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The CPN extended Skyrme-Faddeev model possesses planar soliton solutions. We consider quantum
aspects of the solutions applying collective coordinate quantization in regime of rigid body approximation.
In order to discuss statistical properties of the solutions we include an Abelian Chern-Simons term (the
Hopf term) in the Lagrangian. Since Π3ðCP1Þ ¼ Z then for N ¼ 1 the term becomes an integer. On the
other hand for N > 1 it became perturbative because Π3ðCPNÞ is trivial. The prefactor of the Hopf term
(anyon angle) Θ is not quantized and its value depends on the physical system. The corresponding
fermionic models can fix value of the angle Θ for all N in a way that the soliton with N ¼ 1 is not an anyon
type whereas for N > 1 it is always an anyon even for Θ ¼ nπ, n ∈ Z. We quantize the solutions and
calculate several mass spectra for N ¼ 2. Finally we discuss generalization for N ≧ 3.
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I. INTRODUCTION

The Skyrme-Faddeev model is an example of a field
theory that supports the finite-energy knotted solitons [1].
Similarly to many other models [2] the classical soliton
solutions of the Skyrme-Faddeev model can play a role of
adequate normal models useful in description of the strong
coupling sector of the Yang-Mills theory. The exact soliton
(vortex) solution of the model has been found within the
integrable sector [3]. The model contains some new quartic
terms different to the Skyrme term. Inclusion of such terms
is motivated by results of the analysis of the Wilsonian
action of the SUð2Þ Yang-Mills theory [4]. It has been
shown that in the case of the complex projective target
space CPN the extended Skyrme-Faddeev model possesses
an exact soliton solution in the integrable sector provided
that the coupling constants satisfy a special relation [5,6].
The existence of solutions of the model outside the
integrable sector has been confirmed numerically for
appropriate choice of potentials [7].
The research of quantum properties of solitons is

important not only from a mathematical but also from a
phenomenological point of view (mass spectrum, spin-
statistics relation). There are many attempts to find a
quantum theory of skyrmions in 2þ 1 dimensional CPN

model, including full canonical quantization scheme
[8–15]. In this paper we shall generalize a scheme of
quantization, usually discussed for N ¼ 1, to an arbitrary
value N. We begin our considerations presenting collective
coordinate quantization of rotational degrees of freedom.
The results could have some application to condensed

matter physics, specifically, to improve our comprehension
of such phenomena as the nature of high Tc superconduc-
tivity and also the fractional quantum Hall effect [8–14].
There are already some important studies on a collective
coordinate quantization approach to the Skyrme model
with nonrelativistic [16–19] and relativistic treatment [20]
which have as a goal an explanation of some basic
properties of hadrons. A similar approach has been applied
to the Skyrme-Faddeev Hopfions [21,22]. An alternative
approach based on a canonical quantization method has
been already examined for the baby Skyrme model [15] and
the Skyrme-Faddeev Hopfions [23].
The Skyrme-Faddeev model on the CPN target space in

3þ 1 dimensions is defined by the Lagrangian [5]

L¼−
M2

2
TrðΨ−1∂μΨÞ2þ 1

e2
Trð½Ψ−1∂μΨ;Ψ−1∂νΨ�Þ2

þ β

2
½TrðΨ−1∂μΨÞ2�2þ γ½TrðΨ−1∂μΨΨ−1∂νΨÞ�2 −μ2V;

ð1Þ

whereM2 is a coupling constant with dimension of square of
mass whereas the coupling constants e−2, β, γ are dimen-
sionless. The field Ψ is called a principal variable and it was
extensively studied in [5] and also [7]. The Lagrangian is
invariant under global transformationΨ → AΨB† whereA,
B are some unitary matrices. It turns out that the zero modes
of Ψ impose an additional condition on matrices A and B,
namely, the asymptotic values of Ψ must be preserved under
the symmetry transformation, i.e., AΨ∞B† ¼ Ψ∞. There is
no straightforward procedure how to obtain a suitable
parametrization of the zero modes for ðA;BÞ, however,
one cannot exclude that such a parametrization exists.
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In this paper, we shall deal with a slightly different
parametrization of the field variable Ψ, namely, with the
Hermitian variable X obtained as a result of transformation
X ≔ CΨ where C is a diagonal constant matrix C ≔
diagð1;…; 1;−1Þ. Note that such a transformation is a
symmetry of the Lagrangian so one gets

L ¼ M2

2
Trð∂μX∂μXÞ þ � � � : ð2Þ

The main advantage of this transformation is substitution of
the asymptotic condition for the collective quantization by
the following one AX∞A† ¼ X∞ where A ∈ SUðNÞ ⊗
Uð1Þ. It is much easier to find a suitable parametrization
consistent for the new condition. Thus the standard method
for the quantization developed in [15–23] can be directly
applied to the Hermitian variable X, than the principal
variable Ψ itself.1

It is widely known that quantum aspects of the soliton
solutions exhibit a special property (“fractional” spin-
statistics) when the Hopf term (theta term) is included in
the action of the model [24]. Since Π3ðCP1Þ ¼ Z, then
such a term became the Hopf invariant and therefore it can
be represented as a total derivative which has no influence
on classical equations of motion [25]. On the other hand,
since Π4ðCP1Þ is trivial, the coupling constant (prefactor)
Θ is not quantized. As shown in [24], when the Hopf
Lagrangian is included in the model, the solitons with unit
topological charge acquire fractional spin Θ

2π. For a fer-
mionic model coupled with CPN field, Θ can be deter-
mined at least perturbatively [26,27].
Π3ðCPNÞ is trivial for N > 1 and then the Hopf term is

perturbative, i.e., it is not a homotopy invariant. It means
that the contribution from this term can be fractional even
for an integer n in the anyon angle Θ ¼ nπ. It was pointed
out in [28] that an analogue of the Wess-Zumino-Witten
term appears for the CPN field and it plays a similar role as
the Hopf term for N ¼ 1 [29]. Consequently, the soliton
can be quantized as an anyon with statistics angle Θ and
also such Hopf-like term.
The paper [10] contains discussion of the influence of

this term on quantum spectra for N > 1. The author has
taken into account the field being a trivial extension of the
case N ¼ 1 (i.e., including only a single winding number).
In this paper we shall give more thorough and complete
discussions of quantum spectra for N > 1 implementing a
set of winding numbers n1; n2;…. We shall present the
quantum spectra within a standard semiclassical zero mode
quantization scheme.

The paper is organized as follows. In Sec. II we give a
brief review of the extended Skyrme-Faddeev model on
the CPN target space, its classical solutions and their
topological charges. The Hopf Lagrangian is presented
in the final part of this section. In Sec. III we briefly discuss
the quantization scheme and fractional spin of solitons in
the model with N ¼ 1 (baby skyrmion). Section IV con-
tains generalization of the collective coordinate quantiza-
tion scheme for the case N ¼ 2. In Sec. V we present the
analysis of the spectrum. Finally in Sec. VI we generalize
our formula for N ≧ 3 and we present the energy plot of
the quantized system. Section VII contains summary of
the paper.

II. THE CPN EXTENDED SKYRME-FADDEEV
MODEL

The extended Skyrme-Faddeev model on the CPN target
space has been proposed in [5]. The coset space CPN ¼
SUðN þ 1Þ=SUðNÞ ⊗ Uð1Þ is an example of a symmetric
space and it can be naturally parametrized in terms of so
called principal variable ΨðgÞ ≔ gσðgÞ−1, with g ∈
SUðN þ 1Þ, σ being the order two automorphism under
which the subgroup SUðNÞ ⊗ Uð1Þ is invariant, i.e.,
σðhÞ ¼ h for h ∈ SUðNÞ ⊗ Uð1Þ. The principal coordinate
ΨðgÞ defined above satisfies ΨðghÞ ¼ ΨðgÞ. Therefore
we have just one matrix ΨðgÞ for each coset in
SUðN þ 1Þ=SUðNÞ ⊗ Uð1Þ.
The first term of the Lagrangian (1) is quadratic inΨ and

corresponds with the Lagrangian of the CPN model. The
quartic term proportional to e−2 is the Skyrme term whereas
other quartic terms constitute the extension of standard
Skyrme-Faddeev model. The non-Skyrme type quartic
terms introduce to the Lagrangian some fourth power time
derivative terms. A form of the Lagrangian adequate for
quantization is obtained imposing a condition

β þ 2γ ¼ 0 ð3Þ

which eliminates some unwanted terms. We shall analyze
in this paper some solutions of the 2þ 1 dimensional
model (a planar case). In such a case the coupling constants
have different physical dimensions to those in the 3þ 1

dimensional model, i.e., M has dimension of mass1=2 and
three other coupling constants e−2, β, γ have dimension
of mass.
According to the previous paper [5], one can parametrize

the model in terms of N complex fields ui, where
i ¼ 1;…; N. We assume an (N þ 1)-dimensional defining
representation where the SUðN þ 1Þ valued element g is of
the form

g≡ 1

ϑ

� Δ iu

iu† 1

�
ϑ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u† · u

p
ð4Þ

1The situation is somewhat similar with the case of the 3þ 1
Skyrme model and the 2þ 1 baby Skyrme model. The former
possesses the symmetry U → AUB† while the latter only has the
diagonal ones. It originates in the fact that the chiral symmetry
can only be defined for odd space dimensions.
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and where Δ is the Hermitian N × N-matrix,

Δij ¼ ϑδij −
uiu�j
1þ ϑ

which satisfies

Δ · u ¼ u and u† · Δ ¼ u†:

The principal variable takes the form

ΨðgÞ ¼ g2 ¼
�
IN×N 0

0 −1

�
þ 2

ϑ2

�
−u ⊗ u† iu

iu† 1

�
:

ð5Þ

It has been shown recently that the model (1) possesses
vortex solutions. There exists a family of exact solutions in
the model without potentials where in addition the coupling
constants satisfy the condition βe2 þ γe2 ¼ 2. The solu-
tions satisfy the zero curvature condition ∂μui∂μuj ¼ 0

for all i; j ¼ 1;…; N and therefore one can construct the
infinite set of conserved currents. Furthermore, according
to numerical study there exist vortex solutions which do not
belong to the integrable sector. Such solutions have been
found for the potential

V ¼ Trð1 −Ψ0
−1ΨÞaTrð1 −Ψ∞

−1ΨÞb ð6Þ

with a ≥ 0, b > 0 where Ψ0 and Ψ∞ are a vacuum value of
the field Ψ at origin and spatial infinity respectively. The
potential (6) is an analog of potentials for the baby Skyrme
model. The numerical solutions and holomorphic exact
solutions corresponding with the same set of winding
numbers have common boundary behavior.
The Lagrangian (1) is invariant under the global sym-

metry Ψ → AΨB†, A, B ∈ SUðN þ 1Þ. Since we restrict
the analysis to 2þ 1 dimensions then it is natural to
consider a diagonal subgroup. For this reason we transform
the variable Ψ into the Hermitian one

X ≔ INþ1×Nþ1 þ
2

ϑ2

�
−u ⊗ u† iu

−iu† −1

�
ð7Þ

which in addition satisfies X−1 ¼ X. Now the Lagrangian
(1) becomes

L ¼ M2

2
Trð∂μX∂μXÞ þ 1

e2
Trð½∂μX; ∂νX�Þ2

þ β

2
½Trð∂μX∂μXÞ�2 þ γ½Trð∂μX∂νXÞ�2 − μ2VðXÞ:

ð8Þ

An analysis of zero modes of the classical solutions is much
easier in approach involving a variable X and in practice
enables to apply the quantization scheme. In order to
explain this statement let us note that for the variable Ψ

in the Lagrangian (1) the boundary conditions which result
in AΨ∞B† ¼ Ψ∞ break partially the symmetry associated
with the transformation Ψ → AΨB†. Unlike for the stan-
dard skyrmion, where the chiral field U goes to U∞ ¼ I
and the symmetry is simply broken down to A ¼ B, the
Ψ∞ has a nontrivial value which depends on winding
numbers. Moreover, one still has to determine the pair of
ðA;BÞ for the zero-modes. On the contrary, for (8) the
symmetry transformation becomes diagonal, i.e.,
X → AXA†, and then an explicit form of A can be easily
determined as expansion in basis of the standard Gell-Mann
matrices.
It is worth it to stress that for the planar case the classical

equations of motion and their classical solutions have
exactly the same form for both parametrizations.
Furthermore, since the quantization procedure is based
on properties of classical solutions then the resulting
quantum spectra must correspond.
The variable X has close relation with a well-known

Hermitian projector P that satisfies

P† ¼ P; TrP ¼ 1; P2 ¼ P: ð9Þ

The projector P is defined as

PðVÞ ¼ Z ⊗ Z† ð10Þ

where the symbol Z stands for the N-component complex
vector Z ¼ ðu1;…; uN; iÞT=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u† · u

p
which depends

on two variables z, z�. The form of the projector allows
us to express X in the form

X ¼ INþ1×Nþ1 − 2P: ð11Þ

We introduce dimensionless coordinates (t, ρ, φ)

x0 ¼ r0t; x1 ¼ r0ρ cosφ; x2 ¼ r0ρ sinφ ð12Þ

where the length scale r0 is defined in terms of coupling
constantsM2 > 0 and e2 < 0, i.e., r20 ≔ − 4

M2e2 and the light
speed is c ¼ 1 in the natural units. The linear element ds2

reads

ds2 ¼ r20ðdt2 − dρ2 − ρ2dφ2Þ:

We shall consider the axial symmetric planar solutions

uj ¼ fjðρÞeinjφ ð13Þ

where the constants ni form the set of integer numbers
and fiðρÞ are real-valued functions. Equivalently, the
ansatz (13) in matrix form reads u ¼ fðρÞeiλφ where
λ ¼ diagðn1;…; nNÞ. In order to simplify the form of some
formulas below, we introduce the functions defined as
follows
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θ ¼ −
4

ϑ4
½ϑ2f0T:f0 − ðf0T:fÞðfT:f0Þ�;

ω ¼ −
4

ϑ4
½ϑ2fT:λ2:f − ðfT:λ:fÞ2�;

ζ ¼ −
4

ϑ4
½ϑ2f0T:λ:f − ðfT:λ:fÞðf0T:fÞ� ð14Þ

where derivative with respect to ρ is denoted by d
dρ ¼ 0 and

T stands for matrix transposition. The classical equations of
motion written in dimensionless coordinates take the form

ð1þ fT:fÞ
�
1

ρ
ðρC1f0kÞ0 þ

i
ρ

�
C3

ρ

�0
ðλ:fÞk −

1

ρ4
C2ðλ2:fÞk

�

− 2

�
C1ðfT:f0Þf0k −

1

ρ4
C2ðfT:λ:fÞðλ:fÞk

�

þ ~μ2
fk
4
ð1þ fT:fÞ2

�
δV
δf2k

þ
XN
i¼1

f2i
δV
δf2i

�
¼ 0 ð15Þ

for each k ¼ 1;…; N, where ~μ2 ≔ r2
0

M2 μ2 and symbols Cj

take the form

C1 ¼ −1þ ðβe2 − 1Þ ω
ρ2

;

C2 ¼ −ρ2 þ ρ2ðβe2 − 1Þθ;
C3 ¼ 3iζ: ð16Þ

The energy of the static solution is given by the integral

Mcl ¼ −2πM2

Z
ρdρ

�
θ þ ω

ρ2
þ 3ζ2

ρ2

− ðβe2 − 1Þ θω
ρ2

− ~μ2V

�
: ð17Þ

According to discussion in [30] and also in [6] one can
introduce two-dimensional topological charges associated
with vortex configurations. Such charges are closely related
with a topological current that has the following form in
terms of the principal variable

jμðXÞ ¼ i
16π

ϵμνλTrðX∂νX∂λXÞ: ð18Þ

Since the solutions behave as holomorphic functions near
the boundaries then the topological charges are equal to the
number of poles of ui, including those at infinity, i.e.,

Qtop ¼
Z

j0ðXÞd2x ¼ nmax þ jnminj ð19Þ

where nmax is the highest positive integer in the set ni; i ¼
1; 2;…; N and nmin is the lowest negative integer in the
same set.

The conserved current (18) defines a gauge potential

jμ ¼ −
i
2π

ϵμνλ∂νaλ ð20Þ

where aμ is determined up to the gauge freedom aμ →
aμ − ∂μΛ. As it was pointed out in [24], aμ is a nonlocal
function of X. The straightforward calculation shows that
aμ can be written as

aμ ¼ −2πi∂−2½ϵμνλ∂νjλ�; in the gauge ∂μaμ ¼ 0:

ð21Þ

In the alternative approach the gauge potential aμ is given
in terms of the complex vector Z

aμ ¼ −iZ†∂μZ ð22Þ

where the U(1) rotation acting on Z induces the gauge
transformation on aμ.
The “Hopf Lagrangian” is defined in terms of aμ and it

reads

ΘLHopf ¼ −
Θ
4π2

ϵμνλaμ∂νaλ: ð23Þ

This Lagrangian is invariant under U(1) gauge transforma-
tion and the value of the prefactor Θ is essentially
undetermined. Since Π3ðCP1Þ ¼ Z then (23) is exactly
the Hopf invariant for N ¼ 1 and consequently it can be
expressed as a total derivative. For this reason it does
not contribute to the classical equations of motion. On the
contrary, Π3ðCPNÞ is trivial for N > 1 and therefore the
Hopf term is not a homotopic invariant in this case. It
means that the contribution from the Hopf term is always
fractional even for an integerm in the anyon angleΘ ¼ mπ.
Note that even though the Hopf term is not a total derivative
anymore, it still does not affect the classical soliton
solutions because it is linear in time derivative.
In the following part we quantize the model containing

the Lagrangian (8) extended by the Hopf term (23) and
examine the spin statistics of the CPN solitons.

III. COLLECTIVE COORDINATE
QUANTIZATION OF THE BABY SKYRMIONS

It became quite instructive to present a scheme of
quantization for the model with the CP1 target space
before going to the main question which is a quantization
of the model with the CPN target space. The model with
N > 1 is technically more complex because it contains
many fields. For this reason we shall begin presenting
analysis of the CP1 baby skyrmions. The full canonical
quantization of the model has already been studied [15],
however, in the absence of the Hopf term. We consider the
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collective coordinate quantization taking into account the
Hopf term and discuss the spin of the baby skyrmions.

A. The model and the quantized energy

The baby Skyrme model [31,32] is a mimic of a hadronic
Skyrme model. Its solutions (baby skyrmions) are consid-
ered as possible candidates for vortices or spin textures.
The model is given in terms of a vectorial triplet

~n ¼ ðn1; n2; n3Þ with the constraint ~n · ~n ¼ 1. Performing
stereographic projection S2 on a complex plane one can
parametrize the model by a complex scalar field u related to
the triplet ~n by formula

~n ¼ 1

1þ juj2 ðuþ u�;−iðu − u�Þ; juj2 − 1Þ: ð24Þ

Instead, we shall make use of another alternative para-
metrization that is convenient for any CPN space, in
particular, also for SUð2Þ=Uð1Þ ¼ CP1 coset space. In
such a case the Hermitian principal variable (7) X is a
function of just one complex field u

X ¼ 1

1þ juj2
�
1 − juj2 2iu

−2iu� juj2 − 1

�
: ð25Þ

It can be also expressed in terms of components of the unit
vector ~n

X ¼ −n3τ3 − n2τ1 − n1τ2: ð26Þ

The Lagrangian of the baby Skyrme model parametrized
by the variable X takes the form

LbS ¼
M2

2
Trð∂μX∂μXÞ − 1

8e2
Trð½∂μX; ∂νX�2Þ − μ2V

ð27Þ

whereM2, e2 are coupling constant of the model and V is a
potential which we shall not specify for a moment because
its explicit form is irrelevant for current discussion. We
shall consider a model L ≔ LbS þ ΘLHopf which consti-
tutes extension of the model (27) due to the Hopf term (23).
Since Π3ðCP1Þ ¼ Z, the Hopf term can be represented as a
total derivative so it does not contribute to the classical
equations of motion. The complex coordinate Z and the
Hermitian principal variable X in the case of the CP1 target
space are related as X ≔ 1 − 2Z ⊗ Z†. The topological
charge is given by

qtop ¼
i

16π

Z
d2xϵijTrðX∂iX∂jXÞ; i; j ¼ 1; 2: ð28Þ

Note that expressions (27) and (28) are invariant
under rotation realized by a unitary matrix A according

to transformation X → AXA†. The standard procedure
proceeds by promoting the parameter A to the status of
dynamical variable Aðx0Þ. Then the dynamical ansatz
adopted in collective coordinate quantization reads

Xðr;Aðx0ÞÞ ¼ Aðx0ÞXðrÞA†ðx0Þ: ð29Þ

The expression (29) parametrized by a complex coordinate
Z reads

Xðr; Aðx0ÞÞ ¼ Aðx0Þð1 − 2ZðrÞZ†ðrÞÞA†ðx0Þ
¼ 1 − 2ðAðx0ÞZðrÞÞðAðx0ÞZðrÞÞ† ð30Þ

which allows us to conclude that

Zðr; Aðx0ÞÞ ¼ Aðx0ÞZðrÞ: ð31Þ

Plugging (29) into the Lagrangian (27) and also (31) into
the Hopf term (23) we obtain an effective Lagrangian

Leff ¼
1

2
IabΩaΩb þ

Θ
4π

ΛaΩa −Mcl ð32Þ

where the collective angular velocities Ωa appear in
expansion of the operator iA†∂x0A ¼ τa

2
Ωa and where τa

are Pauli matrices a ¼ 1, 2, 3. The inertia tensor Iab is
given in terms of XðrÞ

Iab ¼ −
4

e2

Z
ρdρdφ

�
−Tr

��
τa
2
; X

��
τb
2
; X

��

þ 1

8
Tr

���
τa
2
; X

�
; ∂kX

���
τb
2
; X

�
; ∂kX

���
: ð33Þ

We consider the well known “hedgehog” ansatz

~n ¼ ðsin gðρÞ cos nφ; sin gðρÞ sin nφ; cos gðρÞÞ
gð0Þ ¼ π; gð∞Þ ¼ 0 ð34Þ

obtained from (24) by the following parametrization of the
complex field u

u ¼ cot
gðρÞ
2

einφ: ð35Þ

The topological charge of solutions (34) takes integer
values according to

qtop ¼ −
n
2

Z
∞

0

dρ sin gg0 ¼ n: ð36Þ

The components of the moment of inertia read
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I11 ¼ I22

¼ −
4π

e2

Z
∞

0

ρdρ

�
2þ 2cos2gþ n2sin2g

ρ2
þ cos2gg02

�

ð37Þ

I33 ¼ −
16π

e2

Z
∞

0

ρdρsin2gð1þ 2g02Þ ð38Þ

and Iab ¼ 0 for a ≠ b. Note that rotation is allowed only
around the third axis because I11 ¼ I22 ¼ ∞.2

Taking into account thatΠ3ðCP1Þ ¼ Zwe obtain integer
values for expressions Λa that appear in the Hopf term

Λ3 ¼ −i
Z

dρððZ†τ3ZÞ∂ρðZ†∂φZÞ − ðZ†∂φZÞ∂ρðZ†τ3ZÞÞ

¼ −n ð39Þ

and Λ1 ¼ Λ2 ¼ 0. The (body-fixed) isospin operator J3 can
be introduced as a symmetry transformation generator via
Noether’s theorem

A → Aei
τ3
2
ϑ3 ;

J3 ¼ −I33Ω3 þ
nΘ
4π

: ð40Þ

The Legendre transform of the Lagrangian leads to the
following expression for the Hamiltonian

Heff ¼ Mcl þ
g33
2

�
J3 −

nΘ
4π

�
2

; ð41Þ

where g33 is inverse of the moments of inertia I33 i.e.
g33 ≔ 1=I33. If one represents the isospin operator J3 ≔ i ∂

∂α
as acting on the basis jli≡ e−ikαj0i, with k being an
integer or a half-integer numbers, then the energy eigen-
value is given by the expression

E ¼ Mcl þ
g33
2

�
k −

nΘ
4π

�
2

: ð42Þ

One can substitute the quantum number k by an integer-
valued index i.e., l≡ 2k what gives

E ¼ Mcl þ
~g33
2

�
l −

nΘ
2π

�
2

; l ∈ Z ð43Þ

where ~g33 ¼ g33=4. This is a familiar result: for nΘ ¼ 0 or
in general (even number)×π, the angular momentum is
integer then one gets boson, while for nΘ ¼ π or (odd

number) ×π, the angular momentum is half integer then
one gets fermion.

B. The fermionic effective model
and the anyon angle

It is well known that for a fermionic effective model
coupled to a baby skyrmion with a constant gap m the
integrating out the Dirac field leads to effective Lagrangian
containing a kind of baby Skyrme model and some
topological terms including the Hopf term [26,27]. The
Euclidean path integral of the partition function, which
enables us to examine the topological term after integrating
out the Dirac field, is of the form

ΓðX; AμÞ ¼
Z

DψDψ̄ exp

�Z
d3xψ̄iDψ

�
ð44Þ

where the U(1) gauged Dirac operator reads

iD ≔ iγμð∂μ − iAμÞ −mX: ð45Þ

A number of articles extensively describe the derivative
expansion of the effective action Seff that appears in
Γ ≔ expðSeffÞ. It contains both the action of the model
(in the real part) and the topological terms (in the imaginary
part). After a bit lengthy calculation (see Appendix A) one
gets

ReSeff ¼
jmj
2π

Z
d3xTrð∂μX∂μXÞ þOð∂X3Þ; ð46Þ

ImSeff ¼
Z

d3xðjμðXÞAμ − πsgnðmÞLHopfðXÞÞ: ð47Þ

The explicit form of the current jμ coincides with (18).
Consequently, as pointed out in [26,27,29], the anyon angle
Θ is determinable in this fermionic context. It means that
the soliton became a fermion for odd topological charges
and a boson for even topological charges.

IV. COLLECTIVE COORDINATEQUANTIZATION
OF THE CP2 MODEL

It has been already mentioned that the Lagrangian
density (1) is invariant under transformation Ψ → AΨB†

where A, B are some unitary constant matrices. This
symmetry could remain also for the Lagrangian density
written in new variable X ¼ CΨ where C is a diagonal
constant matrix. However, for X ¼ X† only the diagonal
symmetry A ¼ B is allowed. Moreover, the topological
charge (19) is invariant under such transformation only for
A ¼ B. It leads to the conclusion that for a model which
supports topological soliton solutions the only allowed
symmetry is a diagonal one X → AXA†. In fact there is

2Our results are essentially equivalent with (19) of Ref. [15] up
to constant. However, their formulation (20) [corresponding to
our (37)] was incorrect about sign of the coefficient.
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another restriction on A, namely for the asymptotic field
X∞ it must hold

AX∞A† ¼ X∞; ð48Þ

otherwise the moments of inertia corresponding to the
modes diverge. Note that expression A satisfying (48)
depends on numbers ðn1; n2Þ because these numbers
determine the form of X∞. The vortex solutions are
symmetric under exchange of n1, n2. It is enough to
study configurations with n1 > n2 where the cases
n1 > 0, n1 < 0 are treated separately.
In analogy to baby skyrmions we shall adopt following

dynamical ansatz in collective coordinate quantization

Xðr;Aðx0ÞÞ ¼ Aðx0ÞXðrÞA†ðx0Þ: ð49Þ

Substituting (49) into the Lagrangian (8) one obtains a
Lagrangian which depends on the collective angular
velocity operator iA†∂x0A. Such an operator possesses
expansion on the set of collective coordinates which appear
in the resulting effective Hamiltonian.

A. The case n1 > 0

In this case the asymptotic value of the principal variable
X is X∞ ¼ diagð−1; 1; 1Þ. The generators fFag, a ¼ 1, 2,
3, 8 of the symmetry (48) have the form

F1 ≔
λ6
2
; F2 ≔

λ7
2
; F3 ≔ −

1

4
ðλ3 −

ffiffiffi
3

p
λ8Þ

F8 ≔ −
1

2

�
λ3 þ

1ffiffiffi
3

p λ8

�
:

They satisfy the commutation relations

½Fa; Fb� ¼ iϵabcFc; ½Fa; F8� ¼ 0 a; b; c ¼ 1; 2; 3

ð50Þ

what shows that the symmetry (48) is in fact a residual
symmetry SUð2Þ × Uð1Þ. The rotation matrix A is para-
metrized by four Euler angles ϑi, (i ¼ 1, 2, 3, 8) in the
following way

A ¼ e−iF3ϑ1e−iF2ϑ2e−iF3ϑ3e−iF8ϑ8 : ð51Þ

The angular velocities Ωa of the collective coordinates
became the expansion coefficients of the operator iA†∂x0A
in a basis of generators Fa of the residual symmetry. The
expansion takes the form

iA†∂x0A ¼ FaΩa: ð52Þ

The effective Lagrangian contains a term quadratic in Ωa
which comes from the Skyrme-Faddeev part of the total

Lagrangian and a term linear in Ωa having origin in the
Hopf Lagrangian

Leff ¼
1

2
IabΩaΩb þ

Θ
4π

ΛaΩa −Mcl: ð53Þ

where the symmetric inertia tensor Iab is given as the
integral of the expressions containing the Hermitian prin-
cipal variable XðrÞ and they read

Iab ¼
4

e2

Z
ρdρdφ

�
Trð½Fa; X�½Fb; X�Þ

þ Trð½½Fa; X�; ∂kX�½½Fb; X�; ∂kX�Þ

þ βe2

2
fTrð½Fa; X�½Fb; X�ÞTrð∂kX∂kXÞ

− Trð½Fa; X�∂kXÞTrð½Fb; X�∂kXÞg
�
: ð54Þ

The symmetry of components I38 ¼ I83 and equality
I11 ¼ I22 originate in the axial symmetry imposed in the
ansatz (13).
In generality the Hopf term in the Lagrangian (53) is

nonlocal in fields X. However, if we translate the field into
Z using transformation (11) it has a local form. From
dynamical ansatz (49) we find that

Zðr;Aðx0ÞÞ ¼ Aðx0ÞZðrÞ: ð55Þ

The inertial vector Λa has the following form

Λa ¼ −2i
Z

dρfðZ†FaZÞ∂ρðZ†∂φZÞ

− ðZ†∂φZÞ∂ρðZ†FaZÞg: ð56Þ

Explicit form of components of (54) and (56) obtained after
imposing (13) is presented in Appendix B.
In virtue of axial symmetry imposed by (13) the effective

Lagrangian (53) contains the following relevant terms

Leff ¼
1

2
½I11ðΩ2

1 þ Ω2
2Þ þ I33Ω2

3 þ 2I38Ω3Ω8 þ I88Ω2
8�

þ Θ
4π

fΛ3Ω3 þ Λ8Ω8g −Mcl: ð57Þ

The Lagrangian (53) possesses several global continuous
symmetries that lead to corresponding conserved Noether
currents Ia, Ka, J , namely

ðiÞ left SULð2Þ∶ A → e−iFaξ
L
aA;

Ia ¼ IbcΩbRac þ
Θ
4π

Λa; ð58Þ
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ðiiÞ right SURð2Þ∶ A → AeiFaξ
R
a ;

Ka ¼ −IabΩb −
Θ
4π

Λa; ð59Þ

ðiiiÞ the circular symmetryXðρ;φÞ → Xðρ;φþ φ0Þ;

or A → AeiF̄φ0 ; F̄ ≔ n2F3 −
1

2
ð2n1 − n2ÞF4;

ð60Þ

J ¼ n2K3 −
1

2
ð2n1 − n2ÞK4; ð61Þ

where the symbol Rab is defined by

AλaA† ¼ λbRba; ð62Þ

where λa stands for the Gell-Mann matrices. Here, Ia and
Ka are called the coordinate-fixed isospin and the body-
fixed isospin respectively. J is a generator of the spatial
rotation around the third axis. They act on A as

½Ia;A� ¼ −FaA; ½Ka;A� ¼ AFa

½J ;A� ¼ AF̄: ð63Þ

One can construct the explicit form of operators that
satisfy (63)

I1 ¼ i

�
cosϑ1 cotϑ2

∂
∂ϑ1 þ sinϑ1

∂
∂ϑ2 −

cosϑ1
sin ϑ2

∂
∂ϑ3

�
;

I2 ¼ i

�
sinϑ1 cot ϑ2

∂
∂ϑ1 − cosϑ1

∂
∂ϑ2 −

sin ϑ1
sin ϑ2

∂
∂ϑ3

�
;

I3 ¼ −i
∂
∂ϑ1 ; I8 ¼ −i

∂
∂ϑ8 ;

K1 ¼ −i
�
cosϑ3
sin ϑ2

∂
∂ϑ1 − sin ϑ3

∂
∂ϑ2 − cotϑ2 cos ϑ3

∂
∂ϑ3

�
;

K2 ¼ i

�
sinϑ3
sinϑ2

∂
∂ϑ1 þ cosϑ3

∂
∂ϑ2 − cotϑ2 sinϑ3

∂
∂ϑ3

�
;

K3 ¼ i
∂
∂ϑ3 ; K8 ¼ i

∂
∂ϑ8 ;

J ¼ in2
∂
∂ϑ3 − i

1

2
ð2n1 − n2Þ

∂
∂ϑ8 : ð64Þ

The SUð2Þ Casimir operator

I 2 ≔
X3
i¼1

I2
i ¼

X3
i¼1

K2
i ≕ K2; ð65Þ

as well as the generators I3, I8, K3. K8 and J are
diagonalizable. The Lagrangian (53) is a function of the
four Euler angles ϑi and their time derivatives _ϑi ≡ ∂x0ϑ,

i.e. Leff ¼ Leffðϑi; _ϑiÞ. The Legendre transform of the
Lagrangian Leff leads to the Hamiltonian Hðϑi; πiÞ ≔
πi _ϑi − Leff which depends on the Euler angles and the
canonical momenta πi ≔ ∂Leff=∂ _ϑi. The Hamiltonian
takes the form

Heff ¼ Mcl þ
g11
2

ðK2
1 þK2

2Þ

þ g33
2

�
K3 þ

Θ
4π

Λ3

�
2

þ g88
2

�
K8 þ

Θ
4π

Λ8

�
2

þ g38

�
K3 þ

Θ
4π

Λ3

��
K8 þ

Θ
4π

Λ8

�
ð66Þ

where we have introduced the components of inverse of
inertia tensor gab whose explicit form in the current case is
given by

g11 ≔
1

I11
; g33 ≔

I88
I33I88 − I238

;

g38 ≔
−I38

I33I88 − I238
; g88 ≔

I33
I33I88 − I238

:

The diagonalization problem can be solved using the
standard Wigner function (for example, [33])

jlmk;Yi ¼ Dl
m;kðϑ1; ϑ2; ϑ3Þe−iYϑ8 j0i ð67Þ

where l, m, k are integer/half-integer and Y has 1
3
; 2
3
;….

Then the Hamiltonian eigenvalues read

E ¼ Mcl þ
g11
2

flðlþ 1Þ − k2g

þ g33
2

�
kþ Θ

4π
Λ3

�
2

þ g88
2

�
Y þ Θ

4π
Λ8

�
2

þ g38

�
kþ Θ

4π
Λ3

��
Y þ Θ

4π
Λ8

�
: ð68Þ

It is convenient to express all the quantum numbers in terms
of integer numbers, i.e., l0 ≡ 2l, k0 ≡ 2k and Y 0 ≡ 3Y. It
leads to the following expression for the energy

E ¼ Mcl þ
~g11
2

fl0ðl0 þ 2Þ − k02g

þ ~g33
2

�
k0 þ Θ

2π
Λ3

�
2

þ ~g88
2

�
Y 0 þ 3Θ

4π
Λ8

�
2

þ ~g38

�
k0 þ Θ

2π
Λ3

��
Y 0 þ 3Θ

4π
Λ8

�
ð69Þ

where ~g11 ≡ g11=4, ~g33 ≡ g33=4, ~g38 ≡ g38=6, ~g88 ≡ g88=9
(in further analysis we shall omit 0 of k0, l0, Y 0 for
simplicity.)
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The derivative expansion of partition function obtained
for baby skyrmions can be straightforwardly applied to the
model with N ¼ 2. In such a case the Dirac operator is of
the form

iD ≔ iγμð∂μ − iAμÞ −mX ð70Þ

and real and imaginary parts of the effective action read

ReSeff ¼
jmj
2π

Z
d3xTrð∂μX∂μXÞ þOð∂X3Þ; ð71Þ

ImSeff ¼
Z

d3xðjμðXÞAμ − πsgnðmÞLHopfðXÞÞ: ð72Þ

In analogy to the previous section, one can fix the anyon
angle Θ as Θ≡ πsgnðmÞ provided that the vortices are
coupled with fermionic field. However, since Π3ðCPNÞ is
trivial, the Hopf term itself LHopf is perturbative and the
value of the integral depends on the background classical
solutions. Consequently, one could not expect that this
value became an integer number. As a result, the solitons
are always anyons even if Θ ¼ nπ, n ∈ Z.

B. Case: n1 < 0

In this case the asymptotic value of the Hermitian
principal variable X at spatial infinity reads X∞ ¼
diagð1; 1;−1Þ. It follows that four generators of the
symmetry fFag, a ¼ 1, 2, 3, 8 can be chosen as

F1 ≔
λ1
2
; F2 ≔

λ2
2
; F3 ≔

λ3
2
; F8 ≔

λ8ffiffiffi
3

p :

ð73Þ

The quantum Hamiltonian can be diagonalized in the same
way as for n1 > 0 what leads to the energy spectrum (69).

V. THE ANALYSIS

We shall examine quantum spectra of the model (8) in
the integrable sector βe2 þ γe2 ¼ 2 where do exist a class
of holomorphic vortex solutions. We choose

βe2 ¼ 4; γe2 ¼ −2: ð74Þ

in order to satisfy the condition (3) simultaneously with the
previous one. In the integrable sector the model possesses
exact solutions

uj ¼ cjρnjeinjφ ð75Þ

where cj are arbitrary scale parameters. The lowest nontrivial
vortex configurations with topological charge (19) taking the
value Qtop ¼ 2 are given by ðn1; n2Þ ¼ ð2; 1Þ; ð1;−1Þ. Note
that the first term of the inertia tensor (54)

INlσ
ab ¼ 4

e2

Z
ρdρdφTrð½Fa; X�½Fb; X�Þ ð76Þ

is logarithmically divergent. It means that it has no proper
quantum numbers unless one employ a suitable regulariza-
tion scheme. A similar situation has been identified for
baby skyrmions in an antiferromagnetism [13]. In such a
case the moment of inertia corresponding to the solution
with the winding number n ¼ 1 diverges and because of it
no quantized states emerge. The authors have introduced a
regularization term in order to get the finite value of the
integral.
Here we shall study some configurations of vortices

with finite moments of inertia characterized by Qtop ¼ 3.
The values of the moments of inertia (54) for holomorphic
solutions are shown in Fig. 1. The moments are shown in
dependence on dilatation parameters ðc1; c2Þ defined by
(75). The unit scale is given by −4=e2. Similarly, the finite
components of inertia vector (56) of the holomorphic
solutions have been shown in Fig. 2. Note that for
c2 → 0 the component becomes trivial then the value of
the vector becomes topological, i.e., Λ3 → −Qtop, what is
consistent with the analytical calculation for the baby
skyrmions (39). In Fig. 3 we plot the dimensionless
quantum energy correction ΔE corresponding to the
moments of inertia shown in Fig. 1.
For coupling parameters such that the condition

βe2 þ γe2 ¼ 2 does not hold the solution is no longer
holomorphic. In such a case the numerical analysis is
required in order to compute the quantum corrections. The
numerical analysis for the classical solutions of (15) has
been extensively studied in [7]. Here we shall employ the
potential

V ¼ ð1þ f22Þ2
ð1þ f21 þ f22Þ2

: ð77Þ

The corresponding classical solutions for several values
of βe2 are shown in Fig. 4. In Fig. 5 we present the
corresponding energies and values of the isoscalar root
mean square radius

ffiffiffiffiffiffiffiffiffi
hρ2i

q
≡

��
−

4

M2e2

�Z
ρ2j0ðρÞdρ

�
1=2

: ð78Þ

The components of the moment of inertia tensors Iab and
also the inertia vectors Λa are shown in Fig. 6. WhenN > 1
there are several excitation modes which are labeled by the
quantum numbers l, k, Y. In Fig. 7 we plot the excitation
modes in dependence on l, k with fixed Y ¼ 0 (“l-mode”),
and also in dependence on Y with fixed ðl; kÞ ¼ ð0; 0Þ
(“Y-mode”).
The dimensionless classical energy ~Mcl ≡Mcl=8πM2 is

topological for the holomorphic solutions, i.e., it equals to
the topological charge Qtop. Clearly, for nonholomorphic
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solutions the energy deviates fromQtop, however, it still can
be useful to introduce a coupling strength for the quantum
correction α ≔ − e2

4
× 1

8πM2 ¼ − e2

32πM2. The coupling con-
stants M2, e2 are some free model parameters, however,
their values must be determined by underlying physics.
In order to get some rough idea about properties of

quantum excitations, it might be instructive to estimate

value of the quantum excitations for a given energy scale.
For hadronic scale analysis one usually fixes the coefficient

of the second order terms f2π
4
in the standard Skyrme model

as being equal to the pion decay constant fπ ≃ 64.5 MeV.
Similarly, we put the coupling constantM2 of the extended
Skyrme-Faddeev model as being equal to the pion decay
constant M2 ∼ fπ ≃ 102 MeV and we also employ the

FIG. 2. The finite components of inertia vector (56) of the holomorphic solutions for the topological charge Qtop ¼ 3, i.e., ðn1; n2Þ ¼
ð3; 1ÞÞ in unit of (−4=e2).

FIG. 1. The finite components of inertia tensor (54) of the holomorphic solutions for the topological charge Qtop ¼ 3, i.e., ðn1; n2Þ ¼
ð3; 1ÞÞ in unit of (−4=e2).
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isoscalar charge density of the nucleon, i.e.,
ffiffiffiffiffiffiffiffiffi
hρ2i

p ≃
0.7 fm in (78). For instance, in the case of our numerical
solution with βe2 ¼ 4.1 one can easily estimate
−e2=4≃ 3.6 × 103 MeV. For such a choice of parameters
the classical energy is about Mcl ≃ 10.4 GeV and the
quantum corrections read

−
e2

4
ΔE≃ 10.4 MeV “Ymode” ðY ¼ 1;Θ ¼ 0Þ;

ð79Þ

≃ 19.3 MeV “lmode” ðl ¼ 1; k ¼ 0;Θ ¼ 0Þ: ð80Þ

The coupling constant takes the value α≃ 1.4.
Unfortunately, no physical candidate for such small energy
excitation for the nucleon are known. One has to stress that
the result was obtained as a crude estimation. Moreover, the
present model is only a two-dimensional mimic of the
realistic 3þ 1 Skyrme model.
Another example of such estimation can be done for an

antiferromagnetic material. A simple estimation of a differ-
ent type of quantum correction in the case of a continuum
limit of a Heisenberg model was demonstrated in [11]. In
the continuum Heisenberg model, the parameterM2 can be
assigned as the exchange coupling constant or a a spin
stiffness. In antiferromagnetic La2CuO4 the spin wave
velocity c is of the order ℏc ≥ 0.04 eV nm and the lattice
constant is of the order a≃ 0.5 nm. The exchange coupling
constant is roughly M2 ∼ ℏc=a≃ 0.1 eV. The soliton sizeffiffiffiffiffiffiffiffiffi
hρ2i

p
is responsible for the size of the excitation then it

may be estimates as
ffiffiffiffiffiffiffiffiffi
hρ2i

p
∼ a≃ 0.5 nm. In the case of

our numerical solution with βe2 ¼ 4.1 we have
−e2=4≃ 7.1 × 106 eV. The classical energy is estimated
as Mcl ≃ 10.4 eV and

FIG. 4. The classical solutions with the topological charge
Qtop ¼ 3, i.e., ðn1; n2Þ ¼ ð3; 1ÞÞ.

FIG. 5. The energies (in unit of 4M2) and the root mean square radius
ffiffiffiffiffiffiffiffiffi
hρ2i

p
(in unit of −4=M2e2) of the classical solutions with the

topological charge Qtop ¼ 3, i.e., ðn1; n2Þ ¼ ð3; 1Þ.

FIG. 3. The quantum correction of the energy eigenvalue (69)
of the holomorphic solutions for the topological chargeQtop ¼ 3,
i.e., ðn1; n2Þ ¼ ð2;−1ÞÞ in unit of (−e2=4). The quantum num-
bers are ðl; k; YÞ ¼ ð1; 1; 1Þ and the anyon angle Θ ¼ π.
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−
e2

4
ΔE≃ 20.5 keV “Y mode” ðY ¼ 1;Θ ¼ 0Þ; ð81Þ

≃ 38.1 keV “lmode” ðl ¼ 1; k ¼ 0;Θ ¼ 0Þ: ð82Þ

The coupling constant α takes the approximate value
α≃ 2.8 × 106.
Note that presented above estimations were performed in

order to get some rough idea about the order of magnitude
of excitations. For more definite analysis one needs further
inputs derived from underlying physics.

VI. GENERALIZATION TO HIGHER N

Though it seems to be certainly involved, a generaliza-
tion of our scheme to higher N ≧ 3 is straightforward.
In order to simplify the formulation we restrict consid-
eration the case of anyon angle Θ ¼ 0. We also assume that
n1 is the highest positive integer in the sequence ni,
i ¼ 1; 2;…; N. We present below results for the case

N ¼ 3. The generators fFð3Þ
a g read

Fð3Þ
1 ¼ 1

2

�
0 0

0 λ1

�
; Fð3Þ

2 ¼ 1

2

�
0 0

0 λ2

�
;

Fð3Þ
3 ¼ 1

2

�
0 0

0 λ3

�
; Fð3Þ

4 ¼ 1

2

�
0 0

0 λ4

�
;

Fð3Þ
5 ¼ 1

2

�
0 0

0 λ5

�
; Fð3Þ

6 ¼ 1

2

�
0 0

0 λ6

�
;

Fð3Þ
7 ¼ 1

2

�
0 0

0 λ7

�
; Fð3Þ

8 ¼ 1ffiffiffi
3

p
�
0 0

0 λ8

�
;

Fð3Þ
15 ¼ 1

4

�−3 0

0 I3×3

�
: ð83Þ

Following the procedure presented for the CP2 case, we
substitute the dynamical ansatz (49) into Lagrangian (8)
and expand the operator iA†∂x0A in basis of generators

fFð3Þ
a g

iA†∂x0A ¼ Fð3Þ
a Ωa: ð84Þ

The effective Lagrangian takes the form

FIG. 6. Components of the tensor and the vector of inertia corresponding to the solutions of Fig. 4.
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Leff ¼
X

a¼1;4;6

Iaa
2

ðΩ2
a þ Ω2

aþ1Þ

þ
X

a¼3;8;15

X
b¼3;8;15

Iab
2

ΩaΩb −Mcl: ð85Þ

The Legendre transformation of the Lagrangian leads to
the Hamiltonian

Heff ¼
X

a¼1;4;6

gaa
2

ðK2
a þK2

aþ1Þ

þ
X

a¼3;8;15

X
b¼3;8;15

gab
2

KaKb þMcl ð86Þ

where Ka are coordinate-fixed isospin operators and gab
stand for components of inverse of the inertia tensor Iab.
The energy spectrum is obtained after diagonalization of
the Hamiltonian (86) in base of states belonging to a
SUð3Þ × Uð1Þ irrep and it reads

Erot ¼
X

a¼1;4;6

gaa
2

flaðla þ 1Þ − k2ag

þ
X

a¼3;8;15

X
b¼3;8;15

gab
2

kakb; ð87Þ

where k1¼k3, k4¼ð2k3þ3k8Þ=4 and k6 ¼ ð2k3 − 3k8Þ=4.
The second order Casimir operator of the SUð3Þ group can
be expressed as

C2ðSUð3ÞÞ ¼ l1ðl1 þ 1Þ þ l4ðl4 þ 1Þ

þ l6ðl6 þ 1Þ − 4k23 þ 3k28
8

: ð88Þ

The generalization to an arbitrary N is almost straight-
forward. We can define the SUðNÞ ×Uð1Þ generators
similarly to (83) using a higher N generalization of
Gell-Mann matrices λNa which are the standard SUðNÞ
generators. We take the diagonal components of SUðNÞ
part (counterparts of F3 and F8)

FðNÞ
a2−1 ¼

1

a

�
0 0

0 λN
a2−1

�
a ¼ 2; 3;…; N; ð89Þ

“ ” “ ”

“ ”“ ”

FIG. 7. The excitation energies corresponding to the solutions of Fig. 4. We plot the l ¼ 0, 1, 2 modes with Y ¼ 0 and for the Y mode
we fix ðl; kÞ ¼ ð0; 0Þ.
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and the off diagonal ones, like F1 and F4, in the form

FðNÞ
b ¼ 1

2

�
0 0

0 λNb

�
;

where b are integer numbers from 1 to N2 − 1 excluding
a2 − 1. The last Uð1Þ generator is defined as

FðNÞ
N2−2N ¼ 1

N þ 1

�−N 0

0 IN×N

�
: ð90Þ

After lengthy calculation involving generators one gets the
quantum energy formula

Erot ¼
XN
i¼1

Xi−1
j¼1

gξξ
2
flξðlξ þ 1Þ − k2ξg þ

XN
i¼1

XN
j¼1

gηiηj
2

kηikηj

ð91Þ

where ξ ¼ ði − 1Þ2 þ 2ðj − 1Þ and ηi ¼ iðiþ 2Þ. Symbols
lξ and kηi represent independent quantum numbers whereas
kξ are given in terms of kηi according to

kξ ¼
1

2

�
−kηðj−1Þ þ

Xi

h¼j

1

h
kηh þ kηi

�
ð92Þ

with k0 ¼ 0. Note that ξ and ηi describe the numerical
sequence

fξg∶ 1; 4; 6; 9; 11; 13; 16; 18; 20; 22;… ð93Þ

fηig∶ 3; 8; 15; 24 � � � : ð94Þ

The energy formula (91) contains the first NðN − 1Þ=2
terms of fξg and the N terms of fηig, e.g.,

for N ¼ 2∶ ξ ¼ 1; ηi ¼ 3; 8

for N ¼ 3∶ ξ ¼ 1; 4; 6 ηi ¼ 3; 8; 15:

One can check that for this values expression (91) certainly
reduces to (68) forN ¼ 2 (andΘ ¼ 0) and to (87) forN ¼ 3.

VII. SUMMARY

The present paper aims at the problem of quantum
spectra of solutions in the extended CPN Skyrme-Faddeev
model. In order to obtain the quantum energy spectra of
excitations we applied the method of collective coordinate
quantization based on a rigid body approximation. Further,
within this approximation, we discussed spin statistics of
the CPN soliton taking into account the Hopf Lagrangian.
According to discussion presented in previous papers
[24,25,28,29], for N ¼ 1 the Hopf Lagrangian is topologi-
cal so the solitons are quantized as anyons with the angleΘ.

On the other hand, for N > 1, the Hopf term is perturbative
thus the solutions became always anyons.
A fermionic effective model coupled with the skyrmion

of a constant gap mX has been examined [26,27]. After
integrating out the Dirac field the resulting effective
Lagrangian contains the Skyrme-Faddeev model plus some
topological terms. For N ¼ 1, the anyon angle Θ became
fixed, then in contrary to the previous papers, the solitons
cannot be anyon at all, whereas for N > 1, the Θ became
fixed again but since in this case the Hopf term is
perturbative then the solution became an anyon.
The further part contains the study of excitation energy

of the solutions. The excited energy for N ¼ 1 is described
by (a third component of) angular momentum S ≔ l − Θ

2π.
According to [10], for Θ ¼ π the baby skyrmions are
fermions and the ground state is twice degenerated. For
N > 1 the situation is quite different. The solutions are
always anyon type because of the fact that the Hopf term is
no longer topological. It follows that there are no degen-
eracy. The excitations are parametrized by three numbers l,
k, Y, so S3 ≔ kþ ΘΛ3

2π , S8 ≔ Y þ 3ΘΛ8

4π are components of
the anyonic angular momenta. The paper contain plots of
some energy levels in dependence on the model parameters
βe2. The presented values of the energy are dimensionless.
We gave some rough estimations of typical energy scales

being of order of few dozens MeV for a hadronic scale and
of order of few dozens keV for a condensed matter scale.
The energy excitation compared with the classical solution
energy is subtle for a hadronic scale whereas it is virtually
too big in the case of the condensed matter example. Such
discrepancy can be understand to some extent. For instance,
if we choose a solution parameters Qtop ¼ 3 and βe2 ¼ 4.1
then estimation of the classical energy gives Mcl≃
1.1 × 102M2 and for the quantum excitation energy of
the lowest Y mode it has the value −e2=4 × ΔE≃
5.5 × 102=ðM2hρ2iÞ. The ratio of this two energies is
given by

− e2
4
ΔE

Mcl
≃ 5 ×

1

M4hρ2i ð95Þ

where dimensions ofM2,
ffiffiffiffiffiffiffiffiffi
hρ2i

p
are [eV, nm] or [MeV, fm].

One can easily see that a huge discrepancy of the classical/
quantum energy for the antiferromagnetic material is fixed
almost by a value of the spin wave velocity. However, some
systems may support different values of the parameters M2

and
ffiffiffiffiffiffiffiffiffi
hρ2i

p
. The systems with higher values of coupling

constantM2 (which determines the energy scale) and with a
large characteristic excitation size

ffiffiffiffiffiffiffiffiffi
hρ2i

p
can support the

existence of excitations whose energy is comparable with the
classical energy. We shall leave this problem for the future.
One has to bear in mind that the collective coordinate

quantization is an approximated method. An alternative
method which can be applied to quantization of the vortex
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systems is a canonical quantization method. Such approach
would be more suitable in full understanding of the
quantum aspects of the model. The work is in progress
and its results will be reported in a subsequent paper [34].
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APPENDIX A: THE DERIVATIVE EXPANSION
OF THE FERMIONIC MODEL

The method of perturbation for the partition function (44)
is quite common and widely examined for the analysis of the
spin-statistics of solitons coupled with fermions. Here we
employ notation used in [35] with theCP1 principal variable
(25). The partition function is given by the integral

Γ ¼
Z

DψDψ̄e
R

d3xψ̄iDψ ¼ det iD ðA1Þ

where ψ and ψ̄ are Dirac fields, Aμ is a U(1) gauge field and
iD ¼ i∂ þ A −mX. The gamma matrices are defined as
γμ ¼ −iσμ. The effective action Seff ¼ ln det iD can be split
in its real and imaginary part

ReSeff ¼
1

2
ln det D†D;

ImSeff ¼
1

2i
ln det

iD
−iD† : ðA2Þ

For Aμ → 0 one can easily see that

D†D ¼ −∂2 þm2 þ im∂X;
DD† ¼ −∂2 þm2 − im∂X: ðA3Þ

For the variation D → Dþ δD, D† → D† þ δD†, the real
part of the effective action in Aμ → 0 is

δReSeff ¼
1

2
Sp

�
1

D†D
D†δDþ 1

DD†DδD†
�

¼ 1

2

Z
d3x

Z
d3k
ð2πÞ3 e

−ik·xTr½ð−∂2 þm2 þ im∂XÞ−1ðim∂δX þm2XδXÞ

þ ð−∂2 þm2 − im∂XÞ−1ð−im∂δX þm2XδXÞ�eik·x

¼ 1

2

Z
d3x

Z
d3k
ð2πÞ3 Tr½ðk

2 þm2 − 2ik∂ − ∂2 þ im∂XÞ−1ðim∂δX þm2XδXÞ

þ ðk2 þm2 − 2ik∂ − ∂2 − im∂XÞ−1ð−im∂δX þm2XδXÞ ðA4Þ

where Sp stands for a full trace containing a functional and
also a matrix trace involving the flavor and the spinor
indices and Tr stands for usual matrix trace. Expanding the
above expression in powers of 2ik∂ þ ∂2 and ∂X one gets
the lowest nonzero term

δSð2ÞRe ¼ jmj
8π

Z
d3xTrð∂X∂δXÞ: ðA5Þ

After taking the spinor trace and switching to the
Minkowski metric one gets the action (46).
For the variation of the imaginary part

δImSeff ¼
1

2i
Sp

�
1

D†D
D†δD −

1

DD†DδD†
�

ðA6Þ

the calculation is almost similar and the first nonzero
component contains product of the three derivatives

δImSeff ¼−
sgnðmÞ
32π

Z
d3xϵμνλTrð∂μX∂νX∂λXXδXÞ: ðA7Þ

In terms of new variable aμ ≔ −iZ†∂μZ the last formula
can be written as

δImSð3Þeff ¼
sgnðmÞ
2π

Z
d3xϵμνλδaμ∂νaλ: ðA8Þ

As it was argued in [26], the term itself should be zero, i.e.,

ImSð3Þeff ¼ 0 in the pertubative calculation because the
homotopy group π3ðS2Þ ¼ Z is nontrivial. In order to find
the form for N ¼ 1, we generalize the model into N ≧ 2

such as Z ¼ ðz1; z2; 0;…; 0ÞT . In the case when the
homotopy π3ðCPNÞ is trivial one gets

ImSð3Þeff ¼
sgnðmÞ
4π

Z
d3xϵμνλaμ∂νaλ: ðA9Þ
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For N > 1, the above manipulation is not a trick and we directly obtain the form (A9) with aμ ≔ −iZ†∂μZ.
For Aμ ≠ 0 we also have the two derivative component

δImSð2Þeff jAμ≠0 ¼ −
1

16πi
δAμ

Z
d3xϵμνλTrð∂νX∂λXXÞ: ðA10Þ

Both contribute to the final expression (47).

APPENDIX B: INERTIA TENSOR Iab AND INERTIA VECTOR Λa FOR CP2

In this appendix we give the explicit form of the relevant components of inertia tensor Iab (54) and inertia vector Λa (56)
written explicitly by the radial profile functions f1ðρÞ, f2ðρÞ and their derivatives f01 ≔

df1
dρ , f

0
2 ≔

df2
dρ . They read

I11¼
8π

e2

Z
ρdρ

�
−
ð1þf12þf12f22þf24Þ

ð1þf12þf22Þ2

þ4f1þf12ð1þ8f22þf24Þþf22þf24þf26gf102
ð1þf12þf22Þ4

−
8f1f2f4þf12ðf22þ4Þ−3f22þf24gf10f20

ð1þf12þf22Þ4

þ4fðf22þ2Þf14þðf24−3f22þ4Þf12þ2ðf22−1Þ2gf202
ð1þf12þf22Þ4

þ4ff24ððn1−n2Þ2f12þ2n22Þþ2n22ð1þf12Þf22þn21f1
2g

r2ð1þf12þf22Þ3

þ2βe2
�
−
2ð1þf12þf12f22þf24Þfð1þf22Þf102−2f1f2f10f20 þ ð1þf12Þf202g

ð1þf12þf22Þ4

−
2ð1þf12þf12f22þf24Þfn21f12þðn1−n2Þ2f12f22þn22f2

2g
r2ð1þf12þf22Þ4

þf22f2n1f12−n2ð1þf12−f22Þg2
r2ð1þf12þf22Þ4

��
; ðB1Þ

I33¼
8π

e2

Z
ρdρ

�
−
fð1þf22Þf12þ4f22g

ð1þf12þf22Þ2
þ16f−f12ð1−f22−f24Þþf22þf24gf102

ð1þf12þf22Þ4

þ16f1f2ff12− ð2f12þ5Þf22þ3gf10f20
ð1þf12þf22Þ4

þ4ff12þf14þð16þ17f12þ4f14Þf22gf202
ð1þf12þf22Þ4

þ4ð2n1−n2Þ2f12f22
r2ð1þf12þf22Þ3

þ4βe2
�
−
fð1þf22Þf12þ4f22gfð1þf22Þf102−2f1f2f10f20 þ ð1þf12Þf202g

ð1þf12þf22Þ4

−
fð1þf22Þf12þ4f22gfn21ð1þf22Þf12−2n1n2f12f22þn22ð1þf12Þf22g

r2ð1þf12þf22Þ4
þfn1f12ð1−f22Þþn2ð2þf12Þf22g2

r2ð1þf12þf22Þ4
��

;

ðB2Þ

I38 ¼
16π

e2

Z
ρdρ

�
f12ð1 − f22Þ

ð1þ f12 þ f22Þ2
−
16f12ð1 − f24Þf102
ð1þ f12 þ f22Þ4

þ 8f1f2ff12 − ð4f12 þ 3Þf22 − 3gf10f20
ð1þ f12 þ f22Þ4

−
4f12f1þ ð1 − 4f22Þf12 − 7f22gf202

ð1þ f12 þ f22Þ4
þ 4ð2n1 − n2Þn2f12f22

r2ð1þ f12 þ f22Þ3

þ 4βe2
�ð1 − f22Þf12fð1þ f22Þf102 − 2f1f2f10f20 þ ð1þ f12Þf202g

ð1þ f12 þ f22Þ4

þ f12ð1 − f22Þfn21ð1þ f22Þf12 − 2n1n2f12f22 þ n22ð1þ f12Þf22g
r2ð1þ f12 þ f22Þ4

−
f12ðn1f12ð1 − f22Þ þ n2ðf12 þ 2Þf22Þðn1ð1þ f22Þ − n2f22Þ

r2ð1þ f12 þ f22Þ4
��

; ðB3Þ
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I88 ¼
32π

e2

Z
ρdρ

�
−

f12ð1þ f22Þ
ð1þ f12 þ f22Þ2

−
32ð1þ f22Þf13f2f10f20

ð1þ f12 þ f22Þ4
þ 16ð1þ f22Þ2f12f102

ð1þ f12 þ f22Þ4

þ 4ð1þ f121þ f22 þ 4f12f22Þf12f202
ð1þ f12 þ f22Þ4

þ 4n22f1
2f22

r2ð1þ f12 þ f22Þ3

þ 4βe2
�
−
f12ð1þ f22Þfð1þ f22Þf102 − 2f1f2f10f20 þ ð1þ f12Þf202g

ð1þ f12 þ f22Þ4

−
f12ð1þ f22Þfn21ð1þ f22Þf12 − 2n1n2f12f22 þ n22ðf12 þ 1Þf22g

r2ð1þ f12 þ f22Þ4
þ f14fn1ð1þ f22Þ − n2f22g2

r2ð1þ f12 þ f22Þ4
��

; ðB4Þ

and

Λ3 ¼ −2
Z

dρ
n1f1f10 þ n2f2f20 þ n1f1f2ðf1f20 − f2f10Þ

ð1þ f12 þ f22Þ2
; ðB5Þ

Λ8 ¼ 4

Z
dρ

n1ð1þ f22Þf1f10 þ n2ð1 − 2f12Þf2f20 − f1f2ðn1f1f20 − 2n2f2f10Þ
3ð1þ f12 þ f22Þ2

: ðB6Þ
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