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We analyze the mechanism of condensation of orientational moduli [as introduced in Phys. Rev. D 87,
025025 (2013)] on multi-Skyrmionic configurations of the four-dimensional Skyrme model. The present
analysis reveals interesting novel features. First of all, the orientational moduli tend to decrease the
repulsive interactions between Skyrmions, the effect decreasing with the increase of the baryon number.
Moreover, in the case of a single Skyrmion, the appearance of moduli is energetically favorable if finite-
volume effects are present. Otherwise, in the usual flat topologically trivial case, it is not. In the low-energy
theory these solutions can be interpreted as Skyrmions with additional isospin degrees of freedom.
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I. INTRODUCTION

Skyrme’s theory [1] is one of the most important models
in theoretical physics due to its wide range of applications in
the low-energy limit of QCD (for a nice review, see [2]).
Skyrme included his famous term into the action of the four-
dimensional nonlinear sigma model to allow the existence of
static soliton solutions with finite energy, called Skyrmions.
A quite remarkable feature of this construction is that the
Skyrmion represents a fermionic degree of freedom suitable
to describe a baryon. This very deep intuition together with
the close relation between low-energy QCD and the Skyrme
model itself were rigorously proved in the classic papers
[3–5]. Moreover, from the quantitative point of view, the
theoretical and numerical computations based on the Skyrme
model are in good agreement with the experimental data in
nuclear physics [6–10].
Unfortunately, unlike what happens for instance in the

case of monopoles and instantons in Yang-Mills-Higgs
theory (see [2]), it is extremely difficult to construct exact
nontrivial solutions of the Skyrme field equations in which
the nonlinear effects of the Skyrme term are manifest. The
reason is that on flat topologically trivial space-times, the
BPS bound on the energy in terms of the baryon number
(which was derived by Skyrme himself) cannot be saturated
for spherically symmetric Skyrmions. Thus, until very
recently, basically no exact nontrivial solution of the
four-dimensional Skyrme model was available. Even less
exact results are available in all the situations in which
Skyrmions are confined to live within a finite volume/
density (see, for instance, the analysis of [11]). In many of
the applications of the Skyrme model in nuclear physics
and astrophysics one expects finite-volume effects to be
relevant, but, of course, such effects usually make matters

worse in terms of finding exact solutions (as, for instance,
finite-volume effects break the symmetries of the most
common Ansatz).
Using the formalism developed in [12,13], the first exact

solutions of the four-dimensional SUð2Þ Skyrme model in
which the nonlinear effects of the Skyrme term are manifest
have been constructed in [14]. Such solutions may possess
nontrivial topological charges different from the baryon
number. The conclusions of [14] have been strengthened
in [15]. Using these results, in [16] the first exact
multi-Skyrmionic solutions of arbitrary baryon number,
living within a finite volume and composed of interacting
elementary SUð2Þ Skyrmions, have been constructed. The
useful mathematical trick to construct these configurations
has been to place them within a suitable tube-shaped finite-
volume space-time (which, in the context of the Skyrme
model, has been also considered in [17], though with
different motivations). The main role of this topology is to
maintain the finite-volume effects without breaking the
symmetries of the Ansatz. The quite nontrivial technical
advantage of this choice to describe finite-volume effects
is that it allows us to compute explicitly the Skyrmion-
Skyrmion interaction energy. This computation shows
clearly the repulsive character of Skyrmion-Skyrmion inter-
actions within this tube-shaped region. These results have
been generalized in [18] for the SUðNÞ case. Moreover,
these results allowed the first analytic construction of
gravitating Skyrmions in [19].
This framework offers the intriguing possibility to

analyze a very important phenomenon which is typical
of many topological defects: the condensation of additional
orientational moduli on their world sheet (in the case of
Skyrmions, world line). These orientational moduli are
simply the Goldstone bosons which arise by breaking a
non-Abelian global symmetry on the core of the original
solitons. The corresponding solutions are called non-
Abelian solitons. The case of non-Abelian vortices has
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been of particular interest as a possible description of the
vortices responsible for the dual [20] confinement of quarks
in QCD. Research in this direction, pioneered by [21–24],
led Shifman to develop a particularly simple model
(inspired by the famous Witten result on superconducting
cosmic strings [25]) in which orientational moduli can
condense on solitonic solutions [26]. The model was
recently used to construct the first case of non-Abelian
vortices in holographic models at strong coupling [27]. The
analysis shows that the main ingredients responsible for the
presence of orientational moduli are (i) a bulk theory with a
global non-Abelian symmetry G (which must be unbroken
initially) and which admits topological defects uncharged
under this symmetry (Skyrmions in the present case)
and (ii) the breaking of G down to a global subgroup H
on the given defect. The orientational moduli are then
the Goldstone bosons of the symmetry breaking pattern
G → H and their low-energy dynamics is described by the
nonlinear sigma model with target space G=H.
In this paper we will adapt this model to produce

Skyrmions with orientational moduli. Given the previous
results on multi-Skyrmion solutions we are able to extend
this study to the case of multisolitonic configurations.
In particular this allows us to infer some characteristics of
the moduli interactions, of which little is known (see for
example [28]), and to study their finite-volume physics.
In fact, most of the previously known applications of [26]
dealt with moduli localized on isolated topological soliton
(for example see [29–32]). This analysis reveals many
interesting novel features. First of all, the orientational
moduli of [26], when finite-volume effects are taken
into account as in [16], tend to decrease the repulsive
interactions among Skyrmions which characterize the
multi-Skyrmionic configurations living in the tube-shaped
regions mentioned above. Moreover the appearance of
moduli is energetically favorable if finite-volume effects
are present. On the contrary, in the usual flat topologically
trivial case, we show that the non-Abelian Skyrmions are
only metastable solutions.
The paper is organized as follows. In the second section,

the general setup in the usual flat metric with trivial topology
is specified and the numerical solutions are described. In
the third section, the low-energy action for the orientational
moduli is introduced. In the fourth section, the setup to
describe multi-Skyrmionic configurations at finite volume is
analyzed and the issue of moduli condensation is discussed.
In the fifth section some conclusions are drawn.

II. SETUP

In order to consider orientational moduli on Skyrmion
configurations, we generalize the model introduced in [26].
We consider the action

S ¼
Z

d4xðLsk þ Lχ − LintÞ ð1Þ

where

Lsk ¼ Tr
�
κ

4
ðU−1∂μUÞ2 þ λ

4
½U−1∂μU;U−1∂νU�

× ½U−1∂μU;U−1∂νU�
�
; ð2Þ

Lchi ¼ ∂μχ
i∂μχi; ð3Þ

Lint ¼ γðTr½U þ U−1 − 2� þ ΓÞχiχi − βðχiχiÞ2: ð4Þ

The Skyrme model possesses a conserved topological
charge1 which physically represents the baryon number
(see [4,5]). Its integral expression is

W ¼ −
1

24π2

Z
ft¼constg

tr½ðU−1dUÞ3�; ð5Þ

where the integral is performed over t ¼ const hypersurfa-
ces. Therefore, when W ≠ 0, the corresponding configura-
tion cannot be deformed continuously to the trivial vacua.
In the action we recognize Lsk as the usual Skyrme

Lagrangian including the Skyrme term, Lχ as the kinetic
term of the triplet χi charged under the global non-Abelian
groupOð3Þ and Lint as an interaction term. Just as per [26],
the interaction term is designed to make the χ field
condense on the core of the Skyrmion. We will take the
dimensionless parameter 0 < Γ < 8 and all other param-
eters as positive. The mass dimensions of the fields and
parameters are ½U� ¼ 0, ½χ� ¼ 1, ½γ� ¼ ½κ� ¼ 2, ½β�¼ ½λ�¼0.
Our metric convention is ημν ¼ ð−;þ;þ;þÞ and the
convention on the group generators is ti ¼ iσi. We use a
spherical coordinate system and switch to the dimension-
less units of ρ ¼ ffiffiffi

κ
p

r and ~χ ¼ χ=
ffiffiffi
κ

p
(which we will adopt

from here throughout).
We take the following Ansatz for our fields:

U ¼ cosðαðρÞÞI2 þ sinðαðρÞÞnata; ð6Þ

χi ¼ ~χðρÞð0; 0; 1Þ; ð7Þ

where na ¼ xa=r and I2 is the two-dimensional identity
matrix. Then the energy functional reduces to

E
2π

ffiffiffi
κ

p ¼
Z

∞

0

dρρ2
�ðsin αÞ2

ρ2

−
2λðsin αÞ2ð−1þ cosð2αÞ − 4ρ2ðα02ÞÞ

ρ4
þ 1

2
α02

þ γ

κ
ð−4þ Γþ 4 cos αÞ~χ2 − β ~χ4 þ ~χ02

�
; ð8Þ

1Mathematically, this charge is the winding number associated
to the third homotopy class of maps from the three-dimensional
sphere into SUð2Þ.
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with 0 denoting differentiation with respect to ρ. It can be
easily checked that with the above Ansatz for the Skyrmion
and for the χ field the equations of motion coincide with the
equations obtained as stationary points of the above energy
functional.

A. Vacuum structure

Assuming constant field profiles at infinity and mini-
mizing the energy functional at leading order in ð1=ρÞ we
obtain the following equations:

~χvac sin αvac ¼ 0; ð9Þ

~χvac

�
~χ2vac −

γ

2βκ
ð−4þ Γþ 4 cos αvacÞ

�
¼ 0: ð10Þ

These set of equations have solutions of the form

~χvac ¼ 0; αvac ¼ C; ð11Þ

where 0 ≤ C ≤ 2π is an arbitrary angular constant, or

αvac ¼ nπ;

~χvac ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ

2βκ
ð−4þ Γþ 4ð−1ÞnÞ

r
; ð12Þ

where n is an integer. Since we are working with the
condition 0 < Γ < 8 (and all other parameters positive)
then, for reality of ~χvac we must disregard n odd and only
consider even cases. For these cases the corresponding
energies of the vacuum solutions are

E1

2π
ffiffiffi
κ

p ¼ 0;
E2

2π
ffiffiffi
κ

p ¼ γ2Γ2

4jβjκ2 : ð13Þ

One can fix the constantC ¼ 0, meaning the true vacuum is
at U ¼ I2 and ~χ ¼ 0. Note that the two branches coalesce
at Γ ¼ 0.

B. Energy minimization equations

The equations which minimize the energy functional
reduce to the coupled set of ordinary differential equations
(ODEs)

α00 þ 2α0

ρ
−
sinð2αÞ

ρ2
− 8λ

�
sinð2αÞ sinðαÞ2

ρ4
−
sinð2αÞα02

ρ2

−
2ðsin αÞ2α00

ρ2

�
−
4γ

κ
sinðαÞ~χ2 ¼ 0; ð14Þ

~χ00 þ 2~χ0

ρ
−
γ

κ
ð−4þ 4 cosðαÞ þ ΓÞ~χ þ 2β ~χ3 ¼ 0: ð15Þ

The above equations must be solved numerically. In
order to look for Skyrmion solutions we solve these
equations with the following boundary conditions:

αð0Þ ¼ π; ~χ0ð0Þ ¼ 0; ð16Þ

αð∞Þ ¼ 0; ~χð∞Þ ¼ 0: ð17Þ

Our numerical procedure is a second-order finite differ-
ence procedure with accuracy Oð10−3Þ. The solution is
shown in Fig. 1.

C. Mass

In this section we will compare the mass of the solution
with and without moduli. This gives an indication as to
which solution is energetically preferred. The energy on
our solution, with the parameters outlined in the figure,
evaluates to

E
2π

ffiffiffi
κ

p ¼ 5.966; ð18Þ

while the energy of the ~χ ¼ 0 solution is

E
2π

ffiffiffi
κ

p ¼ 5.804: ð19Þ

Clearly the solution with moduli is higher in energy
than the normal Skyrmion. This result holds for the
complete parameter range we have investigated for which
our numerical procedure converged. In particular, the
results for the masses diverge as γ=κ and/or β increases
(for the parameters quoted in the solution, we found
convergence up to β ¼ 0.09 and γ=κ ¼ 2.625). Both
parameter changes increase the value of ~χ in the core.
Therefore, it must be an unstable, or at most metastable,
solution. This is in strong contrast to the case of vortices
[29] or monopoles [31], where the presence of additional
moduli is energetically preferred.

FIG. 1. Solution for γ=κ ¼ 1, β ¼ 0.05, λ ¼ 1=8 and Γ ¼ 1,
solid line is α, dashed line is ~χ.
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In the next section we will argue that the solution is
metastable.

D. Stability

Since the energy of the solution with additional moduli is
higher than the one without, we must check that the
solution is not unstable.
Perturbing our solutions with perturbations of the form

α ¼ α0 þ αpe−iωt;

χi ¼ ð~χ1pe−iωt; ~χ2pe−iωt; ~χ0 þ ~χ3pe−iωtÞ ð20Þ

where α0 and ~χ0 are the background solutions obtained
above and ~χip is a perturbation of the χ field in the color
direction i, we obtain the following set of coupled equa-
tions for the perturbations:

�Δ1 Δχ

Δα Δ2

��
αp

~χ3p

�
¼ 0; ð21Þ

where, using the previously introduced dimensionless units
and ~ω ¼ ω=

ffiffiffi
κ

p
, we have

Δ1 ¼ Vð1Þ − ρ2ðð∂ρΨð1ÞÞ∂ρ þΨð1Þ∂2
ρÞ; ð22Þ

Δ2 ¼ Vð2Þ −
1

ρ
ðð∂ρΨð2ÞÞ∂ρ þΨð2Þ∂2

ρÞ; ð23Þ

and

Vð1Þ ¼ −ρ2ðρ2 þ 8λÞ ~ω2 − 8λ cos ð4α0Þ þ 4
γ

κ
ρ4 cosðα0Þ~χ20

þ 2 cosð2α0Þð4λþ ρ2ð1þ 4λ ~ω2Þ
− 8ρ2λðα020 Þ − 16ρ2λ sinð2α0Þα000; ð24Þ

Vð2Þ ¼ ρ

�
γ

κ
ð−4þ ΓÞ − ~ω2 þ 4

γ

κ
cosðα0Þ − 6β ~χ0

2

�
;

ð25Þ

Ψð1Þ ¼ ðρ2 þ 8λð1 − cosð2α0ÞÞÞ; ð26Þ

Ψð2Þ ¼ ρ2; ð27Þ

Δχ ¼ 8
γ

κ
ρ4 sinðα0Þ~χ0; ð28Þ

Δα ¼ −4
γ

κ
ρ sinðα0Þ~χ0: ð29Þ

The perturbations in the orthogonal colour directions
decouple and obey the following equation:

~χ00ip þ
2

ρ
~χ0ip þ ~χipðγð4 − Γ − 4 cosðα0ÞÞ þ ~ω2 þ 2β ~χ20Þ ¼ 0;

ð30Þ

with i ¼ 1, 2. We can put this equation in a convenient
form by using the transformation ~χip ¼ χ̂ip=ρ to obtain the
Schrödinger equation

χ̂00ip þ χ̂ipðγð4 − Γ − 4 cosðα0ÞÞ þ ~ω2 þ 2β ~χ20Þ ¼ 0: ð31Þ

In order to proceed with the stability analysis we make a
change of variables which simplifies the analysis of the
coupled modes, we take

αp ¼ Fu; ~χp ¼ Gv; ð32Þ

F ¼ 1ffiffiffiffiffiffiffiffiffi
Ψð1Þ

p ; G ¼ 1ffiffiffiffiffiffiffiffiffi
Ψð2Þ

p ; ð33Þ

where u and v are the new unknowns in the linearized
equations. In terms of the new variables the linearized
equations read

ΔχGvþ Vð1ÞFu − ρ2½Vð3ÞuþΨð1ÞF∂2
ρu� ¼ 0; ð34Þ

ΔαFuþ Vð2ÞGv −
1

ρ
½Vð4ÞvþΨð2ÞG∂2

ρv� ¼ 0; ð35Þ

Vð3Þ ¼ ½ð∂ρΨð1ÞÞð∂ρFÞ þΨð1Þ∂2
ρF�; ð36Þ

Vð4Þ ¼ ½ð∂ρΨð2ÞÞð∂ρGÞ þΨð2Þ∂2
ρG�: ð37Þ

Through this change of variables, the linearized system for
the perturbations equations (34) and (35) has been reduced
to a system of coupled Schrödinger equations.
Our strategy to analyze the stability issue is the following:

we find the lowest energy normalizable solution of the
coupled Schrödinger equations (36)–(37). This solution will
have normalizable profiles for both u and v components
and a minimum number of total nodes. The solution is
found by varying ~ω2. If ~ω is such that ~ω2 < 0 this indicates
an instability of the solution. We find numerically that
~ω2 ≈ 1.1 > 0, indicating that our solution is stable. For
the perturbation modes in the orthogonal color directions
an analogous analysis of Eq. (31) yields ~ω2 ≈ 8 > 0.
Clearly, since the energy of our solution is higher than

that with ~χ ¼ 0, our solution is actually metastable.

III. LOW-ENERGY THEORY OF
ORIENTATIONAL MODULI

Standard quantization of the SUð2Þ Skyrmion involves
six moduli: three translations of the Skyrmion center and
three space-flavor locked rotations (see [33] for a review).
The quantum mechanical Hamiltonian of these moduli is
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H ¼ Msk þ
~p2

2Msk
þ 1

2Isk
JðJ þ 1Þ; ð38Þ

where J is a spin (or equivalently isospin) label. In the
above Isk ≈ 26 × 51πλ3=2

3
ffiffi
κ

p [33]. The presence of additional

orientational moduli will give an extra isospin quantum
number. To see this we parametrize the moduli field ~χ as

χi ¼ ~χðρÞSiðtÞ; ð39Þ

with Si a unit vector satisfying SiSi ¼ 1. Then inserting this
parametrization into Eq. (1) we obtain the low-energy
effective action

Sle ¼
I1
2

Z
dt _Si _Si; SiSi ¼ 1: ð40Þ

On symmetry grounds this is simply the CPð1Þ nonlinear
sigma model which results from the breaking pattern
Oð3Þ → Uð1Þ. The constant I1, which plays the role of
the moment of inertia, evaluates numerically to

I1
ffiffiffi
κ

p
4π

¼
Z

∞

0

ρ2 ~χ2dρ ¼ 0.372: ð41Þ

Quantization of this action follows the quantization of a
rigid top (see [31]). It results in energy levels of the form

Es ¼
1

2I1
sðsþ 1Þ; ð42Þ

with degeneracy 2sþ 1 and spherical harmonic
eigenfunctions.
As a curious possibility, in all the special cases in which

Isk
I1

¼ p
q
; p; q ∈ N; ð43Þ

the eigenvalues of the Hamiltonian of the moduli read

H ¼ Msk þ
~p2

2Msk
þ 1

2qIsk
½qJðJ þ 1Þ þ psðsþ 1Þ�:

Therefore, in this case, the discrete part of the spectrum
would be determined by the integer number

NðJ; sÞ ¼ qJðJ þ 1Þ þ psðsþ 1Þ:

It is easy to see that generically (once p and q are fixed)
there is a greater degeneracy of the energy states.
Physically, an increase in degeneracy of energy levels is
associated with an enhancement of the original symmetry.
However, there is no obvious reason why Eq. (43) should
be satisfied as this depends numerically on the parameters
of our system.

IV. MULTI-SKYRMIONS IN
TUBULAR TOPOLOGY

One of the key properties of the hedgehog Ansatz for
SUð2Þ-valued scalar fields is that it reduces a matrix system
of coupled nonlinear partial differential equations (PDEs)
to a single scalar nonlinear ODE for the soliton profile
keeping alive, at the same time, the corresponding topo-
logical features of the matrix-valued field. This property is
important in all contexts in which such Ansätze are used,
from nonlinear sigma models to the Skyrme model (see [2]
for detailed reviews). Obviously, even when the scalar
equation for the soliton profile is not solvable analytically,
the reduction of a matrix system of coupled PDEs to a
single ODE is a huge technical advantage both theoretically
and numerically. This property becomes even more impor-
tant in the cases in which multi-Skyrmionic configurations
are considered. In [16,18], using the formalism developed
in Refs. [12–14], the matrix valued field equations of the
four-dimensional Skyrme sigma model have been reduced
to a single scalar ODE for the soliton profile in a sector
of arbitrary topological charge (and in such a way as to
consider finite-volume effects as well). These are the basic
technical results which we use here to construct non-
Abelian multi-Skyrmion configurations.
Therefore, we change to a different topology with metric

given by

ds2 ¼ −dt2 þ dr2 þ R2ðdθ2 þ ðsin θÞ2dψ2Þ: ð44Þ

This is the metric for the Cartesian product space
Rð1;1Þ × S2.
The usefulness of this geometry lies in the fact that it

allows one to study finite-volume effects (such effects
usually make both numerical and analytical studies very
complicated; see [11]) keeping at the same time the
advantages coming from the symmetries of the hedgehog
Ansatz. It describes three-dimensional cylinders whose
sections are two-dimensional spheres. Consequently, the
parameter R plays the role of the diameter of the transverse
sections of the tube. From the computational point of view,
the above choice of the metric is convenient since the radial
variable rwhich usually appears in front of the angles in the
Minkowski metric is replaced by a constant parameter
(namely, R). This leads to considerable simplifications, as
the following analysis will prove. There is a price to pay of
course as the metric is curved. However, as the curvature of
this metric is proportional to 1

R2 one can easily consider a
flat limit by taking R large. In the case of the Skyrme
model, large means that R should be much larger than 1 fm.
It is possible to be more precise about the effects of the

local curvature of the above metric. The Skyrme model is
the leading approximation in the large-N limit of the low-
energy action of QCD [4]; however, subleading corrections
in 1=N do appear. Thus, from the practical point of view, if
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one takes R ∼ 100 fm the effects of the curvature are
already much smaller than other corrections to the
Skyrme model arising from QCD in the large-N expansion.
Therefore, the above metric can be considered as a

“regulator.” It is worth emphasizing that this trick is also
extremely useful when dealing with ’t Hooft-Polyakov BPS
monopoles [34]. We also make one other different consid-
eration: in this topology we work with values of β < 0 for
reasons which will soon be explained. All other parameters
are the same as before.
An important remark about the above geometry is in

order. One may wonder whether the usual identification of
Skrmions with fermions still holds on the chosen curved
geometry. In Ref. [35] the argument of [36] has been
generalized to curved orientable compact spaces. As the
spatial sections of the chosen geometry are orientable and
compact, we can claim that the third homotopy class is
the baryon charge in the present case as well. This is a
useful observation since, in the above geometry, there are
topological excitations in the Skyrme model with topo-
logical charges different from the baryon charge (see for
instance [14]). Such excitations with vanishing baryon
charge should be considered as topological excitations of
the pionic sector. On the other hand, the multi-Skyrmions
which will be constructed here cannot decay into these
excitation of the pionic sector as the baryon charge is
conserved.
In the new topology the energy (under the same Ansatz)

becomes

E
2π

ffiffiffi
κ

p ¼
Z

L

0

dρ

�
ðsin αÞ2

−
2λðsin αÞ2ð−1þ cosð2αÞ − 4R2κðα02ÞÞ

κR2

þ κR2

2
ðα02Þ þ γR2ð−4þ Γþ 4 cos αÞ~χ2

þ jβjκR2 ~χ4 þ κR2ð~χ02Þ
�
; ð45Þ

which is minimized by solving the equations

�
1þ 16λðsin αÞ2

κR2

�
α00 −

sinð2αÞ
κR2

�
1 − 8λ

�
α02 −

ðsin αÞ2
κR2

��

−
4γ

κ
ðsin αÞ~χ2 ¼ 0; ð46Þ

γ

κ
ð4ð−1þ cos αÞ þ ΓÞ~χ þ 2jβj~χ3 − ~χ00 ¼ 0: ð47Þ

Also in this case the full field equations of motion are
equivalent to the above coupled system of equations
corresponding to the stationary condition for the energy
functional.

Note that this finite-volume topology has important
consequences on the energetic considerations. First, there
is no origin in this geometry since ρ ¼ 0 is simply a
convention of where to begin the length of the tube. This
implies that one can obtain energetically finite solutions
without vanishing derivatives there. Also, solutions have
finite energy even though they do not vanish at infinity,
precisely because we consider a geometry with finite
length. In particular, since β < 0, the lowest-energy vac-
uum solution of Eq. (45) has [see Eq. (13)]

α ¼ ð2nþ 1Þπ; ~χvac ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ

2jβjκ ð8 − ΓÞ
r

; ð48Þ

with energy

Evac ¼ −
γ2

4jβjκ2 ð−8þ ΓÞ2: ð49Þ

The important point is that solutions inside the finite
geometry which do not tend to the vacua at the extrema still
have finite energy and, consequently, still correspond to
solutions with normalizable orientational moduli, as we
will shortly show. Therefore, in the remainder of this
section, when dealing with energetic considerations, we
will not include this constant shift in vacuum energy.
For the Skyrme Ansatz in Eq. (6) the baryon number in

Eq. (5) reduces to

W ¼ 2

π

Z
αðLÞ

αð0Þ
sin2αdα;

L being the length of the tube. Thus, the baryon number
depends exclusively on the boundary conditions for the
Skyrmion profile α. In particular

αðLÞ − αð0Þ ¼ nπ ⇒ W ¼ n:

Actually, out of all the allowed integer values of n (which
denotes the number of Skyrmions), we can categorize the
families of solutions between two possibilities (namely,
n even and n odd) which correspond to periodic and
antiperiodic boundary conditions for the Skyrme field U in
Eq. (6),

n even ⇒ Uð0Þ ¼ UðLÞ;
n odd ⇒ Uð0Þ ¼ −UðLÞ:

A. Multi-Skyrmion solutions and energy considerations

Here we present some solutions to the above equations.
To find Skyrmion solutions of baryon number n we use
boundary conditions of the form (see explanation above)

αð0Þ ¼ 0; ~χ0ð0Þ ¼ 0; ð50Þ
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αðLÞ ¼ nπ; ~χ0ðLÞ ¼ 0; ð51Þ

where L is the dimensionless length of the tube we are
placing the Skyrmions in and n the number of them. Note
that we can choose Neumann-type boundary conditions
for ~χ at both extremities of the geometry since it is both
bounded in length and has no origin.
The solution corresponding to a single Skyrmion inside

the tube is shown in Fig. 2, alongside its energy compared
to the case without any moduli. The multi-Skyrmion
solutions are shown in Fig. 3. In Fig. 1 we calculate the
dimensionless energies of the corresponding solutions with
their percentage differences defined by

% diff ¼ Esk − Eχ

Esk
× 100: ð52Þ

We see that in finite volume, and in this particular
topology, solutions with orientational moduli are energeti-
cally preferred over solutions without. This is in sharp
contrast to our findings in flat space (described in Sec. II).
For fixed length L of the tube, this difference grows with
the number of Skyrmions up until n ¼ 3, at which point it
seems to drop. We find using our numerical procedure that
there is a narrow range of parameters for which, for the
same values of the parameters, convergence is seen up to
n ¼ 5. Therefore, the results shown in Table I are specific
to a window of parameters with negligible variation from
those quoted and may not necessarily follow a similar
pattern generically.
Furthermore, for fixed L, as seen by the energy plots,

the presence of additional orientational moduli serves to
decrease the Skyrmion repulsion, decreasing the separation
between each Skyrmion [see Fig. 3(b)]. This effect is not
a priori surprising. The presence of an additional bosonic
scalar degree of freedom within the tube provides an
attractive force between Skyrmions which contrasts their
repulsion. The χ field is in this way partially screening the
repulsive force.

The decrease of the repulsion energy would be even
larger if one would consider moduli which can condense
separately on each elementary Skyrmion [instead of
being rigid, as implied by the Ansatz in Eq. (39)].
However this would complicate the numerical analysis
considerably as the present system of coupled ODEs
would become a system of nonlinear coupled PDEs
(see discussion below). We hope to come back to this
issue in a future publication.

B. Low-energy theory of orientational moduli

The low-energy theory of the additional orientational
moduli follows closely that derived in Sec. III. Even though
the solutions represent multi-Skyrmions there still remains
one explicit zero mode corresponding to the equal global
rotation of all the Skyrmions inside the global group. This
is seen precisely as per the flat case, taking ~χ as

χi ¼ ~χðρÞSiðtÞ; ð53Þ

with Si a unit vector satisfying SiSi ¼ 1. Then, inserting
this parametrization into Eq. (1), we obtain the low-energy
effective action

Sle ¼
I2
2

Z
dt _Si _Si; SiSi ¼ 1: ð54Þ

The constant I2 now evaluates to

I2
ffiffiffi
κ

p
4π

¼ κR2

Z
L

0

~χ2dρ ¼ 1.06: ð55Þ

The presence of the extra moduli tends to decrease the
repulsive interactions between the elementary Skyrmions;
hence, it is natural to wonder whether one can decrease this
even further with a less rigid moduli configuration. The
natural guess is that if the moduli could condense on each
elementary Skyrmion independently, then the decrease of
the repulsive interactions would be even larger. However,

(a) (b)

FIG. 2. Plot at λ ¼ 1=8, jβj ¼ 0.4, Γ ¼ 0, γ=κ ¼ 1=4 and
ffiffiffi
κ

p
R ¼ 0.27. (a) The solid line is the profile α and the dashed line is the

profile χ. (b) The energy plot with (blue plot) and without (dashed red the plot) any moduli.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 3. All plots at λ ¼ 1=8, jβj ¼ 0.4, Γ ¼ 0, γ=κ ¼ 1=4 and
ffiffiffi
κ

p
R ¼ 0.27. (a) The solid line is the profile α and the dashed line is the

profile χ in the sector with baryon number 2. (b) The energy plot with (blue plot) and without (dashed red the plot) any moduli in the
sector with baryon number 2. (c) The solid line is the profile α and the dashed line is the profile χ in the sector with baryon number 3.
(d) The energy plot with (blue plot) and without (dashed red the plot) any moduli in the sector with baryon number 3. (e) The solid line is
the profile α and the dashed line is the profile χ in the sector with baryon number 4. (f) The energy plot with (blue plot) and without
(dashed red the plot) any moduli in the sector with baryon number 4. (g) The solid line is the profile α and the dashed line is the profile χ
in the sector with baryon number 5. (h) The energy plot with (blue plot) and without (dashed red the plot) any moduli in the sector with
baryon number 5.
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an Ansatz of the form in Eq. (39) is not suitable to achieve
this goal. The reason is that the factorized expression
χi ¼ ~χðρÞSiðtÞ implies that the extra isospin number related
to the unit vector SiðtÞ is the same in any point of the
tube. We would like to describe a situation in which
the orientation of the unit vector SiðtÞ depends on the
position of the tube and, in particular, is able to distinguish
the elementary Skyrmions. In this respect, a reasonable
Ansatz is

χiL ¼ ~χðρÞSiðt; ρÞ;

in order to be able to have a different Si on each elementary
Skyrmion living within such a finite-volume region.
However, such an Ansatz would lead to a system of
coupled PDEs and would complicate the numerical analy-
sis. We hope to come back to this interesting issue in a
future publication.
We can however make some intuitive progress by

considering a dramatic simplification. If we assume that
the ~χ field is approximately localized on each Skyrmion in
the tube then we may consider an Ansatz of the form

χðρÞi ≈
Xn
j¼1

χjΠðαjδðρ − ρjÞÞSiρjðtÞ; ð56Þ

where χjΠðαjδðρ − ρjÞÞ is a rectangular function of width
αj and height χj localized on each Skyrmion center ρj, to
which we assign an orientational moduli vector SiρjðtÞ.
The Ansatz represents a total function χðρÞi in the length
of the tube as the sum of each individual Skyrmion
contribution, crudely approximated by a step function.
In this case we can immediately observe how moduli
interactions arise; consider for example the potential
term

χiχi≈
Xn
k¼1

Xn
j¼1

χjχkSiρjðtÞSiρkðtÞΠðαjδðρ−ρjÞÞΠðαkδðρ−ρkÞÞ

ð57Þ

Then, in the limit in which the rectangular functions
have infinitesimal width jρi − ρjj ≫ jαi − αjj (the step
function tend to delta functions), so that each Skyrmion
modulus is perfectly localized, this expression is inde-
pendent of the moduli since the condition SijS

i
j ¼ 1

applies (no sum over j). However, if the moduli overlap
within a finite region, jρi − ρjj ≈ jαi − αjj, then terms
with SijS

i
k with j ≠ k are nonvanishing. These kind of

terms are clearly present in the solutions we observe
numerically in Fig. 3 where ~χðρÞ is dispersed and
nowhere vanishing within the tube. Through these
interactions the moduli are lifted and become quasimo-
duli. The only remaining true modulus is the global
rotation discussed at the beginning of this section.

C. Large-R flat limit

As already remarked, the technical advantage of the
geometry in Eq. (44) lies in the fact that it allows one to
keep the symmetries of the hedgehog Ansatz without
losing information about the finiteness of the volume
where the elementary Skyrmions live. Per se this
provides a very simple framework to analyze the issue
of (orientational) moduli in the presence of configurations
of arbitrary baryon number. Such tube-shaped regions are
however not flat as the curvature of this metric is propor-
tional to 1

R2.
As far as the local effects of the curvature are

concerned, they can be considered small when they
are negligible with respect to the corrections which the
Skyrme model receives in the large-N expansion of QCD
[4]. This happens already when R ∼ 100 fm. However,
one can take a formal large

ffiffiffi
κ

p
R limit directly in the field

equations (46)–(47) which, in the leading order of such
expansion, read

α00 −
4γ

κ
ðsin αÞ~χ2 ¼ 0; ð58Þ

γ

κ
ð4ð−1þ cos αÞ þ ΓÞ~χ þ 2jβj~χ3 − ~χ00 ¼ 0: ð59Þ

The above system is considerably simpler but still non-
trivial due to the nonlinear interactions which are still
present. Solving the above equations with boundary
conditions of arbitrary baryon number [those of
Eqs. (50) and (51)] can be thought to represent, in the
flat case, multi-Skyrmion configurations constrained to
live within flat tubes whose sections have dimension
much bigger than 1 fm. Each elementary Skyrmion
belonging to these multi-Skyrmionic configurations is
very well localized in the direction of the axis of the tube
(namely, the energy density profile in the large-R limit
looks almost like the superposition of many nonoverlap-
ping peaks, one for each elementary Skyrmion). On the
other hand, in the spatial directions orthogonal to the axis

TABLE I. Comparisons of the Skyrmions energies without
(first column) and with (second column) extra moduli with
Skyrmion number from 1 to 5. In the third column one can read
the corresponding normalized energy difference.

n
E of pure
Skyrmions

E of Skyrmions
with ~χ % difference

1 4.92 4.77 3.05
2 9.85 9.53 3.24
3 14.9 14.3 4.03
4 20.6 19.8 3.88
5 27.2 26.4 2.94
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of the tube, the Skyrmions are homogeneous (in other
words, the energy density profile does not depend on the
coordinates transverse to the axis). Solutions of this form
are shown in Fig. 4. Note that in this case the solution
with ~χ ¼ 0 is just the linear function α ¼ nπ

L ρ which
reduces the energy to an n-dependent constant.
An interesting issue on which we hope to come back

in a future publication is to develop in a systematic
way the large-R expansion in which (a suitable “adimen-
sionalized” version of) 1

R2 would play the role of small
parameter.

V. CONCLUSIONS

In the present paper, combining the construction of
analytic multi-Skyrmionic configurations with the recent
approach to the analysis of orientational moduli [26],
we analyzed how extra orientational moduli affect the
properties of multi-Skyrmionic configurations of the four-
dimensional Skyrme model. This analysis sheds light on
the peculiar behavior of orientational moduli when multi-
solitonic configurations are present. It reveals interesting
novel features. First of all, when considering finite
geometry, the orientational moduli tend to decrease the

(a) (b)

(c) (d)

(e) (f)

FIG. 4. All plots at λ ¼ 1=8, jβj ¼ 0.4, Γ ¼ 0, γ=κ ¼ 1=4. (a) The solid line is the profile α and the dashed line is the profile χ in the
sector with baryon number 1 in the large-R limit. (b) The energy plot in the sector with Baryon number 1 in the large-R limit. (c) The
solid line is the profile α and the dashed line is the profile χ in the sector with baryon number 2 in the large-R limit. (d) The energy plot in
the sector with Baryon number 2 in the large-R limit. (e) The solid line is the profile α and the dashed line is the profile χ in the sector
with baryon number 4 in the large-R limit. (f) The energy plot in the sector with Baryon number 4 in the large-R limit.
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repulsive interactions among elementary SUð2Þ Skyrmions
(however, this effect decreases with the increase of the
baryon number). Moreover, in the case of a single
Skyrmion, the appearance of moduli is energetically
favorable if finite-volume effects are present; otherwise,
in the usual flat topologically trivial case, it is not.
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