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Local and BRST-invariant Yang-Mills theory within the Gribov horizon
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We present a local setup for the recently introduced BRST-invariant formulation of Yang-Mills theories
for linear covariant gauges that takes into account the existence of gauge copies a la Gribov and Zwanziger.
Through the convenient use of auxiliary fields, including one of the Stueckelberg type, it is shown that both
the action and the associated nilpotent BRST operator can be put in local form. Direct consequences of this
fully local and BRST-symmetric framework are drawn from its Ward identities: (i) an exact prediction for
the longitudinal part of the gluon propagator in linear covariant gauges that is compatible with recent lattice
results and (ii) a proof of the gauge-parameter itxndependence of all correlation functions of local BRST-

invariant operators.
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I. INTRODUCTION

Yang-Mills gauge theory and its extensions including
matter fields are extremely successful perturbatively [1].
One of the formal grounds for this success is a path-integral
formulation based on the Faddeev-Popov method to per-
turbatively fix the gauge and allow for Feynman diagram
computations. There is an inherent Becchi-Rouet-Stora-
Tyutin (BRST) symmetry.

In Landau gauge, 9,Aj, = 0, and in Euclidean spacetime,
the gauge path integral takes the form'
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Ref. [1].
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z- / [DAJS(DA) det(M)e-Smi — / (DAJe-Se
Sep = Sym + / d*x(ib*0,A4 4 ¢0,Dibc?), (1)
and it is invariant under the BRST transformations:

9 rave b
§A9 = —Dabeb, sct = = fabcchee,
H H 2f

sct =ib?, sb® = 0. (2)
This perturbative setup allows for the establishment of
several crucial features, ranging from all-order renormaliz-
ability2 and gauge independence to perturbative unitarity, as
well as a consistent extension for the physics of massive
gauge bosons, through the Brout-Englert-Higgs mechanism.

Nonperturbatively, however, the situation is by far not
the same. While numerical methods provide strong evi-
dence for confinement and dynamical chiral symmetry

*To be precise, this statement is actually restricted to the class
of gauge fixing for which the quantum action principle [2] has
been fully established. An example of such a class of gauges is
the one that respects Lorentz covariance. For noncovariant
gauges, the situation can be much more involved [3-5].
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breaking (when fermions are included) in the strong-
coupling region [6,7], this regime of the theory is not
amenable to a fully analytical scrutiny, leaving many
theoretical gaps concerning, e.g., the possible mechanisms
that can drive such remarkable physical phenomena.

An important drawback of the Faddeev-Popov setup in
the nonperturbative regime was first pointed out by Gribov
[8]: the sampling over physically inequivalent gauge
configurations in the path integral is hindered by the
presence of gauge copies in the gauge-fixing procedure
(for recent reviews, cf. [9,10]). Away from the perturbative
vicinity in gauge configuration space, large fields and
eventually zero modes of the Faddeev-Popov operator,

M = —59? + gfiAD,,  with

d,A;, = 0 (Landau gauge), (3)
are reached and the functional integral measure in (1)
becomes ill defined, which can be directly appreciated from
the presence of det(M) = 0. Over the last decades advances
have been made in the direction of circumventing this
problem. In particular, the Gribov-Zwanziger framework
[11] encodes a modification of the Faddeev-Popov pro-
cedure in order to account for the presence of gauge copies. It
corresponds to restricting the functional measure to the first
Gribov region Q in the Landau gauge, 9,4y, = 0, namely,

Q = {A4]0,A% =0, MP(A) >0}, (4)
where M@ is the Faddeev-Popov operator (3). In practice, a
nonlocal horizon term is introduced in the SU(N) gauge
action using a new mass parameter y, the Gribov parameter:

Srp > Sgz = Spp + 7 H(A) —4VyH(N? - 1), (5)

where S is known as the Gribov-Zwanziger action, V' is the
spacetime volume and the horizon function reads

H(A) = ¢ / dhxdy fAD () M7 (x, )] e A (),
(6)

in terms of the inverse of the Faddeev-Popov operator,
[M~1]. The constraint that enables us to get rid of the gauge
copies3 is then realized by fixing the Gribov parameter y in a
self-consistent way through the extremization of the vacuum

*We recall here that the Gribov region Q is not free from
Gribov copies; i.e., additional copies still exist inside Q. A
smaller region within Q exists that is fully free from Gribov
copies. This region is called the fundamental modular region.
However, unlike the case of the Gribov region Q, a local and
renormalizable framework implementing the restriction to the
fundamental modular region is, at present, unknown. Therefore,
we shall proceed by focusing on the region Q.
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energy of the theory with respect to y2, yielding the gap
equation

(H) = 4V(N* - 1), (7)

where the vacuum expectation value (H) has to be evaluated
with the measure defined by the action in Eq. (5).

Even though this approach and its subsequent extensions
have provided interesting results for correlation functions
of fundamental fields [12-15] as well as for physical
observables like the bound state spectrum [16-18] and
the thermodynamics and transport properties of the quark-
gluon plasma [19-28], the standard BRST symmetry is
softly broken. The absence of this nilpotent symmetry that
plays a crucial role in the perturbative setup can obscure
features such as renormalizability, gauge independence, the
definition of a physical space, and unitarity in the infrared
regime of the theory. It has been established, however, that
a softly broken BRST operator is sufficient in several
examples to guarantee that a gauge theory is renormaliz-
able, thus still displaying predictive power. The other issues
are still under intense investigation. For recent and different
perspectives on this important topic, the reader is referred
to, e.g., [29-47].

Here, we concentrate on a recent development put
forward in Refs. [48,49]: the existence of a nonperturbative
BRST operator that is both nilpotent and an exact symmetry
of the Gribov-Zwanziger action in Landau and linear
covariant gauges. The proposal relies on rewriting the
Landau-gauge horizon function, (6), in terms of a nonlocal
gauge-invariant transverse field AZ, namely,

H(A) = H(A") — R(A)(0A)

—HW) - [ dxdtyre )04, (§)

where

. [0A ig|[0A _ OA
Aﬁ :Pﬂv<Av_lg|:§vAu:| +jq [ﬁﬁ&z?]) + 0(A3)
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=A, —a—gaA—&-ig[A
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8A] +Y {—(% 0 —8A}

. 9,10, .g
+lg? |:—(9A,AD:| +l§

o 8A] +0(AY),

©)

with P,, = (5,, — %) being the transverse projector.
By construction, expression (9) is left invariant by gauge
transformations order by order. This field AL’ can be
obtained through the minimization of [ d*xA%A4 along
its gauge orbit. We refer to [48] and references therein for
details.
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The term R(A)(0A) is an infinite nonlocal power series
of A, that collects all terms proportional to (0,A) and can
be reabsorbed by a shift of the auxiliary field b as follows:

Scz = Sym + / d*x(ib*9,A% + ¢9,D5 c?) + y*H(A)
= Sym + / d*x(ib"*9,A% + ¢90,Di c’) + y*H(A"),
(10)
where the new field " reads
b" = b+ iy*R(A).

(11)

The action (10), with the horizon function H(A") expressed
via Zwanziger’s auxiliary fields (, ¢, ®, @), i.e.,

P H(AD) > / Fe(~pM(AN g + DM(ANw

+77AMN% + 9)). (12)
enjoys the following exact nilpotent BRST symmetry,
5,2 =5+ 0,, siz =0, 5,867 =0, (13)

where the operator s stands for the usual BRST operator

sAy = —Dﬁbcb, sct = gf"bccbcc, sct = ib“,
sb? =0, sqa,‘fb = a);‘jb, sa),‘jb =0,
sl =qib. sl =0, (14)
while

5,00 = —p*RU(A),  8.b" = —iy*sRI(A),

(3},2&);“' = —yzgfthAZ’k [M_l (Ah)]h“, 5}/2 (rest) =0.
(15

)

The presence of the Gribov parameter in the definition of
this new exact BRST transformation makes explicit its
nonperturbative nature, while it guarantees that the pertur-
bative limit is fully recovered in the ultraviolet, as desired.
Furthermore, the extension of this framework to the class
of linear covariant gauges becomes a straightforward
procedure based on the BRST principle [50], in complete
analogy with what is done in the perturbative case. The
resulting action is [48]

SE%G—S};—ID—F/d4X(—(pZCMab(Ah)(pzc+(Z)ZCMab(Ah>w2C

+ g A (D +)ke), (16)
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with

Stp = Sym + 5, / dx (E“G”Az - i%gabh,a>
4 ‘1 h.a a a h.a h,a
:SYM+/d X<zb , 8,,A,,+§b “ap

+ aaa,,D;;bcb) (17)

The parameter y is still to be determined from the horizon
condition [see (6)—(7)], although with A, replaced by its
gauge-invariant counterpart Afj. As such, the horizon
condition itself becomes a gauge-invariant condition.

In this fashion, as discussed in [48], a substantial set of
(infinitesimally) gauge equivalent configurations, obeying
the same linear covariant gauge condition, is excluded from
the path integration. More precisely, all infinitesimal gauge
copies that have a Taylor expansion around the Landau
gauge, a = 0, are eliminated.

Finally, we end up with a nonperturbative formulation of
the Gribov-Zwanziger theory for linear covariant gauges
that displays an exact, nilpotent BRST invariance.
Nevertheless, the full power of this symmetry is established
only in local quantum field theories, which is not the case
for this one so far. Indeed, inspection of Egs. (13)—(16)
reveals two sources of nonlocality in the action and in the
definition of the new BRST transformation: the gauge-
invariant field A" and the inverse of the Faddeev-Popov
operator.

In this work, we show that this novel perspective on
Yang-Mills theories in the presence of the Gribov horizon
can be cast in a fully local form—with both the action and
its exact nonperturbative BRST symmetry localizable. The
first consequences of this fully local version will also be
explored, shedding some light on the most relevant issue of
gauge independence as well as providing an exact, all-order
result for the longitudinal part of the gluon propagator in
linear covariant gauges.

This paper is organized as follows. In the next section,
the action (16) for the linear covariant gauges is shown to
be localized via the introduction of an auxiliary field of the
Stueckelberg type. Section III then presents the procedure
for obtaining a local form for the nonperturbative BRST
symmetry. In Sec. IV, we write down Ward identities from
which a set of interesting consequences will arise, namely,
the gauge-parameter independence of BRST-invariant cor-
relation functions and an exact result for the longitudinal
part of the gluon propagator, which turns out to be the
same as in perturbative Yang-Mills theory. The extension of
the framework that takes into account the formation of
dimension-two condensates is discussed in Sec. V, while
the treatment of matter fields is addressed in Sec. VI.
Section VII collects our conclusions and outlook.
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II. LOCALIZATION OF THE
BRST-INVARIANT ACTION

An important step towards the construction of the theory
is that of finding expressions of the action, its fundamental
fields, and the corresponding nilpotent BRST symmetry in
terms of local fields only. In this section, we write down the
action as a local field theory, while the local version of its
BRST symmetry will be discussed in the next section.

We first notice that the horizon function H(A”") in the
action (10) has a double source of nonlocality. First, the
horizon function is itself a nonlocal functional of its
argument due to the presence of the inverse of the
Faddeev-Popov operator (M~1)%. Second, the field A"
has so far been formulated as a nonlocal series in the gauge
field A, Eq. (9). As discussed in the previous section, the
nonlocal quantity H(A") can be reexpressed by introducing
bosonic fields (@4, @4”), as well as fermionic fields

=ab _..ab : : 4
(@5°, w;”). The corresponding action reads

bb?
+ / dx(=gje M (AN gy + @i MO (AN

+gr2 (AN (g + 7). (18)

in which the nonlocality stemming from the integral operator
M1 present in the horizon function has been traded for the
new auxiliary fields (@4?, %) and (@2, w).

Our next step towards the definition of a BRST-invariant
Gribov-Zwanziger theory is to write its action in terms of
local fields only. As introduced in [48] and briefly reviewed
in the Introduction, the field A" has been originally defined
as a highly nonlocal series in the gauge field. In order to
write a local representation for the gauge-invariant field A”
and consequently find a local action, we shall employ a
different representation of it, using an auxiliary
Stueckelberg field &%; see Refs. [51-55]. The field &
can be introduced by first defining

h= T, (19)

so that we write the field A" as

“We point out that the Lagrange multiplier b" appearing in
expression (17) can be considered as an elementary field. This
follows by noticing that the field redefinition in Eq. (11)
corresponds in fact to a field transformation with unit Jacobian.
From now on we shall remove the index % in the Lagrange
multiplier field b.
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Al = (AMyaTe

— hFASTOh + 10, h. (20)
g

An important feature of A", as defined by (20), is that it is
gauge invariant, that is,
Aﬁ - Az, (21)

as can be seen from the gauge transformations with SU(N)
matrix V

A, = VIAV VIOV, h- Vi,
g

nt = ntv. (22)

The field Al’j is now a local field and can be expanded in
terms of &, yielding

(A" = Af = Dy = 2 fOeE DI + O(F).  (23)

This construction allows us to write a local action for the
Gribov-Zwanziger theory in linear covariant gauges,

I
SLCG — / dﬁ{zF;Ung b + b0, AL
+ 200, DI (A)CP — e M (AN gl
M AN+ P AR ol + 30)

+ faaﬂ(Ah);;}. (24)

Notice that the action is now written in terms of local fields
only, with the Faddeev-Popov operator M (A") =
—9,D4"(A") now in terms of the local version of A",
Eq. (20). The Lagrange multipliers b* and z¢ are needed to
enforce two constraints. The first one is the linear covariant
gauge condition 9,Aj = iab®, while the second is the
transversality of the field A", d,(A")4 = 0, which can be
seen as a constraint on the Stueckelberg field. Indeed, if the
Stueckelberg field & is eliminated through the transver-
sality constraint 8ﬂ(Ah),‘j =0, we get back the nonlocal
expression for the field A" appearing in the action (18). By
further integrating over the auxiliary fields (4", ¢4”) and
(@04, @3"), one goes back to the original action (10).
Expression (24) is now local, albeit nonpolynomial. To
some extent, the situation shares similarities with other
local nonpolynomial models like A" =1 SYM in super-
space, nonlinear two-dimensional sigma models as well as
chiral Wess-Zumino models [56-59]. In all these cases the
algebraic renormalization proved to be very helpful,

025035-4
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allowing in fact for an all-order proof of the renormaliz-
ability of these models. Perhaps this will also be the case for
our model, a thought reinforced by the nontrivial UV
finiteness properties displayed by the horizon function and
by the Gribov-like propagators [60]. Let us also recall that
the renormalizability of Landau gauge Yang-Mills theories
supplemented by a Stueckelberg mass term has been
proven in [51,52].

III. LOCAL BRST TRANSFORMATIONS

Now that we have a local version of the nonperturbative
BRST-invariant GZ action, in the next subsections we
address the localization of its nonperturbative BRST
transformations.

A. The nonperturbative BRST operator s,

For the nilpotent BRST transformations we have

sA4 = —Dabcb, (25)
st — gfabccbcc’ (26)
589 = ib, (27)
sb® = 0. (28)

Following [54], for the Stueckelberg field we write, with i,
j indices associated with a generic representation,

shil = —ige®(T4)*kn, s(Aha =0, (29)

from which the BRST transformation of the field &4
[cf. Eq. (19)] can be evaluated iteratively, giving

g g
sé:a = —c9 + Efahcchéc _ Efamrfmpqcpé:qir

+ 0(g*). (30)

It is instructive to check here explicitly the BRST invari-
ance of A”. For this, it is better to employ a matrix notation
for the fields, namely,

sA, = —=0,c + iglA,. c],
sht =igh'c,

sc = —igcc,

sh = —igch, (31)

with A, = AT, ¢ = ¢“T“, and & = £T“. From expres-
sion (20) we get

PHYSICAL REVIEW D 94, 025035 (2016)
sAl = igh"cA,h + h'(=0,c + ig[A,. c])h — igh'A,ch
— h'cd,h + h'd,(ch)
= igh'cA,h — h'(8,¢)h + igh"A,ch — igh'cA,h
—igh'A,ch — h'cd,h + h'(0,c)h + h'cd,h

=0. (32)
For the other fields, we write
spit = wi’ = swi? =0, (33)
sol’ = pit = spit =0, (34)
574 = 0. (35)

Within the BRST framework just introduced, the action
(24) can be recast in the form

1 .
SLCG = 1 / d*xF§,Fi, + s / d'x (—%zﬂb“ + ¢“0,A;
— @chah(Ah)(plljc> + ]/2 / d4xg abC(Ah)z(q)zc

+¢,€C)+/d4xr“8,,(Ah);. (36)

One of the most interesting features of the action (36) is that
it enjoys a nonperturbative nilpotent BRST symmetry

LCG =0

SJ/ZSGZ — U, S]%Z = 0’ (37)

with the following full set of transformations defined as

a _ _pnab b a_g abc b .c
2AL = Dﬂc, syzc—zf c’c,

s.2.c% = ib?, S},zb“ =0.

s, hil = —ige(T*) %Rk, 5,2 (AM)s =0,

S},z(pzb = a),‘jb, syza),‘j” =0,
syz&)zb — @Itjb _729 kch(Ah)/lj[M—l(Ah)}ca’
5,200 =0, 5,7 = 0. (38)

B. The localization of S,

As mentioned before, the nonperturbative nilpotent
BRST transformation (38) defines a symmetry of the action
(36). However, these transformations are nonlocal and to
have a proper well-defined quantum field theory we have to
construct a fully local formulation. This can be done by
introducing another set of auxiliary fields. We first note that
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/ DDy DaDie™ X TMAY Sl G MUl G WA | i) (39)
where the symbol ~ means “up to a prefactor.” We can also write this in terms of other fields
/ DEDBDEDTe™ J X MW B MNPl A L ) (40)

where (3, ) are complex bosonic fields and (¢, {) are fermionic fields. Multiplying these expressions we obtain a new local

form for the action (10)

b*b?
SIéCZG — SYM + /d4x <GT + ib“aﬂAz + EaaﬂDZb(A)Cb> + /d4x1'aa”(Ah)Z.

2
+ / d4x<_('—0’¢:cM<Ah)ab(p,l;c + a—)sz(Ah)awaljc + g},—2fabc(Ah>Z((ﬂZC + @Zc»’

7

2
4 / (= MAM B + L Mg — g L pove(anyg e + ). (a1)

It is clear from the construction that (10), (18), and (41) are
all equivalent, sharing the same physical content. The
advantage of introducing the extra set of auxiliary fields
is that we can now define a local BRST symmetry for this
action. It is straightforward to check that the following local
nonperturbative BRST transformations are a symmetry of
the action (41):

g . .
StocAy = _Dﬁbch’ S1ocC” = Efahcchccv

~a _ jha
S1pcCt = b7,

Slocba == 0

Slochij = _igca(Ta)ikhkj’ Sloc(Ah)/at = O’

_ b b _
sloc(sz =y, slocwz =0,
~ab _ —ab pab —ab _
Sloca)z - (pﬁ +ﬂa ’ Sloc(pﬁ =0,
S10c7¢ = 0,
pab __ ab __ . ab
slocﬂu =0 slocﬂu - a)y
ab __ rab _
slocgy =0 Slocgﬂ - 0, (42)
with
LCG _
SlocSGZ =0. (43)

The fields (£,¢) have —1 and 1 ghost numbers, respec-
tively, while the fields (5, ) have O ghost number. We point
out that the earlier nonlocal BRST operator s,> [Egs. (38)]
can be recovered from the local operator s, upon
elimination of the auxiliary field § through the equations
of motion of f.

Note also that the original nonlocal action (10) was
written in terms of y* and the formulation of the action (41)
displays only y2. It follows that this observation leads to a

7

natural discrete symmetry related to the invariance of the
theory under y> — —y2. In terms of the fields, this amounts
to the exchange of both sets of auxiliary localizing fields;
more precisely, the action is invariant under

(pzb - _ﬁab’ @,‘}b - _Bab’
/))’(:b _)_Qﬂzb, _zb _)_(pzb’
wzb — — zb’ (Dzb N _Eab’
zb N —(z)ﬁb, Ezb - _d)zb' (44)

At this point it is worthwhile to note that there is a natural
set of field variables that we can identify as being BRST
singlets, i.e., quantities that belong to the cohomology of
the BRST operator, that is, BRST-closed fields that are not
BRST exact. We note that

Sloc((pzb +/}Zb) = za)ﬁb7
Sloc((p;jb - zb) =0, (45)

which prompts us to introduce the combinations

a 1 a a
Kﬂb :—\/z (qﬂﬂb +ﬁﬂb)9
a 1 a a
xb = 7 (s> = pib). (46)

and their conjugate counterparts. In terms of these fields,
the action becomes (41)

025035-6
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ajl,a
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b%b
SLEG — Sy + / dx (aT +ib°0,A5 + E“(c’)ﬂDn“”cb) + / d*xz'0, (A"

+ / d* x(—keC M(AM)Piche 4+ @i M(AM) P e

+/d4X(—ZZCM(Ah)ablZC+ZZCM(A]1)abC£C+972fabC(Ah);j(lﬁc +ZZC)),

a
= SYM + Sloc / d4x (—iEE‘aba + E‘“@MA,Z

+/d4X(—ZZCM<Ah)ahﬂIl;C+EZCM(Ah)ab Zc_'_ngfabc(Ah)Z(ﬂIll]c +;1/l;c)),

where the transformations (42) now read

_ b b _ 9 rabe b
SiocAy = —Dy7c?, S10cCt = Ef" “c?c’,
S]OCE'a = iba, Slocba =0.
slochij — —igca(Ta)ikhkj,

ab __ ab
Siockfl” = \/Ea)ﬂ ,

Sloc (Ah)z = O’

b _
Si0c®,” =0,

Sl0c@i? = V2RI, si0R8P =0,
S10eT¢ =0,
Stocdi? =0 spcdd? =0
Slochb =0 Sloczzb =0, (48)
from which it becomes apparent that the fields

((AM)a, Agb agb Zab, ¢ 2) define BRST singlets. Note
also that the term containing the Gribov parameter y
belongs to the cohomology of the BRST operator s,

namely,

s aSIé%Gi d4 ( abc(Ah a(ﬂbc#—/_lbc))*o
loc ayz = Sloc ng )ﬂ i " - %

o SLCG

8—;22 ?é SlocAv (49)

for some local integrated field polynomial A. This impor-
tant property highlights the fact that y is a physical
parameter. On the other hand the gauge parameter a will
not enter physical quantities, since it is associated to a
BRST-exact term. As such, it also cannot contribute to the
gap equation defining y. Henceforth, y is gauge indepen-
dent and thus allowed to enter the expectation values of
gauge-invariant quantities, including the vacuum energy.
We also note that, while useful in obtaining the local
formulation, the subset of auxiliary fields (@5’ wi?, k4?,
K,’jb) forms a BRST-quartet and is completely decoupled in
the final formulation. In fact, evaluating the path integral
over this set returns unity. Also note that the remaining

set of auxiliary fields (Z,‘j”,/l;”’,_,‘j”,g”ﬁh) resembles the

1
—E@sz(Ah)abKZC> + / d*xt?9,(A")4

(47)

standard GZ-action auxiliary fields, but it is important to
note that in the present formulation they are BRST singlets.

C. BRST-invariant infrared regularizing mass
for the Stueckelberg field &

The tree-level propagator of the Stueckelberg field £ can
be derived from the quadratic part of the final action,
Eq. (47). The result is shown in the Appendix to be
(E€) < a/p*, which could give rise to potential IR diver-
gences when performing explicit loop calculations.
Nevertheless, it is possible to introduce an IR regularizing
mass term for the Stueckelberg field compatible with the
local BRST invariance. Indeed, from the transformation of
the Stueckelberg field given in Eq. (30), it can be checked

that
Sloc (%) = _éaca_

This interesting property of the Stueckelberg field can be
derived from Eq. (31), i.e.,

(50)

Sioc(€19) = —igce's”. (51)

Expanding the exponential in Taylor series, one gets

3
Sloc (1 + igf—%&f - i%f&f + )
g g
= —igC(l +1ig¢ —?55 - iafé‘f + ) (52)

Multiplying both sides of Eq. (52) by ¢ yields

2
r:sloc(l R e )

g q
= —ig.fc(l +i95—355—i§§§§+">- (53)
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Equating order by order in g, the expression (53) immedi-
ately provides Eq. (50) at leading order.

Due to Eq. (50), we can introduce the following BRST-
exact term,

1
SIrR —/d4x5510c(/)5”5a)

1
e / d4x <§M4§a5a —l—pfaca) R (54)
where (p, M) are constant parameters transforming as

SlocP = M47 SlocM4 =0. (55)
The parameter p has ghost number —1, while M has ghost
number 0. As it is apparent from Eq. (54), the term Sirg
provides an IR regularization for the Stueckelberg field in a
BRST-invariant way, yielding in fact a propagator for the
Stueckelberg field that behaves now like (&) m. At
the very end of the computation of the correlation functions
the parameters (M, p) will be set to zero.

Before ending this section, it might be worthwhile to
spend a few moments on an important aspect displayed by
the model in the Landau gauge, i.e., 9,4, =0, which
corresponds to @ =0. As one can confirm from the
Appendix, all propagators of all fields are IR safe in the
Landau gauge. In other words, when a = 0, the introduc-
tion of the regularizing infrared mass M is redundant. In
particular, from the Appendix, one sees that (EE)| jndan =
(Au8) Landan = (A7) Langaw = 0, While all other two-point
correlation functions are IR safe. This is an important
property of the Landau gauge, which expresses in terms of
Feynman rules the decoupling of the Stueckelberg field,
reflecting the expected fact that, when 9,4, = 0, the higher
order terms of the infinite series (9) become harmless, due
to the presence of the divergence d,A,. From this useful
feature of the Landau gauge one infers that the existence
of the limit M? — 0 is apparent for correlation functions
(O(x)O(y)) of BRST-invariant composite operators O(x).
In fact, as we shall show in detail in the next section, the
existence of an exact BRST symmetry will enable us to
prove that (O(x)O(y)) turns out to be independent from the
gauge parameter o to all orders. As a consequence, the
correlation function (O(x)O(y)) can be directly evaluated
in the Landau gauge, @ = 0, which is IR safe, due to the
aforementioned decoupling properties of the Stueckelberg
field &.

D. i-particles

In order to elucidate the nature of the fundamental
excitations of the theory, we look at the quadratic part
of the BRST singlet sector of the action (47), which,
bearing in mind that F? is gauge invariant, i.e.,

PHYSICAL REVIEW D 94, 025035 (2016)
Fj (A)Fji,(A) = Fj, (A" Fi, (AY), (56)

is given by
singl 1 a ¢ TFac ac
s = [ (Gang-onang - i -

L Be(— Pt + g e (A (2 + Z}:f)) ,
(57)

where we have already taken into account the fact that the
multiplier ¢ enforces the transversality of (Ah);‘. Defining

1 -
Agb = 75(‘/;” —iu%), (58)

we have

single 1 a a 1 ac ac
Squagci = /d4x (5 (Ah)ﬂ(_az)(Ah)ﬂ - Evﬂ (_az)vﬂ

| B L Pae :
_EU;L(_aZ)UﬁL +§ﬁc(_82)§;“

+ g V2 (Al fo) : (59)

Expression (59) can be diagonalized in the following way:
for SU(N), we decompose the field V* as

1

Vﬁb = \/Nf”bCVf, + S,‘}b, (60)
where
Ve = \/lj_v’fabcvbc’ (61)
and

febesah =0, (62)

The validity of Eq. (60) can be easily checked with the
help of

fabcfahd = N&<4. (63)
The action becomes now
singlet d4 1 Ah a 82 Ah a 1 a 82 a
Squad - X E( )ﬂ(_ )( )"_EV"(_ )Vﬂ
1
+gv2Ny2(Ah)ZV/‘j> +/d4x<—§S,‘jC(—82)S,‘jc

1. o .
- EUzL(—E)z)U,‘j‘ + 5,’1‘(—82)47;;‘). (64)
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Therefore, introducing the complex fields

e = (AN +ive, g = (AN —ive,  (65)

we obtain
sin 1 a . a
Sour = / d“X(Zm(—@z — igV2Ny*)n,

1_ . _
+Zn;;(—62 + lg\/ZNyz)njj>

1
+ / d“x(—ES;jC(—az)Sff
1 R ,
— 5 Ui (=0") U + & (—82)(:;;‘> . (66)

As it is apparent from expression (66), the fields (1, 7)
correspond to a pair of unphysical excitations, called i-
particles [61], with complex conjugate squared masses
:I:igx/ﬁyz. As discussed in details in [61], this kind of
excitation is suitable to describe confined degrees of
freedom. Moreover, it turns out that physical bound state
operators displaying a Kéllén-Lehmann spectral represen-
tation can be constructed by combining pairs of i-particles;
see [61]. Examples of such composite operators are

O<1) = 7_7/41/7]”1/

O<2) = gﬂl/pdf]yur]pm (67)
where

”ﬂp = aunu - 81/’7/4' (68)

It is remarkable that the fields (#,7) corresponding to the
i-particles are BRST singlets. As a consequence, the
composite operators (67) are BRST singlets too.

IV. WARD IDENTITIES AND
THEIR CONSEQUENCES

Having achieved a local formulation of the BRST
transformations, we can proceed with the derivation of
the Ward identities and with the analysis of their conse-
quences. To that purpose we employ the powerful trick of
extending the BRST transformations on the gauge param-
eter a (see [2,56]), i.e.,

Sloc = X» Stoct = 0, (69)
where y is a parameter with ghost number 1, which will be
set to O at the end. As explained in [2,56], the extended
BRST transformations, Egs. (42) and (69), will enable us to
prove in a purely algebraic way that the correlation
functions of local operators belonging to the cohomology
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of the BRST operator sy, are independent from the gauge
parameter a.

Taking into account the extended BRST transformation
(69), the gauge-fixing term becomes now

Stoe / d*x <—igaaba n aaaﬂAg)

a al,a s ,a a 'X_l,l a
:/d4x(2b b* +ib 8#Ay—l§c b

+ 299, D (A)cb> , (70)

so that the action (41) reads

b*b*
SO = Sym + / d4x<a 3 + ib9,Al —igaaba
+E“8MD,‘jb(A)cb> + / d*xt°9,(A")4
+/d4x<_¢sz(Ah)ab¢zc +@sz(AI1)aba)Zc

2
y apc a C —oc
+g—2f be(AM) (phe + @be)

A 1)
+/ d4x<‘5ﬁ”M(Ah)“” i GEM(A) e

2
— oL P B ). &

7

We are now ready to establish the Ward identities of the
theory. Following the general procedure of the algebraic
renormalization [2], we introduce a set of BRST-invariant
external sources (€,L“ K“) coupled to the nonlinear
BRST variations of the elementary fields; namely, we start
with the complete classical action

T=S0+ Sgrr + / d*x(QA510c AL + L 51000 + K 5100E%)

_SI{}%G+/d4x(QZslocAz+Laslocca+Kasloc§a)

4
+ / d*x <M7§“§“+pé“c“>,

where

(72)

leCZ = 0, (73)

StocS1ioc = 0,

with s, being the local version of the nonperturbative
BRST, Egs. (42) and (69). The complete action X turns out
to obey the following Ward identities [2]:
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(1) The Slavnov-Taylor identity:

5L 6% 6T 6T 6T 6%
SE) = [ & ox
®) / x[(sg; 5AT " BL8c" | 5K 6"
6L | 0% 0%
CU ()
Sc¢ H 5 ah H 5ﬂab
5% LT 0%
M=
5(1);14 T8 T4 ba

+ b

+ (@2t + pab)

(ii) The gauge-fixing equation:

oX .. . PR A
%zu‘?ﬂAM—i—ab —5)(6' . (75)

(iii) The antighost equation:

5% 5S i
0% L9, 2= L pa, 76
5o T noqr 2% (76)

To exploit the content of these identities at the quantum
level, we introduce the 1P/ generating functional I"

F=X+> AT, (77)
n=1

and write down the quantum version of the identities (74),
(75), and (76), i.e.,

5T oF 6T 6T  oF o or
) = / d Lsgz;j 5A7 " 5Lasct T skase T e
+ o or +w“b5—r
H 5€0/tllb H 5ﬁzb
ar  ar

47
+M 8p+18a 0, (78)

T
+ (q)zb +ﬁzb) 5@(11)
U

or

. a a i ~a
%:laﬂAﬂ‘Fab —5)(6' s (79)

5T ST i
O i X e 80
goa T HoQe 2% (80)

We move then from the 1P correlation functions to the
connected ones by means of the Legendre transformation

F[@,J,u]+2/d“x1§q’>®i, (81)

whereby J stands for the standard sources coupled to the
fields of the theory and

2.7 =

PHYSICAL REVIEW D 94, 025035 (2016)

(Di = {A,b,C, E’a";:,T,(P’@’G),@’ﬁ,B’C’Z},
J={Q,L,K},

W= {p. M a.z}. (82)

From expression (81) we have

som = 1" % —ae(83)
for bosonic fields and
e
for fermionic fields, so that
oI oz or oz (85)

8J 6J ouw  op
When written in terms of the generating functional
Z[J, J, u], the previous Ward identities take the following

forms:
(1) The Slavnov-Taylor identity:

/ d*z |:_J/(4A)a (Z) % 4 Jea (Z) S (Z)

+zJ<>()

sJa(z)
oz
6‘]’(‘(1))5;/7 (Z)

n J(@)ab(z) < o7 n o7 ):|
! 517 (2) 81D ()

M4 _f E
+ +y =0. (86)

- (" (@) + J,S”>“”<z>>

(ii)) The gauge-fixing equation:

— (b)a =1
(x) = i0,, 5y +a

(87)

(iii) The antighost equation:

oZ i oZ

©)a : _i
S+ O Saeey T 2% 5y

(88)

In the following, we shall explore some implications of
these identities for the two-point gluon correlation function
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and to the correlation functions of BRST-invariant
operators.

A. The longitudinal part of the gluon propagator

The first important consequence stemming from the
identities (86), (87), and (88) is that they completely
determine the longitudinal part of the propagator of the
gauge field A7,

Acting with the test operator

5 5
SIS (x) 8T (y)

(89)

on the Slavnov-Taylor identity, Eq. (86), and setting all
sources and parameters M and y equal to zero, one gets

5 6Z 57

871 (y) 6 (x )_i5]<b>b(y)5ffj‘)“(x) =000

Let us now act on Eq. (90) with the partial derivative 0,
obtaining

5 5Z 27
A — i —0. (91
8@t (y) H8Qu(x) T 50 (y)ss M (x) o1

Making use of the antighost equation (88) with y equal to
zero, it follows that Eq. (91) yields

0 J@a(x) + i} rz 0 (92)
N, N X l —
8J (y) H 510 ()57 (x)
or
, , 8z
58(x —y) +id% =0, (93

"SI ()80 ()
which, in momentum space, becomes
pﬂ<Azbb>conn(p) = _5ab’ (94)
where we have defined (A%b") ..,(p) in such a way that

827
ST (x)8T )P ()

= —<AZ (X)B” (¥)) conn

_ d4 ap,b eip(x—y)
| G A ()
(95)

Therefore, from Lorentz’ invariance, it follows that

5 . . . . . .
Or more precisely, Euclidean 4D rotational invariance in our
case.
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P
<Azbb>conn(p) = _p_’;éab' (96)
What remains now is to apply the test operator ﬁb() on
v y

Eq. (87) and set all sources and y equal to zero, obtaining

8’z 8’z
10— @b, ¥ =0 (97)
81 ()BT (v) 8L (3)8T P (x)

which gives, in momentum space,

—Py <AzA5>conn(p) + a<Al}5ba>conn(_p) =0, (98)

or
<AaAb>conn (p) =a— by 5 (99)
P

Therefore, decomposing the gauge propagator <A/‘1Af]>conn
into transverse and longitudinal components

PPy Pub ’
- ) () + 2Pe (2] 5o,
)4 P

(100)

UL c(7) = | (30

it follows that the longitudinal component G(p?) is
completely determined to all orders to be

G(p?) = pﬁ (101)

a result that is in full agreement with the recent lattice data
[62,63] as well as with the results following from the
analysis of the Dyson-Schwinger equations [64-66]. The
linear covariant gauge was also analyzed in [67,68]. In [49],
an alternative proof of this fact was presented, directly at
the level of the path integral. It is worth mentioning that the
result (101) is hard to show if one would not have an exact
BRST symmetry for the Gribov-Zwanziger action at one’s
disposal.

B. Gauge-parameter independence of correlation
functions of BRST-invariant composite operators

A second relevant consequence that follows directly
from the Slavnov-Taylor identity, Eq. (86), is the inde-
pendence from the gauge parameter a of the correlation
functions of composite operators that belong to the coho-
mology of the BRST operator s,,.. To establish this
property we follow the procedure outlined in [2].

Let O(x) denote a local composite operator with vanish-
ing ghost number and belonging to the cohomolgy of sy,
namely,

O # 5100,

S10.0 = 0, (102)

025035-11



M. A.L. CAPRI et al.

for any local operator O. The correlation functions
(O(x1) - - - O(x,)) conn are obtained by adding to the starting
action the BRST-invariant term [ d*x(J(©)(x)O(x)), with
J(©) being an external invariant source. Due to the BRST
invariance of [ d*x(J(©)(x)O(x)), the Slavnov-Taylor
identity, Eq. (86), remains unmodified.

The correlators (O(x;) - O(x,))conn are derived by
differentiating the generating function Z with respect to
J©) and by setting all sources and parameters (M*,p, y)
equal to zero, i.e.,

5 5
81 (x,) 819 (xy)

xZ \J:J:O,M:,;:Fo-

<O()C1) T O(x11)>conn =
(103)

To prove the gauge-parameter independence of the corre-
lation functions (O(x) - - - O(x,,))eonn» WE act with the test
operator

5 5
81 (x,) 619 (x))

(104)

on the Slavnov-Taylor identity, Eq. (86), and afterwards we
derive with respect to the parameter y, yielding the equation

0 o"Z
a [51(0) () 6 (x))

d? 5"Z
_18)(861 [5J(O) (x,) - -

JJO,M/)0:|

}:a
J=J=0,M=p=0
(105)

87 (xy)

Setting now the parameter y to zero, we finally get

0

% <O(X1) e O(xn)>conn =0, (106)

which establishes the all-order independence of the corre-
lation functions (O(xy)---O(x,))conn from the gauge
parameter «. In particular, the vacuum energy (zero-point
function) is a-independent, and as a consequence also the
Gribov parameter y that follows from extremizing the
vacuum energy.

V. DIMENSION-TWO CONDENSATES AND
CONSTRUCTION OF THE REFINED GZ ACTION

It is known that the GZ vacuum exhibits the formation of
dimension-two condensates that are energetically favored,
giving rise to a refined action called the RGZ action; see
[12—14]. In the present BRST-invariant formulation of the
linear covariant gauges, these dimension-two condensates
are easily identified, the corresponding dimension-two
operators being given by

PHYSICAL REVIEW D 94, 025035 (2016)
pab pab #ab rab
WP+ )

(107)

A A

We underline that both operators appearing in Eq. (107)
belong to the cohomology of the BRST operator sy, as it is
easily checked. Taking into account these dimension-two
operators, for the BRST-invariant RGZ action we get

ajl,a

b
SkGz = Svm + Scona + Sirr + / d*x (a + ib?0, AL
+aaaﬂng(A)c”> + / d*xt90), (A
- / d'x (—@Z”M(Ah)“”cpfj” + @ M (AR P el

2
Y _
+ g—ﬁf“b%A”)Z((pﬁc - cpﬁf))

o [ (raayony + e

2
4 abc a c pbc
— gL P+ ) (108)
with Sirr given by expression (54) and®
i M e an 2(zab ab
Suwa = [ {5 (1000 + gt
-t~ B+ ) (109)

We note that in the auxiliary fields sector, a single mass
parameter is used. If different parameters were used, we
could simply fix them to be equal (up to a sign) by
demanding that S.,,4 be invariant under the nonperturbative
BRST transformations and the discrete transformations
(44). The parameters (m?,u®) in expression (109) are
dynamical parameters that, as much as the Gribov param-
eter y%, can be determined order by order through the
evaluation of the effective potential for the dimension-two
operators of Eq. (107); see [14]. Notice also that, as in
the case of y2, the parameters (m?, u?) are coupled to the
operators (107), which belong to the cohomology of the
BRST operator. As such, (m?, u?) are physical parameters
of the theory that will enter the physical correlation
functions of BRST-invariant operators.

VI. INCLUSION OF MATTER FIELDS

It is interesting to point out that this fully local BRST-
invariant description is not restricted to the case of pure-
gauge theories. Gauge-invariant matter fields, analogous to

®As pointed out in [13] before, y* should be positive to avoid
tachyonic modes in the @w sector.
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A", may be constructed for various fields belonging to
different representations of the SU(N) color group,
allowing for the modeling’ of nonperturbative gauge-
interacting matter. In what follows, we discuss two
particular cases of phenomenological interest: adjoint
scalar fields and Dirac fermions in the fundamental
representation.

A. Scalar fields in the adjoint representation

Consider adjoint scalar fields

¢ = P°T?, (110)
whose BRST transformation is
s = iglp. . (111)

A gauge-invariant scalar field is obtained by making use of

the Stueckelberg field ¢ [defined in Eq. (19)], as

¢" = h'ph. (112)

It is easy to verify that ¢" is left invariant by the BRST
transformations, i.e.,

s¢" = 0. (113)

Generalizing the construction outlined in [38], a BRST-
invariant action for the scalar field ¢" is given by

Sa — 64H¢(¢h,Ah) — 9204/d4xd4yf”bc(¢h)b(x)

x (M AN (e, y) (@) (),
(114)

where the parameter 6* plays a role analogous to that of the
Gribov parameter y4.8 As shown in [38], the relevance of
introducing the matter action (114) lies in the interesting
feature that, besides sharing a natural similarity with the
horizon function H(A) of the gauge field, it enables us to
obtain a propagator for the scalar field that fits in a nice way
the available lattice numerical data; see the discussion
presented in [38]. Proceeding as before, the nonlocal term
(114) can be cast in a local form by introducing the
auxiliary fields (9, &) and (@, 0):

It would remain, in the future, to work out a self-consistent
dynamical realization of such a model, starting from the standard
Yang-Mills matter actions.

However, we do not have a geometrical picture behind this
parameter ¢* akin to that of y*; i.e., we do not have a horizon
condition. Following footnote 7, a dynamical realization of ¢*
remains to be worked out.
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Sg)cal — /d4x{_1_9acMab<Ah)19bc 4 éacMab(Ah>9bc
+O.2fabc(¢h)a(19bc+1§bc)}' (115)

As done before, the action (115) is left invariant by the
nonperturbative BRST transformations

529 =0%, 5,9 =0,
- — 1 na
s:@“”:O, SZH“hZS“b+ 2 . rmnb hm< ) ,
o o 9 gf (¢ ) M(Ah)
(116)
with
sp2Slocal — (), (117)

Again, the transformations (116) can be localized in the
same fashion as those of the pure gauge sector.

B. Fermion fields in the fundamental representation

The same construction can be applied to fermion fields in
the fundamental representation. The BRST-invariant fer-
mion field is now

W' = hly. (118)
In this case, the invariant spinor action is
Se = g4HW(Wh’Ah>
——et [ sty T A (A
x (. )Ty ) (v), (119)

where i, j, k are the indices of the fundamental represen-
tation of SU(N); a is the spinor index; and the parameter ¢*
is analogous to 6* and y*. As in the case of the scalar field,
the term (119) enables us to nicely reproduce the available
lattice data on the quark propagator, upon including as
before a mass for the localizing auxiliary fermion
fields [18,38].

One can observe that the procedure used to define an
arbitrary gauge-invariant field ®" from a field ® trans-
forming under the gauge group amounts to defining the
map h~!:® — ®" where h~! is a field defined to transform
as the inverse of a group element and the map mimics the
action of a group element acting on ®. In that way, under a
gauge transformation ¢, we have g¢:® — ®9 and
g:h™' > h~'g, in such a way that g:®" — ®9lo'h) =
®”. In that way, it is clear that the construction discussed
above can be generalized to fields transforming under any
representation of the gauge group.
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VII. CONCLUSION

In the present work we have pursued the study of the
nonperturbative nilpotent exact symmetry of the Gribov-
Zwanziger formulation recently proposed in [48], in the
Landau and linear covariant gauges.

The main issue that has been faced is that of the
localization of both the BRST operator and action derived
in [48]. As shown in Secs. (II) and (III), a complete local
formulation can be achieved, as summarized by Egs. (41),
(42), and (43). In addition of the auxiliary fields
(@, w, p, @) already present in the original formulation, a
second set of auxiliary fields (é’ C, P, B) [Eq. (42)], as well
as an auxiliary Stueckelberg field & [Eq. (19)], have been
introduced to obtain a fully local setup.

This novel formulation of the linear covariant gauges
opens the possibility of new lines of investigation, as
already partially reported in Sec. (IV). In particular, as a
consequence of the Ward identities of the theory, the
longitudinal component of the gauge field propagator
has been proven to be completely determined to all orders,
being given by %; see Egs. (100)—(101). We emphasize that
this result is in complete agreement with the recent lattice
numerical simulations [62,63] as well as with the studies of
the Dyson-Schwinger equations [64—66].

A second important consequence following from the
local Ward identities is the independence of the correlation
functions of local BRST-invariant composite operators
from the gauge parameter a. For instance, this result
implies that the masses of the glueballs already obtained
in the Landau gauge [16,17] remain the same when moving
to the linear covariant gauges.

Concerning future investigations, we might quote the
study of the infrared behavior of the Faddeev-Popov ghost
propagator in linear covariant gauges, the proof of the all-
order renormalizability of the new formulation, the analysis
of the cohomology of the new local BRST operator
[Eq. (42)], and the possible identification of a suitable

ala

b
Sk((:}(Z} = SYM + Scond + SIRR + /d4x <a
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set of composite operators displaying the Killén-Lehmann
spectral representation, a task of utmost importance for the
understanding of the physical spectrum of the theory. In
addition, it will also be worthwhile to set up a dynamical
framework to compute the various d =2 vacuum con-
densates needed to stabilize the Gribov-Zwanziger vacuum.
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APPENDIX: PROPAGATORS OF THE
ELEMENTARY FIELDS

In order to calculate the tree-level two-point functions
of the theory, let us first write the action up to quadratic
terms in the fields. For that matter, we consider the most
general case of nonzero BRST-invariant condensates
(@ g =t =By B + P C4)) and ((A")(A");h),
as in the so-called refined Gribov-Zwanziger theory, by
adding the term S.,q. An infrared cutoff for the
Stueckelberg field & is necessary, as discussed in
Sec. III C. This cutoff is added in a BRST-invariant way
through the term Sigg. Let us start with the full action (41),

+ ib*0,A; + Z‘“(GﬂDﬂ)“bcb) —l—/d“xr“@M(Ah)Z.

2
+ / d4x <_¢ZCM(Ah)ab(pZC + &)ZCM(Ah)abCOZC + gy_zfabc(Ah)Z((ch + ¢zc)> ,

V2

2
o [ (g aatypy -+ Gyt - o o ps g+ ) ) (a1

supplemented by the Stueckelberg field mass regulator

S = [ drgstoe) = [ (Gure s pee)

and the dimension-two condensates

7

(A2)
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m? - -
Suna = [ {5 A0+ it - g BB+ B (43)

In order to extract the quadratic part of the action (A1), we use the Stuckelberg field to write the transversal gluonic

field A" to first order in the fields as (Ah)l‘j = Aj — 0,&. Also, the Faddeev-Popov operator is trivially given by
M (AM) = —9%5% + O(A"). The quadratic part of the action is then

ua u al ; a a a ~a a abc ( Aa a c —bc ~a a
Siey = S\ + / d“x{b (@A” +5b ) + @ (0% = 1) + gr* f (A = 0,8°) (@€ + @) + ¢
—ab82 2\ ,ab aaaa2a 12aa aaZa ag ga M4aa a .a
—w,” (0% — p*)oi” + 140,45 — §)+§m (AjAL — £90%¢ = 2A50,87) + 255 +péic
2
na a /4 abc (Aa a c Bbc >a a
+BP(0* — ) f—gﬁf Pe(Af = 0, EN) (B + i) = Ei (0 — ) ,/’}- (Ad)

Following the standard procedure, one finds the following set of tree-level propagators of the theory in momentum space

P+
p4 + (m2 +ﬂ2)p2 +m2”2 _|_2N92},4

a
(A4(p)AL(-p)) = 5P, + Pl (A5)

2

AP (p)) = —— 0" (A6)

it (=) = PN = I (7
Wi =) =i, (a8

WP ) = =i (49)

R (A10)

) =i (A1)

0 (p)eH(p) = =i " (a12)

PP = =it s (A13)

(@) (=p)) = it (A14)

(@) (=p) = (AL5)

(@) P) = i O (A16)

B0 ) = PP = o A, (AT

025035-15



M. A.L. CAPRI et al. PHYSICAL REVIEW D 94, 025035 (2016)

(@ (Pl (=p)) = (P> +p2)p* + pgiﬁfjr;f;j— m*u* + 2Ng*y*] P~ ];32“15”:2 " (AL8)
D)) = P = =i T (A19)

Ee ) = (420)

E ) =L (a21)

o (e

with P, = (5, — Pul) being the transverse projector.
The theory also has a considerable set of vanishing propagators, given by all propagators involving either the ¢ or the

fields, except for

(e (p)c’(=p)) = 7 54 (A23)
@ (Pt (=) = = 005, (a2

The propagators involving the auxiliary fields (5, #) and (£, {) are straightforwardly derived from those above by using
the symmetry relations (44). All other propagators that have not been listed above are vanishing. Finally, let us recall that the
parameters M and p (which regularize the propagation of the Stueckelberg field) must be taken to zero at the end of any

actual calculation.
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