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We apply pseudospectral methods to integrate functional flow equations with high accuracy, extending
earlier work on functional fixed point equations [J. Borchardt and B. Knorr, Phys. Rev. D 91, 105011
(2015)]. The advantages of our method are illustrated with the help of two classes of models: first, to make
contact with literature, we investigate flows of the OðNÞmodel in three dimensions, for N ¼ 1, 4 and in the
largeN limit. For the case of a fractal dimension, d ¼ 2.4, andN ¼ 1, we follow the flow along a separatrix
from a multicritical fixed point to the Wilson-Fisher fixed point over almost 13 orders of magnitude. As a
second example, we consider flows of bounded quantum-mechanical potentials, which can be considered
as a toy model for Higgs inflation. Such flows pose substantial numerical difficulties, and represent a
perfect test bed to exemplify the power of pseudospectral methods.
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I. INTRODUCTION

A lot of fundamental problems in particle physics, many-
body systems, or even the quantization of gravity arise in
situations where coupling constants can grow large.
Standard methods as perturbation theory fail to describe
these cases, as they are based on an expansion in powers of
a small quantity. As not every theory can be simulated
straightforwardly by means of discretization, we shall
follow another path here, namely the functional renormal-
ization group (FRG), which is a continuum method based
on the Wilsonian idea of integrating out momentum modes
successively. In particular, this work makes use of the
formulation of the exact renormalization group by
Wetterich [1], which has been applied to a wide range
of systems, e.g., scalar field theories [2–15], fermionic
systems [16–22], critical phenomena [23–29], gauge the-
ories [30–37], and quantum gravity [38–58].
Technically, when applying the FRG to a given theory,

one has to solve a coupled system of nonlinear (in general
integro) differential equations. Only a few cases are known
where one can find analytic solutions. In all other cases, the
system is considered in a subspace of the space spanned by
all operators allowed by symmetry, and the resulting
equations are then solved numerically.
Plenty of information can already be retrieved from the

fixed point structure of the theory. As an example, the fixed
point structure in a condensed matter system may charac-
terize the phase diagram, and the eigenvalues of the
perturbations around the fixed points give the critical
exponents, controlling, e.g., the scaling behavior near phase
transitions. We recently put forward a method to numeri-
cally tackle functional fixed point equations globally and
with very high precision [59].

Not all questions can be answered by studying fixed
points alone. The full functional flows need to be solved,
e.g., in regions of physical interest when all couplings run
fast, or for the analysis of first order phase transitions. In this
work, we extend the ideas of [59] to solve flow equations
with the help of pseudospectral methods. In order to
benchmark our method, we investigate models which are
well understood or widely studied in the FRG context, or can
also be controlled by other techniques. First, we study flows
of the OðNÞmodel in various dimensions and near as well as
away from criticality. Then we investigate quantum
mechanical examples with bounded or nonanalytic poten-
tials, as exact results from directly solving the Schrödinger
equation can be calculated and compared to. Further
applications of the method can be found in [60,61].
We emphasize that the methods presented here are

heavily used in other contexts [62,63], as, e.g., finding
solutions to Einstein’s equation [64,65]. First applications
to FRG problems have been given in [66–70]. Additionally,
let us point out that full functional flows were already
solved in the past employing finite element or finite
difference methods [3,71–85].
This paper is organized as follows: in Sec. II, we review

some aspects of pseudospectral methods and apply them to
study concrete functional flow equations. Then, Sec. III
gives a short overview of the FRG, including the
truncation and the resulting flow equations that we solve.
Consequently, Sec. IV deals with interesting flows of the
OðNÞ model, especially for large N, N ¼ 1, and N ¼ 4 in
d ¼ 3 or d ¼ 2.4 dimensions. Afterwards, Sec. V discusses
both analytical and numerical results on three quantum
mechanical potentials which are bounded both from below
and above. Finally, Sec. VI contains a short summary.
All numerical results presented here were obtained with

C++ code, using the libraries BOOST [86], EIGEN [87], and
BLITZ [88], and the 80-bit data type “long double.”
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II. PSEUDOSPECTRAL METHODS AND THEIR
IMPLEMENTATION

This section elucidates the advantages of pseudospectral
methods, and how we apply them to solve flow equations.
Pseudospectral methods in general are based on orthogonal
polynomials. We will focus on Chebyshev polynomials of
the first kind here, which are defined by

TnðcosðxÞÞ ¼ cosðnxÞ; ð1Þ

for all natural numbers n.
A given well-behaved function f, defined on the interval

½a; b�, can thus be expanded as

fðxÞ ¼
X∞
i¼0

aiTi

�
2
x − a
b − a

− 1

�
: ð2Þ

In comparison to other orthogonal polynomials, such as
Hermite or Laguerre polynomials, Chebyshev polynomials
are defined on a finite interval ½−1; 1�. Both Laguerre and
Hermite polynomials are ill suited for our problems since
the asymptotic behavior of the expanded function fðxÞ
would depend on the order of expansion. However, the
asymptotic behavior of fðxÞ is fixed.
The usefulness of Chebyshev polynomials in general is

(at least) threefold:
(i) the convergence properties depend on the singularity

structure of the function: for analytic functions, an
expansion in Chebyshev polynomials converges
exponentially fast,

(ii) evaluations of the interpolant at any point are easily
accessible (by the Clenshaw algorithm) and deriv-
atives of the function are also computable with a
minimum amount of effort (similar to the Clenshaw
algorithm),

(iii) the highest retained coefficient in an approximation
provides a good error estimate for the accuracy of
such an expansion.

Of course, there are other sets of basis functions defined on
a bounded interval, such as Legendre polynomials, which
also show exponential convergence. Nonetheless, there are
indications that Chebyshev polynomials converge better,
see for example [89].
More details on all of these points are collected in [59], a

general overview of Chebyshev polynomials can be found
in, e.g., [62].
For the remainder of this section, let us consider a partial

differential equation (PDE) of one function f in two
variables,

L½fðx; tÞ� ¼ 0; ð3Þ

where x ∈ Ix and t ∈ It with Ix, It⊆R, and L denotes an in
general nonlinear (pseudo)differential operator. In the case
of flows of the OðNÞ model, we specialize Ix ¼ ½0; xmax�

because no boundary effects occur. By contrast, if the
potential is bounded as in Sec. V, boundary effects emerge
which can only be avoided by taking the function f on the
whole positive axis Ix ¼ ½0;∞Þ into consideration. In
particular, we will compactify in the x direction [90].
The specific form of the compactification that we employ is

x̄ ¼ x
1þ x

: ð4Þ

Although not used here, it is worth mentioning that for
unbounded functions which grow like xn for x → ∞, it is
useful to compactify as

f̄ ¼ f
ð1þ xÞn : ð5Þ

These transformations in combination have the special
virtue that they map polynomials to polynomials: for
example, if

fðx; tÞ ¼
XNx

n¼0

anðtÞxn; ð6Þ

after transformation to the new coordinates, we have

f̄ðx̄; tÞ ¼ 1

ð1þ x̄
1−x̄ÞNx

XNx

n¼0

anðtÞ
�

x̄
1 − x̄

�
n

¼
XNx

n¼0

anðtÞx̄nð1 − x̄ÞNx−n; ð7Þ

which is polynomial in x̄. For the sake of readability, from
now on we will drop any bar on transformed quantities
when there is no danger of confusion.
Let us make a short comment on why we use pseudo-

spectral methods also in the time direction. There are also
Ansätze combining pseudospectral methods in the field
direction with a standard ordinary differential equation
solver, such as Runge-Kutta, for the time direction. We
have decided on a pseudospectral treatment of both
directions to achieve as much accuracy as possible. This
is especially important for fine-tuning problems and flows
over many orders of magnitude to obtain reliable
results [61].
To obtain high efficiency and better convergence, it is

useful to decompose the x and t domain of definition into
subdomains. This is illustrated in Fig. 1. The PDE is solved
simultaneously on all x subdomains of a specific t slice
t ∈ ½ti; tiþ1�. Imposing the initial condition on the first slice
and continuity on the following slices leads to an initial
value problem on every time patch. For that purpose, we
expand the (potentially compactified) function f on every t
slice (mapped to ½−1; 1�), in every (compactified) x sub-
domain (also mapped to ½−1; 1�) as a tensor product,
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fðx; tÞ ¼
XNx

i¼0

XNt

j¼0

aijTiðxÞTjðtÞ: ð8Þ

This Ansatz can be inserted into the PDE. To solve for the
coefficients aij, we employ the collocation method, where
the PDE is evaluated at a set of collocation points and the
subsequent algebraic, nonlinear system of equations is
solved by a stabilized Newton-Raphson iteration. For the
collocation method to work so well, the essential point is
the specification of the grid. The most common choices are
Gauss, Lobatto, and one-sided Radau grids [91]. All of
them share their nonuniform density of grid points, and are
equally suited regarding convergence properties.
As collocation points, we specify a one-sided Radau grid

in the t direction, including the end point of the patch, and a
Gauss grid on all x subdomains. As already mentioned, one
has to match the initial condition in the t direction as well as
the function value and a certain number of derivatives at the
boundaries of the subdomains in the x direction. The exact
number of conditions is dictated by the order of the
differential equation: if the order is p, then p − 1 deriv-
atives have to be matched. From this, our specific choice of
the grid becomes clearer. Using a Lobatto or Radau grid in
the x direction may lead to instabilities, when in addition
to the matching conditions, the PDEs are demanded at the
boundary points. In order to avoid potential problems, we
consequently use a Gauss grid. For the t direction, the
situation is slightly different. There, one solves an initial
value problem, thus it may be better not to use a left-sided
Radau or Lobatto grid, as they include the initial time slice,

which might lead to an overdetermination. Using a right-
sided Radau grid is practical in the sense that one already
has the values of the function on the final time slice, and
does not need to calculate them from the solution of the
time patch in order to get the initial condition for the
next patch.
Lastly, let us remark that a generalization to multiple

functions is straightforward by introducing a tensor product
expansion for any given function. In the context of specific
truncations, one may additionally deal with functions that
do not depend on x, such as single running couplings.
These are naturally incorporated by taking Nx ¼ 0.

III. FUNCTIONAL RENORMALIZATION GROUP

The functional renormalization group is a nonperturba-
tive tool for successively integrating out quantum fluctua-
tions in a controlled way. For this, an effective average
action Γk is introduced which smoothly connects the
microscopic action ΓΛ ¼ Scl at the ultraviolet (UV) cutoff
Λ and the macroscopic action Γ0 ¼ Γ. This flow is
described by the Wetterich equation [1],

∂tΓk ¼
1

2
STr½ðΓð2Þ

k þ RkÞ−1ð∂tRkÞ�; t ¼ log

�
k
Λ

�
;

ð9Þ

that is an exact functional, integro-differential equation.

Here, Γð2Þ
k denotes the second functional derivative of Γk

with respect to the fields and the supertrace STr stands for
summation (integration) over discrete (continuous) indices
and provides a minus sign for Grassmann-valued fields,
i.e. fermions. The regulator function Rk prevents the flow
from divergencies both in the UVand the infrared (IR). For
more information on the FRG, we refer the reader to, e.g.,
[3,4,23,31,32].
The common case is that Eq. (9) can only be solved

within a certain truncation of the effective average action. A
systematic expansion is provided by the derivative expan-
sion. The systems we consider in what follows go all back
to the same Ansatz for the effective average action,

Γk½σ� ¼
Z

ddx

�
1

2
Zð∂μσ

aÞð∂μσaÞ þ Uðσaσa=2Þ
�
: ð10Þ

Within the local potential approximation (LPA or LPA0),
the full field and scale dependence of the effective potential
U is retained. The wave function renormalization Z is field
independent, and is therefore only a function of the scale k
(LPA0) or constant during the flow (LPA). In Sec. IV the
index of the bosonic scalar field σ counts the N different
components. When we consider quantum-mechanical sys-
tems in Sec. V, σ stands for the position x, and the index
counts the space dimensions. Also, the integration and
differentiation in the action are with respect to the

FIG. 1. Sketch on the decomposition of the domain of defi-
nition into subdomains. ti and xi denote the boundaries of the
subdomains in the t and x directions, respectively. For each
subdomain an own expansion of f is used. The thin grid lines
depict the Chebyshev grid for each subdomain.
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Euclidean time coordinate, dx≡ dτ. In both cases the
invariant ρ is given by ρ ¼ σaσa=2.

IV. FLOWS OF THE OðNÞ MODEL

The OðNÞ-symmetric model is a relevant model for
many aspects of particle physics, condensed matter sys-
tems, and QCD. It consists of bosonic fields only, exhibits a
global symmetry, there is an analytical solution for the large
N limit (see [2,92] for approaches using the Wetterich
equation), and the N ¼ 1 case is even exactly solvable in
d ¼ 1 [93] and d ¼ 2 [94]. Additionally, it provides
physically interesting features for d < 4, such as a rich
fixed point structure. Therefore, it is a good testing ground
for demonstrating properties of pseudospectral methods.
The flow of the first derivative of the potential with

respect to the field is numerically more stable than the flow
of the potential itself [95]. Therefore, we employ the flow
equation for the dimensionless quantities u0ð~ρÞ ¼ ∂ ~ρuð~ρÞ
[2] where ~ρ ¼ Zk2−dρ and u ¼ U=kd,

∂tu0ð~ρÞ ¼ ð−2þ ηÞu0ð~ρÞ þ ðd − 2þ ηÞ~ρu00ð~ρÞ

−
4vd
d

�
1 −

η

dþ 2

�

×

�
3u00ð~ρÞ þ 2~ρu000ð~ρÞ

ð1þ u0ð~ρÞ þ 2~ρu00ð~ρÞÞ2 þ
ðN − 1Þu00ð~ρÞ
ð1þ u0ð~ρÞÞ2

�
:

ð11Þ

Here, v−1d ¼ 2dþ1πd=2Γðd=2Þ, and the anomalous dimen-
sion is defined as η ¼ ∂t lnZ, and given by [96]

η ¼ 16vd
d

~ρ0u00ð~ρ0Þ2
ð1þ 2~ρ0u00ð~ρ0ÞÞ2

; ð12Þ

evaluated at the vacuum expectation value (vev) ~ρ0. For the
regularization the linear optimized regulator is employed
[97], Rkðp2Þ ¼ Zðk2 − p2Þθðk2 − p2Þ. For aspects of opti-
mization, see also [98]. In the first part of this section we set
η≡ 0 (Z≡ 1), which becomes exact for a large N. In the
last part, we take the scale dependence of the wave function
renormalization into account.

A. Flows for d = 3 and at large N: A comparison

In order to demonstrate the power of pseudospectral
methods on a specific example, we compare the analytical
flow for a large N with the numerically computed one. For
that purpose, we choose trajectories in the symmetry
broken phase close to criticality to show stability
of the numerical method for 6 orders of magnitude
(t ∈ ½0;−12.4�). We use (11) in the limit N → ∞ [92]
(where one only retains the scaling part and the fluctuation
part proportional toN) and switch to dimensional quantities
as soon as the vev starts scaling exponentially in t. We
expand the first derivative of the potential on [0, 0.2] for the

dimensionless and on ½0; 0.2kS� for the dimensional flow,
where kS is the scale of switching between both regimes.
With this choice, the maximal field value is 10–20 times
larger than the vev. In general, the field range must not be
too small in order to avoid boundary effects.
The initial condition reads

U0
ΛðρÞ ¼ −0.008443603515625þ 0.5ρ ð13Þ

at t ¼ 0 or k ¼ Λ, where Λ is the UV cutoff. All dimen-
sional quantities are to be understood in units of Λ, which
we set to 1. For switching to the dimensional version of
(11), we choose ts ¼ lnðkS=ΛÞ ¼ −10.1. Furthermore, the
temporal subdomains and Nt are taken to achieve expo-
nential convergence down to machine precision in this
direction. In order to compare the analytical potential [92]
with the numerically computed one, we employ the
maximum norm of their difference as an error criterion.
In Fig. 2 the absolute deviation of the numerical flow

from the analytical one in dependence on the number of the
coefficients Nx in the field direction can be seen. The flow
was compared at two scales: t ¼ −10 (k ¼ 4.5 × 10−5),
before switching to dimensional quantities, and k ¼ 4 ×
10−6 (t ¼ −12.4), after switching to dimensional quan-
tities, where we have stopped the integration. We also
depict the relative error of the vev at this scale. The more
coefficients taken into account, the higher the accuracy,
which can be seen by the exponential convergence of
δU0ðρÞ and δρ0=ρ0 in particular. For the error δu0ð~ρÞ at
t ¼ −10 we see a plateau for Nx ≳ 60. This can be
explained by the condition of the differential equation.
To illustrate this, we compare two analytically computed
solutions, one with the initial condition (13), and the other

FIG. 2. Absolute and relative error [δu0ð~ρÞ, δU0ðρÞ and δρ0=ρ0]
of the first derivative of the potential and the vev, respectively, as
a function of the number of coefficients Nx in the field direction.
The errors δU0ðρÞ and δρ0=ρ0 decrease exponentially. For the
error of u0ð~ρÞ at t ¼ −10, one can see a plateau which is due to
the condition of the differential equation. This indicates that the
solution is accurate to almost machine precision.

J. BORCHARDT and B. KNORR PHYSICAL REVIEW D 94, 025027 (2016)

025027-4



with a small deviation from it. To obtain an error of about
∼10−11 at t ¼ −10, one can allow for a deviation of 10−18

for the constant term, and 10−16 for the linear term, which is
about the order of magnitude that we can resolve with long
double. This example indicates how carefully time inte-
gration has to be done for staying close to the original
trajectory. On the other hand, it shows that we have
integrated out the flow close to machine precision over
many orders of magnitude for Nx ≳ 60. This fact is
supported by the exponential convergence till ∼10−18 of
the coefficients.
For the IR flow, the decrease of the error is slower, but

still tends to the lower bound ∼10−11 for a large number of
coefficients. The error is now dominated by the truncation
error of the expansion of the potential in field direction
since convexity starts to set in. From the asymptotic
decrease of the last coefficients for Nx ≳ 60, we obtain a
measure for the truncation error which agrees very well
with the errors depicted in Fig. 2. It is based on an estimate
for the sum over the neglected coefficients. In order to
achieve machine precision, more coefficients are needed.
We conclude that in a large part of theory space, the

pseudospectral flow is highly efficient, and we generically
observe exponential convergence for an increasing number
of Chebyshev coefficients. Therefore, we concentrate in the
following on the most challenging part of theory space
involving the buildup of nonanalyticities, the first adum-
bration of which we just started to discuss.

B. Flows for d = 3 and N = 1, 4

In the spontaneously symmetry broken phase, the
effective potential is nonconvex for all intermediate scales
k > 0. On the other hand, it is known that the effective
potential has to be convex at k ¼ 0 even in the LPA [3,99].
While the outer region already is convex, the inner region
becomes flat during the IR flow. Since the radial mass does
not vanish for N ¼ 1, the curvature jumps at the vev at

k ¼ 0. By contrast for N > 1, the influence of Goldstone
bosons partly suppresses this nonanalyticity. The propa-
gators ∝ ð1þ u0ð~ρÞÞ−1 and ∝ ð1þ u0ð~ρÞ þ 2~ρu00ð~ρÞÞ−1
flow towards the singularity for small ~ρ, pushing the
convexity mechanism forward.
We picked out two particular values for N, namely

N ¼ 1 and N ¼ 4. The following calculations are done
with the dimensional version of (11) since we choose the
initial condition to be far from criticality, U0

ΛðρÞ ¼
−0.1þ 0.5ρ, at k ¼ Λ. It is convenient to use the loga-
rithmic time scale t instead of k. After a few orders of
magnitude, dimensional scaling can be observed.
Figure 3 depicts the evolution of U0ðρÞ for N ¼ 1 and

N ¼ 4, from large to small scales. The approach to
convexity is clearly visible. The buildup of the corre-
sponding nonanalyticity can be monitored over a range of
scales, especially for N ¼ 4. As U0ðρÞ for N ¼ 1 has an
edge at ρ0 at k ¼ 0 where U00ðρ0Þ jumps, the flow is
numerically much harder to track and finally breaks down
earlier. The reason is as follows: exponential convergence
of the coefficients is only guaranteed if the function is
analytical. For k ¼ Λ, the convergence of the coefficients
in the field direction is very fast. Plateaus that build up
for higher order coefficients are on the level of the
machine precision. However, for low scales k, the
requirement for exponential convergence is not fulfilled
anymore. Thus, we observe a slower convergence of the
coefficients till it breaks down. Although this problem
cannot be avoided completely, there are two possibilities
for improvement: on the one hand, one can simply take
more coefficients. This will not cure the problem com-
pletely since the convergence becomes too slow and
finally, an unacceptably large number of coefficients is
needed. On the other hand, one can choose the domains
in such a way that the nonanalyticity lies close to the
boundary of two neighboring domains. For that reason,
we have used 24 and 16 domains for N ¼ 1 and N ¼ 4,
respectively. The high accuracy of pseudospectral

FIG. 3. Evolution ofU0ðρÞ from blue (bottom) to orange (top) for N ¼ 1 (left panel; t ¼ 0;−0.5;−1;−1.5;−1.7;−2;−2.1) and N ¼ 4
(right panel; t ¼ 0;−0.5;−1;−2;−3;−4;−5;−13). Convexity is seen in the flattening of U0ðρÞ for small fields ρ < ρ0. Whereas U00ðρÞ
is still continuous for N ¼ 4, in the single scalar case a jump occurs.
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methods prevents the flow to jump over the singularity of
the propagator for a long time. Figure 4 shows how the
flow approaches the singular point. Due to the reasons
given above, for N ¼ 4 we get closer to u0ð0Þ ¼ −1 in
comparison to N ¼ 1.
We have shown that pseudospectral methods can also be

applied to numerically challenging problems, such as
convexity. Let us emphasize that the convergence of the
expansion coefficients is strongly connected to the proper-
ties of the solution. Therefore, it is not surprising that the
numerical effort increases the closer the singularity is
approached. In contrast to other approaches adjusted to
tackle convexity issues [76,85], we again point out that
pseudospectral methods have a striking advantage: the error
is controllable by the convergence pattern of the expansion
coefficients, which was especially demonstrated in the
previous section. Furthermore, if only IR quantities are
of interest, e.g., the vev, they can be inferred from the flow

before convexity becomes challenging. We obtain ρ0 ¼
0.183 for N ¼ 1 and ρ0 ¼ 0.130 for N ¼ 4 and the radial
mass m2

R ¼ 2ρ0U00ðρ0Þ ¼ 0.168 for N ¼ 1. It is worth
mentioning that the vev for N ¼ 4 deviates by 2% from
the vev derived from the analytical large N solution. That
indicates that the large N limit already is a proper
approximation for the N ¼ 4 case.
Let us make a comment on first order phase transitions.

In contrast to continuous phase transitions, the order
parameter, i.e. the vev, jumps. For all quantities whose
flow depends on the order parameter, for example the
anomalous dimension, one should adapt the domain
decomposition in time direction such that the jump is
exactly on the boundary between two domains, as was done
in [61].
Finally, note that pseudospectral methods are easily

extendable to higher truncations, e.g., taking a field-
dependent wave function renormalization or p4 operators
into account [60].

C. Flow between two criticalities for N = 1

In the previous section, we have investigated flows far
from criticality. However, for d < 4, nontrivial fixed points
occur. The first one is the well-known Wilson-Fisher fixed
point. Lowering the dimension further, multicritical fixed
points emerge at certain critical dimensions dc;i¼2i=ði−1Þ
for i ≥ 3. This is discussed in [9,13,100] in detail. In [59]
global solutions of the first four fixed point potentials for
d ¼ 2.4 are given. Now, we take a closer look at the first
two fixed points, the Wilson-Fisher fixed point among
them, in d ¼ 2.4. We are interested in a trajectory con-
necting both (separatrix). Therefore, we start at the tricrit-
ical fixed point with a small deviation constructed from a
linear combination of its relevant eigenperturbations. For
our calculations we employ (11) and (12) with the wave

FIG. 4. u0ð0Þ approaches the singularity −1 for t → −∞. Due to
the stronger nonanalyticity in the single scalar case, the numeri-
cally computed flow ceases to exist earlier.

FIG. 5. Flow between two criticalities. (Left panel) Flow from the tricritical fixed point potential (blue) to the Wilson-Fisher potential
(orange), t ∈ ½0;−25�. The fixed point potential computed from the fixed point equation are depicted as well (black). (Right panel) Flow
of the anomalous dimension η, the vev and u0ð0Þ. The grey dashed lines denote the values of the Wilson-Fisher fixed point solution
obtained from solving the fixed point equation.
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function renormalization being scale dependent. As initial
conditions we use the results of [59].
For approaching theWilson-Fisher fixed point during the

flow, we have to fine-tune the linear combination of both
relevant directions of the tricritical fixed point. The
perturbation is mainly along the second relevant (sublead-
ing) direction. The flow strongly depends on the numerical
parameters. This is not surprising since small perturbations
in the relevant direction may lead to large deviations during
the flow as already seen for the large N case. Figure 5
shows the deformation of the potential u0ð~ρÞ from the
tricritical fixed point to the Wilson-Fisher fixed point
during the flow. The inner minimum of the tricritical fixed
point potential disappears. In the right panel the anomalous
dimension, the vev, and u0ð0Þ are plotted over the loga-
rithmic scale. Whereas all quantities and the potential itself
stay at the tricritical fixed point for many orders of
magnitude, they finally approach the Wilson-Fisher fixed
point. This can be seen from the plateaus at −17≳ t≳ −25.
The relevant direction becomes irrelevant at the Wilson-
Fisher fixed point. Finally, the flow carries the critical
behavior of the Wilson-Fisher fixed point although we have
started at the tricritical fixed point. We emphasize that for
such flows a very stable numerical method is indispensable
for which pseudospectral methods are well suited.

V. QUANTUM MECHANICS WITH A
BOUNDED POTENTIAL

In this section we present results on the energies of the
ground and first excited states of a selection of three
quantum-mechanical potentials obtained by solving the
flow equation for the derivative of the effective potential.
This is specifically suited to test our methods, as a direct
comparison with other methods and the exact answer is
possible, and in the FRG framework, an extension to
quantum field theory is straightforward.
In particular, we will focus on potentials that are bounded

from both below and above. Physically, such potentials are
interesting, e.g., in the context of Higgs inflation [101].
Technically, the flows of such potentials necessitate a global
resolution—if the flow of only a finite region in x is
considered, one encounters boundary effects that destabilize
the flow. To put the results in perspective, we will compare
them with the (numerically) exact values, as well as values
obtained from various analytic approximations.

A. Models

We will consider three different potentials. As a first
example, we will treat

UðxÞ ¼ 2

π
arctanðx2Þ: ð14Þ

This potential carries no additional special properties
besides the boundedness. We include it, because one can

solve the flow in a large N approximation exactly and
explicitly for this potential. As a second potential, we
choose a modified version of the well-known Pöschl-Teller
potential,

UðxÞ ¼ λð1þ λÞ
2

�
1 −

1

cosh2ðλxÞ
�
: ð15Þ

For this potential, the Schrödinger equation can be solved
exactly, and all bound states and their corresponding
energies are known [102]. In this work, we will specify
to the case λ ¼ 1. The Pöschl-Teller potential is also
interesting from another point of view: it is reflectionless
for λ ∈ N, so waves are transmitted completely through the
well. Lastly, we shall investigate the influence of non-
analyticities by studying the potential

UðxÞ ¼ e−1=x
2

: ð16Þ

All potentials are normalized such that they go to 1 when
the argument goes to infinity, and vanish at their mini-
mum x ¼ 0.

B. Exact results

Here we present the (partly numerically) exact solutions
for the ground state and the first excited state (if it exists)
for all potentials by solving the Schrödinger equation (in
natural units),

−
1

2
Ψ00ðxÞ þUðxÞΨðxÞ ¼ EΨðxÞ: ð17Þ

For the Pöschl-Teller potential with λ ¼ 1, there is only
one bound state,

Ψ0ðxÞ ¼
1

coshðxÞ ; E0 ¼ 1=2: ð18Þ

For the other potentials, we apply pseudospectral meth-
ods along the lines of [59] to obtain the first two bound
states. For the potential (14), the ground state energy, E0,
and the energy gap, ΔE ¼ E1 − E0, are

E0 ¼ 0.448004; ΔE ¼ 0.509453: ð19Þ

On the other hand, for the nonanalytic potential (16), we get

E0 ¼ 0.356644; ΔE ¼ 0.542040: ð20Þ

All energies and their corresponding wave functions were
determined with an accuracy of at least 10−20, however
there is no need to display more figures in order to discuss
all subsequent results.
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C. WKB approximation

In order to assess the following results, we compare them
with the WKB approximation. The formula for the
approximated energy levels reads

Z
x0

−x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEn −UðxÞÞ

p
¼

�
nþ 1

2

�
π; ð21Þ

where x0 is the classical turning point, Uðx0Þ ¼
Uð−x0Þ ¼ En. The index n counts the energy level.
Evaluating (21) for each model, we obtain for the first
potential, (14),

E0 ≈ 0.520; E1 ≈ 0.955; ΔE ≈ 0.435: ð22Þ

For the Pöschl-Teller potential, (15), the ground state
energy is

E0 ≈ 0.582: ð23Þ

Finally for the last potential, (16), we have

E0 ≈ 0.405; E1 ≈ 0.905; ΔE ≈ 0.500: ð24Þ

It is remarkable that E1 deviates less than 1% from the exact
value, whereas E0 is off by 13%–16%. This is to be
expected, since the WKB approximation works well in the
semiclassical limit λ ≪ 2x0, where λ=2 is the distance
between two knots of the wave function. This translates
into the condition n ≫ 1.

D. One-loop approximation

As a further step to put subsequent results in perspective,
we perform a one-loop calculation. The one-loop effective
potential reads

U1-loopðxÞ ¼ UclðxÞ þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
U00

clðxÞ
q

; ð25Þ

which can for example be obtained directly from the flow
equation (9) by setting the potential on the right-hand
side equal to the classical potential Ucl. The ground state
energy is given by the value of the effective potential at
its minimum (here in all cases x ¼ 0), whereas the energy
gap is the square root of the curvature of it, also
evaluated at the minimum. One thus obtains for the first
potential, (14),

E0 ¼
1ffiffiffi
π

p ≈ 0.564; ΔE ¼ 2ffiffiffi
π

p ≈ 1.128: ð26Þ

The ground state energy comes out more or less well for
such a simple calculation, but the one-loop result predicts
that there are no further bound states, as the energy gap is
too large.

For the Pöschl-Teller potential, the one-loop result is

E0 ¼
1ffiffiffi
2

p ≈ 0.707; ΔE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 −

ffiffiffi
2

p
Þ

q
≈ 0.910i:

ð27Þ
The convexity of the effective potential is not caught by a
one-loop calculation, and accordingly, the energy gap is
imaginary. This phenomenon is well known to be an artifact
of the loop expansion, and extensively discussed in, e.g.,
[103,104]. The ground state energy is off by about 40%.
Finally, for the nonanalytic potential (16), no meaningful

one-loop analysis can be done. In fact, any order in
perturbation theory fails to produce anything nonzero for
the energy levels because of the nonanalyticity.

E. Flow of the effective potential

This section is devoted to the numerical study of the actual
flow equation for the effective potential. All investigations
are done within a LPA where Z≡ 1. Note that in quantum
mechanics no renormalization is needed. Therefore, the
initial condition can be put at k ¼ Λ → ∞. To cover the
whole interval k ∈ ½0;∞Þ the time direction is compactified
analogously to (4). As in the previous section, for reasons of
numerical stability, we actually use the flow equation for the
derivative of the effective potential U0ðρÞ ¼ ∂ρUðρÞ, and
obtain the ground state energy by an additional integration.
The flow equation reads

∂kU0ðρÞ ¼ −AkB
3U00ðρÞ þ 2ρU000ðρÞ

ðk2 þU0ðρÞ þ 2ρU00ðρÞÞC ; ð28Þ

where A ¼ 1=π, B ¼ C ¼ 2 for the linear optimized regu-
lator [Rkðp2Þ ¼ ðk2 − p2Þθðk2 − p2Þ] and A ¼ 1=4, B ¼ 1,
andC ¼ 3=2 for the Callan-Symanzik cutoff [Rkðp2Þ ¼ k2].
We will first point out some expectations on the outcome

of the flow, followed by the discussion of the actual results
of the flow. An overview of all results can be found in
Table I.

1. Expectations

The effective potential needs to be convex at k ¼ 0
(except in particular cases, see the discussion in the next
section). It is immediately clear that any bounded function
that is not constant cannot be convex. It follows that if we
could integrate the flow equations down to k ¼ 0, we would
end up with a constant potential, and the constant is exactly
the ground state energy. One can prove this by considering
an alternative definition of the effective potential [105],

Uðx̄Þ ¼ inf
Ψ∶hxi¼x̄

hHi; ð29Þ

that is, the effective potential at a point x̄ is given by the
infimum of the Hamiltonian over all states with the position
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expectation value x̄. Exhaustive discussions of the effective
potential in quantum field theory can be found in, e.g.,
[105–108]. Our naive expectation on the flow is therefore
that we can hope to find the ground state energy, but
probably not the energy of the first excited state.
Surprisingly, it turns out that one can extract some estimate
of the excited state energy from the flow.

2. Numerical results

As an exemplary case, we display the numerical results
from solving the flow equation for the nonanalytical
potential (16). The other two potentials pose no further
challenges and show the same qualitative behavior.

In Fig. 6, the effective potential at x ¼ 0 as a function of
the scale k is depicted, for both the Callan-Symanzik and
the optimized regulator. It corresponds to the effective
ground state energy at scale k. The horizontal dashed line
indicates the exact value obtained from the Schrödinger
equation. For technical reasons, we cannot integrate down
to k ¼ 0, but only to a finite value, indicated by the vertical
dashed line. From there on, we extrapolate linearly to get an
estimate of the true ground state energy. For both regu-
lators, we get very precise estimates for the ground state
energy. Generically, the optimized regulator gives slightly
superior results for E0.
Next, we shall discuss the results on the energy gap. As

argued above, in principle we should not expect to get any
meaningful estimate from the effective potential. There is
however a loophole in the above argument: it is based on
the effective potential at scale k ¼ 0, when all fluctuations
are integrated out. When we consider the flow of the
effective potential, we can extract further information, as
the scale k is roughly the (inverse) scale of a finite box that
the system lives in, giving an effective cutoff to the physics.
In this sense, we can indeed extract information on the
energy gap, roughly when the scale is large enough to
resolve the wave function of the first excited state, but small
enough not to be too strongly influenced by the next-higher
states. Bearing this in mind, we shall discuss the first
derivative of the flowing potential, again at vanishing
position, which gives the effective energy gap at scale
k [109],

ΔE ¼
ffiffiffiffiffiffiffiffiffiffiffi
U0ðρÞ

p
jρ¼0: ð30Þ

It is shown in Fig. 7, again for both regulators. Remarkably,
in both cases again, we get quite a good estimate of the true
energy gap, however the finer details are more complicated.
For the Callan-Symanzik regulator, we can already see the

TABLE I. Overview of exact results from solving the Schrö-
dinger equation and results obtained from the flow of the
potential for all three potentials. CS and opt indicate that the
Callan-Symanzik and the optimized regulator were employed,
respectively.

VðxÞ ¼ 2=π arctanðx2Þ
Exact CS Opt

E0 0.448004 0.445 0.447
ΔE 0.509453 0.477 0.558

VðxÞ ¼ 1 − 1=cosh2ðxÞ
Exact CS Opt

E0 1=2 0.496 0.499
ΔE � � � 0.464 0.585

VðxÞ ¼ expð−1=x2Þ
Exact CS Opt

E0 0.356644 0.355 0.356
ΔE 0.542040 0.515 0.570

FIG. 6. Flow of the effective potential at vanishing position, which gives the effective ground state energy at scale k, Ek, for both the
Callan-Symanzik (left panel) and the optimized (right panel) regulator. The horizontal dashed line indicates the exact value of the ground
state energy, whereas the vertical line indicates the value up to which the numerical integration could be done. The orange dashed line is
the extrapolation of our numerical values, given in blue. In both cases, the ground state energy is obtained at surprisingly high accuracy.
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influence of convexity, as the derivative of the effective
potential bends towards zero. This is not the case for the
optimized regulator yet. Correspondingly, the optimized
regulator overestimates the energy gap, whereas the esti-
mate from the Callan-Symanzik regulator is below the true
value. This behavior is also observed for the other poten-
tials, and influences the prediction of the number of bound
states. In this respect, the optimized regulator erroneously
predicts only one bound state for the potential (14). On the
other hand, the Callan-Symanzik regulator predicts a
second bound state for the Pöschl-Teller potential (15).
Either way, any prediction for the energy gap from the flow
should be taken with a grain of salt, as convexity has to set
in at some point, and also the extrapolation introduces
further errors. Presumably one should read off the energy

gap at some finite value of the scale, at which the first
excited state is completely resolved, however we found no
a priori argument on how to set this scale.
In Fig. 8, we depict the actual flow of the derivative of the

effective potential, obtained with the Callan-Symanzik
regulator. One can see that the nonanalyticity of the classical
potential is smoothed out quickly. For small scales k, one can
also see the tendency of the derivative of the effective
potential to flow to zero, as it must due to convexity. In
contrast to unbounded potentials, where convexity is
numerically challenging near the origin, the numerical
problems here arise for large values of the position, which
makes it increasingly difficult to resolve the flow.

F. Large N approximation

As a final point, we shall study the potential (14) in the
limit of infinitely many dimensions, similar to a large N
approximation in the OðNÞ model. This means specifically
that the index a in (10) counts the space coordinates, and
we allow it to run from 1 to N, sending N → ∞. In this
case, the flow equation can be solved implicitly by the
method of characteristics [92]. In the case of the potential
(14), the implicit relation x ¼ xðUÞ can be inverted,
delivering the full effective potential. It is given by

UðxÞ ¼ −πx2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πð1þ x4Þ − π2

p
8πð1þ x4Þ

þ 2

π

�
arctanðx2Þ þ arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

16ð1þ x4Þ − π

r ��
:

ð31Þ
Notably, the large N effective potential is not convex. This
seeming paradox has the following reason. Convexity is
tied to the condition that the propagator avoids a singularity
for negative U00ðxÞ which appears in the equivalent of the

FIG. 7. Flow of the derivative of the effective potential at vanishing position, which gives the effective energy gap at scale k, ΔEk, for
both the Callan-Symanzik (left panel) and the optimized (right panel) regulator. The horizontal dashed line indicates the exact value of
the energy gap, whereas the vertical line indicates the value up to which the numerical integration could be done. The orange dashed line
is the extrapolation of our numerical values, given in blue. The energy gap comes out quite well in both cases.

FIG. 8. Flow of the derivative of the effective potential for the
Callan-Symanzik regulator. One can see that the nonanalyticity of
the classical potential quickly smooths out. Convexity problems
for small scales arise for large values of the position, in contrast to
conventional unbounded potentials.
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radial mode propagator. In the large N approximation,
however, only the equivalent of the Goldstone mode
propagator survives, and for it to be finite, it is enough
that U0ðρÞ≡U0ðxÞ=x is non-negative. This is indeed the
case for the solution given above. A plot of both the
classical and the effective potential is given in Fig. 9.

VI. SUMMARY

We extended the ideas from previous work on functional
fixed point equations to also solve functional flow equa-
tions to high accuracy. We first discussed flows of the OðNÞ
model in three dimensions, for N ¼ 1, 4 and in the large N
limit. In all cases, we could achieve a highly stable and
precise flow. We showed that our method can accomplish
the time integration to machine precision, and always stays

very close to the analytical solution exactly known in the
large N limit. The error in this case is dominated by the
condition of the differential equation. Even for numeri-
cally challenging tasks, as resolving the convexity of the
effective potential in the IR, the flow was traceable for 6
orders of magnitude for N ¼ 4, and about 2 orders of
magnitude for N ¼ 1. Then, we calculated the flow along
a separatrix from the first multicritical fixed point to the
Wilson-Fisher fixed point in d ¼ 2.4, for which almost 13
orders of magnitude were integrated out at high precision.
As a second model, we treated a set of bounded potentials
in d ¼ 1, which are reminiscent to potentials in a quantum
field theory context such as Higgs inflation. Technically,
they are interesting because they need global resolution
for a numerically stable flow. For the three potentials that
we discussed, we extracted the ground state and first
excited state energies in a LPA truncation to satisfying
accuracy, even though one might have expected from
analytic arguments that the determination of the first
excited state energy was not possible from the effective
potential alone. Finally, nonanalyticities also pose no
problem to our method, in contrast to expansions in
powers of the field.
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