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In this paper, we discuss two features of the noncommutative geometry and spectral action approach to
the Standard Model: the fact that the model is inherently Euclidean, and that it requires a quadrupling of the
fermionic degrees of freedom. We show how the two issues are intimately related. We give a precise
prescription for the Wick rotation from the Euclidean theory to the Lorentzian one, eliminating the extra
degrees of freedom. This requires not only projecting out mirror fermions, as has been done so far,
and which leads to the correct Pfaffian, but also the elimination of the remaining extra degrees of freedom.
The remaining doubling has to be removed in order to recover the correct Fock space of the physical
(Lorentzian) theory. In order to get a spin(1, 3)-invariant Lorentzian theory from a spin(4)-invariant
Euclidean theory, such an elimination must be performed after the Wick rotation. Differences between the
Euclidean and Lorentzian case are described in detail, in a pedagogical way.
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I. INTRODUCTION

Noncommutative geometry [1–3] generalizes some
notions and tools from differential geometry to the study
of quantum spaces, “geometric” objects that are described by
(noncommutative) operator algebras. It is based on results
valid for (compact) Riemannian manifolds, and by its nature
is not immediately suited to accommodate a Lorentzian
signature of the space. Although there are attempts in this
direction—using either Krein spaces [4–7], covariant
approaches [8], Wick rotations on pseudo-Riemanninan
structures [9], or algebraic characterizations of causal struc-
tures [10–12]—it is fair to say thatwe are still far away froma
full understanding of the theory. This becomes a problem
when the tools of noncommutative geometry are applied to
physics, and in particular to the Standard Model via the
spectral action [13–15]. The theory is now reaching a
sufficient level of maturity to be compared with phenom-
enology, but in order to do this, as explained, e.g., in [[16],
p. 218], one has to start with an Euclidean theory “leaving as
an important problem the Wick rotation back to the
Minkowski signature” [16]. The starting point is an action
functional defined in a purely spectral fashion from a suitable
almost commutative space (a product of a manifold and a
matrix geometry). On one side this procedure allows us to
reproduce several features of the Standard Model, not only
qualitatively, but quantitatively as well. On the other hand,
theWick rotation in this context requires some clarifications.

There is another feature in the noncommutative geometry
approach to the StandardModel, which makes a comparison
with phenomenology not completely straightforward. It is
the so-called “fermion doubling” [17,18], although it con-
sists in fact in a quadruplication of the degrees of freedom.
In the spectral action approach, the Hilbert space of the

theory is a product of two factors. One is given by Dirac
spinors on an ordinary four-dimensional manifold, locally
given by four complex-valued functions. The finite space is
basically CN, where N is equal to the number of particles
and antiparticles in the Standard Model: a lepton left
doublet, two leptonic singlets, and the same for quarks
times three colors, which makes 16, times two for anti-
particles, and times three generations. In the end we get
N ¼ 96. The full Hilbert space is given, locally, by vector-
valued functions with 4N ¼ 384 components, four times
what is expected from physics. Perhaps the most dangerous
part of such a quadruplication is the presence of mirror
fermions, i.e. fermions with the same (gauge) quantum
numbers as the original ones (hypercharge, isospin, color),
but opposite chirality. The remaining doubling is related
with the fact that in this approach the spinor multiplets
with quantum numbers of particles and antiparticles enter
in the Lagrangian as independent fields, not conjugated to
each other.
A Lorentzian version of the Standard Model’s spectral

action was presented by Barrett in [19]. There he recasts the
spectral data of the noncommutative geometry approach to
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the Standard Model in Lorentzian form and discusses how
to deal with the fermion doubling problem. The present
paper has considerable connections with Barrett’s work, but
our point of view is in the construction of full-fledged
Euclidean theory. This is necessary since, as we said, it is
not clear yet how to generalize noncommutative geometry
to a Lorentzian signature.
A slightly different solution of the mirror fermion

doubling was offered in [14]: the fermionic action proposed
there depends on 2N ¼ 192 independent complex-valued
functions. This solves the problem at the level of the
fermionic functional integral, but not of the full quantum
field theory, which requires the construction of the physical
Fock space via canonical quantization. A peculiarity of the
Grassmann integral is that the Pfaffian is insensitive to the
presence of the remaining doubling (see Appendix A). On
the other hand, the Fock space construction via canonical
quantization (which has to be carried out after Wick
rotation) is sensitive to such a doubling (see Sec. IV B
for discussions). We need then a prescription to eliminate
the remaining extra degrees of freedom in order to obtain,
strictly speaking, the Standard Model.
The passage from the Euclidean action functional from

noncommutative geometry to its Lorentzian version has
never been done and understood in detail. The aim of this
paper is to give a coherent and detailed prescription1 for this
procedure, accompanied by the elimination of the extra
degrees of freedom. We will argue that the passage to a
Lorentzian signature must be done first, in order to start with
a spin(4)-invariant Euclidean action and get a spin(1, 3)-
invariant Lorentzian action. From another side the presence
of extra degrees of freedom simplifies the Wick rotation
procedure, in particular no modification of the inner product
is needed in order to get a spin(1, 3)-invariant expression
from the spin(4)-invariant one. As a minor remark, we also
notice that the procedure of the Wick rotation based on
imaginary time,which is commonly used in this context (see,
e.g., [20]) does not work on a curved space-time: instead, one
has to Wick rotate the vierbeins.
We will present a procedure to pass from the Euclidean

theory (motivated by noncommutative geometry) to a
Lorentzian one that satisfies the following requirements:
(i) The Euclidean action for bosons, i.e., the one using

the Euclidean metric tensor gEμν with signature
fþ;þ;þ;þg, transforms into the correct Lorentzian
actions with metric tensor gMμν with signature
fþ;−;−;−g. By “correct” we mean the one used
in physics, in particular with correct signs in all terms
(specifically, the kinetic energy).

(ii) The Euclidean fermionic action must transform into
the correct (acceptable for canonical quantization)

Lorentzian fermionic action that appears in the Stan-
dard Model.

(iii) The quadrupling of degrees of freedom must be
eliminated.

The paper is organized as follows. In Sec. II we argue
that the proper procedure for the Wick rotation is to rotate
the vierbeins rather than the coordinates, providing the
reader with all needed technical details, and we discuss the
bosonic part of the action functional. In Sec. III, we
summarize all delicate points concerning fermions in the
contexts of the quadrupling, and discuss relevant aspects of
the interplay between Euclidean and Lorentzian invariance.
In Sec. IV we propose and discuss step by step a
prescription for the Wick rotation of the fermionic part,
with subsequent elimination of extra degrees of freedom.
Section V contains the conclusions. Relevant aspects of
path integrals, notations and computational details are
collected in the appendixes.

II. WICK ROTATION: BOSONIC CASE

Wick rotation is usually performed by rotating the zeroth
(time) coordinate to imaginary values:

t → it: ð2:1Þ
This is well described in the context of noncommutative
geometry in [20]. The Euclidean and Lorentzian actions are
transformed into each other by a Wick rotation2

exp ð−SE½fields; gEμν�Þ ⟷ exp ðiSM½fields; gMμν�Þ; ð2:2Þ

where “fields” generically represents all (fermionic and
bosonic) fields present in the theory. The expression (2.2)
should then be integrated over all fields.
This procedure is not suitable in general for curved

space-time. In [21], for example, it is explicitly shown that,
for different choices of coordinates, the de Sitter metric
(which has Lorentzian signature) transforms in radically
different ways. In particular closed, open, and flat slicing of
the manifold gives Euclidean, Lorentzian, or even imagi-
nary metric tensors. This illustrates that, generally speak-
ing, for a coordinate-dependent metric tensor the naive
prescription (2.1) does not satisfy the condition (2.2). In
particular, unacceptable imaginary kinetic terms can
appear. A more robust prescription, which respects the
condition (2.2), is to Wick rotate the vierbeins. Namely, to
pass from the Euclidean to a Lorentzian theory, each

1For the bosonic spectral action we consider a local structure
given by a finite number of terms of the proper asymptotic
expansion.

2Greek indexes μ, ν run from 0 to 3 in both Euclidean
and Lorentzian (curved) cases. The flat case indices A, B are
raised and lowered using the flat metric, either δ ¼
diagðþ1;þ1;þ; 1þ; 1Þ or η ¼ diagðþ1;−1;−1;−1Þ depending
on the signature. Vierbeins are denoted eAμ . When necessary the
superscripts “E” (Euclidean) and “M” (Minkowskian) will be
used to distinguish between the Euclidean and Lorentzian cases.
Latin indices i, j run from 1 to 3.
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expression F which depends on vierbeins has to be trans-
formed according to the rule3

Wick∶ F½e0μ; ejμ� ⟶ F½ie0μ; ejμ�; j ¼ 1; 2; 3: ð2:3Þ

Note that the vierbeins eAμ , which appear in both sides of
the correspondence, are the same real functions. As is
customary, we assume that e0 ¼ e0μdxμ is globally defined
(timelike after rotation), so that the Wick rotation is well
defined. The correspondence (2.3) is obviously invertible,
and the inverse correspondence will be denoted by Wick�4:

Wick�∶ F½e0μ; ejμ� ⟶ F½−ie0μ; ejμ� j ¼ 1; 2; 3: ð2:4Þ

In what follows we apply the transformation (2.3) to the
bosonic action SEbos, derived from noncommutative geom-
etry. In the Euclidean bosonic action the vierbeins enter
only via the metric tensor gEμν, given by

gEμν ¼ eAμeBν δAB: ð2:5Þ

One can easily see that by applying the Wick rotation (2.3)
to the metric tensor one gets

Wick∶ gEμν ⟶ −gMμν; ð2:6Þ
where

gMμν ¼ eAμeBν ηAB: ð2:7Þ
The volume measure deserves a special comment, since it
is the only part in the action which is not a rational function
of the metric or its derivatives. We assume, of course, to start
with an oriented Riemannian manifold, so that the volume
form is defined. If the manifold is oriented, we can choose
the vierbeins so that detðeAμ Þ > 0 at every point and in every
chart. For an arbitrary pseudo-Riemannian metric g,

j det gj ¼ ðdetðeAμ ÞÞ2: ð2:8Þ

Thus,

Wick∶
ffiffiffiffiffi
gE

p
¼ detðeAμ Þ ⟶ i detðeAμ Þ ¼ i

ffiffiffiffiffiffiffiffiffi
−gM

p
; ð2:9Þ

where with a slight abuse of notation we denote by gE and
gM the determinant of the respective matrices.
Summarizing, we arrive at the following transformation

law for the action, as a functional of the metric:

Wick∶ SEbos½fields; gEμν�

¼
Z

d4x
ffiffiffiffiffi
gE

p
LE
bosðfields; gEμνÞ

⟶ i
Z

d4x
ffiffiffiffiffiffiffiffiffi
−gM

p
LE
bosðfields;−gMμνÞ

≡ −iSMbos½fields; gMμν�

≡ −i
Z

d4x
ffiffiffiffiffiffiffiffiffi
−gM

p
LM
bosðfields; gMμνÞ; ð2:10Þ

where we put a −i factor in front of SMbos in order to get the
correspondence (2.2).
Since we are interested in the spectral action, we will

consider the dependence on the metric, as well as vector
fields, generically indicated by Aμ, and scalar fields (which
include the Higgs), generically indicated as ϕ.
The (Euclidean) spectral action is a regularized trace of

the Dirac operator. The regularization was originally made
by considering a cutoff [13], but a ζ-function regularization
is also possible [22]. In either case the contribution involves
three terms:

SEbos½gEμν; Aμ;ϕ� ¼ SEgrav½gEμν� þ SEgauge½gEμν; Aμ�
þ SEscal½gEμν; Aμ;ϕ�: ð2:11Þ

where SEgrav is purely gravitational, SEgauge is the gauge
bosons’ action, and SEscal is the scalar action.
We will now be more specific and discuss the three

contributions. We illustrate our prescription for the first
three nontrivial heat kernel coefficients, sufficient to
recover the Standard Model. Higher coefficients, leading
to higher derivative theories, can easily be elaborated in a
similar fashion.

A. Gravitational sector

The gravitational part of the action is

SEgrav½gEμν� ¼
Z

d4x
ffiffiffiffiffi
gE

p �
λþM2

Pl

16π
R½gEμν�

þ aCμναβ½gEμν�Cμναβ½gEμν�
�
; ð2:12Þ

where λ is the cosmological term,MPl the Planck mass, a a
dimensionless constant, and C the Weyl tensor. We denote
by Rμναβ½gμν�, Rμν½gμν�, and R½gμν�, correspondingly, the
Riemann and Ricci tensors and the scalar curvature built
from the metric tensor gμν; see the explicit expressions in
Appendix B, where notations and useful formulas are
collected. Using (B1), (B2), (B3), and (B5), one finds that
the various terms that enter in the gravitational action (2.12)
transform as

3In the case we are interested in, the Euclidean Lagrangian and
the volume form are polynomial or at most rational functions of
the vierbeins and their derivatives [see in particular (2.8)], so the
prescription is well defined.

4Usually by “Wick rotation” is meant the map from the
Lorentzian to the Euclidean theory, here denoted by Wick�.
For the scope of the present paper, our terminology is preferable.
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Wick∶ R½gEμν� ⟶ R½−gMμν� ¼ −R½gMμν�;
Wick∶ Cμναβ½gEμν�Cμναβ½gEμν� ⟶ Cμναβ½−gMμν�Cμναβ½−gMμν�

¼ Cμναβ½gMμν�Cμναβ½gMμν�:

Thus

Wick∶ exp ð−SEgrav½gEμν�Þ ⟶ exp ðiSMgrav½gMμν�Þ; ð2:13Þ

where

SMgrav½gMμν� ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
−gM

p �
−λþM2

Pl

16π
R½gMμν�

− aCμναβ½gMμν�Cμναβ½gMμν�
�
: ð2:14Þ

B. Gauge sector

The gauge action is

SEgauge ¼
Z

d4x
ffiffiffiffiffi
gE

p
gμαE gνβE trFμνFαβ:

According to the prescription (2.3) we obtain

Wick∶ exp ð−SEgauge½gEμν�Þ ⟶ exp ðiSMgauge½gMμν�Þ; ð2:15Þ

where

SMgauge½gMμν; Aμ� ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
−gM

p
ð−gμαM gνβMtrFμνFαβÞ; ð2:16Þ

and again we reproduce the correct action; see, e.g., [23].

C. Scalar sector

The typical action for a generic scalar multiplet ϕj, j ¼
1…N like the Higgs field H, is

SEscal½gμν; Aμ;ϕ� ¼
Z

d4x
ffiffiffiffiffi
gE

p �XN
j¼1

�
gμνE ∇μϕ

†
j∇νϕj

−
1

6
R½gEμν�ϕ†

jϕj

�
þ VðϕÞ

�
: ð2:17Þ

The covariant derivatives∇μ ¼ ∂μ þ iAμ contain just gauge
fields, and the potential V does not depend on the metric
tensor.
Applying the transformation (2.3) to the scalar action

(2.17) we immediately obtain

Wick∶ exp ð−SEscal½gEμν�Þ ⟶ exp ðiSMscal½gMμν�Þ; ð2:18Þ

where

SMscal½gMμν;ϕj� ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
−gM

p �XN
j¼1

�
gμνM∇μϕ

†
j∇νϕj

−
1

6
R½gMμν�ϕ†

jϕj

�
− VðϕÞ

�
; ð2:19Þ

again in agreement with the literature.
We stress that this procedure is valid both for the heat

kernel expansion of the spectral action, and for the
resummation introduced in [24] by Barvinsky and
Vilkovisky, and applied to noncommutative geometry in
[25,26], at least when only a finite number of terms in the
expansion are considered.

III. FERMIONS

The fermionic case is subtle in field theory; the straight-
forward Wick rotation must be supplemented by other
considerations. Moreover, in our case it is necessary to treat
properly the extra degrees of freedom due to the fermionic
quadrupling. In this section we will describe in detail the
fermionic quadrupling and the elimination of mirror
degrees of freedom done so far [14], as a preparation for
the Wick rotation from Euclidean to Lorentzian signature,
accompanied by the elimination of the remaining extra
degrees of freedom, performed in the next section. First we
discuss briefly the difference between Euclidean and
Lorentzian fermionic theories, focusing on transformation
properties and charge conjugation.

A. Spin(4) vs spin(1, 3)

In the rotation from a Euclidean theory to a Lorentzian
one, the symmetries of the theory go from spin(4), the
universal covering of SO(4), to spin(1, 3), which covers the
Lorentz group. Let us first fix notations. We work in
the chiral basis in which

γ5 ¼
� −σ0 02×2

02×2 σ0

�
;

γ0E ¼
�
02×2 σ0

σ0 02×2

�
;

γjE ¼
�
02×2 −iσj

iσj 02×2

�
; ð3:1Þ

where σj are the Pauli matrices and σ0 is the 2 × 2 unity
matrix. In particular the anticommutator of the Euclidean
gamma matrices reads

fγAE; γBEg ¼ 2δAB: ð3:2Þ

The matrix γ5 is the product of four Euclidean Dirac
matrices
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γ5 ¼ γ0Eγ
1
Eγ

2
Eγ

3
E ¼ iγ0Mγ

1
Mγ

2
Mγ

3
M; ð3:3Þ

where the Lorentzian Dirac matrices in the same basis are
defined by

γ0M ≡ γ0E; γjM ≡ iγjE; j ¼ 1; 2; 3; ð3:4Þ

in agreement with (3.2) and

fγAM; γBMg ¼ 2ηAB: ð3:5Þ

It is also convenient to rewrite the Lorentzian Dirac
matrices defined by (3.4) in the following form, which
we will use in Sec. IV:

γAM ¼
�
02×2 σA

σ̄A 02×2

�
; ð3:6Þ

where

σ ≡ fσ0; σ1; σ2; σ3g; σ̄ ≡ fσ0;−σ1;−σ2;−σ3g: ð3:7Þ

For both the Euclidean and Lorentzian cases, by definition
the left and right chiral spinors ψL and ψR are defined to be
eigenfunctions of the projections operators

ψL ¼ 1

2
ð1 − γ5ÞψL; ψR ¼ 1

2
ð1þ γ5ÞψR: ð3:8Þ

Since ψ has 4 degrees of freedom, ψL and ψR have 2
degrees of freedom each (apart from color and flavor
indices).
We are interested in the transformation properties of

various spinor quadratic terms under spin(4) and spin(1, 3)
transformations, accompanied by the corresponding SO(4)
and SO(1, 3) transformations of vierbeins. In the Euclidean
case we consider the following simultaneous pair of
transformations:

Euclidean∶

(
SOð4Þ∶ eFμ ðxÞ ⟶ e0Fμ ðxÞ ¼ ½exp ð− i

2
αABΣAB

E Þ�FGeGμ ðxÞ
Spinð4Þ∶ ψαðxÞ ⟶ ψ 0

αðxÞ ¼ ½exp ð− i
2
αABσ

AB
E Þ�αβψβðxÞ

; ð3:9Þ

where σABE stands for the generators of the defining representation of spin(4),

σABE ≡ i½γAE; γBE �
4

; ð3:10Þ

and ΣAB stands for the generators of the defining representation of SO(4). Correspondingly, in the Lorentzian case we are
interested in the invariance under

Lorentzian∶
�
SOð1; 3Þ∶ eFμ ðxÞ ⟶ e0Fμ ðxÞ ¼ ½exp ð− i

2
αABΣAB

M Þ�FEeEμ ðxÞ;
Spinð1; 3Þ∶ ψαðxÞ ⟶ ψ 0

αðxÞ ¼ ½exp ð− i
2
αABσ

AB
M Þ�αβψβðxÞ

; ð3:11Þ

with σABM generators of the defining representation of spin
(1, 3),

σMAB ≡ i½γMA ; γMB �
4

; ð3:12Þ

and ΣAB
M stands for generators of the defining representation

of SO(1, 3). In both formulas (3.9) and (3.11) we denote
through αAB six independent real parameters, and
αAB ¼ −αBA, for A, B ¼ 0, 1, 2, 3.
Apart from the original spinors, we also consider the

charge-conjugated spinors obtained by the action of
the charge-conjugation operator C. In particular in the
Lorentzian case5

CMψ ¼ −iγ2Mψ� ð3:13Þ

[see, for example, [[23], Eq. (3.145)]], while in the
Euclidean

CEψ ¼ iγ0Eγ
2
Eψ

�: ð3:14Þ

In what follows it is convenient to use the following
representation:

CE ¼ ĈE∘cc; ð3:15Þ

where cc is complex conjugation and ĈE ¼ iγ0Eγ
2
E is a

unitary matrix. The spinors CEψ and CMψ transform as ψ
under spin(4) and spin(1, 3) transformations, respectively,
but by the complex conjugated representation under the5We indicate complex conjugation by *.
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action of the gauge group. Note that the Lorentzian charge-
conjugation CM changes chirality (i.e., it maps the left
chiral spinor into the right chiral spinor and vice versa),
while the Euclidean charge-conjugation CE maps left into
left and right into right chiral spinors (i.e., it preserves
chirality).
In the Lorentzian case one introduces the kinetic and

Dirac mass terms, which are invariant under (3.11):

ψ̄γAMe
μ
Að½∇LC

μ �M þ iAμÞψ ; ψ̄ψ ; ð3:16Þ

where ψ̄ ≡ ψ†γ0 and Aμ is some vector field. Hereafter∇LC
μ

stands for the covariant derivative on the spinor bundle
from the Levi-Civita spin connection, which is different in
the Euclidean and Lorentzian cases; see Appendix C. The
corresponding terms with the required spin(4) invariance
are

ψ†γAEe
μ
Að½∇LC

μ �E þ iAμÞψ ; ψ†ψ : ð3:17Þ

Note that the Majorana mass terms, built by contracting
spinors with charge-conjugated spinors, are invariant under
both spin(4) and spin(1, 3) actions, in particular:

ðCEψÞ†ψ|fflfflfflfflffl{zfflfflfflfflffl}
Spinð4Þ inv

¼ ð−iγ0Eγ2Eψ�Þ†ψ ¼ ðγ2Mψ�Þψ

¼ −iðCMψÞψ|fflfflfflfflffl{zfflfflfflfflffl}
Spinð1;3Þ inv

: ð3:18Þ

It is remarkable that, under the Wick rotation of the
vierbeins e0μ → ie0μ, the “rotationally” invariant expression
(3.17) does not transform into Lorentz-invariant structure
(3.16), unless one inserts γ0 by hand. We emphasize that the
Majorana mass terms (3.18) do not depend on vierbeins and
are both Lorentz (3.16) and “rotationally” (3.17) invariant
without any γ0 insertion.
The Euclidean spectral action deals with the structures

that are slightly different from the ones in (3.17). Even after
the removal of mirror fermions, one has twice as many
independent spinors. In particular the kinetic and the Dirac
mass terms are given by

ðCEξÞ†γAEeμA½∇LC
μ �Eψ ; ðCEξÞ†ψ ; ð3:19Þ

where ξ and ψ are independent spinors. These expressions
are invariant under (3.9), and transform under the Wick
rotation of vierbeins e0μ → ie0μ into

−ðCMξÞγAMeμA½∇LC
μ �Mψ ; iðCMξÞψ ; ð3:20Þ

which are invariant under (3.11). We emphasize that the spin
(1, 3)-invariant expression (3.20) is obtained from the spin
(4)-invariant one (3.19) without any insertion of γ0 by hand.

The extra spinorial degrees of freedom can be regarded as
some sort of price to pay for such a simplification.

B. Extra degrees of freedom

In the algebraic approach to geometry, commutative and
noncommutative manifolds are described by real spectral
triples, which are defined by five entries ðA; H;D; γ; JÞ,
where A is a (possibly noncommutative) algebra, repre-
sented on the Hilbert space H, D is an operator called a
“generalized Dirac operator” that acts on H, and γ and
J are operators called grading and real structure. All
five ingredients of the spectral triple must satisfy some
relations known as “axioms of noncommutative manifold”;
see [27] for details. According to the reconstruction
theorem of A. Connes, the ordinary commutative manifold
M, with the spin structure, can be reconstructed from the
infinite dimensional “canonical” commutative spectral
triple ðC∞

0 ðMÞ; L2ðM;SÞ; i∇LC
E ; γ5; CEÞ, where C∞

0 ðMÞ
stands for the algebra of smooth functions on M, with
pointwise multiplication (vanishing at infinity in the non-
compact case); L2ðM;SÞ is the Hilbert space of square
integrable Dirac [spin(4)] spinors on M; the Dirac operator
i∇LC

E ≡ iγAEe
μ
A½∇LC

μ �E is the usual one6 on a Riemannian spin
manifold; the grading is given by chirality matrix γ5; and
the real structure is given by the Euclidean charge-
conjugation operator CE.
The spectral action approach to the Standard Model is

based on seeing it as an almost commutative geometry,which
is defined by a product of an infinite-dimensional commu-
tative “canonical” spectral triple times a finite-dimensional7

noncommutative spectral triple ðAF;HF;DF; γF; JFÞ (for
details, see [15]). To see the origin of the fermionic quad-
rupling, we focus our attention on the structure of H. The
Hilbert space H is given by the following tensor product:

H ¼ L2ðM;SÞ ⊗ HF: ð3:21Þ

According to the construction the finite-dimensional partHF
is given by the direct sum of leftHL, rightHR, anti-leftHc

L,
and anti-right Hc

R subspaces:

HF ¼ HL ⊕ HR ⊕ Hc
L ⊕ Hc

R: ð3:22Þ

Note the different notation L, R appearing in(3.8) vs L, R in
(3.22); the former refers to a splitting in the Lorentzian
indices, and the latter to a splitting in the gauge indices. In
particular the subspaces HL and HR consist of the Dirac
spinor multiplets that transform as left and right physical
chiral multiplets under the action of the gauge group.

6This explains the terminology “Dirac operator” for an
arbitrary spectral triple.

7By a finite-dimensional spectral triple we mean that the
algebra and Hilbert spaces are finite-dimensional vector
spaces.
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The corresponding dimensions n ¼ dimðHLÞ ¼ dimðHc
LÞ,

m ¼ dimðHRÞ ¼ dimðHc
RÞ are equal to the number of left

and right chiral fermions and take into account flavor and
color indices in the physical model. These two numbers are
not constrained and can be generally different. For the
Standard Model n ¼ m ¼ 24 (three colors of quarks plus
lepton, times two for “up” and “down” flavors, times three
generations) and hence dimHF ¼ 96, while each spinor ψ ∈
L2ðM;SÞ has four independent complex components.
Therefore each element of H is locally a vector-valued
function with 4 · 96 ¼ 384 independent complex compo-
nents. According to this construction, each chiral fermion of
the SMand each chiral antifermion are present in the spectral
action as independent Dirac spinors. On the other side each
physical chiral fermion (i.e., the field which appears in the
Lagrangian) satisfies the relations (3.8), i.e., is actually
represented by a two-component Weyl spinor. For example,
the subspace HL in (3.22), which consists of spinors with
(gauge) quantum numbers of left physical (Lorentzian)
fermions, has both left ðHLÞL and right ðHLÞR chirality
subspaces. This means that each left-handed physical fer-
mion enters inHL together with its mirror partner, the spinor,
which transforms under a gauge transformation as the
original spinor, but has opposite chirality. In the following
wewill call this doubling of extra degrees of freedom “mirror
doubling.” The other half of the quadrupling instead doubles
the particle/antiparticle degrees of freedom. We call this
second doubling “charge-conjugation doubling”; it will play
a fundamental role in Sec. IV B.
Remark Extra degrees of freedom also appear in the

Euclidean quantum field theory constructed by Osterwalder
and Schrader [28]. Their construction is rendered in an
axiomatic manner directly introducing the Euclidean
quantum Fock space8 and operators acting on it, while
Connes’ spectral action approach deals with the Hilbert
space of classical Euclidean fields. On the one hand, for
each value ~k of the spatial momentum Lorentzian fermionic
theory exhibits four one-particle states (particle and anti-
particle of two polarizations). On the other hand, in the
Osterwalder-Schrader’s construction there are infinitely
many more states: twice as many polarizations, while each
one-particle state is also labeled by k0, which varies
continuously, so one deals with an “infiniting” rather than
with a doubling. Despite some superficial similarities, the
extra degrees of freedom in the two approaches are
formally unrelated.
The mirror doubling problem was solved in [14,17] with

the introduction of the projected space Hþ, defined as

Hþ ¼ ðHLÞL ⊕ ðHRÞR ⊕ ðHc
LÞR ⊕ ðHc

RÞL
¼ PþH; Pþ ≡ Iþ γ5 ⊗ γF

2
; ð3:23Þ

where the grading γF of the finite spectral triple is given by

γF ¼ diagð−1n; 1m; 1n;−1mÞ: ð3:24Þ

This projection satisfies the physical requirement that
(Lorentzian) antiparticles have the opposite chirality than
the corresponding particles. Alternative gradings are pos-
sible; see, for example, [29,30].
In [14] the following Euclidian action, free of mirror

doubling, was introduced:

SF ¼ 1

2
hJψ ; Dψi; ψ ∈ Hþ; ð3:25Þ

where the real structure of the product spectral triple is
given by

J ¼ CE ⊗ JF; ð3:26Þ

with CE introduced in (3.14) and

JF ¼

0
BBB@

0n×n 0n×m 1n×n 0n×m

0m×n 0m×m 0m×n 1m×m

1n×n 0n×m 0n×n 0n×m

0m×n 1m×m 0m×n 0m×m

1
CCCA∘cc: ð3:27Þ

The Standard Model Lagrangian depends on 96 complex
functions, while the corresponding expression (3.25)
depends on 192. The action (3.25) reproduces correctly
the Pfaffian, i.e., the functional integral over fermions,
despite the fact that one still has twice the physical degrees
of freedom. In Sec. IV, we show how to perform the further
reduction.
Remark Another useful fact was noted in [19].

Starting with a fermionic action involving the whole space
H, written as usual with Lorentzian signature, but imposing
the following projections, we get

Jψphys ¼ ψphys; γψphys ¼ ψphys: ð3:28Þ

These projections get rid of the unwanted states, but leave
open the definition of the Hilbert space, since the inner
product is not positively defined and the bosonic spectral
action cannot be defined in the same framework. In
principle one may carry out Wick rotation to Euclidean
signature, and then compute the bosonic action; however,
this object would not represent the spectral triple anymore,
no longer being a pure “bosonic spectral action.” Such a
projection would not be compatible with a Euclidean
signature.

8Despite the mismatch of number of degrees of freedom per ~k,
the Euclidean fermionic Fock space, introduced in [28], does not
contain the Lorentzian physical Fock space as a subspace (in
contrast to the bosonic construction). The only connection
between Lorentzian and Euclidean quantum field theories lies
in the opportunity to obtain the Lorentzian Green’s function via
the analytical continuation of matrix elements.
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C. Explicit form of the fermionic action

For further discussions we need a more detailed expres-
sion for the fermionic action (3.25). The real structure J,
given by (3.26), acts on the subspace Hþ defined by (3.23)
as

JHþ ¼ CEðHc
LÞR ⊕ CEðHc

RÞL ⊕ CEðHLÞL ⊕ CEðHRÞR:
ð3:29Þ

In this basis the Dirac operator is a 4 × 4 block matrix,
which looks like

D ¼

2
6664
i∇E MD 0 0

M†
D i∇E 0 M†

M

0 0 i∇E M�
D

0 MM MT
D i∇E

3
7775; ð3:30Þ

where MD is a matrix containing the Dirac mass terms
(Higgs fields, Yukawa couplings, etc.) and MM the one for
Majorana mass terms9 (which we consider only for right-
handed particles). Here and in the following we omit all
internal indices for brevity.
Parametrizing a typical element ψ ∈ H as

ψ ¼

2
6664
ψL

ψR

ψc
L

ψc
R

3
7775; ð3:31Þ

where each entry is an independent Dirac spinor, we
arrive at the following expression for the fermionic
action:

SEF ¼ 1

2

Z
d4x

ffiffiffiffiffi
gE

p
2
666664
CEðψc

LÞR
CEðψc

RÞL
CEðψLÞL
CEðψRÞR

3
777775

†2666664
i∇E MD 0 0

M†
D i∇E 0 M†

M

0 0 i∇E M�
D

0 MM MT
D i∇E

3
777775

2
666664
ðψLÞL
ðψRÞR
ðψc

LÞR
ðψc

RÞL

3
777775

¼
Z

d4x
ffiffiffiffiffi
gE

p �
CEðψc

LÞR
CEðψc

RÞL

	†� i∇E MD

M†
D i∇E

	� ðψLÞL
ðψRÞR

	

þ 1

2

Z
d4x

ffiffiffiffiffi
gE

p
f½CEðψRÞR�†MMðψRÞR þ ½CEðψc

RÞL�†M†
Mðψc

RÞLg; ð3:32Þ

where spinors with and without “c” are independent.
Remark The replacement of the complex conjugated

spinor by the new variable (in fact the charge-conjugation
doubling) was also introduced by van Nieuwenhuizen and
Waldron [35] independently of the spectral triple formal-
ism. They Wick rotated the Lorentzian quantum field
theory to the Euclidean version in a way suitable for
construction of the Euclidean supersymmetric theory.
There are similarities; in particular the Euclidean fermionic
action of [35] contains as many fermionic degrees of
freedom as the NCG Euclidean fermionic action (3.25).
Nevertheless technically our approach and the one of [35]
differ in the main aspects. While we Wick rotate just the
vierbeins, van Nieuwenhuizen and Waldron transform the
fields (fermionic and gauge). In general the two approaches
are different as well: NCG requires one more fermionic
doubling, i.e., the mirror doubling in order to construct the

spectral triple and consequently to define the bosonic
spectral action, while in the approach of [35] there is no
necessity to introduce mirror fermions.

IV. WICK ROTATION FOR FERMIONS

In this section we present a general procedure to go from a
Euclidean fermionic field theory to a Lorentzian one, in a
manner that is applicable to the formalism of noncommu-
tative geometry. Startingwith the Euclidean fermionic action
wewill eventually arrive at a physical Lorentzian theory, free
from doublings. To avoid cumbersome notations we will
describe only the essentiality of theLagrangian, leaving aside
indices and irrelevant (in this context) features.

A. General prescription

We will proceed in two steps. The starting point is the
fermionic action (3.25), explicitly given by (3.32). This
action is invariant under spin(4) SO(4) transformations (3.9).
Step 1. Restoration of Lorentz invariance. Perform the

Wick rotation, given by (2.3); i.e., we repeat the bosonic
case:

9Although Majorana mass terms were originally introduced in
this context as constants [14], in later approaches they give rise to
a scalar field [31–34], which allows us to match the experimen-
tally observed Higgs mass with this formalism.
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Wick rotation∶ − SEF½spinors; eAμ �
⟶ iSMdoubled

F ½spinors; eAμ �: ð4:1Þ

After this step we will obtain the fermionic action SMF ,
invariant under spin(1, 3) SO(1, 3) transformations (3.11)
but still exhibiting the charge-conjugation doubling. The
spinors are still vectors in Hþ, although there is no positive
definite spin(1, 3)-invariant inner product on Hþ making it
a Hilbert space.

Step 2. Elimination of extra degrees of freedom. The
charge-conjugation doubling, in the presence of the fer-
mionic Lagrangian (before and after Step 1), consists of
spinors from all four subspaces of Hþ [ðHc

LÞR, ðHc
RÞL,

ðHLÞL, and ðHRÞR], while the physical Lagrangian
depends on spinors just from the last two.
We perform, after the Wick rotation (4.1), the following

identification of the variables in the Lagrangian from
subspaces Hc

L and Hc
R with the variables from HL and HR:

8>>><
>>>:

ðψc
LÞR ∈ ðHc

LÞR|fflfflffl{zfflfflffl}
⊂Hþ

has to be identified withCMðψLÞL; ðψLÞL ∈ ðHLÞL|fflffl{zfflffl}
⊂Hþ

ðψc
RÞL ∈ ðHc

RÞL|fflffl{zfflffl}
⊂Hþ

has to be identified withCMðψRÞR; ðψRÞR ∈ ðHRÞR|fflfflffl{zfflfflffl}
⊂Hþ

ð4:2Þ

From a purely technical point of view, this step leads to the
first formula of (3.28), the same result of [19]. Concep-
tually the difference is in the raison d’être of this paper;
namely, our starting point is Euclidean. As we show below,
this recovers a correct (real) Lorentzian Lagrangian. Note
that only spinors that belong to the subspaces ðHLÞL and
ðHRÞR appear in the final expression.
The procedure is self-consistent, since under the spin(1,

3) and gauge transformation the quantities on the left and
on the right side of the prescription (4.2) transform in the
same way and have the same chirality. We stress that this
procedure lies beyond the noncommutative geometry
formalism. Lorentzian signature is in principle inconsistent
with the formalism, and therefore Step 1 introduces new
elements in the theory. Step 2, on the other side, is self-
consistent only if it is done after Step 1. Indeed, under spin
(4) left- and right-hand sides of (4.2) transform in different
ways; therefore such an identification in all reference
frames [invariant under (3.9)] makes sense only if the
spinors of Hþ are Lorentzian.

B. How the general prescription works

In this section, we show explicitly how the prescription
(4.1) gives us a standard Lorentzian fermionic action, free of
any doublings, starting from theEuclidean expression (3.32).
Sincewewill need the explicit dependence of themass terms
on spinor indices, we parametrize them as follows:

MD ¼ γ5 ⊗ H; MM ¼ γ5 ⊗ ω; ð4:3Þ
where the matrix-valued scalar fieldsH andω act on internal
indices (gauge, flavor, etc), not relatedwith the spin structure.
We omit all indices, apart from spinorial ones.

1. Step 1: Restoration of Lorentzian signature

The vierbeins eAμ enter in the fermionic action (3.32) viaffiffiffiffiffi
gE

p
and ∇E, which is given by

∇E ¼ gμνE eAμ γEA∇E
ν : ð4:4Þ

The covariant derivative in (4.4) has the following structure
(we omit the unit matrix in flavor space for brevity):

∇E
ν ¼ ½∇LC

ν �E þ iAν; ð4:5Þ

where Aμ is a gauge connection. In Appendix C we show
the transformation ffiffiffiffiffi

gE
p ∇E ⟶

ffiffiffiffiffiffiffiffiffi
−gM

p ∇M; ð4:6Þ

where

∇M ≡ gμνMeAμ γMA ∇M
ν ; ð4:7Þ

and the Lorentzian covariant derivative is

∇M
ν ¼ ½∇LC

ν �M þ iAν; ð4:8Þ
and the gauge connection Aμ is the same as in the
Euclidean case.
Substituting (C12) in (3.32), we obtain

− SEF → −
Z

d4x
ffiffiffiffiffiffiffiffiffi
−gM

p �
CEðψc

LÞR
CEðψc

RÞL

	†

×

�
i∇M iMD

iM†
D i∇M

	� ðψLÞL
ðψRÞR

	

−
i
2

Z
d4x

ffiffiffiffiffiffiffiffiffi
−gM

p
× f½CEðψRÞR�†MMðψRÞR þ ½CEðψc

RÞL�†M†
Mðψc

RÞLg:
ð4:9Þ

This action is invariant under the Lorentz transformation
(3.11). In particular no modification of the inner product,
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like the insertion of γ0, is needed. Using the identity CE ¼
iγ0CM one can easily rewrite (4.9) as

− SEF → i

�Z
d4x

ffiffiffiffiffiffiffiffiffi
−gM

p �
CMðψc

LÞR
CMðψc

RÞL

	

×

�
i∇M iMD

iM†
D i∇M

	� ðψLÞL
ðψRÞR

	

þ 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffi
−gM

p
× fi½CMðψRÞR�MMðψRÞR þ i½CMðψc

RÞL�M†
Mðψc

RÞLg
�
;

ð4:10Þ

which is manifestly Lorentz invariant.

2. Step 2: Elimination of extra degrees
of freedom

The Lorentz-invariant action coming from (4.10) con-
tains extra degrees of freedom and is not acceptable as it is
not real, since each quantity which carries the index “c” is
independent from the one which does not. Indeed the
typical structure of the action for a single Dirac spinor in
flat space-time reads (we do not write down mass terms for
brevity) Z

d4xξ̄i∂Mψ ð4:11Þ

(where ξ and ψ are independent), while the conventional
one is given by Z

d4xψ̄ i∂Mψ : ð4:12Þ

Note that
(i) The classical system described by (4.11) has a phase

space twice as big as needed for the description of
Dirac fermions. At the classical level the number
(per infinitesimal spatial volume) of physical de-
grees of freedom (particles and antiparticles) is half
the dimensions of the phase space after all the
constraints10 are taken into account. The Dirac field
describes four particles: two particles with different
polarizations and the corresponding antiparticles;
therefore the real dimension of the phase space per
infinitesimal spatial volume must be 8, correctly
reproduced by (4.12). On the other side, for (4.11)

the dimension of the phase space per infinitesimal
volume is equal to 16.

(ii) After canonical quantization of (4.12) the operator
ψ̂†
α is not independent from ψ̂α, but related via

Hermitian conjugation with respect to the inner
product in the Fock space. Since there is no con-
straint ψ ¼ ξ, direct application of the canonical
quantization procedure to (4.11) must exhibit non-
coinciding operators ψ̂ and ξ̂ on the quantum space
of states. This can cause pathologies, e.g., non-
Hermitian Hamiltonian operator. Indeed, replacing
the classical fields by operators in the classical
Hamiltonian resulting from (4.11), one would get
the structure −i

R
d3xξ̂†γ0MðγjM∂jÞψ̂ , which is not

formally self-adjoint.
(iii) Our procedure for the elimination of the anticharge

doubling is nothing but the imposition of this missing
constraint on the classical fermionic phase space,
thereby extracting its canonically quantizable part.

(iv) However, the path integral is not sensitive to the
charge-conjugation doubling; in particular the
Pfaffian [14] is reproduced correctly [see (A1)]:Z

½dψ̄ �½dψ �ei
R

d4xψ̄ i∂Mψ ¼
Z

½dξ̄�½dψ �ei
R

d4xξ̄i∂Mψ :

ð4:13Þ

(v) Although in the path integral approach the Green’s
functions which come from (4.11) are reproduced
correctly, the correct identification of the Fock space
is still necessary to understand the asymptotic states
in scattering processes.

The physical Lagrangian is given by (4.12). We eliminate
the charge-conjugation doubling extra states with the
prescription (4.2). Since C2

M ¼ 1, we obtain from (4.10)

SMdoubled
F ⟶ SMF

¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
−gM

p ��
ψL

ψR

	�
i∇M iγ5 ⊗ H

iγ5 ⊗ H† i∇M

	�
ψL

ψR

	

þ 1

2
ði½CMψR�ðγ5 ⊗ ωÞψR þ c:c:Þ

�
: ð4:14Þ

Because of the identification (4.2), the variables ðψc
RÞL and

ðψc
LÞR have disappeared from the action, and we are left

with ðψLÞL and ðψRÞR. Since there is no risk of confusion
anymore, hereafter we simplify the notations:

change of notations∶ ðψLÞL ⟶ ψL; ðψRÞR ⟶ ψR:

ð4:15Þ

Following [20], we carry out a global axial transformation
in order to recover the “standard textbook” form of the
fermionic action. It is a simple exercise using the (anti)

10To discuss phase spaces one has to take into account the fact
that both Lagrangians correspond to constrained Hamiltonian
systems, and all conjugated momenta are not independent. See,
for example, the discussion in [36].
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commutation properties of the γ’s to show that, for an
arbitrary α, the kinetic term remains invariant under the
following global axial transformation,

ψR;L → e−iαγ
5

ψR;L: ð4:16Þ

Setting α ¼ π=4 one finds

ψR;L ⟶ e−
iπ
4
γ5ψR;L

⇒ iψL;Rγ
5ðscalarÞψR;L ⟶ −ψL;RðscalarÞψR;L:

ð4:17Þ

It is easy to see that under the axial transformation (4.16)
the conjugated spinors CMψL;R transform as the original
ones ψL;R; therefore also for the Majorana mass terms we
have

i½CMðψRÞ�ωγ5ψR ⟶ −½CMðψRÞ�ωψR: ð4:18Þ

Using (4.17) and (4.18) we can write down the fermionic
action (4.14) with the new variables:

SMF ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
−gM

p
fðψLÞi∇MψL þ ðψRÞi∇MψR

−
�
ðψLÞHψR þ 1

2
½CMðψRÞ�ωψR þ c:c:

	�
: ð4:19Þ

Care must be taken with global axial transformations when
considering path integrals. We show in Appendix A that the
path integration must be performed after this axial trans-
formation, in order to avoid gauge topological terms that
come out from the axial anomaly and modify the Green’s
functions.
Let us rewrite the Lorentzian fermionic action in terms of

two component Weyl spinors:

ψL ¼
�
χL

0

�
; ψR ¼

�
0

χR

�
; ð4:20Þ

where χL and χR are two-component Weyl spinors, which
absorb all nonzero components of ψL and ψR
correspondingly.
Below we will use the following notations:

d̄≡ gμνMeAμ σ̄A∇Weyl L
ν ;

d≡ gμνMeAμσA∇Weyl R
ν ; ð4:21Þ

where σ and σ̄ are defined in (3.7), and ∇Weyl L
ν and ∇WeylR

ν

are covariant derivatives on Weyl left and right spinor
bundles correspondingly,

∇Weyl L
ν ¼ ð∂μ þ iAμÞ ⊗ 1W2 −

i
2
½ωAB

ν �MσWeyl L
AB

∇Weyl R
ν ¼ ð∂μ þ iAμÞ ⊗ 1W2 −

i
2
½ωAB

ν �MσWeylR
AB ; ð4:22Þ

where 1W2 is a unity in Weyl spinor indexes, and σWeyl L
AB and

σWeylR
AB stand for the generators of left and right Weyl spinor

representations of spin(1, 3), which are given by

σWeyl L
jk ¼ σWeylR

jk ¼ −
i
4
½σj; σk�; j; k ¼ 1; 2; 3;

σWeyl L
j0 ¼ −σWeyl L

0j ¼ i
2
σj; j ¼ 1; 2; 3;

σWeylR
j0 ¼ −σWeylR

0j ¼ −
i
2
σj; j ¼ 1; 2; 3: ð4:23Þ

In terms of the two-component spinors introduced by
(4.20), the Lorentzian fermionic action reads

SMF ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
−gM

p �
χ†LīdχL þ χ†RidχR|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

kinetic terms

− ½χ†LHχR þ χ†RH
�χL�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dirac scalar-spinor couplings

þ 1

2
½iχ†Rσ2ω�χ�R − iχTRσ2ωχR�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Majorana scalar-spinor couplings

�
: ð4:24Þ

V. CONCLUSIONS

Two themes mingled in this paper: we discussed the
Wick rotation of bosons and fermions from a Euclidean
theory to a Lorentzian one and the role of fermion doubling
and its elimination. The most interesting result is the fact
that these two issues are related, a relation that is probably
even deeper than what is presented here.
First, the fermionic action (3.25) written with the real

structure J, which, as we explained, exhibits the charge-
conjugation doubling, was introducedwithout any reference
to Lorentz signature, and we have shown that the elegant
vierbein Wick rotation procedure immediately recovers
Lorentz invariance. In particular no modification of the
inner product “by hand” is needed in this construction. This
points to a role for the real structure J also in this context.
Second, we gave a prescription for the elimination of the

remaining charge-conjugation doubling, thereby solving
completely the fermionic quadrupling problem. In particular,
we have shown how one can arrive from the expression (3.32)
to the physically acceptable one (4.24) via the two-step
prescription (4.1) and (4.2), where the former step is identical
to the bosonic case,while the latter addresses peculiar features
of fermionic theories. Here we found another connection
between extra degrees of freedom and Lorentzian signature:
we argued that the charge-conjugation doubling must be
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eliminated after the Wick rotation, i.e., when the fermionic
action is spin(1, 3) invariant. An attempt to project out extra
degrees of freedom in the Euclidean theory would immedi-
ately break the spin(4) invariance.
The quadrupling of degrees of freedom is necessary to

define the spectral action in its present formulation, which
is Euclidean. It does not correspond to physically observ-
able11 degrees of freedom. Half of the quadrupling is easily
eliminated with a projection, while the charge-conjugation
doubling, which cannot be projected out and creates
troubles for the canonical quantization of a Lorentzian
theory, allows for a simple Wick rotation.
While this paper solves the problem of the quadrupling,

the solution and its connection between Euclidean and
Lorentzian theories may hint at more profound themes, yet
to be discovered.
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APPENDIX A: REMARKS ON THE PATH
INTEGRAL

Below we give a few comments relevant to path
integrals. First we explain why the Pfaffian is not sensitive
to the charge-conjugation doubling. Second we introduce
the correct measure in the Lorentzian path integral,
remarking that one has to carry out the path integration
after the field redefinition (4.17) to avoid the axial anomaly.

1. On the Grassmannian integration and
the charge-conjugation doubling

It is interesting to explain how it happens that, although
the fermionic action in [14] had extra degrees of freedom, the
Pfaffian was reproduced correctly. Technically the charge-
conjugation doubling is a consequence of considering a
spinor ψ and it is complex conjugated ψ� as independent
variables ψ and χ� in the Lagrangians (4.10) and (4.14). An
important algebraic fact is the following. No matter whether
one integrates over ψ and ψ� or ψ and χ� (i.e., one considers

twice more independent real variables), the resulting deter-
minant is the same. This means that the anticharge doubling
has no effect on the Pfaffian (functional integral over
fermions). In fact the following (somewhat counterintuitive)
equality is valid:

Z YN
n¼1

½dψ�
ndψn�eψ

�
jAjkψk ¼

Z YN
n¼1

½dχ�ndψn�eχ
�
jAjkψk ¼ det A;

ðA1Þ

whereA is an arbitraryN × N matrix, and ψ j and χj are truly
independent complex Grassmanian variables. Since this is
important for our scope, let us look at it in detail.
The integration over a Grassmanian variable is equiv-

alent to taking the derivative over it. In the complex case,Z
dψ j ¼ ~∂ψ j

≡ 1

2
~∂ξj −

i
2
~∂ηj ;Z

dψ�
j ¼ ~∂ψ�

j
≡ 1

2
~∂ξj þ

i
2
~∂ηj ;Z

dχ�j ¼ ~∂ηj ≡
1

2
~∂θj þ

i
2
~∂λj ; ðA2Þ

where ψ j ¼ ξj þ iηj; χj ¼ θj þ iλj; and ξj, ηj, θj, and λj
are real fields. The anticommutator of any pair of variables
vanishes.
We emphasize that the former integrand in (A1) depends

on 2N real Grassmanian variables while the latter integrand
depends on 4N independent real Grassmanian variables.
The integration rule, however, leads to the same answer.
Indeed, although ψ j and ψ�

j , being mutually complex
conjugated, are not independent, when one carries out
the integration (i.e. takes derivative) over them, they can be
considered as independent variables, since

∂ψ j
ψ� ¼

�
1

2
~∂ξj −

i
2
~∂ηj

�
ðξj − iηjÞ ¼ 0; ðA3Þ

and

∂ψ�
j
ψ ¼

�
1

2
~∂ξj þ

i
2
~∂ηj

�
ðξj þ iηjÞ ¼ 0: ðA4Þ

2. On the correct measure in the path integral

Below we explain that the path integral over fermions has
to be taken after the global axial transformation (4.17), or
more precisely the variables ψold, which enter in the “almost
final”Minkowskian fermionic action SoldF [given by (4.14)],
and the variables ψnew ¼ eþiπ

4
γ5ψold, which enter in the

“final” fermionic actions SnewF [given (4.19)], are not equiv-
alent, since they lead to different Green’s functions. For an
arbitrary composite operator O that involves fields, coupled
to fermions (directly or via quantum corrections) one obtains

11At least to low energy. In [32–34] there is a speculation about
a higher energy “pregeometric” phase for which the quadrupling
is necessary. From the results in this paper it follows that
this hypothetical phase would also be Euclidean, along the lines
of [37].
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hTOiold fields ≡
R ½dB�½dψ̄old�½dψold�OeiS

Mold
F þiSbosR ½dB�½dψ̄old�½dψold�eiSMold

F þiSbos

¼
R ½dB�½dψ̄new�½dψnew�OeiS

Mnew
F þi ~SbosR ½dB�½dψ̄new�½dψnew�eiSMold

F þi ~Sbos

≠
R ½dB�½dψ̄new�½dψnew�OeiS

Mnew
F þiSbosR ½dB�½dψ̄old�½dψnew�eiSMnew

F þiSbos

≡ hTOinew fields; ðA5Þ
where T stands for time ordering andB for bosonic measure.
The change of the bosonic action

Sgauge → ~Sgauge ≡ Sgauge þ ðconstÞϵμναβF μνF αβ; ðA6Þ

where the tensor F μν corresponds to non-Abelian gauge
connection Aμ, came from the nontrivial Jacobian of the
global axial transformation ψold ⟶ ψnew. Indeed, although
the “old” action (4.14) transforms into the “new” one (4.19)
under the transformation ψold ⟶ ψnew, the fermionic mea-
sure ½dψ̄ �½dψ � does not. This phenomenon is the so-called
axial anomaly (see [38]): a gauge-invariant regularization of
the functional integral over fermions introduces a dependence
of the regularized measure on the gauge fields. The Jacobian
in flat space-time reads

exp

�
iðconstÞ

Z
d4xϵμναβF μνF αβ

�
: ðA7Þ

When the non-Abelian gauge field Aμ has a nontrivial
Pontryagin number, the Jacobian is different from 1.
Taking the functional integral over the gauge fieldAμ, various
configurationswith nontrivial Pontryagin index give different
contributions to thepath integral, hence the inequality in (A5).
For example, setting O ¼ AμðxÞAνðyÞ, we obtain different
full propagators for the gauge field in the “new” or “old”
variables. In order towork with the standard fermionic action
(4.19) and with the standard bosonic spectral action Sbos
without the topological term (A7), onehas topostulate that the
functional integration is done after the global axial trans-
formation (4.17), i.e., over the new variables ψnew.

APPENDIX B: NOTATIONS AND CONVENTIONS
FOR THE GRAVITATIONAL SECTOR

Throughout this paper we use the following notations:
Riemann tensor

Rμ
νρσ½gμν� ¼ ∂σΓ

μ
νρ − ∂ρΓ

μ
νσ þ Γλ

νρΓ
μ
λσ − Γλ

νσΓ
μ
λρ ðB1Þ

Ricci tensor

Rμν½gμν� ¼ Rσ
μσν ¼ ∂νΓσ

μσ − ∂σΓσ
μν þ Γλ

μσΓσ
λν − Γλ

μνΓσ
λσ

ðB2Þ

Scalar curvature

R½gμν� ¼ gμνf∂νΓσ
μσ − ∂σΓσ

μν þ Γλ
μσΓσ

λν − Γλ
μνΓσ

λσg ðB3Þ

with the Christoffel symbols of the second kind

Γμ
νρ½gμν�≡ 1

2
gμλð∂ρgλν þ ∂νgλρ − ∂λgνρÞ: ðB4Þ

Note also the identity

Cμναβ½gμν�Cμναβ½gμν�
≡ Rμναβ½gμν�Rμναβ½gμν�

− 2Rμν½gμν�Rμν½gμν� þ
1

3
R2½gμν�: ðB5Þ

APPENDIX C: DERIVATION OF (4.6)

In this appendix we derive the formula (4.6). The
vierbeins enter in ∇E

μ via ½∇LC
μ �E; therefore one has to

show that, under the rotation (4.1), the covariant derivative
½∇LC

μ �E, considered as a function of the vierbeins, will
transform into ½∇LC

μ �M. We need the explicit expression for
the covariant derivative ½∇LC

μ �E,

½∇LC
μ �E ¼ ∂μ ⊗ 1s4 −

i
2
ωE
μ ; ðC1Þ

where 1s4 is a unity in spinor indexes, and the Euclidean
spin connection is given by

ωE
μ ≡ ½ωAB

μ �EσEAB; ðC2Þ
with

½ωAB
μ �E ≡ eAν gναE ∂μeBα þ eAν ½Γν

μσ�EeBβ gβσE ; ðC3Þ
where ½Γν

μσ�E is expressed via gEμν according to (B4) and gEμν
depends on vierbeins via (2.5); i.e., (C3) is just a function of
the vierbeins. In order to prove that for (4.1)

Wick∶ ½∇LC
μ �E ⟶ ½∇LC

μ �M ≡ ∂μ ⊗ 1s4 −
i
2
ωM
μ ; ðC4Þ

one has to show that

Wick∶ ωE
μ ⟶ ωM

μ ; ðC5Þ
where the latter is given by

ωM
μ ≡ ½ωAB

μ �MσMAB: ðC6Þ
The spin connection coefficients in the Lorentzian case

are

½ωAB
μ �M ≡ eAν gναM∂μeBα þ eAν ½Γν

μσ�MeBβ gβσM ; ðC7Þ
where again ½Γν

μσ�M is expressed via gMμν according to (B4)
and gMμν depends on vierbeins via (2.7); i.e., (C7) is again

WICK ROTATION AND FERMION DOUBLING IN … PHYSICAL REVIEW D 94, 025030 (2016)

025030-13



just a function of the vierbeins, different from (C3). After
we introduced all notation, one can rewrite (C2):

ωE
μ ¼

X3
k;j¼1

½ωkj
μ �EσEkj þ 2

X3
j¼1

½ω0j
μ �EσE0j

¼
X3
k;j¼1

½ωkj
μ �Eð−σMkjÞ þ 2

X3
j¼1

½ω0j
μ �EðiσM0jÞ: ðC8Þ

Nowwe are prepared for the final stroke: theWick rotation
(4.1). Since both indices A and B in (C3) are carried by
vierbeins, and since under (4.1) the metric tensor gEμν ⟶
−gMμν and ½Γλ

μν�E ⟶ ½Γλ
μν�M, we immediately obtain

Wick∶

8<
: ½ω0j

μ �E ⟶ −i½ω0j
μ �M; j ¼ 1; 2; 3

½ωkj
μ �E ⟶ −½ωkj

μ �M; k; j ¼ 1; 2; 3
: ðC9Þ

Substituting (C9) into (C8) we see that the spin connection
ωμ transforms in the proper way:

Wick ωE
μ ⟶

X3
k;j¼1

½ωkj
μ �MσMkj þ 2

X3
j¼1

½ω0j
μ �MσM0j ≡ ωM

μ :

ðC10Þ

Therefore the equality (C4) is proven.

Expressing γEA via γMA according to (3.4) and using

ieAμ γEA ¼ ie0μγE0 þ iejμγEj

¼ ie0μγM0 − ejμγMj →
Wick

− eAμ γMA ; ðC11Þ

finally we arrive at the following law of transformation
of ∇:

Wick∶ i∇E ⟶ ∇M or
ffiffiffiffiffi
gE

p
i∇E →

ffiffiffiffiffiffiffiffiffi
−gM

p
i∇M:

ðC12Þ
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