~C−

RðωÞ can be determined from
the above expression for ~CRðωÞ, and they are found to be

~Cþ
RðωÞ ¼ coth ðβω=2Þ

�
ω3

6π
þ 2πω

3β2

�
; ð32aÞ

~C−
RðωÞ ¼

ω3

6π
þ 2πω

3β2
: ð32bÞ

The first term in the above expression for ~C−
RðωÞ is the

vacuum contribution, while the second term arises at a
finite temperature. These can be attributed to the z

⃨
and the _z

terms that arise in the mean radiation reaction force at zero
and finite temperature, respectively [cf. Eq. (14)]. It is
evident from these expressions that the quantities ~Cþ

R ðωÞ
and ~C−

RðωÞ are related as

~Cþ
RðωÞ ¼ coth ðβω=2Þ ~C−

RðωÞ; ð33Þ

exactly as required by the fluctuation-dissipation theorem.

B. The fluctuation-dissipation theorem
in the time domain

Let us now consider the fluctuation-dissipation theorem
in the time domain. In the time domain, the theorem relates
the correlation functionCRðtÞ of the fluctuating force to the
amplitude of the coefficient, say, mγ, of the mean dis-
sipative force (proportional to velocity) arising at a finite
temperature as follows [4]:

mγ ¼ β

Z
∞

0

dtCRðtÞ: ð34Þ

In the case of the moving mirror, we have mγ ¼ 2π=ð3β2Þ
[cf. Eq. (14)]. Since the above integral corresponds to the
ω → 0 of ~CRðωÞ=2, we find that

β

Z
∞

0

dtCRðtÞ ¼ β lim
ω→0

~CRðωÞ
2

¼ β
2π

3β3
¼ mγ; ð35Þ

as required, implying the validity of the fluctuation-
dissipation theorem in the time domain as well.

V. DIFFUSION OF THE MIRROR AT FINITE
TEMPERATURE

In this section, we shall utilize the fluctuation-dissipation
theorem to determine the mean-squared displacement in the
position of the mirror due to the combination of the mean
radiation reaction force on the mirror as well as the
fluctuating component. We shall also discuss the different
limiting behavior of the mean-squared displacement of the
mirror.

A. The mean-squared displacement of the mirror
at finite temperature

The mean-squared displacement σ2zðtÞ in the position of
the mirror is defined as

σ2zðtÞ≡ h½ẑðtÞ − ẑð0Þ�2i ¼ 2½Cþ
z ð0Þ − Cþ

z ðtÞ�; ð36Þ

where ẑðtÞ represents the stochastic nature of the position of
the mirror, which are induced due to the fluctuations in the
radiation reaction force. When we take into account the
mean radiation reaction force (14) and the fluctuating
component (15), the Langevin equation governing the
motion of the moving mirror is given by

m
d2ẑ
dt2

−
1

6π

d3ẑ
dt3

þ 2π

3β2
dẑ
dt

¼ R̂ðtÞ: ð37Þ

Let ~zðωÞ and ~RðωÞ denote the Fourier transforms of the
position of the mirror ẑðtÞ and the fluctuating component
R̂ðtÞ of the radiation reaction force. The above Langevin
equation relates these two quantities as follows:

~zðωÞ ¼ ~χðωÞ ~RðωÞ; ð38Þ

where ~χðωÞ is a complex quantity known as the generalized
susceptibility. It can be expressed as

~χðωÞ ¼ 6π

iωðωþ iα1Þðω − iα2Þ
ð39Þ

with α1 and α2 being given by

α1 ¼ 3πωc

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2r
3

�
2

s
þ 1

�
; ð40aÞ

α2 ¼ 3πωc

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2r
3

�
2

s
− 1

�
; ð40bÞ
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where we have set ωc ¼ m and r ¼ ðβmÞ−1. The quantity
ωc is essentially the Compton frequency associated with the
mirror, while r is the dimensionless ratio of the average
energy associated with a single degree of freedom in the
thermal bath and the rest mass energy of the mirror.
Let us write the generalized susceptibility as

χðωÞ ¼ ~χ0ðωÞ − i~χ00ðωÞ, where ~χ0ðωÞ and ~χ00ðωÞ are real
quantities. [The single and the double primes above ~χðωÞ
are the conventional notations to denote the real and the
imaginary parts of the generalized susceptibility. It should
be clarified that these primes do not represent derivatives of
these quantities.] According to the fluctuation-dissipation
theorem, the quantity ~Cþ

z ðωÞ is related to the quantity
~χ00ðωÞ as follows [4]:

~Cþ
z ðωÞ ¼ coth ðβω=2Þ~χ00ðωÞ: ð41Þ

Note that the mean-squared displacement σ2zðtÞ of the
mirror is related to the correlation function Cþ

z ðtÞ
[cf. Eq. (36)]. The correlation function Cþ

z ðtÞ can be
arrived at by inverse Fourier transforming the above
expression for ~Cþ

z ðωÞ. Clearly, the quantity Cþ
z ðtÞ is the

convolution of the inverse Fourier transforms of
coth ðβω=2Þ and ~χ00ðωÞ, so that we have

Cþ
z ðtÞ ¼

i
β

Z
∞

−∞
dt0 coth ðπt0=βÞχ00ðt − t0Þ; ð42Þ

where χ00ðtÞ is described by the integral

χ00ðtÞ ¼ 1

2π

Z
∞

−∞
dω~χ00ðωÞeiωt: ð43Þ

The imaginary part of complex susceptibility ~χðωÞ is
found to be

~χ00ðωÞ ¼ 6πðω2 þ α1α2Þ
ðω − iϵÞðω2 þ α21Þðω2 þ α22Þ

; ð44Þ

where we have introduced an iϵ factor suitably to ensure the
convergence of ~χðωÞ [3]. The integral (43), with ~χ00ðωÞ
given by the above expression, can be carried out easily as a
contour integral in the complex ω-plane, and one
obtains that

χ00ðtÞ ¼ 3iπ

	
2ΘðtÞ
α1α2

− sgnðtÞ
�

e−α1jtj

α1ðα1 þ α2Þ
þ e−α2jtj

α2ðα1 þ α2Þ
��

; ð45Þ

where ΘðtÞ is the theta function, while the function sgnðtÞ is given by

sgnðtÞ ¼
	
1 when t > 0;

−1 when t < 0.
ð46Þ

Upon using the above expression for χ00ðtÞ in Eq. (42), we find that we can write Cþ
z ðtÞ as follows:

Cþ
z ðtÞ ¼ −

6π

α1α2β

Z
t

−∞
dt0 coth ½πðt0 þ iϵÞ=β� þ 3π

α1ðα1 þ α2Þβ
½e−α1tI1ðα1; tÞ − eα1tI2ðα1; tÞ�

þ 3π

α2ðα1 þ α2Þβ
½e−α2tI1ðα2; tÞ − eα2tI2ðα2; tÞ�; ð47Þ

where the quantities I1ðα; tÞ and I2ðα; tÞ are described by the integrals

I1ðα; tÞ ¼
Z

t

−∞
dt0eαt0 coth ½πðt0 þ iϵÞ=β�; ð48aÞ

I2ðα; tÞ ¼
Z

∞

t
dt0e−αt0 coth ½πðt0 þ iϵÞ=β�: ð48bÞ

On substituting the above expression for Cþ
z ðtÞ in Eq. (36), we obtain the mean-squared displacement of the mirror

to be
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σ2zðtÞ ¼
12π

α1α2β

Z
t

0

dt0 coth ½πðt0 þ iϵÞ=β� − 6π

α1ðα1 þ α2Þβ
½e−α1tI1ðα1; tÞ − eα1tI2ðα1; tÞ − I1ðα1; 0Þ þ I2ðα1; 0Þ�

−
6π

α2ðα1 þ α2Þβ
½e−α2tI1ðα2; tÞ − eα2tI2ðα2; tÞ − I1ðα2; 0Þ þ I2ðα2; 0Þ�: ð49Þ

The integrals I1ðα; tÞ and I2ðα; tÞ can be evaluated in terms of the hypergeometric functions (for details, see Appendix C),
and the final result can be expressed as

σ2zðtÞ ¼
12

α1α2

	
γE þ ln ½2 sinhðπt=βÞ�

�
þ 12

α1ðα1 þ α2Þ
Fðp1; tÞ þ

12

α2ðα1 þ α2Þ
Fðp2; tÞ; ð50Þ

where γE ≃ 0.5772 is the Euler-Mascheroni constant [25]. The function Fðp; tÞ is given by

Fðp; tÞ ¼ π

2
cotðπpÞe−2πpt=β þ e−2πt=β

2ð1 − pÞ 2F1½1; 1 − p; 2 − p; e−2πt=β� þ 1

2p 2F1½1; p;pþ 1; e−2πt=β� þ ψ0ðpÞ; ð51Þ

where 2F1½a; b; c; ; z� denotes the hypergeometric function,
and ψnðzÞ is known as the polygamma function [25]. The
quantities p1 and p2 are defined as

p1 ¼
α1β

2π
; p2 ¼

α2β

2π
; ð52Þ

with α1 and α2 being given by Eq. (40). Note that the mean-
squared displacement (50) depends on three time scales,
viz. t, ω−1

c and β. Let us now consider the limiting forms of
the mean-squared displacement of the mirror in the differ-
ent regimes of interest.

B. The different limiting behavior of the
mean-squared displacement of the mirror

As mentioned above, the mean-squared displacement
σ2zðtÞ depends on three time scales t, ω−1

c and β. Using these
time scales one can construct the following three dimen-
sionless variables: ωct, t=β and βωc. Notice that the
expression (50) for the mean-squared displacement at a
finite temperature depends on time only through the
following dimensionless combination: ~t≡ t=β. It also
depends on the dimensionless quantity r ¼ ðβωcÞ−1, which
we had introduced earlier [cf. Eq. (40)]. Typically, we will
be interested in the behavior of the mean-squared displace-
ment at small and large times, i.e. for ~t ≪ 1 and ~t ≫ 1. But,
because of the presence of the additional dimensionless
quantity r, the different possible limits that one can actually
consider are as follows:

lim
r→0

lim
~t→0

σ2zðtÞ; lim
~t→0

lim
r→0

σ2zðtÞ;

lim
r→∞

lim
~t→0

σ2zðtÞ; lim
~t→0

lim
r→∞

σ2zðtÞ;

for small ~t, and

lim
r→0

lim
~t→∞

σ2zðtÞ; lim
~t→∞

lim
r→0

σ2zðtÞ;

lim
r→∞

lim
~t→∞

σ2zðtÞ; lim
~t→∞

lim
r→∞

σ2zðtÞ;

for large ~t. In other words, a priori, one can consider the
limits of small and large r before or after considering the
small and large limits of ~t. However, we find that, as r → 0
(or, as r → ∞) the limiting values of the mean-squared
displacement are not numerically equal to the dominant
term in the series expansion of σ2zðtÞ around r ¼ 0 (and
r ¼ ∞, respectively) for all values of ~t. Therefore, we shall
take the small and large limits of ~t, before considering the
limiting cases of r.
Wefind that, in the limit of ~t ≪ 1,σ2zðtÞcanbeexpressedas

σ2zðtÞ ¼ 6t2
	
3

2
− γE − ln ð2πt=βÞ

−
1

ðp1 þ p2Þ
½1þ p1ψ0ðp1Þ þ p2ψ0ðp2Þ�

�
; ð53Þ

whereas, when ~t ≫ 1, it reduces to

σ2zðtÞ ¼
3βt
π

þ 6β2

2π2

	
γE þ

p2

ðp1 þ p2Þ
�

1

2p1

þ ψ0ðp1Þ
�

þ p1

ðp1 þ p2Þ
�

1

2p2

þ ψ0ðp2Þ
��

: ð54Þ

Let us now consider the different limits of r of the above two
expressions.Forconvenienceandclarity,wehavelisted these
forms in the table below and have commented appropriately
on their behavior.

MOVING MIRRORS AND THE FLUCTUATION- … PHYSICAL REVIEW D 94, 025040 (2016)

025040-9



Relevant limits Limiting behavior of σ2zðtÞ Remarks

t ≪ ω−1
c ≪ β 6t2½ð3=2Þ − γE − lnð6πωctÞ� Although we quote it for the sake of completeness, this limit corresponds to

ωct ≪ 1, i.e. when the times involved are much smaller than the Compton time
scale. The quantum nature of the mirror cannot be ignored in such a domain.
Since our analysis assumes a classical, nonrelativistic description for the mirror,
it might be unjustified to attach any significance to this limit for the mean-
squared displacement of the mirror.

t ≪ β ≪ ω−1
c 6t2½1 − ln ð2πt=βÞ�

β ≪ t ≪ ω−1
c

2t
mγβ þ 3β2

2π2
≃ 2t

mγβ

This limit demonstrates that, as long as t ≫ β, the limiting behavior of σ2zðtÞ does
not depend on ωct (although the same comment as above applies to the case
ωct ≪ 1). Moreover, as is evident from the expression in the last row (below),
this limit is also independent of r. One can therefore see that, for t ≫ β, the
mirror exhibits the standard random walk with σ2zðtÞ ∝ t. (To highlight this
behavior, we have expressed the final result in terms of the parameter γ to
facilitate comparison with standard discussions of random walk [1].)

β ≪ ω−1
c ≪ t

ω−1
c ≪ t ≪ β t2=ðβmÞ In these limits, the mirror behaves exactly like a Brownian particle. For t ≪ β, we

have σ2zðtÞ ∝ t2, and the mirror diffuses like a free particle with velocity
1=

ffiffiffiffiffiffiffi
mβ

p
. This result suggests that the thermal length scale (β) can be the mean

free path of the mirror. For t ≫ β, we recover the standard random walk result,
viz. σ2zðtÞ ∝ t.

ω−1
c ≪ β ≪ t 2

mγβ ½t − γ−1�≃ 2t
mγβ

VI. DIFFUSION OF THE MIRROR AT ZERO
TEMPERATURE

Let us now study the nature of diffusion of the mirror at
zero temperature.

A. The mean-squared displacement of the mirror
at zero temperature

At zero temperature, evidently, the finite temperature
contribution will be absent and the Langevin equation
governing the motion of the mirror simplifies to

m
d2ẑ
dt2

−
1

6π

d3ẑ
dt3

¼ R̂: ð55Þ

In such a case, the complex susceptibility ~χðωÞ is given by
[cf. Eq. (38)]

~χðωÞ ¼ 6π

iω2ðωþ 6πiωcÞ
; ð56Þ

and the imaginary part of the complex susceptibility ~χðωÞ
can be determined to be

~χ00ðωÞ ¼ 6π

ω½ω2 þ ð6πωcÞ2�
: ð57Þ

At zero temperature, the fluctuation-dissipation relation
(41) reduces to

~Cþ
z ðωÞ ¼ ½ΘðωÞ − Θð−ωÞ�~χ00ðωÞ; ð58Þ

where ΘðωÞ denotes the theta function. The inverse Fourier
transform of this function yields Cþ

z ðtÞ, which is, evidently,
a convolution described by the integral

Cþ
z ðtÞ ¼

i
π

Z
∞

−∞

dt0

t0
χ00ðt − t0Þ: ð59Þ

The quantity χ00ðtÞ can be easily evaluated from ~χ00ðωÞ
above [cf. Eq. (57)] as a contour integral in the complex ω-
plane. It can be obtained to be

χ00ðtÞ ¼ 3πi
ð6πωcÞ2

½2ΘðtÞ − sgnðtÞe−6πωcjtj�; ð60Þ

where sgnðtÞ is defined in Eq. (46). On using this
expression, we find that Cþ

z ðtÞ can be written as

Cþ
z ðtÞ ¼

−3
ð6πωcÞ2

�
2

Z
t

−∞

dt0

t0
− e−6πωctEið6πωctÞ

− e6πωctEið−6πωctÞ
�
; ð61Þ

where EiðxÞ is the exponential integral function [25]. Upon
using the above result, one can show that the mean-squared
displacement of the mirror can be expressed as follows:

σ2zðtÞ ¼
6

ð6πωcÞ2
�
2 lnð6πωctÞ þ 2γE − e−6πωctEið6πωctÞ

− e6πωctEið−6πωctÞ
�
; ð62Þ

where, as we have pointed out before, γE is Euler-
Mascheroni constant.

B. The different limiting behavior of the
mean-squared displacement of the mirror

We find that, when ωct ≪ 1, the mean-squared displace-
ment of the mirror behaves as
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σ2zðtÞ ¼ 6t2
�
3

2
− γE − ln ð6πωctÞ

�
; ð63Þ

whereas, when ωct ≫ 1, σ2zðtÞ is found to behave as

σ2zðtÞ ¼
12

ð6πωcÞ2
½γE þ ln ð6πωctÞ�: ð64Þ

This implies that, at zero temperature, the mirror diffuses
logarithmically rather than linearly as it does at a finite
temperature. It should be mentioned that such a logarithmic
diffusive behavior has been arrived at earlier [6] and it
seems to be a general characteristic of Brownian motion at
zero temperature (in this context, see Ref. [5]).

VII. DISCUSSION

In this work, we have studied the random motion of a
mirror that is immersed in a thermal bath.We have explicitly
evaluated the correlation function describing the fluctuating
component of the radiation reaction force on the moving
mirror and have established the fluctuation-dissipation theo-
rem relating the correlation function to the amplitude of the
finite temperature contribution to the radiation reaction force.
Also, utilizing the fluctuation-dissipation theorem, we have
calculated the mean-squared displacement of the moving
mirror both at a finite as well as at zero temperature. We
should stress that, in contrast to the earlier efforts, we have
been able to arrive at a complete expression for the mean-
squared displacement of the mirror that is valid at all times.
Whilewe recover the standard results in the required limits at
finite temperature, interestingly, we find that the mirror
diffuses logarithmically at zero temperature, a result which
confirms similar conclusions that have been arrived at earlier.

Finally,we find that themean-squared displacement in the
quantum vacuum cannot be obtained by blindly considering
the zero temperature limit of the final expression for the
mean-squared displacement at finite temperature. This is
essentially because of the following reason: the integral
representations leading to the hypergeometric functions that
arise in the finite temperature case [cf. Eq. (50)] do not apply
at zero temperature, thereby rendering the subsequent
expressions invalid in this limit. (We have discussed this
issuemore quantitatively inAppendixD.) It is for this reason
that, to analyze the zero temperature case, we have returned
to the Langevin equation and then proceeded with the
derivation by making use of the corresponding fluc-
tuation-dissipation theorem [see Eq. (58)].
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APPENDIX A: NONRELATIVISTIC LIMIT
OF THE NOISE KERNELS

In this Appendix, we shall provide a few essential steps
concerning the evaluation of the correlation function
describing the fluctuating component of the radiation
reaction force on the moving mirror.
Note that we are interested in the correlation function

when the mirror is moving nonrelativistically, i.e. when
j_zj ≪ 1. In such a limit, the noise kernels (21) reduce to

hT̂ ab
R ðt; zÞT̂ cd

R ðt0; z0Þi≃ π2

8β4
½ð−1Þaþbþcþd þ ð−1Þaþbð1þ 4_z0Þ þ ð−1Þcþdð1þ 4_zÞ þ ð1þ 4_zÞð1þ 4_z0Þ�

× cosech4½πðΔtþ ΔzÞ=β�; ðA1aÞ

hT̂ ab
L ðt; zÞT̂ cd

L ðt0; z0Þi≃ π2

8β4
½1þ ð−1Þaþbð1 − 4_zÞ þ ð−1Þcþdð1 − 4_z0Þ þ ð−1Þaþbþcþdð1 − 4_zÞð1 − 4_z0Þ�

× cosech4½πðΔt − ΔzÞ=β�: ðA1bÞ

Upon substituting these results in the expression (18), we get

hR̂ðtÞR̂ðt0Þi≃ π2

2β4
fcosech4½πðΔt − ΔzÞ=β� þ cosech4½πðΔtþ ΔzÞ=β�g

−
π2

β4
ð_zþ _z0Þfcosech4½πðΔt − ΔzÞ=β� − cosech4½πðΔtþ ΔzÞ=β�g: ðA2Þ

Using the series representation of cosech4z [cf. Eq. (30); also see Appendix B], we can write

cosech4½πðΔt� ΔzÞ=β� ¼ cosech4ðπΔt=βÞ

� Δz
Δt

	
4

3π2

�
β

Δt

�
2 X∞
n¼−∞

1

½1þ ðinβ=ΔtÞ�3 −
4

π4

�
β

Δt

�
4 X∞
n¼−∞

1

½1þ ðinβ=ΔtÞ�5
�

ðA3Þ
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and, if we now make use of Eq. (A3) in (A2), we finally
arrive at

hR̂ðtÞR̂ðt0Þi ¼ π2

β4
cosech4ðπΔt=βÞ; ðA4Þ

which is the result we have quoted.

APPENDIX B: SERIES REPRESENTATION
OF THE CORRELATION FUNCTION

In this Appendix, we shall outline the method to arrive at
the series representation (30) for the function CRðtÞ.
We shall make use of the polygamma function ψnðzÞ to

arrive at the series representation for cosech4ðzÞ. The
polygamma function is defined as [25]

ψnðzÞ ¼
dnþ1

dznþ1
lnΓðzÞ; ðB1Þ

where ΓðzÞ is the gamma function. The function ψnðzÞ can
be represented as an integral as follows:

ψnðzÞ ¼ ð−1Þnþ1

Z
∞

0

dt
e−zttn

1 − e−t
: ðB2Þ

Using this expression, we can write

ψ1ðizÞ þ ψ1ð−izÞ ¼ 2

Z
∞

0

dt
t cosðztÞ
1 − e−t

ðB3Þ

and, upon expressing cosðztÞ and ð1 − e−tÞ−1 as a power
series, we obtain that

ψ1ðizÞ þ ψ1ð−izÞ ¼ 2
X∞
m¼0

ð−1Þmz2m
ð2mÞ!

×
X∞
n¼0

Z
∞

0

dte−ntt2mþ1: ðB4Þ

Evaluating the integral, one obtains

ψ1ðizÞ þ ψ1ð−izÞ ¼ 2
X∞
n¼0

1

n2
X∞
m¼0

�
ð−1Þm

�
z
n

�
2m

þ 2ð−1Þmm
�
z
n

�
2m
�
; ðB5Þ

and carrying the sum over m leads to

ψ1ðizÞ þ ψ1ð−izÞ ¼ −
X∞
n¼0

�
1

ðzþ inÞ2 þ
1

ðz − inÞ2
�
: ðB6Þ

The above series can easily be summed to arrive at [25]

X∞
n¼0

�
1

ðzþ inÞ2 þ
1

ðz − inÞ2
�
¼ 1

z2
þ π2cosech2ðπzÞ; ðB7Þ

so that we have

ψ1ðizÞ þ ψ1ð−izÞ ¼ −
1

z2
− π2cosech2ðπzÞ: ðB8Þ

From the definition of polygamma function it is clear
that ψ3ðzÞ ¼ d2ψ1ðzÞ=dz2. Upon substituting the result
(B8) in this identity, we obtain that

ψ3ðizÞ þ ψ3ð−izÞ ¼
6

z4
þ 4π4cosech2ðπzÞ

þ 6π4cosech4ðπzÞ: ðB9Þ

From the integral representation of ψnðzÞ, we have

ψ3ðizÞþψ3ð−izÞ¼ 2

Z
∞

0

dt
t3 cosðztÞ
1− e−t

¼ 2
X∞
m¼0

ð−1Þm z2m

ð2mÞ!
X∞
n¼0

Z
∞

0

dte−ntt2mþ3;

ðB10Þ

where, as we had done earlier, we have expressed cosðztÞ
and ð1 − e−tÞ−1 as a power series. Evaluating the integral
and carrying out the sum over m leads to

ψ3ðizÞþψ3ð−izÞ ¼ 6
X∞
n¼0

�
1

ðzþ inÞ4þ
1

ðz− inÞ4
�
: ðB11Þ

Comparing Eqs. (B9) and (B11) we arrive at the following
series representation of cosech4ðπzÞ:

cosech4ðπzÞ¼−
2

3π2

�
1

z2
þ
X∞
n¼1

1

ðzþinÞ2þ
X∞
n¼1

1

ðz−inÞ2
�

þ 1

π4

�
1

z4
þ
X∞
n¼1

1

ðzþinÞ4þ
X∞
n¼1

1

ðz−inÞ4
�
;

ðB12Þ

which is the result we have made use of in the text.

APPENDIX C: EVALUATING THE INTEGRALS

In this Appendix, we shall outline the evaluation of the
integrals I1ðα; tÞ and I2ðα; tÞ as described by Eqs. (48).
If we substitute y0 ¼ coth ½πðt0 þ iϵÞ=β� in the expression

for I1ðα; tÞ, it reduces to

I1ðα; tÞ ¼ −
β

π

Z
y

−1
dy0

�
y0 þ 1

y0 − 1

�
p−1

�
1

y0 − 1
þ 1

ðy0 − 1Þ2
�
;

ðC1Þ

where p ¼ αβ=ð2πÞ. If we now further set u0 ¼
ðy0 þ 1Þ=ðy0 − 1Þ, we obtain that
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I1ðα; tÞ ¼ −
β

π
eαt

Z
1

0

dxxp−1
�

1

1 − e2πt=βð1þ iϵÞx −
1

2

�
:

ðC2Þ

We can make use of the following integral representation
of the hypergeometric function to evaluate the above
integral [26]:

2F1½a; b; c; z� ¼
ΓðcÞ

ΓðbÞΓðc − bÞ
×
Z

1

0

dxxb−1ð1 − xÞc−b−1ð1 − zxÞ−a;

ðC3Þ

for Re:c > Re:b > 0 and j argð1 − zÞj < π. We find that
I1ðα; tÞ can be written as

I1ðα; tÞ¼
eαt

α
f1−22F1½1;p;pþ1;e2πt=βð1þ iϵÞ�g: ðC4Þ

Similarly, we can evaluate I2ðα; tÞ to arrive at

I2ðα; tÞ ¼ −
e−αt

α
f1 − 22F1½1; p;pþ 1; e−2πt=βð1þ iϵÞ�g:

ðC5Þ

Since the mean-squared displacement σ2ðtÞ must be a real
quantity, we write the integral I1ðα; tÞ as follows:

I1ðα; tÞ ¼
eαt

α
f1 − 2F1½1; p;pþ 1; e2πt=βð1þ iϵÞ� − 2F1½1; p;pþ 1; e2πt=βð1 − iϵÞ�g: ðC6Þ

Upon writing the quantity I2ðα; tÞ in a similar fashion and substituting the resultant expressions in Eq. (49), we obtain that

σ2zðtÞ ¼
12

α1α2
fγE þ ln ½2 sinhðπt=βÞ�g þ 12

α1ðα1 þ α2Þ
Fðp1; tÞ þ

12

α2ðα1 þ α2Þ
Fðp2; tÞ; ðC7Þ

where the function Fðp; tÞ is defined as

Fðp; tÞ≡ 1

4p
f2F1½1; p;pþ 1; e2πt=βð1þ iϵÞ� þ 2F1½1; p;pþ 1; e2πt=βð1 − iϵÞ�g

þ 1

2p 2F1½1; p;pþ 1; e−2πt=β� þ ψ0ðpÞ; ðC8Þ

with ψnðzÞ being the polygamma function [25]. In order to write Fðp; tÞ more compactly we make use of the identity [27]

2F1½a; b; c; z� ¼
ΓðcÞΓðb − aÞ
ΓðbÞΓðc − aÞ ð−zÞ

−a
2F1½a; 1 − cþ a; 1 − bþ a; z−1�

þ ΓðcÞΓða − bÞ
ΓðaÞΓðc − bÞ ð−zÞ

−b
2F1½b; 1 − cþ b; 1 − aþ b; z−1�; ðC9Þ

where ða; b; cÞ∉Z or ða − bÞ∉Z and j argð−zÞj < π. We find that Fðp; tÞ can be written as

Fðp; tÞ ¼ π

2
cotðπpÞe−2πpt=β þ e−2πt=β

2ð1 − pÞ 2F1½1; 1 − p; 2 − p; e−2πt=β� þ 1

2p 2F1½1; p;pþ 1; e−2πt=β� þ ψ0ðpÞ; ðC10Þ

which is the result we have made use of in the text. We
should clarify that since p1 and p2 are, in general, not
integers [cf. Eqs. (52)], Eq. (C7) is valid for all finite values
of the mass m of the mirror and the inverse temperature β.
We have quoted the result (C7) with Fðp; tÞ given by
Eq. (C8) in the text.

APPENDIX D: DIVERGENCE IN THE
MEAN-SQUARED DISPLACEMENT IN
THE LIMIT OF ZERO TEMPERATURE

In this section, we shall discuss a subtle point con-
cerning the zero temperature limit of the finite

temperature result (C7) for the mean-squared displace-
ment of the mirror.
We find that a logarithmic divergence arises if we blindly

take the zero temperature limit (i.e. β → ∞) of the final
result (C7) for the mean-squared displacement of the mirror
at a finite temperature. In the previous Appendix, we had
expressed the integrals I1ðα; tÞ and I2ðα; tÞ in terms of the
hypergeometric function using the definition (C3). Note that
the representation (C3) is valid only for Re:c > Re:b > 0

and j argð1 − zÞj < π. Hence, for the expression (C8)
describing Fðp; tÞ in terms of the hypergeometric functions
to be valid, p1 and p2 should be positive definite for all
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values of β and m. One can easily show that, while p1

remains positive, p2 tends to zero in the limit of β → ∞.
Since [cf. Eq. (C3)]

1

p2
2F1½1; p2;p2 þ 1; z� ¼

Z
1

0

dxxp2−1ð1 − zxÞ−1; ðD1Þ

we can write

1

p2
2F1½1; p2;p2 þ 1; z�

¼ z
p2 þ 1 2F1½1; p2 þ 1;p2 þ 2; z� þ Iðp2Þ; ðD2Þ

where

Iðp2Þ ¼
	
1=p2 when p2 > 0;

− ln ε when p2 ¼ 0;
ðD3Þ

with ε → 0. On substituting Eq. (D2) in Eq. (C7) and
making use of the following identity [27],

ψmðzÞ ¼ ψmðzþ 1Þ þ ð−1Þmþ1m!

zmþ1
; ðD4Þ

we obtain that

σ2zðtÞ ¼
12

α1α2
fγE þ ln ½2 sinhðπt=βÞ�g

þ 12

α1ðα1 þ α2Þ
Fðp1; tÞ

þ 12

α2ðα1 þ α2Þ
½Fðp2 þ 1; tÞ þ J ðp2Þ�; ðD5Þ

where J ðp2Þ is given by

J ðp2Þ ¼
	
0 when β > 0;

− ln ε when β → ∞:
ðD6Þ

In other words, the expression (C7) for the mean-squared
displacement of the mirror at a finite temperature would
diverge logarithmically if we naively consider the zero
temperature limit.
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