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In this paper, we study the RG flow in the nonlinear sigma models obtained from a 2D N ¼ ð0; 2Þ
supersymmetric QCD. The sigma model is parametrized by a single Kahler modulus. We determine its
exact nonperturbative beta function using holomorphy, triality and the knowledge of the infrared fixed
point.
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I. PICTURE OF THE RG FLOW IN (0, 2)
GAUGE THEORIES

A distinctive feature of the two dimensional N ¼ ð0; 2Þ
supersymmetric theories is that they are chiral. As a result
its global symmetries generically have nonvanishing ’t
Hooft anomalies. The anomaly matching argument sug-
gests that the low energy theory consists of the gapless
modes (that contribute to the ’t Hooft anomalies in the
infrared). Their autonomous physics is described by a
conformal field theory. On the other hand, the gauge
coupling in two dimensions is a relevant deformation with
mass dimension 1. These two statements together imply
that (0, 2) gauge theories admit nontrivial renormalization
group flows to conformal fixed points. In fact, in most cases
the RG flow naturally splits into two stages. In the first
stage, the gauge coupling and other dimensionful param-
eters flow rapidly to infinity. A good description towards
the end of this phase is in terms of a nonlinear sigma model.
The second stage of the RG flow takes place in the Kahler
and complex structure moduli space of the sigma model.
Because these moduli are classically dimensionless, the RG
flow is logarithmic at one loop. Eventually it takes the
theory to a conformal fixed point. In certain special cases,
the conformal field theory may have exactly marginal
directions but we will not study such examples in this
paper.
In [1], it was discovered that a large class of (0, 2)

theories exhibit low energy dualities similar to the Seiberg
duality of the four dimensional N ¼ 1 supersymmetric
theories. Moreover, the end point of their RG flow was
identified in [2], in terms of an explicit conformal field
theory. In this paper, we will obtain an exact nonperturba-
tive description of the second stage of this RG flow, i.e. of
the RG flow in the associated nonlinear sigma model.
A prototypical theory belonging to this class is the (0, 2)

supersymmetric QCD: A UðNcÞ gauge theory coupled to
fundamental matter multiplets. We summarize the matter
field content and their transformation properties under
gauge and global symmetries in Table I. Here Φ and P
are chiral multiplets while Ψ and Γ are Fermi multiplets.

The cancellation of the SUðNcÞ gauge anomaly determines
Nc ¼ ðN1 þ N2 − N3Þ=2. In order to cancel the anomaly of
the Uð1Þ factor, we also add two Fermi multiplets Ω with
þ1 charge under the gauge group Uð1Þ.
In addition to the gauge interaction, the theory has a

holomorphic J-term superpotential

m
Z

dθΓs
aΦs

αPα
a þ t

Z
dθtrΛ:

Here Λ is the gaugino Fermi multiplet. The first term leads
to a Yukawa interaction as well as a quartic interaction for
scalar fields and the second term is the complexified Fayet-
Illiopolous (FI) coupling. Taking t ≔ iζ þ θ=2π, the FI
coupling appears in the component Lagrangian as

ζ

Z
d2x trDþ θ

2π

Z
tr F:

Due to the periodicity of the θ angle, it is more convenient
to use the exponentiated variable z ≔ e2πit. We label this
theory T gauge½gYM; m; z�.
The most convenient description of this (0, 2) super-

symmetric QCD depends on the energy scale at which it is
being studied. The couplings gYM and m have mass
dimension 1 while t is classically marginal. As pointed
out earlier, during the first stage of the renormalization
group flow, the classically relevant couplings flow rapidly
to infinity. By the end of this flow, the convenient
description of the theory is in terms of a nonlinear sigma
model. The holomorphic parameter z is the exponentiated
Kahler modulus of the sigma model. As we will see shortly,

TABLE I. Field content of the (0, 2) SQCD.

Φ Ψ P Γ Labels

UðNcÞ □ □̄ □̄ 1 α, β, γ
SUðN1Þ 1 1 □ □̄ a, b, c
SUðN2Þ □̄ 1 1 □ r, s, t
SUðN3Þ 1 □ 1 1 i, j, k
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this the only modulus of the sigma model. The next phase
of the RG flow takes place in this space. Let us denote the
point at which the flow terminates as z�. This is the
conformal fixed point identified in [2]. The picture of
the RG flow is

T gauge½g;m; z� →
RG flow

gYM;m→∞
T ½z� →

RG flow

z→z�
T CFT:

We have used the notation T ½z� to denote the sigma model
with the exponentiated Kahler modulus z. In this paper we
will be studying the second phase of the RG flow in a
holomorphic renormalization scheme, i.e. in a scheme that
respects the holomorphy of the Kahler modulus.
In [1], it was suggested, using the superconformal index,

that the supersymmetry is broken unless N1, N2 and N3

satisfy triangle inequality. In what follows, until otherwise
mentioned, we will assume that N1, N2 and N3 do obey
triangle inequality and hence that the supersymmetry is
preserved.
The target space of the (0, 2) nonlinear sigma model is a

holomorphic vector bundle E → M over a Kahler manifold
M. Anomaly cancellation requires ch2ðEÞ ¼ ch2ðTMÞ. For
the case at hand, the target space of the sigma model is the
vacuum manifold of the gauge theory. It is obtained by
solving the D-term and “J-term” constraints modulo gauge
symmetry action,

Pa
αP̄

β
a − Φβ

sΦ̄s
α − ζδβα ¼ 0

Pa
αΦα

s ¼ 0:

They imply Φ ¼ 0 (respectively P ¼ 0) for ζ > 0 (respec-
tively ζ < 0). Dividing by the UðNcÞ gauge group, we get
the space GrðNc; N1Þ. The Fermi fields engineer fibers of
the holomorphic vector bundle. As the fieldΨ transforms in
the fundamental representation of the gauge group, it forms
a fiber of the universal subbundle (tautological bundle) S.
The field Γ is neutral but it satisfies the J-term relation

Γs
aPa

α ¼ 0:

Therefore, Γ furnish a fiber of the universal quotient bundle
(orthogonal bundle) Q, which is defined through the short
exact sequence:

0 → S → ON1 → Q → 0:

All in all, for ζ > 0, the gauge theory T guage flows to the
nonlinear sigma model with the target space,

S⊕N3 ⊕ Q⊕N2 → GrðNc; N1Þ: ð1Þ

For ζ < 0, theD-term equation gives vev only toΦ. Similar
arguments lead to the target space S�⊕N3 ⊕ Q�⊕N1 →
GrðNc; N2Þ.

II. CHARGE CONJUGATION

Theories with (0, 2) supersymmetry are generically not
charge conjugation invariant. The action of charge con-
jugation on T gauge replaces representations of all the fields
by their complex conjugates. In the resulting sigma model,
N1 and N2 are exchanged and the fibers of the holomorphic
vector bundle are complex conjugated. From the discussion
in the previous section, we see that this is the same sigma
model that is obtained by changing the sign of ζ.
Analogous to the spurion analysis in four dimensional
N ¼ 1 supersymmetric theories, the complexified FI
parameter t can be thought of as the background value
of a chiral superfield. All the transformations therefore
should be written in a way that preserves the holomorphy of
t. This implies that the charge conjugation C is imple-
mented at the level of the sigma model as z → 1=z,

C · T ½z� ¼ T ½1=z�: ð2Þ

As a result the sigma model physics should be invariant
under the simultaneous exchange N1 ↔ N2, z ↔ 1=z.
In [2], it was proposed that the microscopic theory flows

to one of the two possible conformal fixed points that are
related to each other by charge conjugation. Because the
renormalization group flow commutes with charge con-
jugation, it follows that if the theory T ½z� flows to the fixed
point at z� then the theory T ½1=z� should flow to the charge
conjugate fixed point. Moreover, from Eq. (2) we see that
this other fixed point is at 1=z�. This discussion implies that
the FI parameter space is divided into two regions accord-
ing to their attractors and the regions are mapped into each
other by z → 1=z.

III. CONSEQUENCE OF TRIALITY

Let T 0 and T 00 be the theories obtained from T by cyclic
permutation of fN1; N2; N3g. We denote their labels by z0
and z00 respectively. It was argued in [1] that all three
theories flow to the same fixed point (modulo charge
conjugation), i.e. we have the isomorphism

T ½z�� ≅ T 0½z0�� ≅ T 00½z00��:

Moreover, thanks to the equivalence relations,

S → Grðk; nÞ ∼Q� → Grðn − k; nÞ;
Q → Grðk; nÞ ∼ S� → Grðn − k; nÞ;

we have further isomorphisms

T ½∞� ≅ T 0½0�; T 0½∞� ≅ T 00½0�; T 00½∞� ≅ T ½0�:

This identification effectively glues together the Kahler
moduli spaces of all three Grassmannians. Alternatively, it
means that in the Kahler moduli space of the sigma model
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there are three points with distinct large volume descrip-
tions. This seems to be a novel phenomenon.
The moduli space admits three patches of coordinates

fz; z0; z00g useful for describing each of the three pairs. This
leads to a qualitative picture of the Kahler moduli space
drawn in Fig. 1. Consider the transition map fðzÞ between
different coordinate patches such that T ½z� ≅ T 0½fðzÞ� ≅
T 00½f2ðzÞ� for all points in the z plane. The complexified
Fayet-Illiopolous parameter is the background value of a
nondynamical chiral multiplet, we expect the map to
respect its holomorphy. We also expect the map to be
bijective with the property f3ðzÞ ¼ z. The only function
(up to coordinate normalization) having all the desired
properties is

fðzÞ ¼ 1

1 − z
: ð3Þ

Here we have normalized the coordinates such that
T 0½∞� ≅ T ½1� and so on. The ambiguity in the normali-
zation can be restored by substituting z by z=z0. We will
take z0 ¼ 1 to avoid the clutter. We will see later that it is
indeed the correct normalization.
The physics of the sigma model should be consistent

with the triality transformation. In particular, the flow
equation should be invariant under the simultaneous
operation z → fðzÞ and N1 → N2 → N3 → N1.

IV. HOLOMORPHIC BETA FUNCTION

The Fayet-Illiopolous parameter t is classically marginal
but it does run quantum mechanically. At leading order, its
beta function receives a contribution at one-loop via the
tadpole diagram, shown in Fig. 2. The D term only couples

to the scale fields. For ζ > 0, P gets a vacuum expectation
value. Due to this and the J-term interaction m

R
ΓΦP, the

scalar field Φ becomes parametrically massive. As a result,
the contribution of Φ to the loop integral are parametrically
suppressed. The only fields running in the loop are P. The
leading order beta function is

dt
d logΛ

¼ N1

2π
: ð4Þ

The same leading order result is obtained from the sigma
model perturbation theory. This confirms our argument
about Φ becoming parametrically massive in the super-
symmetric vacuum.
The beta function does receive contribution due to

nonperturbative effects in t. These are the so-called
world-sheet instantons in the sigma model or equivalently,
the vortex configurations in the gauge theory. The non-
perturbative contributions vanish in the large volume limit
of the sigma model, i.e. in the limit ζ → ∞ (z → 0). Then
the one-loop beta function (4) is a good approximation. It is
convenient to rephrase the perturbative beta function as a
one-form valued constraint on the exact holomorphic beta
function

id logΛ⟶
z⟶0 1

N1

dz
z
: ð5Þ

A similar analysis in the z → ∞ limit yields

id logΛ⟶
z⟶∞ −

1

N2

dz
z
: ð6Þ

Indeed the limits are invariant under the simultaneous
exchange N1;↔ N2; z ↔ 1=z as expected. Recall that
the z → ∞ limit of theory T is identical to the z0 → 0
limit of theory T 0. Moreover, the z0 → ∞ limit of theory T 0
is identical to the z → 1 limit of theory T . In this limit, the
one-loop beta function, computed in the z0 variable, follows
the same analysis as before:

id logΛ ⟶
z0⟶∞

−
1

N3

dz0

z0
: ð7Þ

Using the triality transformation (3), we can rewrite this as

id logΛ⟶
z⟶1 1

N3

dz
z − 1

: ð8Þ

FIG. 1. Parameter space of the exponentiated FI parameter z
and its various limits. The arrows denote the qualitative expect-
ation for the RG flow with a similar set of arrows on the “back
side”.

FIG. 2. Running of the FI parameter at one-loop in gYM.
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The three limits, Eqs. (5), (6) and (8), serve as the basis for
fixing the exact holomorphic beta function. We see that the
differential id logΛ has poles at z ¼ 0, ∞ and 1 with
residues 1

N1
, 1

N2
and 1

N3
respectively. The poles of the

id logΛ are the zeros of the beta function. The ones listed
above correspond to the large volume limits of the sigma
model and hence to the UV fixed points for the RG flow of
z. As discussed earlier, in addition to the three UV fixed
points, the only other fixed points are the two infrared fixed
points. They are at z� and 1=z�. Because the total residue on
the complex plane has to be zero, the sum of the residues at
the IR fixed points must be −

P
3
i¼1

1
Ni. The exact beta

function has the form

id logΛ ¼ 1

N1

dz
z
þ 1

N3

dz
z − 1

−
�
1

2

X3
i¼1

1

Ni
þ a

�
dz

z − z�

−
�
1

2

X3
i¼1

1

Ni
− a

�
dz

z − 1=z�

þ possible higher order singularities at z�
and 1=z�: ð9Þ

We can restore the ambiguity in the normalization by
substituting z by z=z0. Using the invariance of the beta
function under z → 1=z, N1 ↔ N2, we see that z0 has to be
1. It also determines a ¼ 0. The infrared fixed point z�
is fixed by requiring consistency with triality, i.e.
invariance under the simultaneous operation z → fðzÞ
and N1 → N2 → N3 → N1. We see that it has to be the
fixed point of the map fðzÞ. Solving z� ¼ fðz�Þ we get
z� ¼ e

iπ
3 . Happily the other fixed point is 1=z� as desired.

Together, these two constraints also imply that the higher
order singularities are absent. Although we have checked
these facts for some special ansatz, it would be nice to
obtain a rigorous proof. With these conditions the exact
beta function becomes

dz
d logΛ

¼ i

�
1

N1

1

z
þ 1

N3

1

z − 1
−
X3
i¼1

1

Ni

z − 1
2

z2 − zþ 1

�
−1
:

The exact formula can be expanded to read off the
perturbative and nonperturbative corrections. The nonper-
turbative configuration with k vortices contributes a term
proportional to zk:

dt
d logΛ

¼ N1

2π
−

1

4π

�
N1 þ

N1

N2

−
N1

N3

�
zþ � � � : ð10Þ

We see that there are no higher-loop perturbative
corrections.
We have plotted the flow lines of the renormalization

group for N1 ¼ N2 ¼ N3 in Fig. 3. They agree with our
qualitative expectation from Fig. 1.

V. THEORIES DUAL TO FREE FERMIONS

Let us analyze the case when one of the triangle
inequalities of fN1; N2; N3g is saturated, say N2 þ N3 ¼
N1. Then theory T 0 has a trivial gauge group and thus
consists of only free Fermi multiplets. Naturally, there is no
FI parameter ζ0 associated with it. However, the ζ → 0 limit
of the theory T is still a Grassmannian nonlinear sigma
model. In fact, that is the only large volume point in its
Kahler moduli space. This changes the previous analysis.
Now we have only one UV fixed point and only one IR
fixed point, i.e. free left-moving fermions. The residue of
the pole of id logΛ at z → 0 is 1=N1. The residue at the
only other pole, at z → ∞, has to be −1=N1. Thus the exact
beta function is

dz
d logΛ

¼ iN1z: ð11Þ

Curiously, it seems that the beta function does not receive
any nonperturbative corrections.
In the case where the triangle inequality of Ni ’s is not

obeyed the supersymmetry is broken. The IR fixed point
theory or even the number of possible IR fixed points is not
known. This prevents us from carrying out a similar
analysis in this case.

VI. DISCUSSION

In two dimensions the renormalization group flow is a
gradient flow with respect to the Zamolodchikov c-function

dsi
d logΛ

¼ gij
∂c
∂sj : ð12Þ

Although, this was proved in conformal perturbation theory
in [3], compelling arguments for its nonperturbative val-
idity were given in [4]. In principle, we could use the

1

2

0

1

2

2 1 0 1 2 3
x

y

FIG. 3. Flow lines of the renormalization group of z ¼ xþ iy.
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gradient flow to learn about the c-function of the theories
at hand.
In the case studied here, there is only a single complex

coupling constant z. We have computed its exact beta
function, i.e. the left-hand side of Eq. (12). For the equation
to respect the holomorphy of z we expect the metric on the
coupling space to be Kahler. In the case of (2, 2) theories, it
was conjectured [5] and subsequently proved [6] that the
Kahler metric on the Kahler moduli space can be deter-
mined from the partition function of the theory on S2. It
would be interesting to see if one can similarly localize the
path integral of the (0, 2) theory to compute the metric. In
the absence of such technology, we can hope to fix the
Kahler metric gzz̄ from the knowledge of the singularities of

the moduli space. It is an old result that the constant
curvature hyperbolic metric on the sphere is uniquely
determined from the deficit angles at the marked points
[7]. Possibly, the deficit angles could follow from the
value of the central charge c at the UV and the IR fixed
points [8].
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