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The CPT-odd and Lorentz-violating Carroll-Field-Jackiw (CFJ) modification of electrodynamics is
discussed, and we study its effects on the energy spectrum of hydrogen, as well as in the generation of a
momentum-dependent electric dipole moment for charged leptons. We also briefly comment on the
possibility of the detection of Lorentz violation in measurements of vacuum birefringence in resonant
cavities. The bounds found are based on local laboratory experimental limits and are not competitive with
the ones coming from astrophysical considerations.
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I. INTRODUCTION

Despite its great success, the Standard Model (SM) of
particle physics cannot be the final description of nature,
and it has been shown that in some of its extensions, string
theory, for example, it is possible that Lorentz symmetry is
violated [1,2]. The observation of any, though feeble, signal
of Lorentz symmetry violation (LSV) would represent a
great breakthrough and demand the reexamination of the
very basis of modern physics, i.e., the theory of relativity
and quantum field theory [3,4].
A possible realization of LSVis achieved by considering a

Lagrangianmodel where a field with nontrivial spin acquires
a nonzerovacuumexpectationvalue-see e.g.Ref. [1]. Inview
of thiswork, one can introducegeneral nondynamical tensors
[5] and exploit several different couplings to the matter and
gauge sectors of the SM [6–12]. For a review of theory and
experimental tests of CPT and Lorentz invariance, see
Refs. [4,13]. In the present paper we investigate the case
of a LSV background 4-vector coupled directly to the photon
sector, thus leaving the lepton sector untouched.
An interesting prospect to implement LSV in the (1þ 3)

Maxwell sector was originally proposed by S. Carroll, G.
Field, and R. Jackiw [14] through the following CPT-odd
Chern-Simons-like Lagrangian [5,15],

LCFJ ¼ kμAFA
ν ~Fμν; ð1Þ

where Aμ ¼ ðϕ;AÞ is the usual 4-potential and ~Fμν ¼
1
2!
ϵμναβFαβ is the dual of the electromagnetic field-strength

tensor (we adopt ϵ0123 ¼ þ1). In calculations we shall
adopt kμAF ≡ kAFnμ, where the coupling kAF has canonical
dimension of mass, while n is dimensionless.

This term is gauge invariant if ∂μnν ¼ 0, that is, n is a
constant 4-vector, thus providing a preferred direction in
space-time, i.e., a background, and breaking Lorentz invari-
ance. It is possible, nevertheless, to give it a dynamic
nature, where it may be interpreted as a pseudoscalar
field—see, e.g., Refs. [16,17]. It has also been shown that
this term can be radiatively generated when fermions couple
to the electromagnetic field via a nonminimal covariant
derivative, Dμ ¼ ∂μ þ ieAμ − γ5bμ. The constant 4-vectors
bμ and nμ are therefore related, but the exact numerical
relation between them has long been debated [18–21].
Usual QED augmented by the CFJ Lagrangian is essen-

tially a subset of the so-called minimal Standard Model
extension [3,5]. Some of the classical features of this
particular scenario were studied, e.g., in Ref. [22], where
it was shown that the CFJ interaction (also with a nonzero
Proca mass term [23]) with a pure spacelike background is
stable, unitary and preserves causality, whereas timelike
and lightlike backgrounds are potentially problematic
[14,18,23,24]. A spacelike background is therefore the only
healthy scenario available.
An important remark is in order at this point: the consid-

erations above apply to a truly fixed, time-independent,
background. These requirements are only explicit in an
inertial reference frame, which is not the case of the Earth
due to its sidereal and orbital motions; in the laboratory the
background would seem to rotate. A convenient and approx-
imately inertial frame is, for example, the one attached to the
Sun—the so-called Sun-centered frame (SCF) [25]—which
is broadly used in the literature [13].
In order to translate the accessible, but time-dependent,

background as observed on Earth, nlab, in terms of combi-
nations of the constant nSun, we employ a general Lorentz
transformation, i.e., nμlab ¼ Λμ

νnνSun, where Λμ
ν is given in

Ref. [25]. If we ignore subdominant boost effects of
order β ≲ 10−4, we may write n0lab ¼ nTSun ≡ 0 and
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nilab ¼ RiJðχ; T⊕ÞnJSun, where the rotationmatrix is explicitly
time dependent (T⊕ is the time in the SCF).
Since experiments are usually conducted over long time

scales, the LSV signatures observed in Earth-bound experi-
ments would be, thus, effective time averages. The only
nonvanishing (time-averaged) spatial components are then
nxlab ¼ − sin χnZSun and nzlab ¼ cos χnZSun, with χ the colati-
tude of the experiment. As discussed below, the effects we
consider in this paper are linear in kAFnlab, and therefore
only the x- and z-components of the background in the
laboratory will be relevant to our analyses. Both may be
expressed in terms of kAFnZSun, and our goal is precisely to
constrain it.
The CFJ Lagrangian above would induce optical effects

during the propagation of radiation through vacuum (see
Sec. IV), and Carroll, Field, and Jackiw used data on the
rotation of the plane of polarization from distant galaxies in
order to impose strong limits on kAF. Given that no
significant evidence of such effects was found, they could
set a tight upper bound on the LSV parameter, namely,
kAF < 10−42 GeV [14,17,26]. Limits on this parameter
have been searched for in many contexts, mainly astro-
physical, e.g., cosmic microwave background polarization
[27,28], and are currently as strict as kAF ≲ 10−43 GeV
(see Ref. [13], Table D12, and references therein).
Here we apply Eq. [14] to systems available at much

shorter distance scales, where Earth-bound laboratory
experiments may be used to constrain the predicted LSV
effects. This is a valid effort, given that the apparatus is
under the experimeter’s control, as opposed to cosmologi-
cal or astrophysical tests where sizeable uncertainties may
arise due to complicated models describing the interstellar
medium and light propagation therein. We discuss LSV
effects in the context of the CFJ modification of QED in
two main fronts: energy shifts in the spectrum of the
hydrogen atom and the generation of an electric dipole
moment for charged leptons. We also briefly address
measurements of rotation in the polarization of light in
resonant cavities.
As we shall see, the LSV-induced corrections to the

Coulomb potential appear already at tree level via velocity-
and spin-dependent interaction potentials. For the leptonic
electric dipole moment (lEDM), on the other hand, it is
necessary to compute the one-loop correction to the
corresponding form factor, which is found to be explicitly
momentum dependent, thus allowing for an enhancement
in high energies. Despite this interesting feature, we expect
it to remain unaccessible to experiment in the foreseeable
future. Resonant cavities would present, nonetheless, a
good prospect to perform local tests on LSV and to
potentially constrain kAFnZSun even further.
This paper is organized as follows. In Sec. II we discuss

the interparticle potential between leptons and apply it to
the hydrogen atom, and in Sec. III we calculate the one-
loop CFJ contribution to the lEDM. In Sec. IV we address

some classical features of the model and connect it to a
resonant cavity. Section V is devoted to our concluding
remarks. We use natural units (c ¼ ℏ ¼ 1) throughout.

II. INTERPARTICLE POTENTIAL

The CFJ parity-odd Lagrangian, Eq. [14], modifies the
quadratic piece of the usual Maxwell sector in QED,
therefore altering the propagator of the photon. This
modification entails that photon-mediated interactions will
necessarily include a (small) LSV signature, possibly
giving rise to anisotropies involving the fixed background.
The relatively high precision attained in spectroscopy

experiments motivates us to consider the effect of the CFJ
corrections to the Coulomb potential in the study of atomic
systems, the simplest of which is the hydrogen atom. To do
so, one needs to compute the potential (operator) between
the proton—here treated as a pointlike, structureless,
fermion—and the electron. The interaction of two spin-
1=2 fermions can be treated in the nonrelativistic (NR)
regime through the concept of interparticle potential, which
is given by the first Born approximation [29], VðrÞ ¼
−
R d3q

ð2πÞ3 MðqÞeiq·r, whereM is the NR amplitude, q is the

mometum transfer and r is the relative position vector.
The one-photon exchange amplitude may be schemati-

cally written as M ∼ Jμ1hAμAνiJν2, where Jμ1;2 represent the
contraction of the on-shell (external) spinors and the llγ
vertex and hAμAνi is the effective photon propagator. Given
that LSV effects are expected to be tiny, we do not use the
full propagator [23] but merely consider the CFJ term [14]
as a true bilinear interaction in the photon sector, i.e., an
effective vertex to be inserted into the usual QED propa-

gator, hAμAνi ¼ −iημν
p2þiε. Under these assumptions one may

write the CFJ vertex as [30]

Vμν
γγ ¼ 2ðkAFÞαϵμαβνpβ; ð2Þ

while the QED tree-level vertex remains unaltered and
reads Vμ

llγ ¼ ieγμ.
We consider the interaction in the center-of-mass frame,

in which fermion “1” has incoming and outgoing momenta
denoted by p ¼ Pþ q=2 and p0 ¼ P − q=2, respectively,
where P is the average mometum and q is the momentum
carried by the virtual photon. Similar definitions hold for
fermion “2” (with p → −p and p0 → −p0). Applying the
Feynman rules and noting that qμ½uγμu�1;2 ¼ 0 for the
conserved external currents, we obtain

iM ¼ 2e1e2kAF
ðq2Þ2 ½uγσu�1ϵσαβρnαqβ½uγρu�2; ð3Þ

where we shall assume an elastic interaction, qμ ¼ ð0;qÞ.
As discussed in Sec. I, the background above is the one
measured in the lab, i.e., n ¼ nlab, and, for the sake of
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simplicity, we shall only transform to the SCF variables in
the end of our calculation.
In the NR limit the current for fermion 1 has components

½uγ0u�1 ∼ 1 and ½uγiu�1 ¼ Pi
m1

− i
2m1

ϵijkqjhσki1, with similar
results for current 2, provided one makes the appropriate
changes in momenta (P → −P and q → −q). In our
notation hσi1;2 ¼ χ†σ1;2χ, with χ being the basic spin-up
or -down spinor satisfying χ†aχb ¼ δab and σ1;2 the usual
Pauli spin matrices acting on particles 1 and 2, respectively.
We now plug Eq. (3) into the definition of VðrÞ in order

to obtain the following potentials,

VPðrÞ ¼
αkAF
μr

ðn ·LÞ ð4Þ

VσðrÞ ¼
αkAF

2m1m2r
½m1n · hσi2 þm1ðn · r̂Þðr̂ · hσi2Þ�

þ 1 ↔ 2; ð5Þ

where μ is the reduced mass of the system andL ¼ r × P is
the orbital angular momentum. The electric charges were
set as e1 ¼ −e2 ¼

ffiffiffiffiffiffiffiffi
4πα

p
, with α being the electromagnetic

fine structure constant. The final result is just the sum of
Eqs. (4) and (5), δVCðrÞ¼VpðrÞþVσðrÞ, and it represents
an additional LSV contribution to the well-known Coulomb
interaction between two charges. We note, furthermore, the
pseudoscalar character of these potentials—a clear sign of
their CPT-odd origins.
The potentials above are spin and velocity dependent and

could produce interesting consequences at the macroscopic
level, inducing deviations in the dominant Coulomb force
in the form of possible angle-dependent corrections to the
inverse-square law observable in experiments involving,
e.g., spin-polarized objects [31]. If, for simplicity, we
consider instead the interaction energy between two
charged but unpolarized bodies as given by δVCðrÞ ¼
VPðrÞ, we may extract the force per interacting pair of
particles as −∇δVCðrÞ, that is

fLSV ¼ αkAF
m1r

�
ðn × PÞ þ 1

r
ðn ·LÞr̂

�
; ð6Þ

where we assumed that r is much greater than the typical
dimensions of bodies 1and 2 and that body 2 is stationary
(m2 ≫ m1) and centered at the origin. The total force
would be N efffLSV, where N eff describes the effective
number of interacting particles. This force would act as a
small velocity-dependent perturbation to the dominating
Coulomb (and gravitational) interaction between the two
electrically charged objects.
The first term in Eq. (6) represents a precession of the

3-momentum P around the axis defined by the fixed
background n. To see this it suffices to consider that
P · dPdt ¼ 0, so that the module of P is constant, i.e., time

independent. Similarly, the angle given by cosϑ ¼ n·P
jn∥Pj is

also fixed in time (for small periods where the time
dependence of n itself can be neglected), so that the
3-momentum circles around the direction of n. The second
term shares more similarities with the typical Coulomb
force, since it is radial and decays with the inverse square of
the distance, but contains an unusual dependence on
angular momentum, which also controls whether this term
is attractive or repulsive. Besides the discussion above in
terms of the LSV-originated force on charged leptons, the
interaction from Eq. (7) may also induce a spontaneous
torque on a pair of charges [32].
We now turn to our main interest: the application of our

results, Eqs. (4) and (5), to the hydrogen atom. Given that
the proton is a thousand times heavier than the electron,
δVCðrÞ reads

δVH
CðrÞ ¼

αkAF
mer

�
n ·Lþ 1

2
n · hσi þ 1

2
ðr̂ · nÞðr̂ · hσiÞ

�

ð7Þ

which represents a Lorentz-violating CPT-odd correction
to the electron-proton electromagnetic interaction.
According to usual quantum-mechanical time-independent
perturbation theory, in order to evaluate the first-order
energy shift associated with this perturbation, we need to
calculate ΔEH

LSV ¼ hψ0jδVH
Cjψ0i, with jψ0i being adequate

eigenstates of the free hydrogen atom.
Since the problem involves not only the orbital angular

momentum but also the spin degrees of freedom, we need
to build the angular wave functions for the total angular
momentum, J ¼ Lþ S, which are given below for the
case of a generic orbital angular mometum L coupled to a
spin-1=2,

Θj¼lþ1
2
ðθ;ϕÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþml þ 1

2lþ 1

r
Yl;ml

ðθ;ϕÞχþ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l −ml

2lþ 1

r
Yl;mlþ1ðθ;ϕÞχ− ð8Þ

Θj¼l−1
2
ðθ;ϕÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l −ml

2lþ 1

r
Yl;ml

ðθ;ϕÞχþ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþml þ 1

2lþ 1

r
Yl;mlþ1ðθ;ϕÞχ−; ð9Þ

both with mj ¼ ml þ 1=2. The final normalized wave
functions are then ψ0ðr; θ;ϕÞ ¼ Rn;lðrÞΘjðθ;ϕÞ, where
Yl;ml

ðθ;ϕÞ and Rn;lðrÞ are the well-known spherical
harmonics and radial function for the hydrogen atom
and χ� are the spin eigenfunctions. Here n (not to be
confused with the background), l and ml are the principal,
angular and azimuthal quantum numbers, respectively.
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As discussed in Sec. I, after averaging, the background
as seen in the laboratory is given by n ¼ nlab ¼ ðnx; 0; nzÞ,
where we omit the subscript for convenience. With this, the
total energy shift is given by ΔEH

LSV ¼ ΔE1 þ ΔE2 þ ΔE3,
where

ΔE1 ¼ G
�
nxhLx þ

1

2
σxi þ nzhLz þ

1

2
σzi

�
ð10Þ

ΔE2 ¼
Gnx

2
hsin θ cosϕðr̂ · σÞi ð11Þ

ΔE3 ¼
Gnz

2
hcos θðr̂ · σÞi ð12Þ

with G ¼ αkAF
me

ðr−1Þ ¼ αkAF
mea0n2

(a0 ¼ 2.68 × 10−4 eV−1 is the

Bohr radius). It is easy to check that, for j ¼ lþ 1=2, we
have hψ0jLzjψ0i ¼ ml þ l−ml

2lþ1
and hψ0jσz=2jψ0i ¼ mlþ1=2

2lþ1
,

so that

ΔE1 ¼
αkAFn

z
lab

mea0n2
ðml þ 1=2Þ; ð13Þ

where we used that the contribution proportional to nx is
automatically zero due to the orthogonality of the functions
involved. Similar arguments lead to ΔE2 ¼ 0.

Finally, ΔE3 may be written as ΔE3 ¼ αkAFn
z
lab

2mea0n2
δE3,

cf. Eq. (12), and, after employing the algebra of angular

momentum [33], we find δE3 ¼ 2ðmlþ1=2Þ
ð2lþ1Þð2lþ3Þ, so that our

final result reads

ΔEH
LSV ¼ 4αkAFn

z
lab

mea0

ml þ 1=2
n2

ðlþ 1Þ2
ð2lþ 1Þð2lþ 3Þ ; ð14Þ

with a similar expression for the j ¼ l − 1=2 case.
The quantity obtained above represents the energy shift

to the spectral lines of hydrogen due to Lorentz-violating
effects. The aforementioned spectrum is known to a high
level of accuracy, and the fact that no deviations have
been found allows us to place an upper bound on the
magnitude of ΔEH

LSV. Optimistically, we may use the
currently best precision in spectroscopic measurements,
ϵΔE

H

exp ¼4.2×10−15 eV [34], and demand that ΔEH
LSV <

ϵΔE
H

exp ; i.e., we demand that the LSV effect lies below
experimental uncertainty. From this requirement we obtain
the upper bound (kμAF ≡ kAFn

μ
Sun)

kZAF ≲ 10−19 GeV ð15Þ

at the 1σ level [34].

III. ELECTRIC DIPOLE MOMENT

If an elementary particle possesses a nonzero electric
dipole moment, d, it has to point in the direction of its
spin, since this is the only vector available in the rest frame
of the particle. When placed in an external electric field the
particle will be subject to an interaction of the form −d ·E,
which can be recast as −dðS ·EÞ, and this interaction term
violates both P- and T-symmetries. Standard QED, on the
other hand, is parity invariant, so that such an electric dipole
interaction cannot be described by pure QED processes,
that is, dQED ≡ 0.
Within the Standard Model it is possible to generate

a small leptonic EDM when strong and electroweak
interactions are taken into account [35–37]. For the
electron its theoretical magnitude is bounded by
jdSMe j < 10−38 e · cm, while the best experimental limit is
jdexpe j < 8.7 × 10−29 e · cm, at 90% C.L. [38]. The rela-
tively strong experimental bounds on de can be used as a
means to extract limits on the physical properties of new
particles, such as axions [39,40], supersymmetric particles
[41], Majorana neutrinos [42] and dark matter [43].
We shall now turn to the actual calculation of the LSV

contribution to dl. It is clear that the tree-level contribution
to the lEDM is zero in the CFJ scenario—the tree-level
QED llγ vertex remains unaltered—so we must look at
higher orders.
The first nonzero contribution comes from the one-loop

vertex correction diagram, as shown in Fig. 1. Following
the momentum assignments we have

Λμðp; p0; qÞ ¼ −2e2kAFϵναβρnα × Iβνμρðp; p0; qÞ; ð16Þ

where

Iβνμρ ¼
Z

d4k
ð2πÞ4

γνðp0 − kþmlÞγμðp − kþmlÞγρkβ
ðk2Þ2½ðp0 − kÞ2 −m2

l�½ðp − kÞ2 −m2
l�
;

ð17Þ

FIG. 1. Vertex structure and momenta attributions; the cross
indicates the vertex insertion.
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and we observe that the superficial degree of divergence of
this diagram is −1, meaning that it behaves as ∼1=k in the
UV limit. Remembering that the corresponding diagram in
usual QED, which describes the g-factor, displays a super-
ficial logarithmic divergence, we conclude that the role of
the vertex insertion is to reduce the degree of divergence
and render the diagram UV finite.
Since the integral in Eq. (17) is finite inD ¼ 4 there is no

need to regularize it, and we directly evaluate the vertex

correction as Λμðp; p0; qÞ ¼ − ie2kAF
64π2m2

l
ϵναβρnαTβνμρ, with the

momentum-dependent object Tβνμρ being a complicated
function involving products of up to five gamma matrices.
We shall not give its expressions here. The vertex
Λμðp; p0; qÞ is the LSV contribution to dl we were looking
for, but, in order to extract it, we need to obtain the
corresponding form factor.
The electromagnetic current can be decomposed as

hp0jJμemjpi ¼ σμνγ5
2ml

qνFedmðq2Þ þ � � �, where Fedmðq2Þ is
the desired form factor and the ellipsis denotes the other
Lorentz structures and their respective form factors, which
are not of interest here [44]. Above q ¼ p − p0 is the
momentum transfer. In this paper we consider only the LSV
effects in the photon sector, so no other form factor other
than Fedmðq2Þ is relevant, as the (free) Dirac equation
remains unaltered. The vertex function Λμðp; p0; qÞ plays
the role of a LSV correction to the usual electromagnetic
current, so that our task is to extract Fedmðq2Þ and read the
lEDM, which is then given by dl ¼ −Fedmðq2 ¼ 0Þ=2ml.
Obtaining Fedmðq2Þ is cumbersome due to the compli-

cated form of Λμðp; p0; qÞ. It is possible, however, to
simplify matters by applying an appropriate projector
[45], Pμ

edm¼ imlðpþp0Þμ
q4−4m2

lq
2 ½ðpþmlÞγ5ðp0 þmlÞ�, which auto-

matically selects the form factor we want. The projector
above acts on the vertex correction, and we obtain
Fedmðq2Þ ¼ Tr½ΛμP

μ
edm�, with the trace evaluated for

external (on-shell) leptons, that is, p2 ¼ p02 ¼ m2
l and

p · p0 ¼ m2
l − q2=2. At this point it is convenient to leave

q2 ≠ 0 in order to extract the finite contributions from the
trace above in the limit of massless photons.
This task may be performed in an automated fashion

through the use of Hiren Patel’s Package-X [46], and the
form factor is found to be

Fedmðq2 ¼ 0Þ ¼ −
e2kAF
12π2m2

l

½p · n − p0 · n� þ IR; ð18Þ

where IR indicates infrared terms. Such divergences appear
as 1=x factors in the Feynman integrals (x → 0) due to
mγ ¼ 0 and as 1=q2 factors in the traces. The appearance of
the latter may be interpreted as follows. We are considering
the CFJ correction as a true vertex and not using the
associated full (complete) propagator—this is essentially
equivalent to taking only the lowest-order term in kAF=jqj

in the expansion of the complete propagator. However, the
loop integration does not contemplate only high momenta
but also regions where kAF=jqj ≪ 1may not be fulfilled, so
we expect these divergences to vanish upon using the
complete LSV-modified propagator.
Finally, by using that q ¼ p − p0 and the definition

of the EDM in terms of the associated form factor, we
obtain

dl ¼ αkAF
6πm3

l

ðq · nÞ; ð19Þ

which shows that the lEDM is momentum dependent.
A similar effect was found in Ref. [47] for a different sector
of the Standard Model extension [5], but with a quadratic
momentum dependence.
It is interesting to note, though not surprising, that, in a

space-time with a fixed nondynamic background, the spin
is not the only vector available to support the electric (or
magnetic) moment of an elementary particle. Furthermore,
in order to build the scalar dl we need another vector, and
the only possibilities are p and p0—in our case, the special
combination given by q ¼ p − p0. This may be interpreted
in terms of an interplay between the background and the
applied electromagnetic field, which carries the momentum
transfer q, so that, together, they produce a nonvanishing
lEDM, i.e., induce an asymmetry in the charge distribution
of the lepton.
We note, however, that the form of the lEDM as given

by Eq. (19) is not helpful from the experimental point of
view; for an elastic interaction (q0 ≈ 0) with jqj2 ≪ m2

l we
have dl ∼ 0. Besides this two aspects are specially relevant
here: the nature of the measurements (e.g., as performed by
the ACME Collaboration [38]) and its time scale. Let us
first decompose the (say) initial momentum of the electron
as p ¼ pm þ ps, where pm;s denote the components of the
momentum relative to the molecule and the SCF, respec-
tively. The first aspect is connected with the form of
dl ∼ p · n and the fact that ACME’s measurements were
performed with (ThO) molecules, around which the elec-
trons quickly revolve. Being bound to it, their momenta are
also limited and, over time, average to zero, i.e., hpmi ¼ 0.
Similar arguments would apply for “free” relativistic
leptons in storage rings [48,49]. This brings us to the
second point.
Since pm does not contribute, one should consider the

general motion of Earth and the experiment attached to it
relative to the SCF, cf. Sec. I. The data from ACME’s latest
resultwere takenduring∼10days, but thesewere spread over
months, and their analysis was not sensitive to such possible
long-term time modulations. The momentum of the labo-
ratory relative to the SCF is ps ∼ β, with the boost factor β
given by Eq. (C2) in Ref. [25], where it becomes clear that all
components of ps are periodic functions of time. Therefore,
the time-averaged LSV effects ∼hβi also vanish, and the
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application of the upper limit on the eEDM [38] as ameans to
constrain the spacelike LSV parameters is not possible.
In any case, in a speculative note, if we could use the

bound on the LSV parameter given in Ref. [13],
kAF ∼ 10−43 GeV, the energy (or momentum) necessary
to reach the upper limit of jdexpe jwould be ∼1021 GeV. This
indicates that the CFJ contribution to the eEDMwould only
be sensible for extreme energies, around the Planck scale,
EPlanck ≃ 1019 GeV, therefore remaining out of experimen-
tal reach for the foreseeable future (QED is also expected to
break down at such a high energy scale). This suggests that
the CFJ model induces only very small effects and is,
therefore, not responsible for a finite eEDM, should one be
eventually found.

IV. RESONANT CAVITIES

The CFJ Lagrangian, Eq. [14], is CPT odd, in the case
of a pure timelike background vector, nμ ¼ ðn0; 0Þ, we
obtain LCFJ ∼ n0B ·A, while for the purely spacelike
case, nμ ¼ ð0;nÞ, a similar calculation shows that
LCFJ ∼ ϕn ·B − n · ðA × EÞ, with E and B the electric
and magnetic fields, respectively. In the light of parity and
time reflection transformations these terms show a clear
pseudoscalar character.
Adding Eq. (1) to the usual Maxwell kinetic term,

− 1
4
FμνFμν, and varying the action with respect to Aμ

gives us the LSV-modified Maxwell equations: ∂μFμν ¼
−2ðkAFÞα ~Fαν (in the absence of matter sources). In
momentum space Gauss’s and Ampère’s laws become

k ·E ¼ 2in ·B ð20Þ
k ×Bþ ωE ¼ −2in ×E; ð21Þ

where we temporarily absorbed kAF in n; ω and k are the
3-momentum and energy of the photon, respectively. The
magnetic Gauss and Faraday induction laws remain
untouched, since they stem from ∂μ

~Fμν ¼ 0 [14].
It is simple to see that B is simultaneously perpendicular

to both k and E, but, from the second equation above, one
finds that the electric field is not purely transverse, but
rather satisfies ðk − 2i

ω n × kÞ · E ¼ 0. This implies that the
Poynting vector ∼E ×B is not entirely parallel to the wave
vector k, a situation also encountered in, e.g., electro-
anisotropic uniaxial media [50].
Other important information that may be obtained from

the (general) Maxwell equations above concerns the
dispersion relations. Working out the modified Maxwell
equations one finds from the wave operators that the wave
4-vector satisfies

k4 þ 4k2n2 − 4ðk · nÞ2 ¼ 0; ð22Þ
which, for the case of a spacelike background, are approx-
imately given by ω� ¼ jkj � 2kAF cosψ þOðk2AFÞ, where

cosψ ¼ k · n=jk∥nj. This means not only that different
modes propagate with different velocities but also that
the polarization plane is rotated by an amount Δ≃
kAFnxlabLx cosψ after traveling a length Lx [14] (assuming
that the experiment lies in the xy plane in the reference
frame of the laboratory).
A similar effect, Faraday rotation, is observed whenever

a linearly polarized wave passes through a dielectric
exposed to an external magnetic field (aligned with the
wave vector). Incidentally, if we express E and B in terms
of the scalar and vector potentials, ϕ and A, in the rhs of
Eqs. (20) and (21), we arrive at LSV-modified Maxwell
equations which are formally identical to its Lorentz-
preserving counterpart in a dielectric medium, but here
P ∼ n ×A and M ∼ ϕn play the role of the polarization
and magnetization, respectively [25].
Experiments such as PVLAS [51] use high finesse

resonant cavities to search for the electromagnetic proper-
ties of the vacuum [52,53] with intense lasers and are
highly sensitive to rotations in polarization. Since at every
reflection the direction of the propagation is inverted
(cosψ → − cosψ), the net rotation before and after reflec-
tion cancels on average; therefore, we use only one pass.
Resonant cavities are usually designed to allow for the
highest number possible of reflections (passes), therefore
amplifying the effective optical path, but here we would
like to obtain a rough estimate of the uncertainty in the
measurement of polarization rotations over one single pass.
The final relative uncertainty on the rotation of polari-

zation after N ≃ 4.4 × 105 effective passes—N is the path-
length amplification factor—is ϵΔexp ∼ 10−10 (at 1σ) [51],
so that, for a single pass, we can estimate an uncertainty of
ϵpass ∼

ffiffiffiffi
N

p
× ϵΔexp ≃ 6 × 10−8. If we consider the PVLAS

cavity with path length L ¼ 1.6 m and a relative uncer-
tainty of ϵpass for the rotation in polarization, we may obtain
an upper bound on kAFnxlab—including a conservative
factor of cosψ ∼Oð10−1Þ—by imposing that the LSV-
induced birefringence in vacuum is smaller than ϵpass,
i.e., Δ < ϵpass.
With this simple assumption we may estimate that the

LSV parameters in terms of the (time-averaged) SCF
variable kZAF ≡ kAFnZSun (cf. Sec. I) are bounded as

kZAF ≲ 8 × 10−23 GeV; ð23Þ

whereby we note that more precise measurements and/or
larger L from, e.g., the BMV experiment [54] could
potentially improve this upper limit and, hopefullly, even-
tually supersede the astrophysical bounds [13,14].
As discussed in Sec. I, a timelike background brings

theoretical difficulties—this is the reason why we assumed
nTSun ≡ 0 so far. However, if we insist on considering this
possibility, we might be able to find stringent bounds on it.
We work in the same approximation level as with the
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spacelike components, i.e., we neglect effects of order
β ≲ 10−4, so that n0lab ¼ nTSun þOðβÞ—here the OðβÞ
contributions are all time dependent and are effectively
washed away after time averaging [25].
Working out the dispersion relation, Eq. (22), for this

specific case, we find that the two frequency modes induce
a rotation in the polarization given by Δ≃ kAFn0labL, where
L ¼ ct. This rotation does not depend on the projection of
the linear momentum onto the (spacelike) background, so
there is no cancellation upon reflection; we are then
allowed to use ϵΔexp ∼ 10−10. With this, we may estimate
the following upper limit on a pure timelike LSV back-
ground (kTAF ≡ kAFnTSun),

kTAF ≲ 10−25 GeV; ð24Þ

which supports the theoretical indications that kTAF should
be either exactly zero or extremely small [14,18,23,24].
Furthermore, we would like to note that this extrapola-

tion could also be applied to the results in Sec. II, but the
limits on the time component of the background would be
essentially of the same order of magnitude as the one for the
spatial components [cf. Eq. (15)]. For this reason we refrain
from redoing the calculation explicitly for this case. Also,
the conclusions in Sec. III would not change by assuming a
nonzero timelike component as we are in a regime where
q0 ≈ 0, so we would still be unable to apply the exper-
imental limits.

V. CONCLUDING REMARKS

In this paper we have studied a specific modification of
standard QED, namely the Carroll-Field-Jackiw model
given by Eq. [14], in two different contexts: the interparticle
potential between spin-1=2 fermions and the associated
quantum-mechanical corrections to the spectrum of the
hydrogen atom, the electric dipole moment of charged
leptons at the one-loop level, as well as a brief application
to resonant cavities, which incidentally provided the best
upper bound on the LSV parameters. The bounds obtained
are far less strict than that of Ref. [14] and those listed in
Ref. [13], but, contrary to them, ours were extracted from
local phenomena and experiments, therefore not depending
upon astrophysical observations over cosmological dis-
tance scales and associated uncertainties.
Our study of the interparticle potential mediated by the

LSV-modified propagator led us to spin- and velocity-
dependent interactions which could interfere with the

dominant Coulomb and gravitational forces between (un)
polarized charged macroscopic objects. Next we applied
δVH

CðrÞ as a quantum-mechanical perturbation to the
hydrogen atom, obtaining ΔEH

LSV, Eq. (14), as a correction
to the fine structure of the energy spectrum.
The background-dependent correction δVH

CðrÞ, Eq. (7),
produces not only energy shifts in the spectrum but may
also induce changes in the (free) wave functions them-
selves. Such perturbed states (jψ1i) could give rise to other
interesting effects, such as the generation of atomic electric
dipole moments, hψ1jeRjψ1i, as well as induce nonzero
quadrupole moments in the otherwise spherically symmet-
ric ground state of the hydrogen atom [55,56]. These are
very interesting points and will be further examined and
addressed elsewhere.
In Sec. III we found that the background 4-vector may

serve as support for a nonzero lEDM, which is also
explicitly momentum dependent; see Eq. (19). However,
due to the dependence of dl on q ¼ p − p0, but not on the
average momentum P ∼ pþ p0, and the experimental
techniques used to measure it, we have not been able to
set bounds on the LSV parameters.
Finally, our best bound on kZAF, Eq. (23), was obtained

from the nonobservation of an LSV-induced vacuum
birefringence, an effect analogous to Faraday rotation.
We have not gone into the details of the cavity design
but rather outlined a general estimate. A closer analysis of
the cavity operation and geometry would be able to refine it
further, but our discussion indicates that this is a promising
way to study not only nonlinear properties of the vacuum
predicted by QED or new beyond the Standard Model
particles, e.g., axionlike particles and hidden photons [57],
but also Lorentz violation and its induced effects on the
electromagnetic vacuum [58] (for a more thorough over-
view see also Ref. [13], Table D12, and references therein).
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