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We find new higher derivative models describing a parity doublet of massive spin-3 modes in
D ¼ 2þ 1 dimensions. One of them is of fourth order in derivatives while the other one is of sixth order.
They are complete, in the sense that they contain the auxiliary scalar field required to remove spurious
degrees of freedom. Both of them are obtained through the master action technique starting with the usual
(second-order) spin-3 Singh-Hagen model, which guarantees that they are ghost free. The fourth- and sixth-
order terms are both invariant under (transverse) Weyl transformations, quite similarly to the fourth-order
K-term of the “new massive gravity.” The sixth-order term slightly differs from the product of the Schouten
by the Einstein tensor, both of third order in derivatives. It is also possible to write down the fourth-order
term as a product of a Schouten-like by an Einstein-like tensor (both of second order in derivatives) in close
analogy with the K-term.

DOI: 10.1103/PhysRevD.94.025033

I. INTRODUCTION

The coupling of higher spin particles to themselves and
to matter fields is a long-standing problem. In the spin-2
case, for both massless and modern massive gravity
theories, the geometrical approach plays a crucial role in
the coupling problem. Regarding massive spin-2 theories,
the case of D ¼ 2þ 1 dimensions is specially interesting
from the geometrical perspective. It is possible to describe
self-interacting massive spin-2 particles in D ¼ 2þ 1 in a
purely geometrical approach via the so called “new massive
gravity” (NMG) [1] which is a fourth-order theory in
derivatives but still ghost free. It would be certainly
interesting to generalize it to higher spins, and we can
start with the spin-3 case. The geometry of spin-3 particles
has been already discussed in D ¼ 2þ 1 in [2] and more
recently in [3]. A spin-3 analogue of the NMG has been
considered in [4]; however, it does contain ghosts. Another
approach to such problem is to try to generalize to spin-3
the works [5,6]where the helicity þ2 and the helicity −2
eingenstates represented by the linearized topologically
massive gravity of [7] have been joined together (soldered)
into a parity doublet which is exactly the linearized version
of the NMG. Since a spin-3 analogue of the topologically
massive gravity has been suggested in [2], one might try to
solder two of such models into a parity doublet with both
helicities þ3 and −3. It turns out that such a procedure is
not straightforward for spin-3, and we have not yet been
able to implement it. It is still under investigation.
Here, we follow instead basically the same approach of

[1] where the NMG has been deduced from the Fierz-Pauli
[8] massive spin-2 theory via a master action [9]. We

replace the Fierz-Pauli theory by the massive spin-3 Singh-
Hagen [10] model. A key ingredient in the master action
technique is to identify a trivial (no particle content) term in
the starting theory which might be used to mix the old and
new (dual) fields. In this sense we start by briefly reviewing
the Singh-Hagen theory stressing the triviality of its
massless limit just like the massless limit of the Fierz-
Pauli theory (linearized Einstein-Hilbert) which has no
particle content in D ¼ 2þ 1. By using the massless limit
of the Singh-Hagen model as a mixing term in the master
action approach, we obtain a fourth-order spin-3 model
Sð4Þ. It reminds us of the NMG, since the spin-3 fourth-
order term can be written as a product of a Schouten-like
(Sμνλ) by an Einstein-like (Gμνλ) tensor (Fronsdal tensor),
both of second order in derivatives, just like their spin-2
counterparts [11]. The spin-3 Schouten-like tensor that we
have used emerges automatically during the procedure, but
differs from the usual (third order) definitions present for
example in the recent work [3].
We finish our work introducing a sixth-order model Sð6Þ,

which also reminds us of the linearized NMG, since the
sixth-order term can be written almost completely in
terms of the product of the usual Schouten tensor (Sμνλ)
by the usual Einstein tensor (Gμνλ), both of third order in
derivatives. Both fourth- and sixth-order models are invari-
ant under spin-3 reparametrizations δϕμνλ ¼ ∂ðμ ~ξνλÞ, with
ηνλ ~ξνλ ¼ 0. The sixth-order model is also invariant under a
linearized transverse Weyl transformation δϕμνρ ¼ ηðμνζTρÞ.
They describe a parity doublet of helicities �3 and are
complete in the sense that they inherit the scalar auxiliary
field, required to get rid of ghosts, from the Singh-
Hagen model.
In Sec. II we obtain the model Sð4Þ from the Singh-Hagen

model. In Sec. III we obtain the sixth-order model Sð6Þ
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from Sð4Þ. We draw our conclusions and perspectives in
Sec. IV.

II. FROM THE SINGH-HAGEN THEORY TO Sð4Þ

In D ¼ 2þ 1 a doublet of helicities þ3 and −3 particles
can be described by the Singh-Hagen model [10]:

SSH ¼
Z

d3x

�
1

2
ϕμνλGμνλðϕÞ −

m2

2
ðϕμνλϕ

μνλ − 3αϕμϕ
μÞ

− 3maϕμ∂μW þ bm2

2
W2 þ c

2
W□W

�
: ð1Þ

The spin-3 field ϕμνλ, with trace ϕλ ¼ ημνϕμνλ, is totally
symmetric. We have introduced the auxiliary scalar fieldW
through the constants a, b and c, so far arbitrary, in order to
remove spurious degrees of freedom. Here, we have used
the second-order Fronsdal tensor (Einstein-like) Gμνλ intro-
duced in [2], which is given by

Gμνλ ≡Rμνλ −
1

2
ηðμνRλÞ: ð2Þ

The “Ricci” tensor is given in terms of ϕμνλ as
follows:

Rμνλ ¼ □ϕμνλ − ∂α∂ðμϕανλÞ þ ∂ðμ∂νϕλÞ; ð3Þ

while its trace is Rλ ¼ ημνRμνλ ¼ 2□ϕλ − 2∂μ∂νϕμνλ þ
∂λð∂ · ϕÞ. Along this work, we use unnormalized symmet-
rization, meaning the minimal sum of terms to achieve
symmetry, for instance, ∂ðα∂βϕγÞ ¼ ∂α∂βϕγ þ ∂α∂γϕβ þ
∂β∂γϕα.
As demonstrated in [12], in order to get rid of the spin-1

modes given by the transverse vectors ϕT
μ and ð∂μ∂νϕμνλÞT ,

one needs to write the equations of motion as a system of
homogeneous equations:

M

�
ϕT
μ

ð∂μ∂νϕμνλÞT
�

≡
�

α□ −1
□þm2

3
ð5α−1Þ −1

��
ϕT
μ

ð∂μ∂νϕμνλÞT
�
¼ 0; ð4Þ

where only trivial solutions are reached by imposing that
detM ≠ 0. With this requirement, one has α ¼ 1, and in
consequence, ϕT

μ ¼ 0 ¼ ð∂μ∂νϕμνλÞT . In order to guarantee
that the remaining longitudinal terms (spin-0 modes) given
by ∂μϕμ; ∂μ∂ν∂λϕμνλ vanish, one needs to look for the
scalar part of the equations of motion and write them
again as a system of equations. Taking α ¼ 1, only trivial
solutions ∂μϕμ ¼ 0 ¼ ∂μ∂ν∂λϕμνλ will be obtained by

setting the arbitrary coefficients to a ¼ 1=3, b ¼ 18
and c ¼ −8=3.1

The spin-3 second-order term in (1), as in the spin-2
case, leads to the equations of motion GμνλðϕÞ ¼ 0, which
in D ¼ 2þ 1 implies a pure gauge solution

ϕμνλ ¼ ∂ðμ ~ΛνλÞ; ð5Þ

with traceless parameter ~Λ ¼ ημν ~Λμν ¼ 0. This proves the
trivial (pure gauge) nature of such term in D ¼ 2þ 1
dimensions, and we can use it as a “mixing term” between
dual fields in order to construct a master action. From
the Singh-Hagen model, given in formula (1) with
ðα; a; b; cÞ ¼ ð1; 1=3; 18;−8=3Þ, we build up the following
master action:

Sð2ÞM ¼
Z

d3x

�
1

2
ϕμνλGμνλðϕÞ −

m2

2
ðϕμνλϕ

μνλ − 3ϕμϕ
μÞ

−mϕμ∂μW −
1

2
ðϕ − ψÞμνλGμνλðϕ − ψÞ

�

þ S1½W�; ð6Þ

where we have introduced a dual field ψμνα and added a
mixing second-order term. The auxiliary action is

S1½W� ¼
Z

d3x

�
9m2W2 −

4

3
W□W

�
: ð7Þ

In order to interpolate among the dual models, let us
introduce a source term jμνλ coupled to the totally sym-
metric field ϕμνλ and define the generating functional for
the master action (6):

WM½j�¼
Z

DϕDψDW expi

�
Sð2ÞM þ

Z
d3xjμνλϕμνλ

�
: ð8Þ

By making the shift ψ → ψ þ ϕ, the master action
becomes the Singh-Hagen theory, SM ⇒ SSH, since
ψμνλGμνλ has no particle content. This shows that the

master action Sð2ÞM describes one doublet of helicities �3.
On the other hand, rearranging the action without any shift
we have

SM ¼
Z

d3x

�
−
1

2
ψμνλGμνλðψÞ −m2

2
ðϕμνλϕ

μνλ − 3ϕμϕ
μÞ

þ ϕμνλMμνλ

�
þ S1½W�; ð9Þ

where Mμνλ is given by

1The values for b and c are actually given in terms of a. Here,
in order to compare with [12], we have set a ¼ 1=3.
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Mμνλ ¼ GμνλðψÞ −m
3
ηðμν∂λÞW þ jμνλ: ð10Þ

Gaussian integrating over ϕμνλ, we have

Sð2ÞM ¼
Z

d3x

�
−
1

2
ψμνλGμνλðψÞ

þ 1

2m2

�
MμνλMμνλ −

3

4
MλMλ

��
þ S1½W�; ð11Þ

and after substituting back Mμνλ from (10) in (11), we
obtain the fourth-order theory

Sð4Þ ¼
Z

d3x

�
−
1

2
ψμνλGμνλðψÞ þ 1

2m2
SμνλðψÞGμνλðψÞ

þ 1

12m
ψμνλGμνλðη∂WÞ þ jμνλFμνλ þOðj2Þ

�

þ S2½W�; ð12Þ

where η∂W stands for the fully symmetric tensor
ηðμν∂ρÞW ¼ ημν∂ρW þ ηνρ∂μW þ ηρμ∂νW, while

Fμνλ ¼ 1

m2
SμνλðψÞ þ 1

12m
ηðμν∂λÞW; ð13Þ

S2½W� ¼
Z

d3x

�
9m2W2 −

9

8
W□W

�
: ð14Þ

The fourth-order term has been defined with the help of
the spin-3 Schouten-like tensor2 Sμνλ given in terms of the
Fronsdal (Einstein-like) tensor (2):

SμνλðψÞ ¼ GμνλðψÞ −
1

4
ηðμνGλÞðψÞ

¼ RμνλðψÞ −
1

8
ηðμνRλÞðψÞ: ð15Þ

In this sense one could interpret this fourth-order term as
the analogue of the K-term of [1] since as observed by the
authors of [11] the K-term can be written in terms of the
spin-2 Schouten tensor as K ¼ SμνGμν where in that case
Sμν ¼ Rμν − gμνR=4withGμν the Einstein tensor. Thus, in a
certain point of view, the fourth model (12) corresponds to
a spin-3 version of the linearized new massive gravity,
differently from the analogy proposed in [4] where the
authors have found a fifth-order massive spin-3 model

which describes two excitations, but one of them is a ghost.

The fact that the action (12) is equivalent to Sð2ÞM , which on
its turn is equivalent to the Singh-Hagen model (1),
guarantees that Sð4Þ is ghost free and describes the two
helicities �3.
In an alternative way one could write the ψψ piece of the

action (12) as its spin-2 analogue [1]:

Sð4Þψψ ¼
Z

d3x

�
−
1

2
ψμνλGμνλðψÞ

þ 1

2m2

�
RμνλRμνλ −

15

16
RμRμ

�
ψψ

�
: ð16Þ

As in that case, the second-order term, which plays the
role of the Einstein-Hilbert term also appears with the
“wrong” sign in the action.
The dual field Fμνλ in (12) allows us to obtain the dual

map given by

ϕμνλ ↔ Fμνλ: ð17Þ

Taking derivatives with respect to the source in (8) and
(12), one has the equivalence of the following correlation
functions:

hϕμ1ν1λ1…ϕμNνNλN iSð2ÞM
¼ hFμ1ν1λ1…FμNνNλN iSð4Þ
þ C:T:; ð18Þ

which guarantees the quantum equivalence between the
Singh-Hagen model and the fourth-order model. The C:T.
terms in (18) are contact terms due to quadratic terms on the
sources in (12). The same dual map at the level of the
equations of motion becomes evident in the classical
equivalence. In order to see this we can first consider
the symmetric sector in both theories. The equations of
motion with respect to ϕμνλ in the Singh-Hagen model
give

GμνλðϕÞ −m2ðϕμνλ − ηðμνϕλÞÞ −m
3
ηðμν∂λÞW ¼ 0: ð19Þ

On the other hand, the equations of motion with respect
to ψμνλ in (12) are

−GμνλðψÞ þ 1

m2
Gμνλ½SðψÞ� þ 1

12m
Gμνλðη∂WÞ ¼ 0; ð20Þ

where we have used the self-adjoint property of the
operator Gμνλ and the commutativity between the
operators Sμνλ and Gμνλ in the sense that when integrated
SμνλðψÞGμνλðϕÞ ¼ SμνλðϕÞGμνλðψÞ. In (20) one can notice
that it is possible to rewrite the last two terms in terms of the
dual field Fμνλ given by (17), giving us a unique term
GμνλðFÞwhich is the equivalent of the first term in (19). The

2Originally, the spin-3 Schouten tensor Sμνρ is of third order in
derivatives, see [3] and also (37) where it is defined in terms of
the Einstein tensor Gμνρ which is also of third order, see (36). In
D ¼ 2þ 1 dimensions Gμνρ is dual to a rank-6 spin-3 Riemann
tensor R½μν�½αβ�½ργ�. On the other hand, the second-order Fronsdal
tensor that we have used here was once interpreted as an Einstein
tensor in [2], our definition of Sμνλ as a Schouten-like tensor
mimics (37).
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rest of the equivalence can be achieved by observing that
using (13) we have

GμνλðψÞ ¼ m2ðFμνλ − ηðμνFλÞÞ þm
3
ηðμν∂λÞW: ð21Þ

Thus, (20) becomes

GμνλðFÞ −m2ðFμνλ − ηðμνFλÞÞ −m
3
ηðμν∂λÞW ¼ 0; ð22Þ

showing us that the equations of motion derived from the
fourth-order model can be written in the same form of the
Singh-Hagen equations of motion (19). For a complete
proof of equivalence, we also need to compare the
equations of motion of the scalar field W in both for-
mulations. Regarding that point, we notice from (14)) that
the auxiliary action has been automatically corrected. This
kind of correction has been already observed in the case of
the maps among the spin-3 self-dual models [13,14]. This
corrects the description from one formulation to another
one, preventing ghosts. Besides the auxiliary field action,
the linking term between the W and the rank-3 tensor has
also been modified, in comparison with mW∂μϕ

μ in (6);
namely, we have now −W∂μGμðψÞ=ð4mÞ in (12), see (A5)
in the Appendix. The equation of motion of the W field
from Sð4Þ, neglecting sources, is given by

18m2W −
9

4
□W −

1

4m
∂μGμ ¼ 0; ð23Þ

while from the Singh-Hagen model (1) we have

18m2W −
8

3
□W þm∂μϕ

μ ¼ 0. ð24Þ

The reader can check that (23) is equivalent to

18m2W −
8

3
□W þm∂μFμ ¼ 0; ð25Þ

which is of the same form of (24) with the dual map (17).
This completes the proof of equivalence of the equations
of motion of the fourth- and second-order theories Sð4Þ and
SSH, respectively.

III. FROM Sð4Þ TO Sð6Þ

An important difference between the spin-3 fourth-order
term SμνρGμνρ of (12) and the spin-2 K-term SμνGμν

however is that the spin-2 K-term contains one massless
mode in the spectrum, whereas we are going to show here
that its spin-3 analogue has no particle content. In order to
analyze the particle content of the fourth-order term in (12),
let us consider the lower-order action:

S½ψ ;ϕ�¼ 9

m2

Z
d3x

�
ϕμνλGμνλðψÞ−1

2
ðϕμνλϕ

μνλ−3αϕμϕ
μÞ
�
:

ð26Þ

Notice that, by Gaussian integrating over ϕμνλ in (26),
we have a fourth-order term for ψμνα. On the other hand, if
we first integrate over ψμνλ in (26), we have GμνλðϕÞ ¼ 0,
which in turn implies the pure gauge solution ϕμνλ ¼
∂ðμ ~ΛνλÞ. Substituting back this result in the nonderivative
term of (26), we have the rank-2 traceless theory below

L ¼ −
1

2
ðϕμνλϕ

μνλ − 3αϕμϕ
μÞjϕμνλ¼∂ðμ ~ΛνλÞ

¼ 3

2
½ ~Λμν□

~Λμν þ að∂μ ~ΛμνÞ2�; ð27Þ

where a ¼ 4α − 2, and we have redefined the tensors in
order to get rid of the overall factor 9=m2. In the case of the
usual spin-3 mass term α ¼ 1, (a ¼ 2), the traceless model
(27) becomes exactly the WTDIFF model in D ¼ 3, see
[15], which has no particle content in D ¼ 3. On the other
hand, the integral over ϕμνλ in (26) with α ¼ 1 gives
precisely the fourth-order term obtained in (12), i.e., the
spin-3 K-term. Therefore, the fourth-order term SμνλGμνλ

has no particle content, and it can be used as a mixing term
in a new master action as follows.
Back in the fourth-order model (12), but now with an

extra mixing term, of fourth order in derivatives, we have a
new master action:

Sð2ÞM ¼
Z

d3x

�
−
1

2
ψμνλGμνλðψÞ þ 1

2m2
SμνλðψÞGμνλðψÞ

þ 1

12m
ψμνλGμνλðη∂WÞ þ jμνλFμνλ

−
1

2m2
Sμνλðψ − ΦÞGμνλðψ − ΦÞ

�
þ S2½W�: ð28Þ

Making the shift Φ → Φþ ψ , we have essentially

Sð4ÞM ⇒ Sð4Þ due to the lack of content of Sμνρ½Φ�Gμνρ½Φ�.
On the other hand, without any shift the action can be
written in the following way:

Sð4ÞM ¼
Z

d3x

�
−
1

2
ðψ − NÞμνλGμνλðψ − NÞ

−
1

2m2
SμνλðΦÞGμνλðΦÞ þ 1

2
NμνλGμνλðNÞ

�

þ S2½W; j�; ð29Þ

where we have introduced the convenient variable
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Nμνλ ¼ 1

m2
SμνλðΦÞ þ 1

12m
ηðμν∂λÞW þ 1

m2
~jμνλ; ð30Þ

with ~jμνλ ¼ jμνλ − ηðμνjλÞ=4. Shifting ψμνλ → ψμνλ þ Nμνλ,
we decouple a trivial Fronsdal term ψGðψÞ, and one can
functionally integrate over ψμνλ. After that, we end up with
a sixth-order theory in terms of Φμνλ:

Sð6Þ ¼
Z

d3x

�
−

1

2m2
SμνλðΦÞGμνλðΦÞ

þ 1

2m4
SμνλðΦÞGμνλ½SðΦÞ�

þ 1

12m3
SμνλðΦÞGμνλðη∂WÞ

þ jμνλHμνλ þOðj2Þ
�
þ S3½W�: ð31Þ

In terms of spin-3 second-order curvature-like tensors,
see Appendix, we can write

Sð6Þ ¼
Z

d3x

�
Rμνα

ð□ −m2Þ
2m4

�
Rμνα −

5

16
ηðμνRαÞ

�

þ 9

256m4
ð∂μRμÞ2 þ jμνρHμνρ

�
þ S3½W�: ð32Þ

Through the dual fieldHμνλ, one has a dual map between
the second-order Singh-Hagen theory and the sixth-order
model (31):

ϕμνλ ↔ Hμνλ ≡ 1

m2
Sμνλ

�
1

m2
SðΦÞ þ 1

12m
η∂W

�

þ 1

12m
ηðμν∂λÞW: ð33Þ

As we have done before, this dual map guarantees the
quantum equivalence between the theories. By taking
derivatives with respect to the source term in (28) and
(31) and using (18), we have the equivalence between the
correlation functions in the Singh-Hagen model and in Sð6Þ:

hϕμ1ν1λ1…ϕμNνNλN iSSH ¼ hHμ1ν1λ1…HμNνNλN iSð6Þ
þ C:T: ð34Þ

By using the self-adjoint property of the operator Gμνλ

and the commutativity between the tensors Sμνλ and Gμνλ,
one could, as before, obtain the classical equivalence at the
level of the equations of motion. Finally, the linking term
between W and the rank-3 field has also been changed,
see (A6). The auxiliary action S3½W� has now an extra
higher derivative term:

S3½W� ¼
Z

d3x

�
9m2W2 −

9

4
W□W þ 9

64m2
W□

2W

�
:

ð35Þ

In the Appendix we give the explicit expressions for the
sixth-order term and the linking term between W and Φμνρ

as a function of Φμνρ.
Since the usual spin-3 Einstein tensor Gμνλ and the usual

spin-3 Schouten tensor Sμνλ, see [3,11], are defined in terms
of third-order differential operators3:

Gμνλ ¼
1

18
EðμαEν

βEλÞγΦαβγ ð36Þ

Sμνλ ¼ Gμνλ −
1

4
ηðμνGλÞ ð37Þ

with Eμν ¼ ϵμνα∂α, we may think4 that the sixth-order term
of Sð6Þ might be a product of the type SμνλGμνλ just like the
NMG fourth-order term is a product of the two second-
order tensors SμνGμν. It turns out that this is almost true:

Sð6Þ ¼
Z

d3x
�
−

1

2m2
SμνλðΦÞGμνλðΦÞþ 1

2m4
SμνλðΦÞGμνλðΦÞ

þ 1

256m4
ð∂μRμÞ2þ 1

12m3
SμνλðΦÞGμνλðη∂WÞ

þjμνλHμνλþOðj2Þ
�
þS3½W�: ð38Þ

The last term ð∂μRμÞ2 frustrates our expectations. We
remark that such a term cannot be canceled by any field
redefinition Φμνρ → Φμνρ þ cηðμνΦρÞ where c is a constant.
Regarding local symmetries, a comment is in order. One

can verify that both the fourth- and sixth-order terms in Sð6Þ
are invariant under the transformation

δΦμνλ ¼ ∂ðμ ~ξνλÞ; ð39Þ

with ~ξ ¼ ημν ~ξμν ¼ 0. Since (39) is not a symmetry of the
starting model (1), due to the mass term, it seems that we
might be able to obtain Sð4Þ from the Singh-Hagen model
(1) alternatively via Noether gauge embedding (NGE) of
(39). The same procedure when applied to the Fierz-Pauli
theory (nongauge theory) in D ¼ 2þ 1 leads to the
linearized “new massive gravity” of [1] (a gauge theory)
as we have shown in [16].5 We believe that Sð6Þ can also be
derived from Sð4Þ via gauge embedding of a local

3Our expressions for Gμνλ and Sμνλ are the usual ones, see, for
instance [3]; however, as in the rest of the present paper, we have
unnormalized symmetrization.

4We thank an anonymous referee for asking this question.
5We have also used such a method in [14] in order to obtain

higher order (gauge invariant) spin-3 self-dual models from the
first-order (nongauge theory) spin-3 self-dual model of [17].
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symmetry. The model Sð6Þ is invariant under transverse
Weyl transformations:

δΦμνλ ¼ ηðμνζTλÞ; ð40Þ

with ∂μζTμ ¼ 0, while the second-order term (the Fronsdal
term) of Sð4Þ is not invariant under (40). Therefore, local
symmetries are improved as we jump from Sð4Þ to Sð6Þ just
like the jump from SSH to Sð4Þ. A complete discussion on
the symmetry behind the sequence of doublet models and
the use of the Noether embedding procedure to derive Sð4Þ

and Sð6Þ is in progress, [18].
As a last remark before the conclusions, we go back to

the action (26) and notice that in the specific case of α ¼
7=8 (a ¼ 3=2), after integrating over ϕμνλ, we have a
fourth-order theory for the field ψμνρ which is exactly
what appears in the last model of a chain of self-dual
models obtained in [14]. In this case one can demonstrate
that the resulting dual theory for the tensor ~Λμν on the right-
hand side of (27) contains a ghost. This is the reason why,
see [13], the chain of spin-3 self-dual models stops at the
fourth-order case contrary to some expectations, see [4], of
a possible 2s rule for spin-s, which would lead us to a top
sixth-order model for s ¼ 3.

IV. CONCLUSIONS

We have used the master action technique to obtain
higher-order (in derivatives) massive spin-3 gauge invariant
models starting with the usual (second-order) Singh-Hagen
model. The models include the auxiliary field action
needed to guarantee that only spin-3 modes propagate
and lower spin ghosts are excluded.
First, we have obtained the fourth-order model Sð4Þ, given

in (12). In some sense, it can be interpreted as a spin-3
analogue of the linearized “newmassive gravity” (NMG) [1].
Its fourth-order term has a structure similar to the spin-2
K-term of [1]; i.e., it is the product of a spin-3 Schouten-like
Sμνρ by an Einstein-like tensor Gμνρ. In fact, what we have
called Einstein-like tensor is the second-order Fronsdal tensor.
The Schouten-like tensor is defined from the Einstein-like
tensor in analogy with the definition of the usual (third-order)
Schouten tensor from the usual (third-order) Einstein tensor,
see (15) and (37). Moreover, just like the linearizedK-term is
invariant under Weyl transformations δhμν ¼ ημνΛ unlike the
second-order term (Einstein-Hilbert) of the NMG model, the
fourth-order term of Sð4Þ is invariant under a transverse Weyl
transformation δΦμνλ ¼ ηðμνζTλÞ contrary to the second-order

piece of Sð4Þ, i.e., the Fronsdal action.
We have explicitly shown the equivalence of the

equations of motion of Sð4Þ and of the Singh-Hagen model
via the dual map (13). A key difference between NMG and
Sð4Þ is the following: The spin-3 product SμνρGμνρ has no
particle content, as we have shown here, while its spin-2

counter part SμνGμν contains a massless mode in the
spectrum. In the master action approach a dual (higher-
order) model can be obtained by using a “mixing term”
between dual fields. The spectrum equivalence between the
dual models requires the absence of propagating modes in
the mixing term [19] which is not possible in the spin-2
case, so we are not able to go beyond the fourth order in
the spin-2 case without introducing ghosts. Thanks to the
trivial fourth-order term SμνρGμνρ, starting with Sð4Þ, we
have been able to go even higher and obtain a sixth-order
spin-3 ghost free model Sð6Þ via master action, see (32). The
sixth-order term of Sð6Þ can be written almost as a product
of the usual spin-3 Schouten by the usual Einstein tensors,
both of third order, see (38).
The model Sð6Þ describes a parity doublet with both

helicities �3 while the fourth-order NMG theory describes
�2 helicities. Since the sixth-order model is apparently the
top (highest order in derivatives) spin-3 model, it can also
be interpreted as the spin-3 analogue of the linearized
NMG theory (highest-order spin-2 model). Recalling that
for s ¼ 1, the corresponding highest-order massive
model is the Maxwell-Proca theory (second order) which
describes both helicities �1; there seems to be a 2s rule
for the highest-order spin-s, see comment in [4]. The
same 2s rule seems to work for the parity singlet models
which only describe one helicity mode, either þs or −s.
This has been confirmed in the spin-1 and spin-2 cases [16].
However, regarding the spin-3 singlets (self-dual models),
in previous works [13,14] we have not been able to go
beyond the fourth order without introducing ghosts. The
model Sð6Þ brings some hope of overcoming this barrier.
Regarding the local symmetries, we recall that dual

models obtained via master actions in the spin-1 [9] and
spin-2 [20] cases can be alternatively obtained via embed-
ding of local symmetries, see [21] and [16], respectively.
Likewise, we believe that is possible to obtain Sð4Þ from
SSH via Noether gauge embedding of the traceless repar-
ametrization δΦμνλ ¼ ∂ðμ ~ξνλÞ and Sð6Þ from Sð4Þ via embed-
ding of the transverse Weyl transformation δΦμνλ ¼ ηðμνζTλÞ;
this is currently under investigation as well as the pos-
sibility of going beyond the sixth-order barrier.
Last, we know that is possible to systematically join

together (solder) the helicity eigenstates (self-dual models)
even of different masses into local field theories with both
helicities. The soldering procedure works in the spin-1
[22,23] and spin-2 cases [5,6,24], but it has been only
partially successfully in the spin-3 case [25]. We believe
that the action Sð6Þ may be useful also in order to extend the
soldering program from the spin-1 and spin-2 cases to spin-3.
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APPENDIX: EXPLICIT EXPRESSIONS

Here, we give explicit expressions for some of the terms we have found previously. The fourth-order term given in the
expression (12) can be written in terms of the fields ϕμνλ as follows:

1

2m2
SμνλðϕÞGμνλðϕÞ ¼ 1

2m2
RμνλRμνλ −

15

32m2
RμRμ ðA1Þ

¼ 1

2m2
ϕμνλ□

2ϕμνλ −
3

2m2
ϕμνλ□∂μ∂αϕ

ανλ þ 3

4m2
ϕμ□∂ν∂λϕ

μνλ þ 9

8m2
ϕμνλ∂ν∂λ∂α∂βϕ

μαβ

−
9

8m2
ϕμνλ∂μ∂ν∂λ∂αϕ

α þ 21

32m2
ϕμ□∂μ∂αϕ

α −
3

8m2
ϕμ□

2ϕμ; ðA2Þ

which is gauge invariant under (39) and (40). In fact, using δ~ξRμνλ ¼ 0, the gauge invariance of (A1) becomes obvious.
Let us give now an explicit expression for the sixth-order term presented in (31). Inside space-time integrals, we can write

1

2m4
SμνλðϕÞGμνλ½SðϕÞ� ¼ 1

2m4
Rμνλ□Rμνλ −

15

32m4
Rμ□Rμ þ 9

256m4
ð∂αRαÞ2 ðA3Þ

¼ 1

2m4
SμνρðϕÞ□GμνρðϕÞ þ 9

256m4
ð3□∂μϕ

μ − 2∂μ∂ν∂ρϕ
μνρÞ2: ðA4Þ

About the gauge invariance, it is possible to check that also the sixth-order term is invariant under (39) and (40). Using the
self-adjoint property of the Einstein tensor in the linking term of (12), we have (inside integrals)

1

12m
ηðμν∂λÞWGμνλðψÞ ¼ 1

4m
∂μWGμðψÞ ¼ 3

8m
W∂μRμðψÞ

¼ 9

8m
W

�
□∂μψ

μ −
2

3
∂μ∂ν∂λψ

μνλ

�
;

ðA5Þ

which by its turn guarantees gauge invariance under (39) and (40). Finally, in (31) we have another linking term which can
be rewritten with the help of the self-adjoint property of the Einstein tensor as follows:

1

12m3
SμνλðΦÞGμνλðη∂WÞ ¼ 1

12m3
ηðμν∂λÞWGμνλ½SðΦÞ� ¼ −

3

64m3
W□∂μRμðΦÞ

¼ −
9

64m3
W□

�
□∂μΦμ −

2

3
∂μ∂ν∂λΦμνλ

�
: ðA6Þ

Up to a d’Alembertian, the structure of the fifth-order linking term is the same one of the third-order linking term, which
makes evident its gauge invariance under (39) and (40).
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