PHYSICAL REVIEW D 94, 025032 (2016)

Collective coordinate quantization and spin statistics of the solitons
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The CP" extended Skyrme-Faddeev model possesses planar soliton solutions. We consider quantum
aspects of the solutions applying collective coordinate quantization in regime of rigid body approximation.
In order to discuss statistical properties of the solutions we include an Abelian Chern-Simons term (the
Hopf term) in the Lagrangian. Since I15(CP!) = Z then for N = 1 the term becomes an integer. On the
other hand for N > 1 it became perturbative because IT;(CP") is trivial. The prefactor of the Hopf term
(anyon angle) ® is not quantized and its value depends on the physical system. The corresponding
fermionic models can fix value of the angle ® for all N in a way that the soliton with N = 1 is not an anyon
type whereas for N > 1 it is always an anyon even for ® = nz, n € Z. We quantize the solutions and
calculate several mass spectra for N = 2. Finally we discuss generalization for N = 3.
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I. INTRODUCTION

The Skyrme-Faddeev model is an example of a field
theory that supports the finite-energy knotted solitons [1].
Similarly to many other models [2] the classical soliton
solutions of the Skyrme-Faddeev model can play a role of
adequate normal models useful in description of the strong
coupling sector of the Yang-Mills theory. The exact soliton
(vortex) solution of the model has been found within the
integrable sector [3]. The model contains some new quartic
terms different to the Skyrme term. Inclusion of such terms
is motivated by results of the analysis of the Wilsonian
action of the SU(2) Yang-Mills theory [4]. It has been
shown that in the case of the complex projective target
space CP" the extended Skyrme-Faddeev model possesses
an exact soliton solution in the integrable sector provided
that the coupling constants satisfy a special relation [5,6].
The existence of solutions of the model outside the
integrable sector has been confirmed numerically for
appropriate choice of potentials [7].

The research of quantum properties of solitons is
important not only from a mathematical but also from a
phenomenological point of view (mass spectrum, spin-
statistics relation). There are many attempts to find a
quantum theory of skyrmions in 2 + 1 dimensional CPY
model, including full canonical quantization scheme
[8-15]. In this paper we shall generalize a scheme of
quantization, usually discussed for N = 1, to an arbitrary
value N. We begin our considerations presenting collective
coordinate quantization of rotational degrees of freedom.
The results could have some application to condensed
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matter physics, specifically, to improve our comprehension
of such phenomena as the nature of high 7. superconduc-
tivity and also the fractional quantum Hall effect [8—14].
There are already some important studies on a collective
coordinate quantization approach to the Skyrme model
with nonrelativistic [16—19] and relativistic treatment [20]
which have as a goal an explanation of some basic
properties of hadrons. A similar approach has been applied
to the Skyrme-Faddeev Hopfions [21,22]. An alternative
approach based on a canonical quantization method has
been already examined for the baby Skyrme model [15] and
the Skyrme-Faddeev Hopfions [23].

The Skyrme-Faddeev model on the CPY target space in
3 + 1 dimensions is defined by the Lagrangian [5]

M? 1
L== Tr(V0,0) + 5 Te([0710, ¥, 9710, 0])*

+§ [Tr(0~'0,%)?]? +y[Tr(v~'9, 0019, 0)]? — 42V,

(1)

where M? is a coupling constant with dimension of square of
mass whereas the coupling constants e~2, f3, y are dimen-
sionless. The field ¥ is called a principal variable and it was
extensively studied in [5] and also [7]. The Lagrangian is
invariant under global transformation ¥ — AWB' where A,
B are some unitary matrices. It turns out that the zero modes
of ¥ impose an additional condition on matrices .A and B,
namely, the asymptotic values of W must be preserved under
the symmetry transformation, i.e., AV B = ¥ . There is
no straightforward procedure how to obtain a suitable
parametrization of the zero modes for (A, B), however,
one cannot exclude that such a parametrization exists.

© 2016 American Physical Society
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In this paper, we shall deal with a slightly different
parametrization of the field variable W, namely, with the
Hermitian variable X obtained as a result of transformation
X :=CU where C is a diagonal constant matrix C :=
diag(1,...,1,—1). Note that such a transformation is a
symmetry of the Lagrangian so one gets

M2
£ =T Tr(@,X0"X) + -+ 2)

The main advantage of this transformation is substitution of
the asymptotic condition for the collective quantization by
the following one AX A" = X, where A € SU(N) ®
U(1). It is much easier to find a suitable parametrization
consistent for the new condition. Thus the standard method
for the quantization developed in [15-23] can be directly
applied to the Hermitian variable X, than the principal
variable ¥ itself.'

It is widely known that quantum aspects of the soliton
solutions exhibit a special property (“fractional” spin-
statistics) when the Hopf term (theta term) is included in
the action of the model [24]. Since I1;(CP') = Z, then
such a term became the Hopf invariant and therefore it can
be represented as a total derivative which has no influence
on classical equations of motion [25]. On the other hand,
since IT,(CP") is trivial, the coupling constant (prefactor)
® is not quantized. As shown in [24], when the Hopf
Lagrangian is included in the model, the solitons with unit
topological charge acquire fractional spin %, For a fer-
mionic model coupled with CPV field, ® can be deter-
mined at least perturbatively [26,27].

I1;(CPV) is trivial for N > 1 and then the Hopf term is
perturbative, i.e., it is not a homotopy invariant. It means
that the contribution from this term can be fractional even
for an integer n in the anyon angle ® = nzx. It was pointed
out in [28] that an analogue of the Wess-Zumino-Witten
term appears for the CP" field and it plays a similar role as
the Hopf term for N = 1 [29]. Consequently, the soliton
can be quantized as an anyon with statistics angle ® and
also such Hopf-like term.

The paper [10] contains discussion of the influence of
this term on quantum spectra for N > 1. The author has
taken into account the field being a trivial extension of the
case N = 1 (i.e., including only a single winding number).
In this paper we shall give more thorough and complete
discussions of quantum spectra for N > 1 implementing a
set of winding numbers ni,n,,.... We shall present the
quantum spectra within a standard semiclassical zero mode
quantization scheme.

"The situation is somewhat similar with the case of the 3 + 1
Skyrme model and the 2 + 1 baby Skyrme model. The former
possesses the symmetry U — AUB' while the latter only has the
diagonal ones. It originates in the fact that the chiral symmetry
can only be defined for odd space dimensions.
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The paper is organized as follows. In Sec. Il we give a
brief review of the extended Skyrme-Faddeev model on
the CPV target space, its classical solutions and their
topological charges. The Hopf Lagrangian is presented
in the final part of this section. In Sec. III we briefly discuss
the quantization scheme and fractional spin of solitons in
the model with N =1 (baby skyrmion). Section IV con-
tains generalization of the collective coordinate quantiza-
tion scheme for the case N = 2. In Sec. V we present the
analysis of the spectrum. Finally in Sec. VI we generalize
our formula for N = 3 and we present the energy plot of
the quantized system. Section VII contains summary of
the paper.

II. THE CPY EXTENDED SKYRME-FADDEEV
MODEL

The extended Skyrme-Faddeev model on the CP" target
space has been proposed in [5]. The coset space CPN =
SU(N +1)/SU(N) ® U(1) is an example of a symmetric
space and it can be naturally parametrized in terms of so
called principal variable ¥(g):= go(g)~', with g€
SU(N + 1), o being the order two automorphism under
which the subgroup SU(N) ® U(1) is invariant, i.e.,
o(h) = hforh € SU(N) @ U(1). The principal coordinate
U(g) defined above satisfies W(gh) = ¥(g). Therefore
we have just one matrix W(g) for each coset in
SU(N+1)/SU(N) ® U(1).

The first term of the Lagrangian (1) is quadratic in W and
corresponds with the Lagrangian of the CPY model. The
quartic term proportional to e~ is the Skyrme term whereas
other quartic terms constitute the extension of standard
Skyrme-Faddeev model. The non-Skyrme type quartic
terms introduce to the Lagrangian some fourth power time
derivative terms. A form of the Lagrangian adequate for
quantization is obtained imposing a condition

f+2r=0 (3)

which eliminates some unwanted terms. We shall analyze
in this paper some solutions of the 2 + 1 dimensional
model (a planar case). In such a case the coupling constants
have different physical dimensions to those in the 3 + 1
dimensional model, i.e., M has dimension of mass!/? and
three other coupling constants e~2, f3, y have dimension
of mass.

According to the previous paper [5], one can parametrize
the model in terms of N complex fields u;, where
i=1,...,N. We assume an (N + 1)-dimensional defining
representation where the SU(N + 1) valued element g is of
the form

| —

9= iut 1

<A iu) o=Vt w @
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and where A is the Hermitian N x N-matrix,

*
uiuj

1+ 9
A-u=uand ut-A=u.

which satisfies

Aij - 1951‘1 -

The principal variable takes the form
Iyxy 0 2 (—uQ@u' iu)
U(g)=¢* = +—= )
@)=y < 0 —1> &2< w1
(5)

It has been shown recently that the model (1) possesses
vortex solutions. There exists a family of exact solutions in
the model without potentials where in addition the coupling
constants satisfy the condition fe” + ye? = 2. The solu-
tions satisfy the zero curvature condition 0,u;0"u; =0
for all i, j=1,...,N and therefore one can construct the
infinite set of conserved currents. Furthermore, according
to numerical study there exist vortex solutions which do not
belong to the integrable sector. Such solutions have been
found for the potential

V ="Tr(1 — ¥, '0)4Tr(1 — U ~10)° (6)

with a > 0, b > 0 where ¥, and V¥ are a vacuum value of
the field ¥ at origin and spatial infinity respectively. The
potential (6) is an analog of potentials for the baby Skyrme
model. The numerical solutions and holomorphic exact
solutions corresponding with the same set of winding
numbers have common boundary behavior.

The Lagrangian (1) is invariant under the global sym-
metry ¥ — AUB', A, B€ SU(N + 1). Since we restrict
the analysis to 241 dimensions then it is natural to
consider a diagonal subgroup. For this reason we transform
the variable U into the Hermitian one

2 (—u@®u'" iu
X=Iyyixne + ) ( it _1> (7)
which in addition satisfies X~! = X. Now the Lagrangian

(1) becomes

M? ., 1 5
£ =Z-Tr(9,X0X) + 5 Tr((9,X.0,X])

+§ [Tr(0,X0"X)]* + y[Tr(0,X0,X))* — u*V(X).

(8)

An analysis of zero modes of the classical solutions is much
easier in approach involving a variable X and in practice
enables to apply the quantization scheme. In order to
explain this statement let us note that for the variable ¥
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in the Lagrangian (1) the boundary conditions which result
in AV B" = W break partially the symmetry associated
with the transformation ¥ — AWB'. Unlike for the stan-
dard skyrmion, where the chiral field U goes to U, =1
and the symmetry is simply broken down to A = B3, the
W has a nontrivial value which depends on winding
numbers. Moreover, one still has to determine the pair of
(A, B) for the zero-modes. On the contrary, for (8) the
symmetry transformation becomes diagonal, i.e.,
X — AXA', and then an explicit form of A can be easily
determined as expansion in basis of the standard Gell-Mann
matrices.

It is worth it to stress that for the planar case the classical
equations of motion and their classical solutions have
exactly the same form for both parametrizations.
Furthermore, since the quantization procedure is based
on properties of classical solutions then the resulting
quantum spectra must correspond.

The variable X has close relation with a well-known
Hermitian projector P that satisfies

PT=P, TrP =1, P> =P. (9)
The projector P is defined as
PV)=ZQ® ZT (10)

where the symbol Z stands for the N-component complex
vector Z = (uy,...,uy,i)T/V1+u' -u which depends
on two variables z, z*. The form of the projector allows
us to express X in the form

X =1Iyiixnp1 —2P. (11)

We introduce dimensionless coordinates (z, p, @)

0

X0 = rot, !

x' = rygpcos g, x?

= rop sing (12)
where the length scale ry is defined in terms of coupling
constants M? > 0 and € < 0, i.e., r§ = — ﬁ and the light
speed is ¢ = 1 in the natural units. The linear element ds?
reads

ds* = r3(df* — dp? — p*dg?).
We shall consider the axial symmetric planar solutions
uj = fi(p)e"” (13)

where the constants n; form the set of integer numbers
and f;(p) are real-valued functions. Equivalently, the
ansatz (13) in matrix form reads u = f(p)e™? where
A = diag(ny, ..., ny). In order to simplify the form of some
formulas below, we introduce the functions defined as
follows

025032-3
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4

0=~ = (NI
4

" (82722 = (f4.f P,

C=— BT A - TANGTA] (4)
where derivative with respect to p is denoted by dip = "and

T stands for matrix transposition. The classical equations of
motion written in dimensionless coordinates take the form

(Hf?f)[;(pclfk) p(fj) (=5 € f)}

-2 [Cl (FT 1S = l4 Co(f"2.f) (l-f)k]

Z%A: (15)

_|_~2fk( +fT |:

for each k=1, ..., 1;—(2)2#2 and symbols C;

take the form

N, where ji* =

(0]
C=—1+(pe - 1)2,

AS)

Cy, = —p* +p*(pe* - 1)0,
Cy = 3il. (16)

The energy of the static solution is given by the integral

Ow .
—(ﬂez—l)?—ﬂzV) (17)

According to discussion in [30] and also in [6] one can
introduce two-dimensional topological charges associated
with vortex configurations. Such charges are closely related
with a topological current that has the following form in
terms of the principal variable

JX) = —— e Tr(XD, XD, X). (18)
167

Since the solutions behave as holomorphic functions near
the boundaries then the topological charges are equal to the
number of poles of u;, including those at infinity, i.e.,

QtOP = /jO(X)d2x = Amax + |nmin| (19)

where n,,,, is the highest positive integer in the set n;, i =
1,2,...,N and n;, is the lowest negative integer in the
same set.
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The conserved current (18) defines a gauge potential
) i
J= —ﬂe’“”{ayal (20)

where a, is determined up to the gauge freedom a, —
a, — 0,A. As it was pointed out in [24], a, is a nonlocal
function of X. The straightforward calculation shows that
a, can be written as

a, = =2mi02[€,,,0" j']., in the gauge d*a, = 0.

(1)

In the alternative approach the gauge potential a, is given
in terms of the complex vector Z

a, =—iZ'9,Z (22)

where the U(1) rotation acting on Z induces the gauge
transformation on a,,.

The “Hopf Lagrangian” is defined in terms of a, and it
reads

C)
®£H0pf = —Eeﬂ”’laﬂﬁya,l. (23)

2
This Lagrangian is invariant under U(1) gauge transforma-
tion and the value of the prefactor ® is essentially
undetermined. Since I13(CP') = Z then (23) is exactly
the Hopf invariant for N = 1 and consequently it can be
expressed as a total derivative. For this reason it does
not contribute to the classical equations of motion. On the
contrary, II3(CP") is trivial for N > 1 and therefore the
Hopf term is not a homotopic invariant in this case. It
means that the contribution from the Hopf term is always
fractional even for an integer m in the anyon angle ® = ma.
Note that even though the Hopf term is not a total derivative
anymore, it still does not affect the classical soliton
solutions because it is linear in time derivative.

In the following part we quantize the model containing
the Lagrangian (8) extended by the Hopf term (23) and
examine the spin statistics of the CP" solitons.

III. COLLECTIVE COORDINATE
QUANTIZATION OF THE BABY SKYRMIONS

It became quite instructive to present a scheme of
quantization for the model with the CP' target space
before going to the main question which is a quantization
of the model with the CPV target space. The model with
N > 1 is technically more complex because it contains
many fields. For this reason we shall begin presenting
analysis of the CP' baby skyrmions. The full canonical
quantization of the model has already been studied [15],
however, in the absence of the Hopf term. We consider the

025032-4
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collective coordinate quantization taking into account the
Hopf term and discuss the spin of the baby skyrmions.

A. The model and the quantized energy

The baby Skyrme model [31,32] is a mimic of a hadronic
Skyrme model. Its solutions (baby skyrmions) are consid-
ered as possible candidates for vortices or spin textures.

The model is given in terms of a vectorial triplet
n = (ny, ny, n3) with the constraint 7 - n = 1. Performing
stereographic projection S?> on a complex plane one can
parametrize the model by a complex scalar field u related to
the triplet 7 by formula

1
1+ |ul?

n =

(u+ u, —i(u—u*),

W —1).  (24)

Instead, we shall make use of another alternative para-
metrization that is convenient for any CPV space, in
particular, also for SU(2)/U(1) = CP! coset space. In

such a case the Hermitian principal variable (7) X is a
function of just one complex field u
2iu

1 (1 — |ul? ' )
L+ (uP\ =2t |up-1)"

It can be also expressed in terms of components of the unit
vector 1

(25)

X = —n’ty —n’t; —n'r,. (26)
The Lagrangian of the baby Skyrme model parametrized
by the variable X takes the form

2

M 1
Los = = Tr(0,X0X) = 5 Tr(0,X. 0,XP) = p2V

(27)

where M?, e? are coupling constant of the model and V is a
potential which we shall not specify for a moment because
its explicit form is irrelevant for current discussion. We
shall consider a model L := Lyg + © Ly, Which consti-
tutes extension of the model (27) due to the Hopf term (23).
Since I1;(CP!') = Z, the Hopf term can be represented as a
total derivative so it does not contribute to the classical
equations of motion. The complex coordinate Z and the
Hermitian principal variable X in the case of the CP! target
space are related as X := 1 —2Z ® Z'. The topological
charge is given by

i ..
qtop = E/dzxeler(X(:),X@jX), L,]= 172 (28)

Note that expressions (27) and (28) are invariant
under rotation realized by a unitary matrix A according
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to transformation X — AXA'. The standard procedure
proceeds by promoting the parameter A to the status of
dynamical variable A(xg). Then the dynamical ansatz
adopted in collective coordinate quantization reads

X(r;A(xo)) = A(x0) X (r) AT (xo). (29)
The expression (29) parametrized by a complex coordinate
Z reads

X(r.A(xo)) = A(xo) (1 = 2Z(r) Z*(r))A" (xo)

=1 -2(A(x0)Z(r))(A(x0)Z(r))"  (30)
which allows us to conclude that
Z(r,A(xp)) = A(xo)Z(r). (31)

Plugging (29) into the Lagrangian (27) and also (31) into
the Hopf term (23) we obtain an effective Lagrangian

1

(C)]
7IaanQb + 7Aaga - Mcl (32)
2 47

Ly =

where the collective angular velocities €, appear in
expansion of the operator iA*(?xOA =%5Q, and where 7,
are Pauli matrices a = 1, 2, 3. The inertia tensor [, is
given in terms of X(r)

Iy = —%/pdpckp{—Tr([%,X] [%*’
(o)}

We consider the well known “hedgehog” ansatz

n = (sin g(p) cos ng, sin g(p) sin ng, cos g(p))
9(0

7, g(e0) =0 (34)

obtained from (24) by the following parametrization of the
complex field u

9(p)
— t lI‘l(ﬂ.
U =co ) e

(35)

The topological charge of solutions (34) takes integer
values according to

n o0 .
Grop = _E/) dpsingg = n. (36)

The components of the moment of inertia read

025032-5
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Iy = I
A [ n’sin’
=== | pdp <2 + 2cos?g + e g + 005299’2>
(37)
16z [
Iy = _—f pdpsin®g(1 + 24?) (38)
e 0

and /,, = 0 for a # b. Note that rotation is allowed only
around the third axis because I, = I,, = 00.2

Taking into account that IT;(CP') = Z we obtain integer
values for expressions A, that appear in the Hopf term

Ay = —i/dp((ZTHZ)@p(ZTaq,Z) -(2'0,2)0,(2'4°Z))
=-n (39)

and A; = A, = 0. The (body-fixed) isospin operator J; can
be introduced as a symmetry transformation generator via
Noether’s theorem

(40)

The Legendre transform of the Lagrangian leads to the
following expression for the Hamiltonian

2
Heff—Mcl"i'%(JB_Z_@) ; (41)
7

where ¢33 is inverse of the moments of inertia /55 i.e.
g33 := 1/133. If one represents the isospin operator J3 := i %
as acting on the basis |£) = e~**|0), with k being an
integer or a half-integer numbers, then the energy eigen-
value is given by the expression

2
E:Mcl+g;;<k—@> : (42)

One can substitute the quantum number k by an integer-
valued index i.e., £ = 2k what gives

§33 n® 2
E=Myg+=(0-—]) . e’z 43
at > ( 2ﬂ> (43)
where g33 = g33/4. This is a familiar result: for n® = 0 or

in general (even number)xz, the angular momentum is
integer then one gets boson, while for n® =z or (odd

2Our results are essentially equivalent with (19) of Ref. [15] up
to constant. However, their formulation (20) [corresponding to
our (37)] was incorrect about sign of the coefficient.
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number) Xz, the angular momentum is half integer then
one gets fermion.

B. The fermionic effective model
and the anyon angle

It is well known that for a fermionic effective model
coupled to a baby skyrmion with a constant gap m the
integrating out the Dirac field leads to effective Lagrangian
containing a kind of baby Skyrme model and some
topological terms including the Hopf term [26,27]. The
Euclidean path integral of the partition function, which
enables us to examine the topological term after integrating
out the Dirac field, is of the form

I(X.A,) = /Dl//Dt,/‘/exp </ d3xl/7iDy/> (44)
where the U(1) gauged Dirac operator reads
iD = iy*(0, — iA,) — mX. (45)

A number of articles extensively describe the derivative
expansion of the effective action S,y that appears in
I':= exp(Serr). It contains both the action of the model
(in the real part) and the topological terms (in the imaginary
part). After a bit lengthy calculation (see Appendix A) one
gets

ReSy = %' / BxTr(9,XMX) + 0(X?),  (46)

ImSey = / Px((X)A, — msgn(m) Ly (X)), (47)

The explicit form of the current j# coincides with (18).
Consequently, as pointed out in [26,27,29], the anyon angle
O is determinable in this fermionic context. It means that
the soliton became a fermion for odd topological charges
and a boson for even topological charges.

IV. COLLECTIVE COORDINATE QUANTIZATION
OF THE CP? MODEL

It has been already mentioned that the Lagrangian
density (1) is invariant under transformation ¥ — AW3"
where A, B are some unitary constant matrices. This
symmetry could remain also for the Lagrangian density
written in new variable X = CW¥ where C is a diagonal
constant matrix. However, for X = X' only the diagonal
symmetry A = B is allowed. Moreover, the topological
charge (19) is invariant under such transformation only for
A = B. It leads to the conclusion that for a model which
supports topological soliton solutions the only allowed
symmetry is a diagonal one X — AXA'. In fact there is

025032-6
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another restriction on 4, namely for the asymptotic field
X, it must hold

AX A" = X, (48)

otherwise the moments of inertia corresponding to the
modes diverge. Note that expression A satisfying (48)
depends on numbers (n;,n,) because these numbers
determine the form of X . The vortex solutions are
symmetric under exchange of n;, n,. It is enough to
study configurations with n; > n, where the -cases
ny > 0, n; < 0 are treated separately.

In analogy to baby skyrmions we shall adopt following
dynamical ansatz in collective coordinate quantization

X(r: A(xo)) = A(xo) X (r)A* (xo). (49)

Substituting (49) into the Lagrangian (8) one obtains a
Lagrangian which depends on the collective angular
velocity operator iA*@XOA Such an operator possesses
expansion on the set of collective coordinates which appear
in the resulting effective Hamiltonian.

A. The case n; > 0

In this case the asymptotic value of the principal variable
X is X, = diag(—1,1,1). The generators {F,}, a =1, 2,
3, 8 of the symmetry (48) have the form

A A 1
Fi=2.  F=T. Fa=—g(h=V3k)
1 1
Fgi=——|A3+—7=4 ).
8 ) < 3 /3 8)
They satisfy the commutation relations
[Fu, Fy) = iegpeFe, [F,,Fg] =0 a,b,c=1,2,3
(50)

what shows that the symmetry (48) is in fact a residual
symmetry SU(2) x U(1). The rotation matrix A is para-
metrized by four Euler angles 9;, (i =1, 2, 3, 8) in the
following way

A = ¢=iF391 g=iF28: p=iF393 p=iFys (51)

The angular velocities €, of the collective coordinates
became the expansion coefficients of the operator i.A™9, A
in a basis of generators F, of the residual symmetry. The
expansion takes the form

iAD, A=F,Q,. (52)

The effective Lagrangian contains a term quadratic in Q,,
which comes from the Skyrme-Faddeev part of the total
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Lagrangian and a term linear in €, having origin in the
Hopf Lagrangian

1 (S
Legr = 51,5248, + EAaQa - M. (53)

2

where the symmetric inertia tensor /,, is given as the
integral of the expressions containing the Hermitian prin-
cipal variable X(r) and they read

L =5 [ pdpdy |17, X1[F,. )
T([F, X, 0,X][[Fy, X], 9]

2 ((F, X [P X)) Te (0 X0,)

= Tr([Fa, X]OX) Tr([Fp, X0 X) } |- (54)

The symmetry of components I35 = Ig3 and equality
I, = I,, originate in the axial symmetry imposed in the
ansatz (13).

In generality the Hopf term in the Lagrangian (53) is
nonlocal in fields X. However, if we translate the field into
Z using transformation (11) it has a local form. From
dynamical ansatz (49) we find that

Z(r, Alx)) = Alxo) Z(r). (55)

The inertial vector A, has the following form

A, = —2i / dp{(2'F,2)0,(210,2)
~(2'0,2)0,(2'F,2)}. (56)

Explicit form of components of (54) and (56) obtained after
imposing (13) is presented in Appendix B.

In virtue of axial symmetry imposed by (13) the effective
Lagrangian (53) contains the following relevant terms

1
Lo = 3 [111(Q7 + Q3) + 1339 + 2133Q;Qg + 15503

€]
+ yp {A3Q5 + AgQg} — M. (57)

The Lagrangian (53) possesses several global continuous
symmetries that lead to corresponding conserved Noether
currents Z,, KC,, J, namely

(i) left SU, (2): A — e7Fubi A,

®
Ia = IthbRac + _Aa’ (58)
47
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(ii) right SUR(2): A — AeiFuéi,

C)

ICu = _Iabe - EA(U (59)

(iii) the circular symmetry X (p, @) — X(p, ¢ + ¢q).

- _ 1
or A - Ae’F‘/’“, F:= n2F3 - 5(2111 - I’lz)F4,

(60)
J =nkKs —%(2”1 —my)Ky, (61)

where the symbol R, is defined by
Al A" = 2Ry, (62)

where 4, stands for the Gell-Mann matrices. Here, Z, and
K, are called the coordinate-fixed isospin and the body-
fixed isospin respectively. J is a generator of the spatial
rotation around the third axis. They act on A as

I, A =-F,A  [K, Al =AF,
T, Al = AF. (63)

One can construct the explicit form of operators that
satisfy (63)

I, = i(cos&l cot&zai&l + sin 9, ai&z - 2101181;?2] ({%3)
I, = i(sin&l cot«%ai191 —cos Y C%z — Zizg; (%3)

0 0
I3Z_i6_191’ IS:_i8_198’
Ky = _’C;Sg;a% - sin193ai192 —cotd, cos I3 (%3),
Ky, = <22 zz ail + cosY; 8?92 cot 9, sin 95 81)
Ko=igg Ky=ige
j:inz(;;—i;Qn]—nz)g;g. (64)
The SU(2) Casimir operator

3 3

=) T3 =)Y K} =K (65)

as well as the generators 73, Zg, K5. Kg and J are
diagonalizable. The Lagrangian (53) is a function of the

four Euler angles d; and their time derivatives f9,» =0,,9,

PHYSICAL REVIEW D 94, 025032 (2016)

ie. Lo = Leg(9:.9;). The Legendre transform of the
Lagrangian L ; leads to the Hamiltonian H(9;, x;) :=
7;9; — Lo which depends on the Euler angles and the

canonical momenta 7, := OLey/09;. The Hamiltonian
takes the form

Hee = My +@(IC2 +K3)

(€] (€]
+ gsg <IC3 + A3> <IC8 + Ag) (66)
4 4r

where we have introduced the components of inverse of
inertia tensor g,, whose explicit form in the current case is
given by

1 Igg
g1 =5 933 =573 >
Iy Iy3lgg — I3,
— —I3s W I33
938 *= Jsg =

Islgg — I3 Izlgs — I

The diagonalization problem can be solved using the
standard Wigner function (for example, [33])
|lmk;Y) = Dﬁn_k(&,&z, 95)e~"%|0) (67)

where [, m, k are integer/half-integer and Y has
Then the Hamiltonian eigenvalues read

g eeen

12
3°3

E=M, +gl{1(z 1) -2

® 2
933 <k+ A3) +988 <Y+—A8>
2 4z T

(C] (C]
47 47

It is convenient to express all the quantum numbers in terms
of integer numbers, i.e., I'=2[, ¥ =2k and Y =3Y. It
leads to the following expression for the energy

gll ' 2
E=M,+— {l (I' +2) -k}

B ()

+ g3 (k + = A;) <Y’ + —Ag> (69)

where g1 = g11/4, 933 = g33/4, 938 = g33/6, Gsg = 9ss/9
(in further analysis we shall omit ' of &/, I', Y’ for
simplicity.)

025032-8
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The derivative expansion of partition function obtained
for baby skyrmions can be straightforwardly applied to the
model with N = 2. In such a case the Dirac operator is of
the form

iD= iy"(9, — iA,) — mX (70)

and real and imaginary parts of the effective action read

ReSy; = % / BxTr(9,X#X) + 0(9X?), (71)

S = [ @x(A(X)4, = msgn(m) (X)), (72

In analogy to the previous section, one can fix the anyon
angle ® as ® = zsgn(m) provided that the vortices are
coupled with fermionic field. However, since I13(CP") is
trivial, the Hopf term itself Ly is perturbative and the
value of the integral depends on the background classical
solutions. Consequently, one could not expect that this
value became an integer number. As a result, the solitons
are always anyons even if ® = nz, n € Z.

B. Case: n; <0

In this case the asymptotic value of the Hermitian
principal variable X at spatial infinity reads X, =
diag(1,1,—1). It follows that four generators of the
symmetry {F,}, a =1, 2, 3, 8 can be chosen as

(73)

The quantum Hamiltonian can be diagonalized in the same
way as for n; > 0 what leads to the energy spectrum (69).

V. THE ANALYSIS

We shall examine quantum spectra of the model (8) in
the integrable sector fe? + ye? = 2 where do exist a class
of holomorphic vortex solutions. We choose
yer = =2, (74)
in order to satisfy the condition (3) simultaneously with the
previous one. In the integrable sector the model possesses
exact solutions
(75)

— n; ,in;
uj=cjp"ie"?

where c; are arbitrary scale parameters. The lowest nontrivial

vortex configurations with topological charge (19) taking the
value Q,,, = 2 are given by (n,n,) = (2,1), (1, ~1). Note
that the first term of the inertia tensor (54)

PHYSICAL REVIEW D 94, 025032 (2016)

B =5 [ pdpdoTe(FuX)IFLX) (76

is logarithmically divergent. It means that it has no proper
quantum numbers unless one employ a suitable regulariza-
tion scheme. A similar situation has been identified for
baby skyrmions in an antiferromagnetism [13]. In such a
case the moment of inertia corresponding to the solution
with the winding number n = 1 diverges and because of it
no quantized states emerge. The authors have introduced a
regularization term in order to get the finite value of the
integral.

Here we shall study some configurations of vortices
with finite moments of inertia characterized by Q, = 3.
The values of the moments of inertia (54) for holomorphic
solutions are shown in Fig. 1. The moments are shown in
dependence on dilatation parameters (ci,c,) defined by
(75). The unit scale is given by —4/e?. Similarly, the finite
components of inertia vector (56) of the holomorphic
solutions have been shown in Fig. 2. Note that for
¢y — 0 the component becomes trivial then the value of
the vector becomes topological, i.e., A3 — —Qiop> what is
consistent with the analytical calculation for the baby
skyrmions (39). In Fig. 3 we plot the dimensionless
quantum energy correction AE corresponding to the
moments of inertia shown in Fig. 1.

For coupling parameters such that the condition
pe’ + ye* =2 does not hold the solution is no longer
holomorphic. In such a case the numerical analysis is
required in order to compute the quantum corrections. The
numerical analysis for the classical solutions of (15) has
been extensively studied in [7]. Here we shall employ the
potential

yo U+nr (77)

I+ A+

The corresponding classical solutions for several values
of pe? are shown in Fig. 4. In Fig. 5 we present the
corresponding energies and values of the isoscalar root

mean square radius
4 1/2

K— M262> / pzjo(p)dﬂ} . (78)
The components of the moment of inertia tensors /,;, and
also the inertia vectors A, are shown in Fig. 6. When N > 1
there are several excitation modes which are labeled by the
quantum numbers /, k, Y. In Fig. 7 we plot the excitation
modes in dependence on [, k with fixed Y = 0 (“/-mode”),
and also in dependence on Y with fixed ([, k) = (0,0)
(“Y-mode”).

The dimensionless classical energy Mcl = M, /8xM? is
topological for the holomorphic solutions, i.e., it equals to
the topological charge Q. Clearly, for nonholomorphic

(p*) =

025032-9
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FIG. 1.  The finite components of inertia tensor (54) of the holomorphic solutions for the topological charge Q,o, = 3, i.e., (ny,1,) =

(3.1)) in unit of (—4/e?).

solutions the energy deviates from Q,,, however, it still can
be useful to introduce a coupling strength for the quantum

. 2 2 N
correction a = —& x L = — 3557 The coupling con-

& 7 8aM?
stants M2, ¢? are some free model parameters, however,

their values must be determined by underlying physics.
In order to get some rough idea about properties of
quantum excitations, it might be instructive to estimate

value of the quantum excitations for a given energy scale.
For hadronic scale analysis one usually fixes the coefficient
of the second order terms fT’z' in the standard Skyrme model
as being equal to the pion decay constant f, = 64.5 MeV.
Similarly, we put the coupling constant M of the extended
Skyrme-Faddeev model as being equal to the pion decay
constant M?> ~ f, = 10> MeV and we also employ the

4.0

20

FIG. 2. The finite components of inertia vector (56) of the holomorphic solutions for the topological charge Q,o, = 3, i.e., (n1,1,) =

(3,1)) in unit of (—4/e?).
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0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

FIG. 3. The quantum correction of the energy eigenvalue (69)
of the holomorphic solutions for the topological charge Qy,, = 3,
i.e., (n,ny) = (2,—1)) in unit of (—e?/4). The quantum num-
bers are (I, k,Y) = (1,1,1) and the anyon angle ® = x.

FIG. 4. The classical solutions with the topological charge
Qup = 3, ie., (n1.mp) = (3.1)).

The classical energy

40— -
o
o/./.
351 o -
/
e
o*
v
e
304 ® L
o
o
./
254 ./ L
4
20 T T T T T T T T
41 42 43 44 45 46 47 48
pe

12

P>

<p

PHYSICAL REVIEW D 94, 025032 (2016)

isoscalar charge density of the nucleon, i.e., \/{p?) =
0.7 fm in (78). For instance, in the case of our numerical
solution with fe>=4.1 one can easily estimate
—e?/4 =3.6 x 10°> MeV. For such a choice of parameters
the classical energy is about M = 10.4 GeV and the
quantum corrections read

2
—%AEZIOA MeV “Ymode” (Y =1,0 = 0),

(79)
=193 MeV “Ilmode” (I=1,k=0,06=0). (80)
The coupling constant takes the value a=14.

Unfortunately, no physical candidate for such small energy
excitation for the nucleon are known. One has to stress that
the result was obtained as a crude estimation. Moreover, the
present model is only a two-dimensional mimic of the
realistic 3 + 1 Skyrme model.

Another example of such estimation can be done for an
antiferromagnetic material. A simple estimation of a differ-
ent type of quantum correction in the case of a continuum
limit of a Heisenberg model was demonstrated in [11]. In
the continuum Heisenberg model, the parameter M? can be
assigned as the exchange coupling constant or a a spin
stiffness. In antiferromagnetic La,CuQO, the spin wave
velocity c is of the order 7ic > 0.04 eV nm and the lattice
constant is of the order @ = 0.5 nm. The exchange coupling
constant is roughly M? ~ hic/a = 0.1 eV. The soliton size

(p?) is responsible for the size of the excitation then it

may be estimates as \/(p*) ~a = 0.5 nm. In the case of
our numerical solution with pe>=4.1 we have
—e?/4="17.1 x 10° eV. The classical energy is estimated
as M, =10.4 eV and

The root mean square radius
1 1 1 1 1

3.6
3.4+
3.24
3.0
2.8
2.6
2.4+
2.2
2.0
1.8+

42 43

44 45 46 47 48

pe

FIG. 5. The energies (in unit of 4M?) and the root mean square radius \/{p?) (in unit of —4/M?e?) of the classical solutions with the

topological charge Q,, = 3, i.e., (ny,n,) = (3, 1).
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650 1 1 1 1 1 1 1 1

6004 1 33 o0 0—90—0—0
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FIG. 6. Components of the tensor and the vector of inertia corresponding to the solutions of Fig. 4.

2
—%AEzmij‘me€ (Y=1,0=0), (81)

~38.1 keV (I=1,k=0,0=0). (82)

“I mode”

The coupling constant a takes the approximate value
a=2.8x10°.

Note that presented above estimations were performed in
order to get some rough idea about the order of magnitude
of excitations. For more definite analysis one needs further
inputs derived from underlying physics.

VI. GENERALIZATION TO HIGHER N

Though it seems to be certainly involved, a generaliza-
tion of our scheme to higher N = 3 is straightforward.
In order to simplify the formulation we restrict consid-
eration the case of anyon angle ® = 0. We also assume that
n; is the highest positive integer in the sequence n;,
i=1,2,...,N. We present below results for the case

N = 3. The generators {F 513)} read

3) 1/0 0) 3) 1(0 0)
F¥ =_ ., FY = ,
! 2(0 2 2 2\0 &
1/0 0 1/0 0
2D el
2\0 /4 2\ 0 4
5 170 0 5 170 0
ﬁ>:—< . R =2 ,
2\0 4 2\0
F<3>_1(0 0) F<3>_L<0 0)
7 ’ 8 )
2\0 A V3\0
@ 1(-3 0 )
FY =_ . 83
235 (83)

Following the procedure presented for the CP? case, we
substitute the dynamical ansatz (49) into Lagrangian (8)
and expand the operator iA70, A in basis of generators

{(F}
A9, A=FPQ,. (84)

The effective Lagrangian takes the form

025032-12



COLLECTIVE COORDINATE QUANTIZATION AND SPIN ...

“l=0mode” excitations
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“I=1 mode” excitations

0035 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1
1e L
0.0304 » e k=-1 > i
1 —e— k=0 0=z |
0.0254 " —o—k=+1 -
1 LN 3
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3 ] . ’ > 0=0
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pe’
“Y mode” excitations
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FIG.7. The excitation energies corresponding to the solutions of Fig. 4. We plot the / = 0, 1, 2 modes with ¥ = 0 and for the ¥ mode

we fix (1,k) = (0,0).

1
Leg = Z %(93 +Q7,)
a=146
1
+ %bgagb —My.  (85)

a=3,8,15b=38,15

The Legendre transformation of the Lagrangian leads to
the Hamiltonian

gaa
Hey = 7(}@ +K2.0)
a=1,4,6
+ 9—3” KK, +My  (86)

where C, are coordinate-fixed isospin operators and g,
stand for components of inverse of the inertia tensor /.
The energy spectrum is obtained after diagonalization of
the Hamiltonian (86) in base of states belonging to a
SU(3) x U(1) irrep and it reads

E= Y 21,1, +1) - 2}

a=14,6

Yab
—k,k;,
+ D) ab

a=3.8,15b=3.8,15

(87)

where kl = k3, k4 = (2](3 +3k8)/4 and k6 = (2](3 — 3k8)/4
The second order Casimir operator of the SU(3) group can
be expressed as

Co(SUM3)) =Ll +1) + L(ls+ 1)

4k3 + 3k3

+l(lg+1)————2.  (88)

The generalization to an arbitrary N is almost straight-

forward. We can define the SU(N) x U(1) generators

similarly to (83) using a higher N generalization of

Gell-Mann matrices A} which are the standard SU(N)

generators. We take the diagonal components of SU(N)
part (counterparts of F3 and Fg)

1/0 0
Y (

=— =2,3,...,.N 8
a —1 a\0 /12\/2_1> a » stV (9)
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and the off diagonal ones, like F; and F,, in the form

g _1(0 0
bo2\o A )

where b are integer numbers from 1 to N?> — 1 excluding
a* — 1. The last U(1) generator is defined as

) 1 -N 0
F - . 90
NN TN+ 1 ( 0 IN><N> 50)

After lengthy calculation involving generators one gets the
quantum energy formula

—

i—

R g
—ll
= 2{§:+

i=1 j

N N g'm,
HEDI

i=1 j=1

(O1)

where £ = (i = 1) +2(j — 1) and ; = i(i + 2). Symbols
l¢ and k,, represent independent quantum numbers whereas
ke are given in terms of k, according to

1
k§_§< o +th,,h+k> (92)
=J

with ky = 0. Note that £ and #; describe the numerical
sequence

{£}:1,4,6,9,11,13,16,18,20,22,...  (93)
{n;}:3.8,15.24- -, (94)

The energy formula (91) contains the first N(N —1)/2

terms of {£} and the N terms of {7;}, e.g.,

for N=2: E=1,
for N=3: £=1,4,6

n; = 398
n; = 3,8, 15.

One can check that for this values expression (91) certainly
reduces to (68) for N = 2 (and ® = 0) and to (87) for N = 3.

VII. SUMMARY

The present paper aims at the problem of quantum
spectra of solutions in the extended CP" Skyrme-Faddeev
model. In order to obtain the quantum energy spectra of
excitations we applied the method of collective coordinate
quantization based on a rigid body approximation. Further,
within this approximation, we discussed spin statistics of
the CP" soliton taking into account the Hopf Lagrangian.
According to discussion presented in previous papers
[24,25,28,29], for N = 1 the Hopf Lagrangian is topologi-
cal so the solitons are quantized as anyons with the angle ©.

PHYSICAL REVIEW D 94, 025032 (2016)

On the other hand, for N > 1, the Hopf term is perturbative
thus the solutions became always anyons.

A fermionic effective model coupled with the skyrmion
of a constant gap mX has been examined [26,27]. After
integrating out the Dirac field the resulting effective
Lagrangian contains the Skyrme-Faddeev model plus some
topological terms. For N = 1, the anyon angle ® became
fixed, then in contrary to the previous papers, the solitons
cannot be anyon at all, whereas for N > 1, the ® became
fixed again but since in this case the Hopf term is
perturbative then the solution became an anyon.

The further part contains the study of excitation energy
of the solutions. The excited energy for N = 1 is descn’bed
by (a third component of) angular momentum § := £ — 2”
According to [10], for ® = z the baby skyrmions are
fermions and the ground state is twice degenerated. For
N > 1 the situation is quite different. The solutions are
always anyon type because of the fact that the Hopf term is
no longer topological. It follows that there are no degen-
eracy. The excitations are parametrized by three numbers /,
k, Y, so S3=k+ GA’ , Sg=Y + 3(2;?8 are components of
the anyonic angular momenta. The paper contain plots of
some energy levels in dependence on the model parameters
pe?. The presented values of the energy are dimensionless.

We gave some rough estimations of typical energy scales
being of order of few dozens MeV for a hadronic scale and
of order of few dozens keV for a condensed matter scale.
The energy excitation compared with the classical solution
energy is subtle for a hadronic scale whereas it is virtually
too big in the case of the condensed matter example. Such
discrepancy can be understand to some extent. For instance,
if we choose a solution parameters Qy,, = 3 and pe? =4.1
then estimation of the classical energy gives M =
1.1 x 10°M? and for the quantum excitation energy of
the lowest ¥ mode it has the value —e?/4 x AE=
5.5 x 102/(M?*{p?)). The ratio of this two energies is
given by

2

—<AE 1
L ~5x 95
Mcl M4<,02> ( )

where dimensions of M2, \/(p?) are [eV, nm] or [MeV, fm].
One can easily see that a huge discrepancy of the classical/
quantum energy for the antiferromagnetic material is fixed
almost by a value of the spin wave velocity. However, some
systems may support different values of the parameters M?

and +/(p?). The systems with higher values of coupling
constant M? (which determines the energy scale) and with a

large characteristic excitation size \/(p*) can support the
existence of excitations whose energy is comparable with the
classical energy. We shall leave this problem for the future.

One has to bear in mind that the collective coordinate
quantization is an approximated method. An alternative
method which can be applied to quantization of the vortex
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systems is a canonical quantization method. Such approach
would be more suitable in full understanding of the
quantum aspects of the model. The work is in progress
and its results will be reported in a subsequent paper [34].
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APPENDIX A: THE DERIVATIVE EXPANSION
OF THE FERMIONIC MODEL

The method of perturbation for the partition function (44)
is quite common and widely examined for the analysis of the
spin-statistics of solitons coupled with fermions. Here we
employ notation used in [35] with the CP! principal variable
(25). The partition function is given by the integral

r= / DyDpe 7V _ getiD (A1)

1
5ReSeff = E Sp <DTD

D'6D + LD(SDT
DDT

&k

PHYSICAL REVIEW D 94, 025032 (2016)

where y and i are Dirac fields, A, is a U(1) gauge field and
iD =i0 + A —mX. The gamma matrices are defined as
y" = —io*. The effective action Sy = Indet iD can be split
in its real and imaginary part

1
ReS .5 = Eln det DD,

1 iD
ImSeff = Zln detﬁ . <A2)
For A, — 0 one can easily see that
DD = —=9* + m* + imdX,
DD = —0* + m?> — imdX. (A3)

For the variation D — D + 6D, DY — D' + 6D7, the real
part of the effective action in A, — 0 is

1 / d*x / e T [(=0% + m? + imdX) ™! (imd5X + m*X6X)
2 (2n)

+ (=0 + m? — imdX) ™" (=imD5X + m*>X5X)]e'**

3
= % / dPx / (;l ];3 Tr[(k* + m? = 2ikd — 0% + imDX) ™' (imdBSX + m*X5X)
T

+ (k> + m? = 2ikd — 0* — imdX) ™! (=imASX + m*X5X)

where Sp stands for a full trace containing a functional and
also a matrix trace involving the flavor and the spinor
indices and Tr stands for usual matrix trace. Expanding the
above expression in powers of 2ikd + 9> and AX one gets
the lowest nonzero term

585 :g / BPxTr(DXD5X). (A5)

After taking the spinor trace and switching to the
Minkowski metric one gets the action (46).
For the variation of the imaginary part

1 1 1
— 51 _ T
SlmS ey = o Sp( —D'5D -DSD ) (A6)

the calculation is almost similar and the first nonzero
component contains product of the three derivatives

(A4)

51mseff:—sg;2(m) / d*xe" Tr(9,X0,X0,XX6X). (A7)
P
In terms of new variable a, = —iZ*&MZ the last formula

can be written as

(A8)

€

5ImS(§? = %Erm)/aﬁxe"”‘éaﬂayal.

As it was argued in [26], the term itself should be zero, i.e.,

Imng) =0 in the pertubative calculation because the
homotopy group 73(S?) = Z is nontrivial. In order to find
the form for N = 1, we generalize the model into N = 2
such as Z = (z;,2,,0, ...,O)T. In the case when the
homotopy 73(CPV) is trivial one gets

ImSgg = Sgn(m)/d3xef‘”aﬂ6ya,1. (A9)

iy 4
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For N > 1, the above manipulation is not a trick and we directly obtain the form (A9) with a, := —iZ"'aﬂZ.
For A, # 0 we also have the two derivative component

1

2
5ImS£ff) a0 = ~16ni

5A, / & xe"*Tr(9,X0,XX). (A10)

Both contribute to the final expression (47).

APPENDIX B: INERTIA TENSOR I,, AND INERTIA VECTOR A, FOR CP?

In this appendix we give the explicit form of the relevant components of inertia tensor 7, (54) and inertia vector A, (56)
written explicitly by the radial profile functions f1(p), f,(p) and their derivatives f := % h = df 2, They read

_ 8 (L+f 2+ 27+ 1Y)
=g [ [_ (14724777
4{1+f1 (L4812 + oY)+ 22+ [+ /201 12 8f1f2{4+f1 (f22+4) =312+ 2" 1 f

(I+f12+122)* (I+f 2+ 122
+4{(f22+2)f14 (f2* =327 +4) 222 = 1)1 4{f2 ((ny—ny)*f12+2n3) +2n3(1+ f12) /2% + nif 1%}
(14 f1*+f2%)* P14+ 12+ f2%)
+2ﬂe2{_2(1 PO RO+ 22) 07 =211 fof ) 2+ (L 7))
(L+f1*+f2%)*
_2(1+f12+f12f22+f24){”%f12+(”1—"2)2f12f22+”%f22}+f22{2”1f12—”2(1+f12—f22)}2}] (BI)
P+ £+ %) P+ £+ %) ’
133:_/ [ (1+£,° )fl +4f22}+16{—f12(1 L PU R PR PV A
(1+ /12 +f2%)? (1+112+f22)*
n 1611 f>{f1* —(2f12+5)f22+3}f1/f2/+4{f12+f14+(16+ 17f12+4f14)f22}f2/2+4(2n1 — ) f12f2
(1+f1*+f2%)° (1+f1*+f2%)° (14124 f2%)
+4ﬂe2{_{(1 AP HALHA+ A =2f 2 o'+ (L1212}
(1+f2+f22)*
_{(1+f22)f12+4f22}{”%(1+f22)f12—2"1”2f12f22+"%(1+f12)f22}+{”1f12(1 —f22)+”2(2+f12)f22}2}]
rP(1+f12 +f27)° (1412 + f3)* ’
(B2)
I :w—zﬂ/pd [ =17 167 (1= £ +8f1f2{f12 = (4f* +3)f2> =31 f
e I+ 2+ L+ 2+ ) (L+f1>+ f27)°
AR (=412 2 = T2 +4(2”1 — )y f 1 f)
(1+f12 4+ f2%)° rP(1+ £ + f2?)
+4ﬁe2{(1 — A+ L2 =2f 1 fof1 2+ (L + f12) )7}
(L+f2+ 1)
+flz(l — AL+ 7)1 = 2mmaf 2" +my (1 + f12) 2}
P+ fi2+ 22!
Cff (= f27) Fma(f? +2)£27) (i (1 + £27) = nzfzz)H (B3)
rP(L+ 7+ f27)° ’
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Iy = 2% / d [_ PSR 20+ P 160+ £2)2 6017
wEe ) (14 £+ £2)? (14 + 122 (I+ 2+ 22)°
41+ f21+ f2° + 4122012 4nsf 2 f2?
(L+f2 + 22 (14 12+ f2°)
+4ﬂ62{_f12(1+f22){(1+f22)f1/2—2f1f2f1/f2/+(1+f12)f2/2}
(1+ 12+ f22)*
_f12(1 + 2T+ f22) 117 = 2mna /122 4+ n3(f12 + 1)/2%) +f14{”1(1 + /%) - nzfzz}z}] (B4)
P+ f2 4 f27)! P+ f12 4 f27)! ’
and
_ nifift +mafofs +nififo(fif2 = faft)
As = z/dp (14 f1% + f27)? ’ "9
_ nl(l+f22)flfl/+n2(1_2f12)f2f2’_fle(nlfle,_zanZfll)
Ay —4/dp ey . (B6)
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