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Continuing the work of Honda [Phys. Rev. Lett. 116, 211601 (2016)], we study the perturbative series in
general 3dN ¼ 2 supersymmetric Chern-Simons matter theory with Uð1ÞR symmetry, which is given by a
power series expansion of inverse Chern-Simons levels. We find that the perturbative series is usually non-
Borel summable along a positive real axis for various observables. Alternatively, we prove that the
perturbative series is always Borel summable along a negative (positive) imaginary axis for positive
(negative) Chern-Simons levels. It turns out that the Borel resummations along this direction are the same
as the exact results and, therefore, are correct ways of resumming the perturbative series.
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I. INTRODUCTION

Chern-Simons (CS) theories coupled to matter play an
important role in high-energy physics and condensed
matter physics. When CS levels are finite, the theories
are strongly coupled and systematic analysis is restricted.
While one can always set up perturbation theories in the CS
theories by expanding observables around infinite CS
levels, the perturbative series is usually divergent as in a
typical interacting quantum field theory (QFT) [1].
Therefore, it is generically hard to obtain information on
the strongly coupled systems from the perturbative series.
In this paper, we address this problem and discuss how we
obtain exact results by appropriately resumming the per-
turbative series in 3d N ¼ 2 supersymmetric (SUSY) CS
matter theories.
One of the standard methods to resum the divergent

series is Borel resummation. Given a perturbative seriesP∞
l¼0 clg

aþl of a quantity IðgÞ, its Borel resummation
along the direction θ is defined by

SθIðgÞ ¼
Z

∞eiθ

0

dt e−
t
gBIðtÞ: ð1Þ

Here BIðtÞ is the analytic continuation of the formal Borel
transformation

P∞
l¼0

cl
ΓðaþlÞ t

aþl−1 after performing the

summation. While the perturbative series in typical inter-
acting QFT is expected to be non-Borel summable along a
positive real axis due to singularities in BIðtÞ [2], it is
natural to ask when the perturbative series is Borel sum-
mable along Rþ, and if it is non-Borel summable, what is
the correct way to resum the perturbative series. This is not
just a technical question but a physically fundamental
question since this is related to how to define interact-
ing QFTs.

In [3], the author began to address this question. We have
proven that the perturbative series in 4d N ¼ 2 and 5d
N ¼ 1 SUSY gauge theories with Lagrangians is Borel
summable along a positive real axis for various observables
[4]. This result for the 4dN ¼ 2 theories is expected from a
recent proposal on a semiclassical realization of infrared
renormalons [7], where the semiclassical solution does not
exist in the N ¼ 2 theories (see also [8]). Then it is natural
to apply the technique in [3] to another class of theories. In
this paper, we study the perturbative series in general three-
dimensional N ¼ 2 SUSY CS matter theories with Uð1ÞR
symmetry in terms of the inverse CS levels [9] (see [5] for
studies of the three-dimensionalN ¼ 6 case). We apply the
technique in [3] to the localization formula [11] for various
observables in three-dimensional N ¼ 2 CS matter
theories.
Nevertheless, we find highly different results from the 4d

N ¼ 2 and 5dN ¼ 1 theories. First of all, we find that the
perturbative series is usually not Borel summable along Rþ
for various observables. Alternatively, we prove that the
perturbative series is always Borel summable along a
negative imaginary axis for positive CS levels and a
positive imaginary axis for negative CS levels. We also
prove that the Borel resummations along this direction are
the same as the exact results [12]. Our main result is
schematically written as [a more precise statement is (20)]

OðgÞ ¼ S−πsgnðkÞ
2

OðgÞ ¼
Z

−isgnðkÞ∞

0

dt e−
t
gBOðtÞ; ð2Þ

where g ∝ 1=jkj with the CS level k and BOðtÞ is the Borel
transformation [14] of the small-g expansion of the observ-
able OðgÞ. This means that exact results are given by the
Borel resummations along the direction θ ¼ −πsgnðkÞ=2.
In Sec. II, we prove the results (2) for the S3 partition
function, SUSY Wilson loops, bremsstrahlung function,
two-point function of Uð1Þ flavor symmetry currents,*masazumi.honda@weizmann.ac.il
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partition function on squashed lens space, and two-point
function of the stress tensor.
Our result (2) is quite surprising for the following reason.

When the perturbative series is not Borel summable along
Rþ, we usually consider the possibility of cancellations of
the perturbative ambiguities by contributions from other
saddle points such as instantons or perform a more
complicated analysis such as median resummation to find
a correct integral contour. We find that we can skip the
complicated analyses and directly find the correct integral
contour by understanding from the usual analyses should
be important. We expect that our result is very important
also for understanding non-SUSY CS matter theories.
While we do not know if the perturbative series in the
non-SUSY theories is Borel summable along the contour in
(2), it is natural to expect that this choice of the contour
makes analysis highly simplified [15].

II. DERIVATION OF RESULTS

A. Partition function on S3

We suppose a three-dimensional N ¼ 2 CS matter
theory with a semisimple gauge group G ¼
G1 × � � � × Gn, which is coupled to chiral multiplets of
representations (R1;…;RNf

) with R charges (Δ1;…;ΔNf
).

Applying the localization method [11], the S3 partition
function of this theory is given by [16]

ZS3ðgÞ ¼
Z

∞

−∞
djGjσZclðσÞZ1loopðσÞ; ð3Þ

where [17]

ZclðσÞ ¼ exp

�Xn
p¼1

isgnðkpÞ
gp

trðσðpÞÞ2
�
;

Z1loopðσÞ ¼
Q

α∈rootþ4sinh
2ðπα · σÞQNf

m¼1

Q
ρm∈Rm

s1ðρm · σ − ið1 − ΔmÞÞ
;

sbðzÞ ¼
Y∞
m¼0

Y∞
n¼0

mbþ nb−1 þQ=2 − iz
mbþ nb−1 þQ=2þ iz

: ð4Þ

The parameter gp is proportional to 1=jkj. Now we are
interested in small-gp expansion of ZS3ðgÞ:

ZS3ðgÞ ¼
X∞

flpg¼0

cl1;…;ln

Yn
p¼1

g
dimðGpÞ

2
þlp

p : ð5Þ

We will see that the perturbative series is usually non-Borel
summable along Rþ but always Borel summable along a
negative (positive) imaginary axis for kp > 0 (kp < 0).

1. UðNÞk adjoint SQCD

For simplicity of explanation, we begin with the three-
dimensionalN ¼ 2UðNÞk SQCD with Nf fundamental (R
charge Δf), N̄f antifundamental (R charge Δ̄f) and Na

adjoint chiral multiplets (R charge Δa). We will discuss the
general case later. The S3 partition function of this theory is

ZSQCD ¼
Z

∞

−∞
dNσ

YN
j¼1

e
isgnðkÞ

g σ2j
s
N̄f

1 ðσj þ ið1 − Δ̄fÞÞ
s
Nf

1 ðσj − ið1 − ΔfÞÞ

×

Q
i<j4sinh

2ðπðσi − σjÞÞQ
i;js

Na
1 ðσi − σj − ið1 − ΔaÞÞ

: ð6Þ

Now we apply the technique in [3] to this and investigate
properties of the small-g expansion of ZSQCD. To do this, let
us make the following change of variables,

σi ¼
ffiffiffi
τ

p
x̂i; ð7Þ

where x̂ ¼ ðx̂1;…; x̂NÞ is the unit vector spanning unit
SN−1. Then we rewrite the partition function as

ZSQCD ¼
Z

∞

0

dτ e
isgnðkÞ

g τfðτÞ

¼ isgnðkÞ
Z

−isgnðkÞ∞

0

dt e−
t
gfðisgnðkÞtÞ; ð8Þ

where

fðτÞ ¼ τ
N2

2
−1

2

Z
SN−1

dN−1x̂ hðτ; x̂Þ;

hðτ; x̂Þ ¼ ZVdMðx̂ÞZ1loopð
ffiffiffi
τ

p
x̂Þ

ZVdMð
ffiffiffi
τ

p
x̂Þ ;

ZVdMðσÞ ¼
Y

α∈rootþ

ðπα · σÞ2: ð9Þ

Note that (8) is similar to the Borel resummation formula (1)
with the direction θ ¼ −πsgnðkÞ=2. Therefore, one might
wonder whether fðτÞ is related to the Borel transformation
of the original perturbative series. This question is techni-
cally equivalent to whether fðτÞ consists purely of the
convergent power series of τ and is very nontrivial in
general.
Nevertheless, we can indeed prove in a similar way to [3]

that fðτÞ has the following relation to the Borel trans-
formation,

isgnðkÞfðτÞ ¼ BZSQCDð−isgnðkÞτÞ; ð10Þ

where BZSQCDðtÞ is the Borel transformation of the small-g
expansion of ZSQCD. Here we just write down an outline of
the proof (see Appendix for details): (i) We show uniform
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convergence of the small-τ expansion of hðτ; x̂Þ. (ii) The
uniform convergence tells us that hðτ; x̂Þ is the same as the
analytic continuation of the convergent series and we can
exchange the order of the power series expansion of hðτ; x̂Þ
and the integration over x̂. (iii) The integral transformation
(8) guarantees that the coefficient of the perturbative series

of fðτÞ at OðτN2

2
þl−1Þ is given by ð−isgnðkÞÞlcl=ΓðN2þl

2
Þ

[18]. Thus, we conclude

ZSQCD ¼
Z

−isgnðkÞ∞

0

dt e−
t
gBZSQCDðtÞ: ð11Þ

Since the Borel transformation does not have singularities
along the integral contour [19], the small-g expansion of
ZSQCD is Borel summable along the direction
θ ¼ −sgnðkÞπ=2. Equation (11) also tells us that the
Borel resummation with this direction gives the exact
result.
When does the pertubative series become Borel sum-

mable along Rþ? Since t ∈ Rþ corresponds to σj ∈
ð−eπi

4
sgnðkÞ∞; e

πi
4
sgnðkÞ∞Þ in (6), a sufficient condition for

this is absence of singularities in the one-loop determinant
along this line, namely, Na ¼ 0 (or Δa ¼ 1). Next, we ask,
when the perturbative series is Borel summable along Rþ,
how is this related to the exact result? To answer this
question, we need to change the integral contour toRþ as in
Fig. 1. There is a subtlety in this, which is related to the CS
level shift coming from integration over the massive
fermions (see e.g. [20]). When the integral variables σ
are very large, the contribution from chiral multiplet
becomes

1

s1ðσ − ið1 − ΔÞÞ ¼ exp

�
iπsgnðσÞ

2
σ2 þOðjσjÞ

�
: ð12Þ

This effectively shifts the CS level by sgnðσÞ=2 and the
shift in the adjoint SQCD is totally sgnðσjÞðNf − N̄fÞ=2.
Hence, the contribution from C�

2 disappears for
jkj > jNf − N̄fj=2. If we consider this region, then we find

ZSQCD ¼
�Z

∞

0

dtþ
I
C
dt

�
e−

t
gBZSQCDðtÞ; ð13Þ

where the integral contour C is C ¼ Cþ
1 þ Cþ

2 þ C3 for
k > 0 and C ¼ C−

1 þ C−
2 þ C3 for k < 0. Thus, the Borel

resummation along Rþ gives the exact result when the
second term is zero. A sufficient condition for this is
again Na ¼ 0.
It is worth looking at the Nf ¼ N̄f ¼ Na ¼ 0 case,

which corresponds to the N ¼ 2 CS theory without chiral
multiplets and is the same as the pure CS theory up to level
shift. Since Z1loop does not have poles for this case, the
Borel transformation also does not have any poles. This
reflects the fact that the perturbative series in the pure CS
theory is convergent.

2. General three-dimensional N = 2 CS matter theory

Extension to general three-dimensonalN ¼ 2 CS matter
theory is straightforward. First, we insert the delta function
constraint ΔðσÞ to the integrand [21] such that the follow-
ing coordinate spans a sphere with radius ffiffiffiffiffi

τp
p

σðpÞi ¼ ffiffiffiffiffi
τp

p
x̂ðpÞi : ð14Þ

Then the partition function again takes the form of (8)
extended to multivariables,

ZS3 ¼
Z

∞

0

dnτe
P

n
p¼1

isgnðkpÞ
gp

τpfðτÞ

¼
�Yn
p¼1

isgnðkpÞ
Z

−isgnðkpÞ∞

0

dtpe
−tp
gp

�
fðisgnðkÞtÞ; ð15Þ

where

fðτÞ ¼ τ
dimðGÞ

2
−1

2n

Z
sphere

dx̂Δðx̂Þhðτ; x̂Þ;

hðτ; x̂Þ ¼ ZVdMðx̂ÞZ1loopðσÞ
ZVdMðσÞ

����
σðpÞi ¼ ffiffiffiffi

τp
p x̂ðpÞi

;

τ
dimðGÞ

2
−1 ¼

Yn
p¼1

τ
dimðGpÞ

2
−1

p : ð16Þ

We can always prove that fðτÞ is related to the Borel
transformation of the original perturbative series as

FIG. 1. The integral contour, which relates the Borel resum-
mation along the imaginary axis to the one along the real
positive axis.
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�Yn
p¼1

isgnðkpÞ
�
fðfτpgÞ ¼ BZS3ðf−isgnðkpÞτpgÞ; ð17Þ

since the small-τp expansion of hðτ; x̂Þ is uniform con-
vergent if ZS3 is well defined. This immediately leads us to

ZS3ðgÞ ¼
�Yn
p¼1

Z
−isgnðkpÞ∞

0

dtpe
−tp
gp

�
BZS3ðtÞ; ð18Þ

which is a generalization of (11).
A sufficient condition for Borel summability alongRþ is

again the absence of singularities along σj∈ð−eπi
4
sgnðkÞ∞;

e
πi
4
sgnðkÞ∞Þ in Z1loop. When the perturbative series is Borel

summable along Rþ and “level shift” is not so very large,
we obtain

ZS3ðgÞ ¼
�Yn
p¼1

�Z
∞

0

dtp þ
I
C
dtp

�
e−

tp
gp

�
BZS3ðtÞ: ð19Þ

If the second term is zero, the Borel resummation alongRþ
is the same as the exact result. In the rest of this paper, we
prove our main result for various observables:

OðgÞ ¼
�Yn
p¼1

Z
−isgnðkpÞ∞

0

dtpe
−tp
gp

�
BOðtÞ: ð20Þ

B. Other observables

1. Supersymmetric Wilson loop

We can generalize the above considerations to other
observables. Let us begin with the Wilson loop,

WRðCÞ ¼ trRP exp

�I
C
dsðiAμ _xμ þ σj_xjÞ

�
; ð21Þ

with the adjoint scalar σ in the vector multiplet. The Wilson
loop preserves two supercharges when the contour C is the
great circle of S3. Applying the localization method, the
VEV of the Wilson loop is given by

hWRðCircleÞi ¼ htrReσiM:M:; ð22Þ
where h� � �iM:M:. denotes the VEV in the matrix model (3).
This is just the linear combination of the exponential
function of σ, and we can obviously write the Wilson loop
as in (20).

2. Bremsstrahlung function in SCFT on R3

The bremsstrahlung function B determines an energy
radiated by accelerating quarks in small velocities as E ¼
2πB

R
dt _v2. It was conjectured that B in three-dimensional

N ¼ 2 superconformal theory is given by [22]

BðgÞ ¼ 1

4π2
∂
∂b loghtre

baiM:M:

����
b¼1

; ð23Þ

which is technically a derivative of the Wilson loop in
fundamental representation with winding number b. As in
the Wilson loop, we can also rewrite BðgÞ as in (20).

3. Two-point function of Uð1Þ flavor symmetry
currents in SCFT on R3

Next we consider the two-point function of the Uð1Þ
flavor symmetry current jaμ for the superconformal case.
The three-dimensional conformal symmetry fixes the two-
point function as

hjμaðxÞjνbð0Þi ¼
τab
16π2

ðδμν∂2− ∂μ∂νÞ 1
x2

þ iκab
2π

ϵμνρ∂ρδ
ð3ÞðxÞ;
ð24Þ

where τabðgÞ and κabðgÞ are independent of x but non-
trivially dependent on parameters. We can exactly compute
τabðgÞ and κabðgÞ by the localization [23]. This is generated
by the S3 partition function ZS3ðm; gÞ deformed by the real
mass fmag associated with the Uð1Þ symmetries:

τabðgÞ ¼ −
2

π2
Re

�
1

ZS3ð0; gÞ
∂2ZS3ðm; gÞ
∂ma∂mb

�
fmag¼0

;

κabðgÞ ¼
1

2π
Im

�
1

ZS3ð0; gÞ
∂2ZS3ðm; gÞ
∂ma∂mb

�
fmag¼0

: ð25Þ

Repeating the argument on ZS3 , we can show that τabðgÞ
and κabðgÞ satisfy (20).

4. Partition function and Wilson loop on squashed S3

Let us consider the partition function on squashed sphere
S3b with the squashing parameter b [24]. This has a simple
relation to the supersymmetric Renyi entropy [28]. The
only difference from ZS3 in the localization formula is the
one-loop determinant [25],

Z1loopðσÞ ¼
Q

α∈rootþ4 sinh ðπbα · σÞ sinh ðπb−1α · σÞQNf

m¼1

Q
ρm∈Rm

sbðρm · σ − iQ
2
ð1 − ΔmÞÞ

;

ð26Þ

with Q ¼ bþ b−1. Note that the partition function is ill
defined when one of m1bþm2b−1 (m1;2 ∈ Z) is purely
imaginary. Otherwise, we arrive at the same conclusion
(20) by a similar argument. An important difference from
the round sphere case is that the poles of the Borel
transformation rotate as varying the argument of b and
hit the integral contour of (20) when the partition function
becomes ill defined.
One can also consider the SUSY Wilson loop on the

ellipsoid constructed in [29]. This Wilson loop has a
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topology of the torus knot when b2 is a rational number. As
in (22), the localization formula of the Wilson loop is the
VEVof trReσ in the matrix model of the squashed sphere.
Hence, the Wilson loop can be also written as in (20).

5. Two-point function of stress tensor in SCFT on R3

In three-dimensional CFT, the two-point function of the
canonically normalized stress tensor at separate points
takes the form [30]

hTμνðxÞTρσð0Þi¼
cT
64

ðPμρPνσþPνρPμσ−PμνPρσÞ
1

16π2x2
;

ð27Þ

where Pμν ¼ δμν∂2 − ∂μ∂ν [31]. The coefficient cTðgÞ can
be computed by ZS3b

as [32]

cTðgÞ ¼ −
32

π2
Re

�
1

ZS3ðgÞ
∂2ZS3b

ðgÞ
∂b2

�
b¼1

: ð28Þ

By a similar argument, (20) holds also for cTðgÞ.

6. Partition function on squashed lens space

We suppose an orbifold of a biaxially squashed sphere:
S3b=Zn [33]. Gauge theory on the lens space has degenerate
vacua specified bym ¼ n

2π

H
A, where the integral contour is

an element of π1ðS3b=ZnÞ. Therefore, the partition function
on this space is decomposed as

ZS3b=Zn
¼

X
m

ZðmÞ
S3b=Zn

: ð29Þ

The localization method tells us that ZðmÞ
S3b=Zn

is expressed as

in (3) with the different one-loop determinant [34],

ZðmÞ
1loop ¼

Q
α∈rootsb;αðmÞðα · σ − iQ=2ÞQNf

f¼1

Q
ρf∈Rf

sb;ρfðmÞðρf · σ − iQð1 − ΔfÞ=2Þ
;

ð30Þ

where

sb;hðzÞ ¼
Yn−1
p¼0

sb

�
z
n
þ ibhpin þ ib−1hpþ hin

�
;

hmin ¼
1

n

�
½m�n þ

1

2

�
−
1

2
: ð31Þ

One can prove (20) for ZðmÞ
S3b=Zn

by the same argument as the

squashed S3 partition function.

III. DISCUSSIONS

We have studied the perturbative series in general three-
dimensional N ¼ 2 SUSY CS matter theory. We have
proven that the perturbative series is Borel summable along
negative (positive) imaginary axis for positive (negative)
CS levels and the Borel resummations along this direction
are the same as the exact results for various observables.
Thus we conclude that the Borel resummations of this
direction are correct ways of resumming the perturbative
series. We have found that this structure is already hidden in
the localization formula.
We have found that the perturbative series are usually not

Borel summable along Rþ due to the singularities in the
Borel transformations. It is interesting to find physical
interpretations of the singularities. Technically the singu-
larities come from poles in one-loop determinant of chiral
multiplets. It is known in the context of factorization [35]
that the poles for the squashed S3 partition function
correspond to Higgs branch solutions. Hence we expect
that the singularities are related to such semiclassical
solutions. It would be nice if one can make it clearer.
While the sufficient condition for Borel summability

along Rþ is the absence of singularities along σj ∈
ð−eπi

4
sgnðkÞ∞; e

πi
4
sgnðkÞ∞Þ in Z1loop, there should be many

theories which do not satisfy this condition but are Borel
summable along Rþ. One such example is the S3 partition
function of three-dimensional N ¼ 6 superconformal
theory (ABJM theory [36]) with Uð2Þ ×Uð2Þ gauge group
[5]. It is very important to find necessary or more sufficient
conditions for Borel summability along Rþ. Since we have
shown Borel summability along Rþ for four-dimensional
and five-dimensional theories with eight supercharges in
[3], it might be natural to expect that the perturbative series
in three-dimensional N ¼ 4 CS matter theories is Borel
summable along Rþ.
For theories describing M2-branes, the CS levels are not

completely independent of each other and satisfyP
n
p¼1 kp ¼ 0. While our analysis includes such M2-brane

theories as special cases, we could directly discuss these
cases. One of the subtleties here is that if we takeP

n
p¼1 kp ¼ 0 at first in our argument, then integral domain

of x̂ in (14) becomes noncompact. It is very nice if one can
overcome the subtleties.
In the planar limit, we expect that the perturbative series

becomes convergent [37] and, hence, Borel summable
along the positive real axis. To be consistent with this,
the second term in (19) should be suppressed in the 1=N
expansion. It is illuminating if one can explicitly prove this
statement. This would also be related to a simple con-
nection between the planar limit and M-theory limit
discussed in [38].
Recently it was discussed that some SUSY CS matter

theories exhibit phase transitions as varying real masses or
FI parameters [39]. Since real masses shift poles of Z1loop,
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these also shift poles in the Borel plane. In general, this
effect may change the direction of the Borel summability
and be related to the phase transitions.
Finally, although we know the localization formula for

the vortex loop [40], we have not discussed the perturbative
series of the vortex loop. Technically, the localization
formula for the vortex loop is like the S3 partition function
with a different integral contour, and we probably need to
think of it more carefully.
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APPENDIX PROOF OF (10)

Here we explicitly prove (10) as in [3]. For this purpose,
first we prove the uniform convergence of the small-τ
expansion of hðτ; x̂Þ. Let us rewrite hðτ; x̂Þ in a convenient
form for the small-τ expansion. By using

sinh πx
πx

¼
Y∞
n¼1

�
1þ x2

n2

�
;

s1ðzÞ ¼
Y∞
n¼1

�
n − iz
nþ iz

�
n
;

we find that the small-τ expansion is generated by

2N
2−NZVdMðx̂Þ exp

�
−2

X
i<j

X∞
l¼1

ð−τÞlζð2lÞ
l

ðx̂i − x̂jÞ2l − Na

X
i;j

ln ~s1ð
ffiffiffi
τ

p ðx̂i − x̂jÞ − ið1 − ΔaÞÞ

− Nf

X
j

ln ~s1ð
ffiffiffi
τ

p
x̂j − ið1 − ΔfÞÞ − N̄f

X
j

ln ~s1ð−
ffiffiffi
τ

p
x̂j − ið1 − Δ̄fÞÞ

�
; ðA1Þ

where ~s1ðxÞ is a generating function of the small-x expansion of s1ðxÞ:

~s1ðxÞ ¼ exp

�
−2ix

X∞
l¼0

ζð2lÞ
2lþ 1

ð−x2Þl
�
: ðA2Þ

To show the uniform convergence of the small-τ expansion, we apply Weierstrass’s M-test, which asks if one can find a
sequence fMlg satisfying jhlðx̂Þj < Ml and

P∞
l¼0Ml < ∞ for fixed τ. Indeed, we can easily construct such a series. For

instance, since ζðl ≥ 2Þ < 2 and x̂ ≤ 1, a generating function h̄ðτÞ of Ml can be obtained by the replacement in (A1):

ð−1Þlþ1ζð2lÞðx̂i − x̂jÞ2l → 2;

− ln ~s1ð
ffiffiffi
τ

p
x̂ − ið1 − ΔÞÞ → 4

X∞
l¼0

ð ffiffiffi
τ

p þ j1 − ΔjÞ2lþ1

2lþ 1
¼ 2 log

1þ ffiffiffi
τ

p þ j1 − Δj
1 −

ffiffiffi
τ

p
− j1 − Δj ;

which leads us to

h̄ðτÞ ¼ 2N
2−NZVdMðx̂Þ

ð1 − τÞ2ðN2−NÞ

�
1þ ffiffiffi

τ
p þ j1 − Δaj

1 −
ffiffiffi
τ

p
− j1 − Δaj

�
2N2Na

×

�
1þ ffiffiffi

τ
p þ j1 − Δfj

1 −
ffiffiffi
τ

p
− j1 − Δfj

�
2NNf

�
1þ ffiffiffi

τ
p þ j1 − Δ̄fj

1 −
ffiffiffi
τ

p
− j1 − Δ̄fj

�
2NN̄f

:

Thus, the small-τ expansion of hðτ; x̂Þ is uniform convergent. This implies that hðτ; x̂Þ is the analytic continuation
of the convergent series, and we can exchange the power series expansion of hðτ; x̂Þ and the integration over x̂.
Therefore, fðτÞ is also identical to an analytic continuation of the convergent series. Finally, the integral transformation (8)
gives (10).
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