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We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge
theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local
potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in
the action we can always choose the potential (consisting of one “killer operator”) to make zero the beta
function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge
interaction. Our calculations are done inD ¼ 4, but the results can be generalized to even or odd spacetime
dimensions. We compute the contribution to the beta function from two different killer operators by using
two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By
making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED.
Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal
Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific
higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor
the singularities in the infrared regime (IR).
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I. INTRODUCTION

We study a class of new actions of fundamental nature
for gauge theories that are super-renormalizable or finite
at quantum level. In particular, we hereby present four
physical objectives to be met in a finite theory of QED and
in Yang-Mills gauge interactions: avoiding the Landau pole
in QED or for the Uð1Þ sector of the standard model of
particle physics (SM), having a better control over diver-
gences in QCD, having more room for unification of the
running coupling constants in the super-renormalizable
extension of the SM, and stabilizing the Higgs potential.
Moreover, whether we want to study gauge theories
coupled to super-renormalizable or finite gravity, then
the former have to possess the same quantum properties.
Furthermore, scale-invariant gauge theories in D ¼ 4 can
be promoted to conformally invariant ones. We also require
the following two guiding principles to be common to all
the fundamental interactions: “super-renormalizability or
finiteness” and “validity of perturbative expansion” in the
quantum field theory framework [1]. The desired theories
satisfy the following properties: (i) gauge invariance,
(ii) weak nonlocality (or quasipolynomiality), (iii) unitarity,
and (iv) quantum super-renormalizability or finiteness. The
main difference with quantum perturbative standard Yang-
Mills theory (or Abelian quantum electrodynamics) lies in
the second requirement, which makes possible to achieve

unitarity and renormalizability at the same time in any
spacetime dimension D.
Next, by choosing a subclass of theories with a suffi-

ciently high number of derivatives in the UV, we may
get even better control over perturbative divergences—we
actually may get super-renormalizability. This means that
infinities in the perturbative calculus appear only up to
some finite loop order. Finally, by adding some operators,
which are higher in powers of the gauge field strength,
with specially adjusted coefficients, we achieve finiteness,
namely, the beta function of gauge coupling can be
consistently set to vanish. The outcome is a quantum
theory for any gauge interaction free of any divergence
at any order in the loop expansion, and the problem of the
Landau pole in the UV is solved. Moreover, by shifting the
coefficients of the theory, we can easily achieve asymptotic
freedom (in the beta function) for all interactions, if this is
desired for grand unification.
In a different vein if the theory is one-loop super-

renormalizable and with higher-derivatives, then in the
beta function we inevitably find a Landau pole at high
energy because the beta function is universally negative.
However, when looking at the dressed propagator of the
theory (or the quantum effective action), we see that the
behavior in UV as well as in IR is without additional real
poles, and the interactions are suppressed at high energy.
Indeed, in the UV it is the nonlocal higher-derivative
operator that controls the high energy physics, whereas
in IR the theory remains in the perturbative regime because
of the universal negative sign of the beta function βα. To fix
the notation, we here define the divergent contribution to
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the effective action in dimension four to be Γdiv ≡
1
ϵ βα

R
d4xtrF2, where α ≔ 1=g2 and g is the gauge coupling

constant.

II. NONLOCAL GAUGE THEORIES

A consistent gauge-invariant theory for spin one mass-
less particles regardless of the spacetime dimension fits in
the following general class of theories [2]:

L ¼ −
1

4g2
tr½FeHðD2

ΛÞFþ Vg�: ð1Þ

The theory above consists of a weakly nonlocal kinetic
operator and a local curvature potential Vg crucial to
achieve finiteness of the theory as we show later. In (1)
the Lorentz indices and tensorial structures have been
neglected. The notation on the flat spacetime reads as
follows: We use the gauge-covariant box operator defined
via D2 ¼ DμDμ, where Dμ is a gauge-covariant derivative
(in the adjoint representation) acting on gauge-covariant
field strength Fρσ ¼ Fa

ρσTa of the gauge potential Aμ

(where Ta are the generators of the gauge group in the
adjoint representation.) The metric tensor gμν has signature
ð−þ � � � þÞ. We employ the following definition,
D2

Λ ≡D2=Λ2, where Λ is an invariant mass scale in our
fundamental theory. Finally, the entire function V−1ðzÞ≡
expHðzÞ (z≡D2

Λ) in (1) satisfies the following general
conditions [3], [4]: (i) V−1ðzÞ is real and positive on the real
axis, and it has no zeros on the whole complex plane
jzj < þ∞. This requirement implies, that there are no
gauge-invariant poles other than for the transverse and
massless gluons. (ii) jV−1ðzÞj has the same asymptotic
behavior along the real axis at �∞. (iii) There exists
Θ ∈ ð0; π=2Þ such that asymptotically jV−1ðzÞj → jzjγþD

2
−2,

when jzj → þ∞ with γ ≥ D=2 (D is even and γ natural) for
complex values of z in the conical regions C defined by
C¼fzj−Θ< argz<þΘ;π−Θ< argz<πþΘg. This con-
dition is necessary to achieve the maximum convergence of
the theory in the UV regime. (iv) The difference V−1ðzÞ −
V−1
∞ ðzÞ is such that on the real axis

lim
jzj→∞

V−1ðzÞ − V−1
∞ ðzÞ

V−1
∞ ðzÞ zm ¼ 0; for all m ∈ N; ð2Þ

where V−1
∞ ðzÞ is the asymptotic behavior of the form factor

V−1ðzÞ. Property (iv) is crucial for the locality of counter-
terms. The entire function HðzÞ must be chosen in such a
way that expHðzÞ tends to a polynomial pðzÞ in UV hence
leading to the same divergences as in higher-derivative
theories.
An explicit example of a weakly nonlocal form factor

eHðzÞ that has the properties (i)–(iv) can be easily con-
structed following [4],

eHðzÞ ¼ e
1
2
½Γð0;e−γEpðzÞ2Þþlog ðpðzÞ2Þ�

¼
z∈R

ffiffiffiffiffiffiffiffiffiffiffi
pðzÞ2

q �
1þ e−e

−γEpðzÞ2

2e−γEpðzÞ2 þ � � �
�
; ð3Þ

where γE ≈ 0.577216 is the Euler-Mascheroni constant and
Γð0; xÞ ¼ Rþ∞

x dte−t=t is the incomplete gamma function
with its first argument vanishing. The polynomial pðzÞ of
degree γ þ ðD − 4Þ=2 is such that pð0Þ ¼ 0, which gives
the correct low energy limit of our theory coinciding
with the standard two-derivative Yang-Mills theory. In
this case the Θ-angle defining cones C turns out to be
π=ð4γ þ 2ðD − 4ÞÞ.
The theories described by the action in (1) are unitary

and perturbatively renormalizable at a quantum level in
any dimension as we explicitly show in the following
subsections.
Moreover, at the classical level many evidences endorse

that we are dealing with “gauge theories possessing
singularity-free exact solutions.” The discussion here is
closely analogous to the gravitational case [5–11]. In
particular, the static gauge potential for the exponential
form factor expð−□=Λ2Þ is for weak fields given approx-
imately by

ΦgaugeðrÞ ¼ A0ðrÞ ¼ g
ErfðΛr

2
Þ

r
: ð4Þ

We used the form factor expð−□=Λ2Þ and D ¼ 4 to end
up with a simple analytic solution. However, the result is
qualitatively the same for the asymptotically polynomial
form factor (3), and ΦgaugeðrÞ ¼ const for r ¼ 0.

A. Propagator, unitarity, and divergences

By splitting the gauge field into a background field
(with flat gauge connection) plus a fluctuation, fixing the
gauge freedom, and computing the quadratic action for
the fluctuations, we can invert the kinetic operator to get
finally the two-point function. This quantity, also known as
the propagator in the Fourier space reads, up to gauge
dependent components,

O−1
μν ðkÞ ¼

−iVðk2=Λ2Þ
k2 þ iϵ

�
ημν −

kμkν
k2

�
; ð5Þ

where we used the Feynman prescription (for dealing with
poles). The tensorial structure in (5) is the same as the local
Yang-Mills theory, but we see the presence of a new
element—multiplicative form factor VðzÞ. If the function
V−1ðzÞ does not have any zeros on the whole complex
plane, then the structure of poles in the spectrum is the same
as in original two-derivative theory. This can be easily
proved in the Coulomb gauge, which is manifestly unitary.
Therefore, in the spectrum we have exactly the same modes
as in two-derivative theories. In this way we have achieved
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unitarity, but the dynamics is modified from the simple
two-derivative to a super-renormalizable one with higher-
derivatives. Despite that in the UV regime we recover
polynomial higher-derivative theory, the analysis of the
tree-level spectrum still gives us a unitary theory without
ghosts because the renormalizability is due to the behavior
of the theory in the very UV limit, while unitarity is
influenced by the behavior at any energy scale.
In the high energy regime (UV), the propagator in

momentum space schematically scales as

O−1ðkÞ ∼ k−ð2γþD−2Þ: ð6Þ

The vertices of the theory can be collected in different sets
that may involve or not the entire function expHðzÞ.
However, to find a bound on quantum divergences, it is
sufficient to concentrate on the polynomial operators with
the high energy leading behavior in the momenta k [3,4].
These operators scale as the propagator, they cannot have
higher power of momentum k in the scaling in order not to
break the renormalizability of the theory. The consideration
of them gives the following upper bound on the superficial
degree of divergence of any graph [4,12–14],

ωðGÞ ≤ DLþ ðV − IÞð2γ þDÞ − E: ð7Þ

This bound holds in any spacetime of even or odd
dimensionality. In (7) V is the number of vertices, I the
number of internal lines, L the number of loops, and E is
the number of external legs for the graph G. After plugging
the topological relation I − V ¼ L − 1 in (7), we get the
following simplification:

ωðGÞ ≤ D − 2γðL − 1Þ − E: ð8Þ

We comment on the situation in odd dimensions in the
next section. Thus, if in even dimensions γ > ðD − EÞ=2,
in the theory only one-loop divergences survive. Therefore,
the theory is one-loop super-renormalizable [4,15–19], and
only a finite number of operators of energy dimensions up
to MD has to be included in the action to absorb all
perturbative divergences. In aD-dimensional spacetime the
renormalizable gauge theory includes all the operators up to
energy dimension MD and schematically reads

LD ¼ −
1

4g2
tr½F2 þ F3 þ FD2Fþ � � � þ FD=2�: ð9Þ

In gauge theory the scaling of vertices originating from
kinetic terms of the type FðD2ÞγþðD−4Þ=2F is lower than the
one seen in the inverse propagator k2γþD−2. This is because
when computing variational derivatives with respect to the
dimensionful gauge potentials (to get higher point func-
tions) we decrease the energy dimension of the result.
Hence, the number of remaining partial derivatives, when

we put the variational derivative on the flat connection
background, must be necessarily smaller. This means that
we have a smaller power of momentum when the 3-leg (or
higher leg) vertex is written in momentum space. We get
the maximal scaling for the gluons’ 3-vertex, and it is with
the exponent 2γ þD − 3. In this way we can put an upper
bound on the degree of divergence for higher-derivative
gauge theories even with a little excess. Again, for higher-
derivative gauge theories and γ > ðD − EÞ=2, we have
one-loop super-renormalizability. For the minimal choice
E ¼ 2 (because the tadpole diagram vanishes), we have
γ > ðD − 2Þ=2.

B. Finite gauge theories in odd and even dimensions

In odd number of dimensions we can easily show that the
theory is finite without need of gauge potential Vg because
in dimensional regularization scheme (DIMREG) there are
no divergences at one-loop and the theory is automatically
finite. The reason is of dimensional nature. In odd dimen-
sion the energy dimension of possible one-loop counter-
terms needed to absorb logarithmic divergences can be only
odd. However, at one-loop, such counterterms cannot be
constructed in the DIMREG scheme and having at our
disposal only Lorentz invariant (and gauge-covariant)
building blocks that always have energy dimension two.
By elementary building blocks, we mean here field
strengths or gauge-covariant box operators or even number
of covariant derivatives (an even number is necessary here
to be able to contract all indices). For details, we refer the
reader to original papers [12].
In even dimensions we for simplicity consider the

polynomial pðzÞ to be a monomial, pγðzÞ ¼ ωzγþD
2
−2

(ω is a positive real parameter). In this minimal setup
the monomial in UV gives precisely the highest derivative
term of the form trðFðD2

ΛÞγFÞ (inD ¼ 4). There is only one
possible way to take trace over group indices here, and
terms with derivatives can be reduced to those with gauge-
covariant boxes only by exploiting Bianchi identities in
gauge theory. These latter terms take the explicit form
Fa
μνðD2

ΛÞγFμν
a . In four dimensions there is an RG running of

only one coupling constant. The contribution to the beta
function of the YM coupling constant from this quadratic
term is actually a dimensionless constant (independent of
the frontal coefficient of the highest derivative term), which
has been computed in [20] using Feynman diagrams. This
number can be canceled by a contribution coming from a
quartic (in field strengths) gauge killer of the form

−
sg

4g2Λ4
trðF2ðD2

ΛÞγ−2F2Þ ð10Þ

(here there are several possibilities of taking traces). The
contribution to the beta function is linear in the parameter
sg, and hence, the latter one can be adjusted to make the
total beta function vanish.

FINITE QUANTUM GAUGE THEORIES PHYSICAL REVIEW D 94, 025021 (2016)

025021-3



The action of the finite quantum theory may take the
following compact form (for the choice γ ¼ 3, the general
derivative structure is explicit in D ¼ 4):

Lfin ¼ −
1

4g2
tr

�
FeHðD2

ΛÞFþ sg
Λ4

F2ðD2
ΛÞF2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
minimal finite theory

þ
X
i

X5
j>2

X5−j
k¼0

cðj;kÞi ððD2
ΛÞkFjÞi

�
; ð11Þ

where cðj;kÞi are some constant coefficients. The beta
function can successfully be killed by the last operator
in the first line above. The last terms in the formula (11)
have been written in a compact indexless notation, and the
index i counts all possible contractions of Lorentz and
group indices.

III. THE FINITE THEORY IN D= 4

As extensively discussed in the previous section, the
minimal nonlocal gauge theory, in D ¼ 4, candidate to be
finite at the quantum level is

Lfin ¼ −
α

4
tr

�
FeHðD2

ΛÞFþ sg
Λ4

F2ðD2
ΛÞγ−2F2

�
; ð12Þ

where the function HðzÞ is given in (3). We here evaluate

the contribution to the beta function β
ðsgÞ
α from the two

following independent killer operators quartic in the
field strength1:

1: −
sg

4g2Λ4
Fa
μνF

μν
a □

γ−2
Λ ðFb

ρσF
ρσ
b Þ; ð15Þ

2: −
sg

4g2Λ4
Fa
μνF

μν
b ðD2

ΛÞγ−2ðFb
ρσF

ρσ
a Þ: ð16Þ

All details of the computation are not included in this paper
because they are very cumbersome, but the results are

1: β
ðsgÞ
α ¼ sg

2π2ω
; ð17Þ

2: β
ðsgÞ
α ¼ sg

4π2ω
ð1þ NGÞ; ð18Þ

where NG is the number of generators of the Lie group.
These results have been checked using two different

techniques: the method of Feynman diagrams and the
Barvinsky-Vilkovisky trace technology [21].
The computation has been done for the nonlocal theory

with general polynomial asymptotic behavior pγðzÞ of
degree γ. By choosing the monomial pγðzÞ ¼ ωzγ, the
prototype kinetic term used to evaluated the beta function
reads

Lfin;kin ¼ −
1

4g2
Fa
μνð1þ ωðD2

ΛÞγÞFμν
a : ð19Þ

As already explained, all the other contributions of the form
factor fall off exponentially in the UVand do not contribute
to the divergent part of the quantum action. To fix our
conventions, we can read the beta function from the
counterterm operator, namely,

Lct ≔ −
α

4
ðZα − 1ÞFμν

a Fa
μν ¼ −Ldiv ¼ −

1

ϵ
βαF

μν
a Fa

μν:

By using the Batalin-Vilkovisky formalism [22], it is
possible to prove that for the theory (12) there is no wave
function renormalization for the gauge field Aa

μ. We have
only renormalization of the gauge coupling constant. The

contribution to the beta function βðγÞα due to the nonlocal
kinetic term was obtained in [20], namely,

βðγÞα ¼ −
5þ 3γ þ 12γ2

192π2
C2ðGÞ; γ ≥ 2; ð20Þ

whereC2ðGÞ is the quadratic Casimir of the gauge groupG.
By imposing the following condition for scale invariance,

βðγÞα þ β
ðsgÞ
α ¼ 0; ð21Þ

we can find the special value of the coefficient s�g that kills
the beta function. Using, for example, the first killer (15),
we get

s�g ¼ −2π2ωβðγÞα ; ð22Þ

and the Lagrangian for a finite nonlocal gauge theory in
four dimensions can be explicitly written as

1It is worth noting that if we choose the gauge group
G ¼ SUðNÞ and in the adjoint representation, it holds

trðTaTbTcTdÞ ¼ δabδcd þ δadδbc: ð13Þ
Therefore, the killers we have considered exhaust all the possible
operators we can construct, regarding the structure in the internal
indices. On top of this, we have the freedom of using different
contractions of Lorentz indices and covariant derivatives in the
expressions for quartic killers. Indeed, if we plug the formula
above (13) in the following general Lagrangian

Lkiller ¼ −
sg

4g2Λ4
tr½FμνFμνðD2

ΛÞγ−2ðFρσFρσÞ�; ð14Þ

we get the sum of the two killers (15) and (16) with the same front
coefficient.

MODESTO, PIVA, and RACHWAŁ PHYSICAL REVIEW D 94, 025021 (2016)

025021-4



Lfin ¼ −
α

4

�
Fa
μνe

HðD2
ΛÞFμν

a

þ ω
ð5þ 3γ þ 12γ2Þ

96Λ4
C2ðGÞFa

μνF
μν
a □

γ−2
Λ ðFb

ρσF
ρσ
b Þ

�
;

ð23Þ

where we assumed γ > 2 (for γ ¼ 2, we still have running
of the vacuum energy, and scale invariance is not properly
achieved.)
It is also possible to kill the beta function in nonlocal

Abelian gauge theories. For concreteness, we can study
the one-loop beta function of QED βe ¼ e3=12π2 for the
electric charge e. In terms of the inverse coupling α, this
function is expressed as βα ¼ −1=6π2, which is a constant
and gives logarithmic scaling with the energy for the
coupling constant α. Since pure two-derivative QED is a
free theory, then the running comes entirely from quantum
effects of charged matter. Here, we assume one species of
charged fermions coupled minimally to photon field. If we
extend QED to the nonlocal version (1) with killer operator
(15) and we replace

s�g ¼ −2π2ωβðγÞα ¼ ω

3
ð24Þ

in (12), then the theory is completely finite regardless of
the parameter γ. It is important to notice that even in the
Abelian case the killer operator has crucial impact on the
beta function because it contains photon self-interactions.
In this way we solve the problem of the Landau pole for the
running of the electric charge in the UV regime of QED.
The same can be repeated for any gauge theory coupled
to matter, provided that in the matter sector we do not
have self-interactions and the coupling to gauge fields is
minimal [20,23].
We want to comment on what we can achieve if we stick

to one-loop super-renormalizable gauge theories without
attempts to make them finite. The final result (20) highlights
a universal Landau pole issue in the UV regime for the
running coupling constant gðμÞ (where μ is the renormal-
ization scale). This is true for any value of the integer γ ≥ 2,
when we do not introduce any potential Vg with killer
operators. The sign of the beta function is negative because
the discriminant Δ < 0 of the quadratic polynomial in γ in
(20). For the particular choice (22), the theory (12) is one-
loop finite, but if the front coefficient sg has a bigger value
than in (22), then we enter the regime in which the UV
asymptotic freedom is achieved. We here summarize the
three possible scenarios for the value of the sg:

sg

8>><
>>:

< 5þ3γþ12γ2

96
ωC2ðGÞ; Landau pole;

¼ 5þ3γþ12γ2

96
ωC2ðGÞ≡ s�g; finiteness;

> 5þ3γþ12γ2

96
ωC2ðGÞ; asymptotic freedom:

However, in weakly nonlocal higher-derivative theories we
must read out the poles from the quantum effective action
and not only from the beta functions of the couplings in the
theory. In particular, in the case of theory (1) the one-loop
dressed propagator is devoid of any pole because its UV
asymptotic behavior is entirely due to the form factor
expHðzÞ [4], namely, up to the tensorial structure,

−i
e−Hðk2Þ

k2ð1þ βαe−Hðk2Þ logðk2=μ20ÞÞ
: ð25Þ

Moreover, as a particular feature of the super-renormalizable
theory, when sg ¼ 0 or sg < s�g, βα is negative, signifying
that at low energy the theory is weakly coupled. In
consequence we do not have any pole in the dressed
propagator in the UV nor do we have any problem in the
IR as opposite to the local theory.
In local two-derivative theories we usually have a UV

Landau pole or an IR singularity of RG flow, so (as, for
example, in QED) the theory is weakly coupled in the IR
(without confinement), but it becomes nonperturbative in
the UV. In QCD we have the reverse. The theory is
asymptotically free in the UV where it is perturbative,
but a singularity of the RG flow manifests itself in the IR
indicating confinement. In the case of two-derivative local
theories the singularities of the flow have direct realization
as the poles in the effective propagator read from the
quantum action. This is not true anymore when higher-
derivatives are included. In the theory (12) for sg < s�g,
the minus sign of the beta function, which usually gives
rise to a UV Landau pole, is innocuous because the form
factor washes away the logðk2Þ contributions to the dressed
propagator in the UV, and there is no possibility for
appearance of a new real pole in it. On the other hand,
in the IR the analytic form factor does not play any role and
there is no pole because the beta function is negative. The
outcome is a theory perturbative in both the UV and in the
IR regime. Therefore, we are left with two possible options.
We can choose completely UV finite (no divergences)
nonlocal theories or super-renormalizable nonlocal theories
with negative beta functions (βα) and hence without any
singularities in asymptotic behaviors of the couplings. The
second option seems to be very appealing in models that
attempt to realize a unification of all coupling constants.

IV. REMARKS ON FINITENESS
AND RENORMALIZABILITY

The results in this paper are general and can be extended
to all local higher derivative gauge theories as well. The
construction of our theory is very natural as well as
the inclusion of higher derivative operators is natural in
the effective field theory framework. As already pointed out
we invoked nonlocality only to settle completely the
problem of unitarity, but the weakly nonlocal form factor
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is not crucial to achieve UV finiteness at the quantum level.
Moreover, there is also another class of theories compatible
with unitarity: the Lee-Wick gauge theories [24–26].
Furthermore, if we restrict our interest to higher derivative
local theories, the following Lagrangian is a prototype for a
finite four-dimensional gauge theory (with γ ¼ 3):

Lfin ¼ −
α

4

�
Fa
μνð1þ ωðD2

ΛÞ3ÞFμν
a

þ 61

48Λ4
ωC2ðGÞFa

μνF
μν
a □ΛðFb

ρσF
ρσ
b Þ

�
: ð26Þ

We would like to point out that nonlocal field theories
commonly arise as quantum effective actions when loop
effects are taken into account or heavy modes are integrated
out in the domain of effective field theories. In this latter
respect the Lagrangian (23) can also naturally arise as a
peculiar effective field theory. Therefore, it is inevitable to
study nonlocal physics if the effective action is employed as
a tool. In all known examples (QED, QCD, etc.) non-
locality appears already at one-loop, and typically, it is
characterized by the presence of structures like log□ in
even dimension or

ffiffiffiffi
□

p
in odd dimension. The novelty in

this paper is that we have studied a quite restrictive operator
structure, which is nonlocal (quasipolynomial) already at
the classical level (for example, different than log□), with
the aim to improve the UV behavior of the quantum theory.
We proved that the theory (23) is finite because the beta

function vanishes. This means that in this theory there is no
RG flow. However, here we do not deny the effects, which
are very well tested in QCD (like the asymptotic freedom
in the deep inelastic scattering) or in QED (the dependence
of the scattering amplitude logarithmically with the energy
scale) and are typically associated to the presence of
running couplings. We only propose a different interpre-
tation of them in the theoretical framework of finite gauge
theories. In full generality the RG running of coupling
constants is a theoretical feature of (some) quantum field
theories, and such an abstract notion is not a subject to
experimental verification. What is typically done is that
some physical (measurable) effects are traced back to the
RG running of the couplings in some theories. However,
the latter fact does not mean that the RG flow is exper-
imentally confirmed. Only the physical effects, whose one
of the possible explanations is due to RG flow, are being
measured. In this paper we provided a different theoretical
explanation for such experimental effects. It is important to
emphasize that we never found a disagreement with the
experiments done in the field of strong or electromagnetic
interactions between elementary particles. Moreover, the
RG flow is not well tested in QCD but only the measurable
physical effects, whose interpretation and explanation is not
unique, are verified. Another drawback of RG flows is that
beyond one-loop approximation the beta functions are

gauge and parametrization dependent; hence, they cannot
be physically observable.
Our interpretation of these results in a finite quantum

gauge theory is as follows. All the effects, which are
typically associated to the RG flow of the couplings (in the
standard nonfinite theory) can be mimicked by some
special operators (typically nonlocal or with higher deriv-
atives) added to the action of the UV-finite theory. This
addition however does not change the finiteness of the
theory. One very prominent example of such interpretation
naturally comes along with the quantum effective action. If
all the quantum (perturbative loop) effects are taken into
account in some tree-level action, then there is no need for
any further RG effects. Our statement is that in the quantum
effective action there is no running of couplings. All the
effects are read from it at tree level, and there is no room for
the RG flow due to quantum loop effects. In the jargon of
RG flow, the quantum effective action stays at a fixed point
of the renormalization group. All the physical effects are
explained by operators appearing in the quantum effective
action, which is anyway a very difficult object to compute.
However, when it is given, we do not need to go beyond the
tree level. Our situation with finite theories is exactly the
same. Our actions for UV-finite theories can be viewed as
proposals for the explicit form of quantum effective actions
(up to explicit listing of all finite terms there). It is obvious
to us that being a proposal for the effective action our finite
theories do not have any RG flows but at the same time are
able to explain all the experimentally measured effects
(because they are all actually explained by effective
actions.) As we have already argued there is no any
contradiction between our finite theories and effects typ-
ically explained by the RG flows in standard nonfinite
theories. Furthermore, in our case the quantum effective
action will contain only finite contributions.

V. CONCLUSIONS

We have explicitly evaluated the one-loop exact beta
function for the weakly nonlocal gauge theory recently
proposed in [2]. The higher-derivative structure or
quasipolynomiality of the action implies that the theory
is super-renormalizable, and in particular, only one-loop
divergences survive in any dimension. Once a potential, at
least cubic in the field strengths, is switched on, it is always
possible to make the theory finite. We evaluated the beta
function for the special case of D ¼ 4, but the result can be
generalized to any dimension where a careful selection of
the killer operators should be done.
In short the main achievement of the paper is the

following:
We have explicitly shown how to construct a finite theory

for gauge bosons in D ¼ 4 (23).
In the paper we have considered both cases of Abelian

and non-Abelian gauge symmetry groups. The super-
renormalizable structure does not change if we add a
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general extra matter sector that does not exhibit self-
interactions.
The minimal nonlocal theory without any killer operator

shows a Landau pole for the running coupling constant,
regardless of the special asymptotic polynomial structure.
This is a universal property shared at least by all the unitary
and weakly nonlocal gauge theories with asymptotic
polynomial behavior in the UV regime. However, the
one-loop dressed propagator does not show any Landau
pole in the UV regime because the propagator is dominated
by the nonlocal form factor, and it is the nonlocal operator
that controls the high energy physics. Moreover, we do not
have any pole even in the IR, opposite to the local theory,
exactly because of the universal negative sign of the beta
function. The outcome is a theory well defined at the
perturbative level in both the IR and the UV regime. The
same result is achieved in the presence of sufficiently
weakly coupled killer operators.
In this paper we mostly considered pure gauge theories,

but here we can achieve asymptotic freedom regardless of
the number of fermionic fields because it is the interaction
between gauge bosons, due to the killer operators, that
makes the theory asymptotically free.
The generalization to extra dimensions is straightfor-

ward. In particular, the theory is finite in odd dimension
without the need to introduce any killer operator, as a mere
consequence of dimensional regularization. The results can
also be reproduced in cutoff regularization making use of
Pauli-Villars operators [27].
We now emphasize the implications of the results in this

paper for the high energy physics beyond the standard
model of particle physics (SM), namely, a finite theory of
all fundamental interactions. Given the gauge symmetry
group of the SM coupled to gravity, namely, GSMþgr ¼
GLð4Þ×SUð3Þs ×SUð2Þw×Uð1ÞY , we can easily describe
the gravitational [2] and gauge interactions with a quasi-
polynomial Lagrangian with a nonlocal form factor (3)
having UV monomial behavior pðzÞ ¼ zγþ1. It is then
sufficient to add up to 3þ 2 killer operators to make the
gravity-gauge sector of the SM finite. We can use three
gauge killers (one for each gauge group) like the one in (10)
to make vanish the beta functions for each of the operators
F2 (for each gauge sector). For the gravity sector, two killer
operators are enough, namely, R2

□
γ−2R2 and R2

μν□
γ−2R2

μν

(see [2] for an extensive discussion). The Lagrangian of the
matter sector is also weakly nonlocal and free of quantum
divergences. We end up with a completely quantum scale-
invariant theory for all fundamental interactions.
As an alternative, we notice that the front coefficients

of killers can also be chosen to make the SM super-
renormalizable, and the gauge coupling constants perfectly
meet at the grand unification scale without need of
supersymmetry.
For a relatively low energy scale of nonlocality Λ, the

future discovery of higher-derivative operators, together

with our theoretical guiding principles (unitarity and
renormalizability), could confirm or disprove our theory.
Finally, the gauge theories here proposed can have a

wide range of applications, not only in the high energy
regime but also for the low energy physics. In particular, the
nonlocal extension of QED here presented, and other UV
and/or infrared nonlocal generalizations, could have appli-
cations in condensed matter physics or nuclear physics.
Infrared modifications could provide superconductivity
without Cooper pairs, while the exact potential (4) without
a Coulomb barrier may have implications for research on
nuclear fusion.
Finite quantum gauge theories could also play a crucial

role in describing critical phenomena. It is known that a
theory describing such behaviors is characterized by
infinite correlation lengths, where even the discrete atomic
systems shows the structure like a continuous medium
(described by a continuous field theory). Moreover, such a
field theory enjoys scale invariance, which can be promoted
to the full conformal symmetry. This can be also naturally
explained as the consequence of the fact that the theory
of critical phenomena is basically a theory governed by a
UV fixed point of RG flow of running coupling constants.
In such theory all beta functions must be zero, hence no
divergences and UV-finiteness. With our finite gauge
theory, we could, in principle, describe critical phenomena
with manifest local gauge invariance [28].
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APPENDIX: EXPLICIT CALCULATION
OF THE ONE-LOOP BETA FUNCTION

We hereby explicitly evaluate the beta function for the
nonlocal unitary theory in D ¼ 4 with polynomial asymp-
totic behavior pnðzÞ of degree n. The minimal theory reads
as follows:

Lfin;YM¼−
1

4g2

�
Fa
μνe

HðD2
ΛÞFμν

a þ sg
Λ4

Fa
μνF

μν
a ð□ΛÞn−2Fb

ρσF
ρσ
b

�
:

ðA1Þ

By choosing pnðzÞ ¼ ωzn, we can focus on the following
prototype gauge theory:

Lfin;YM ¼ −
1

4g2

�
Fa
μν½1þ ωðD2

ΛÞn�Fμν
a

þ sg
Λ4

Fa
μνF

μν
a ð□ΛÞn−2Fb

ρσF
ρσ
b

	
: ðA2Þ

We can read the beta function from the counterterm
operator
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Lct ≔ −
α

4
ðZα − 1ÞFμν

a Fa
μν ¼ −Ldiv ¼ −

1

ϵ
βgF

μν
a Fa

μν

⇒
α

4
ðZα − 1Þ ¼ 1

ϵ
βg; α ¼ 1

g2
: ðA3Þ

1. One-loop beta function using Feynman diagrams

We here compute the contribution to the beta function
for the killer operator by using Feynman diagrams and
with the help of a Mathematica program. We start from the
Lagrangian (A2), and we add the following gauge fixing
term:

LGF¼ C̄ae
HðD2

ΛÞ∂μDab
μ Cb−

1

2ξ
ð∂μAa

μÞeHðD2
ΛÞð∂μAa

μÞ; ðA4Þ

while the gluon propagator in momentum space is

Dab
μνðkÞ ¼

−iδab
k2 þ iϵ

�
ημν − ð1 − ξÞkμkν=k2

1þ ωð−k2Þn
�
; ðA5Þ

where we have considered only the asymptotic behavior of
the form factor in the gauge fixing.

a. The first killer

The four legs vertex for the killer operator reads as

sg
Λ4

Fa
μνF

μν
a ð□ΛÞn−2Fb

ρσF
ρσ
b

¼ 4
sg
Λ4

∂μAa
νð∂μAν

a − ∂νAμ
aÞð□ΛÞn−2∂ρAb

σð∂ρAσ
b − ∂σAρ

bÞ:
ðA6Þ

By switching to the momentum space, we label the four
fields in the following way, Aa

μðpÞ; Ab
νðkÞ; Ac

ρðqÞ; Ad
σðlÞ, and

the integrand of the Fourier transform is

4
sg
Λ2n ðpkημν − pνkμÞ½−ðqþ lÞ2�n−2ðqlηρσ − qσlρÞ
× δabδcdAa

μðpÞAb
νðkÞAc

ρðqÞAd
σðlÞ; ðA7Þ

where pk ¼ pαkα. To obtain the vertex, we remove the
fields A and multiply by i the rest, namely,

Vμνρσ
abcdðp; k; q; lÞ ¼ i4

sg
Λ2n ðpkημν − pνkμÞ½−ðqþ lÞ2�n−2

× ðqlηρσ − qσlρÞδabδcd þ perm: ðA8Þ

Choosing the momentum conservation for the incoming
momenta, the diagram in dimensional regularization is

Πμν
abðpÞ ¼

1

2

Z
dDq
ð2πÞD Vμνρσ

abcdðp;−p; q;−qÞDcd
ρσðqÞ; ðA9Þ

where 1=2 is a symmetry factor. What we found is

Πμν
abðpÞ ¼

2sg
π2ωϵ

iðp2ημν − pμpνÞδab; ðA10Þ

where ϵ ¼ 4 −D. Remembering the following relation
with the divergent contribution to the one-loop quantum
action,

iΓð1Þ
div ¼

1

2

Z
d4p
ð2πÞ4 A

a
μðpÞΠμν

abðpÞAb
νð−pÞ; ðA11Þ

we can write in Fourier transform

Γð1Þ
div¼

1

2

2sg
π2ωϵ

Z
d4p
ð2πÞ4d

4xd4yeipðx−yÞAa
μð−□ημνþ∂μ∂νÞ

×δabðxÞAb
νðyÞ

¼ sg
π2ωϵ

Z
d4xd4yδ4ðx−yÞAa

μðxÞð−□ημνþ∂μ∂νÞAa
νðyÞ

¼ sg
π2ωϵ

Z
d4xAa

μðxÞð−□ημνþ∂μ∂νÞAa
νðxÞ

¼ sg
π2ωϵ

Z
d4xð∂μAa

ν∂μAν
a−∂μAa

ν∂νAμ
aÞ; ðA12Þ

where in the last step we integrated by parts. Using the
antisymmetry property of Fμν, Fa

μνF
μν
a ¼ 2∂μAa

νF
μν
a , we

obtain

Γð1Þ
div ¼

sg
π2ωϵ

Z
d4x∂μAa

νð∂μAν
a − ∂νAμ

aÞ

¼ sg
π2ωϵ

Z
d4x∂μAa

νF
μν
a

¼ sg
2π2ωϵ

Z
d4xFa

μνF
μν
a : ðA13Þ

Therefore, the divergent part of the quantum action has

the form Γð1Þ
div ¼ αðZ − 1Þ=4 R d4xFa

μνF
μν
a . By using the

Batalin-Vilkovisky formalism [22], it is possible to prove
that in the renormalization procedure there are not fields
redefinitions and A does not renormalize. It follows that
Z ¼ Zα, and the contribution to the beta function is

β
ðsgÞ
α ¼ sg

2π2ω
: ðA14Þ

b. The second killer

We start from the Lagrangian (A2) but now with the
following killer operator:

sg
Λ4

Z
d4xFa

μνF
μν
b ðD2

ΛÞn−2Fb
ρσF

ρσ
a ; ðA15Þ

where the color indices are now contracted between fields
strength on opposite sides of the d’Alembertian operator.
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Using the same procedure, we can compute the contribu-
tion from the operator (A15), and the result is

β
ðsgÞ
α ¼ sg

4π2ω
ð1þ NGÞ; ðA16Þ

where NG is the number of generators of the Lie group.

2. One-loop beta function using the
Barvinsky-Vilkovisky technique

The kinetic operator contributing to the beta function is

−
ω

4
FμνðD2ÞnFμν; ðA17Þ

and the variation of field strength on flat gauge space
(Aμ → Āμ þ Aμ and Āμ ¼ 0) reads as follows:

δFμν ¼ 2∂ ½μδAν�: ðA18Þ

The propagator on the flat gauge space is

−
ω

4
δ2ðFμνðD2ÞnFμνÞ ¼ 2



−
ω

4

�
ð2∂ ½μδAν�Þ□nð2∂μδAνÞ

¼ 8


−
ω

4

�
∂ ½μδAν�□n∂μδAν: ðA19Þ

Integrating by parts and under the integral sign, we end up
with

−
ω

4
δ2ðFμνðD2ÞnFμνÞ

¼ 2ωδA½ν∂μ�□n∂μδAν

¼ −2ωδA½μ∂ν�□n∂μδAν

¼ −ωδAμ∂ν□
n∂μδAν þ ωδAν∂μ□

n∂μδAν

¼ −ωδAμ∂ν
□

n∂μδAν þ ωδAν□
nþ1δAν

¼ δAμð−ω∂ν
□

n∂μ þ ωημν□nþ1ÞδAν

− ωδAμð∂μ∂ν
□

n − ημν□nþ1ÞδAν: ðA20Þ

We now add the higher-derivative gauge fixing, namely,

αχðD2Þnχ; χ ¼ DμAμ; ðA21Þ
whose second variation on the flat gauge space is

δ2ðαχðD2ÞnχÞ ¼ 2α∂μδAμ□
n∂νδAν: ðA22Þ

Again under the integral sign we get

δ2ðαχðD2ÞnχÞ ¼ −2αδAμ∂μ
□

n∂νδAν

¼ −2αδAμð∂μ∂ν
□

nÞδAν: ðA23Þ

Summing together the second variation for the kinetic
operator and the gauge fixing, we get the following fully
gauge fixed propagator:

δAμðð−ω − 2αÞ∂μ∂ν
□

n þ ωημν□nþ1ÞδAν: ðA24Þ

We require the above operator (A24) to be minimal with
highest derivative; therefore, the following condition must
be imposed:

ωþ 2α ¼ 0; ðA25Þ

and the kinetic operator turns in

ωδAμðημν□nþ1ÞδAν ¼ δAμðωδνμ□nþ1ÞδAν: ðA26Þ

The minimal operator Hμ
ν on flat gauge space reads as

follows:

Hμ
ν ¼ ωδνμ□

nþ1; ðA27Þ

with the highest derivative term (the DeWitt metric is here
the Minkowski metric).

a. The first killer

The first killer we consider is given by one of the options
in contracting the color indices. We here consider the
following product of two traces:

sgFa
μνFaμνðD2Þn−2Fb

ρσFbρσ: ðA28Þ

The second variation of the above operator on a general
gauge background (up to square field strength order) reads

δ2ðsgFa
μνFaμνðD2Þn−2Fb

ρσFbρσÞ
¼ 2sgδðFa

μνFaμνÞðD2Þn−2δðFb
ρσFbρσÞ

¼ 8sgFaμνðδFa
μνÞ□n−2Fb

ρσðδFbρσÞ
¼ 8sgFaμνFb

ρσðδFa
μνÞ□n−2ðδFbρσÞ

¼ 8sgFaμνFb
ρσð2∂ ½μδAa

ν�Þ□n−2ð2∂ ½ρδAbσ�Þ
¼ 32sgFaμνFb

ρσ∂μδAa
ν□

n−2∂ρδAbσ: ðA29Þ

Integrating by parts, we get from this expression (neglect-
ing derivatives on background fields and commutation of
derivatives)

− 32sgFaμνFb
ρσδAa

ν∂μ□
n−2∂ρδAbσ

¼ −32sgFaμνFb
ρσδAa

ν∂μ∂ρ
□

n−2δAbσ

¼ 32sgFaμρFbσνδAa
μð∂ρ∂σ□

n−2ÞδAb
ν : ðA30Þ

We now check if it is the self-adjoint part of the operator (to
this level):
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32sgFaμρFbσνδAa
μð∂ρ∂σ□

n−2ÞδAb
ν

¼ 32sgFaμρFbσνδAb
νð∂ρ∂σ□

n−2ÞδAa
μ

¼ 32sgFaμρFbσνδAa
μð∂ρ∂σ□

n−2ÞδAb
ν : ðA31Þ

For our purpose, the relevant part of the operator H is

Hμ
νab ¼ ωδνμδ

ab
□

nþ1 þ � � � þ 32sðFa
μ
ρFbσνÞ∂ρ∂σ□

n−2

þ… ðA32Þ

Now we have to take the trace of the logarithm of the
operator (A32),

Tr lnHμ
νab ¼ Tr lnðωδνμδab□nþ1 þ � � � þ 32sgðFa

μ
ρFbσνÞ∂ρ∂σ□

n−2 þ � � �Þ
¼ Tr lnðωδκμδac□nþ1ðδνκδcb þ � � � 32sgω−1ðFc

κ
ρFbσνÞ∂ρ∂σ□

−3 þ � � �ÞÞ
¼ ðnþ 1ÞTr lnðδκμδac□Þ þ Tr lnðδνκδcb þ � � � þ 32sgω−1ðFc

κ
ρFbσνÞ∂ρ∂σ□

−3 þ � � �Þ: ðA33Þ

We concentrate on the second contribution, and we expand it in Taylor series,

Tr ln ðδνκδcb þ � � � þ 32sgω−1ðFc
κ
ρFbσνÞ∂ρ∂σ□

−3 þ � � �Þ ¼ Trð32sgω−1ðFc
κ
ρFbσνÞ∂ρ∂σ□

−3Þ

¼ 32sg
ω

TrððFc
κ
ρFbσνÞ∂ρ∂σ□

−3Þ
¼ TrðUκ

νcb;ρσ∂ρ∂σ□
−3Þ; ðA34Þ

where we introduced the following definition

Uκ
νcb;ρσ ¼ 32sg

ω
Fc

κ
ρFbσν: ðA35Þ

Using formula (4.60) from the Barvinsky-Vilvovisky
physics report for the particular case n ¼ 3,

∇μ1∇μ2

1̂

□
3
δðx; yÞjdivy¼x ¼

i lnL2

16π2
g1=2gð1Þμ1μ2

212!
1̂: ðA36Þ

The last can be rewritten in our case (flat spacetime) as

∂ρ∂σ
1̂

□
3
δðx; yÞjdivy¼x ¼

i lnL2

64π2
ηρσ1̂: ðA37Þ

Therefore,

TrðUκ
νcb;ρσ∂ρ∂σ□

−3Þ ¼ tr

�
Uκ

νcb;ρσ i lnL
2

64π2
ηρσ

�

¼ i lnL2

64π2
trðUκ

νcb;ρσηρσÞ

¼ 32sg
ω

i lnL2

64π2
trðFc

κ
ρFbσνηρσÞ

¼ sg
ω

i lnL2

2π2
trðFc

κσFbσνÞ

¼ sg
ω

i lnL2

2π2
trðFc

νσFbσνÞ

¼ −sg
ω

i lnL2

2π2
trðFc

μνFbμνÞ

¼ −sg
ω

i lnL2

2π2
Fa

μνFaμν:

The relation between the cutoff scale L and the infinitesi-
mal parameter epsilon in dimensional regularization can be
read in [21] [Formula (4.38)],

1

2 − D
2

¼ lnL2;
D
2
¼ 2 − 0þ ¼ 2 −

ϵ

2
⇒ lnL ¼ 1

ϵ
:

ðA38Þ

Finally, the killer’s contribution to the divergent part of the
above functional trace is given by

−
1

ϵ

i
π2

sg
ω
F2: ðA39Þ

Hence, the divergent part of the one-loop effective action is

Γð1Þ
div ¼

i
2
Tr lnHμ

ν ¼ −
1

ϵ

i
2

i
π2

sg
ω

Z
d4xF2

¼ 1

ϵ

�
1

2π2
sg
ω

�Z
d4xF2 ≔

1

ϵ
β
sg
α

Z
d4xF2: ðA40Þ

b. The second killer

The second killer consists in taking the trace in a
different way, namely,

sgFa
μνFbμνðD2Þn−2Fa

ρσFbρσ ¼ sgFa
μνFbμνðD2Þn−2Fb

ρσFaρσ:

ðA41Þ

Variation of the above expression in respect to the gauge
background (again up to square field strength order) is
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δ2ðsgFa
μνFbμνðD2Þn−2Fa

ρσFbρσÞ ¼ 2sgδðFa
μνFbμνÞðD2Þn−2δðFa

ρσFbρσÞ
¼ 2sgðFaμνδFb

μν þ δFa
μνFbμνÞ□n−2ðFa

ρσδFbρσ þ δFa
ρσFbρσÞ

¼ 2sg½FaμνFbρσðδFb
μνÞ□n−2ðδFa

ρσÞ þ Fa
ρσFbμνðδFa

μνÞ□n−2ðδFbρσÞ
þ 2FaμνFa

ρσðδFb
μνÞ□n−2ðδFbρσÞ�

¼ 4sgFaμνFbρσðδFb
μνÞ□n−2ðδFa

ρσÞ þ 4sgFaμνFa
ρσðδFb

μνÞ□n−2ðδFbρσÞ
¼ 4sgFaμνFbρσð2∂ ½μδAb

ν�Þ□n−2ð2∂ ½ρδAaσ�Þ þ 4sgFaμνFa
ρσð2∂ ½μδAb

ν�Þ□n−2ð2∂ ½ρδAbσ�Þ
¼ 16sFaμνFbρσ∂μδAb

ν□
n−2∂ρδAaσ þ 16sFaμνFa

ρσ∂μδAb
ν□

n−2∂ρδAbσ: ðA42Þ

Integrating by parts, we get from this expression (neglecting derivatives of the background fields and commutation of
derivatives)

− 16sgFaμνFbρσδAb
ν∂μ□

n−2∂ρδAaσ − 16sgFaμνFa
ρσδAb

ν∂μ□
n−2∂ρδAbσ

¼ −16sgFaμνFbρσδAb
ν∂μ∂ρ□n−2δAaσ − 16sgFaμνFa

ρσδAb
ν∂μ∂ρ□n−2δAbσ

¼ 16sgFbμσFaρνδAa
μð∂ρ∂σ□

n−2ÞδAb
ν þ 16sgFcμσFcρνδAa

μðδab∂ρ∂σ□
n−2ÞδAb

ν

¼ 16sgδAa
μðFbμσFaρν∂ρ∂σ□

n−2 þ FcμσFcρνδab∂ρ∂σ□
n−2ÞδAb

ν : ðA43Þ

We now check whether it is the self-adjoint part of the operator (to this level), namely,

16sgδAa
μðFbμσFaρν∂ρ∂σ□

n−2 þ FcμσFcρνδab∂ρ∂σ□
n−2ÞδAb

ν ¼ 16sgδAb
νðFbμσFaρν∂ρ∂σ□

n−2 þ FcμσFcρνδab∂ρ∂σ□
n−2ÞδAa

μ

¼ 16sgδAa
μFbμσFaρν∂ρ∂σ□

n−2δAb
ν

þ 16sgδAa
μFcμσFcρνδab∂ρ∂σ□

n−2δAb
ν : ðA44Þ

The relevant part of the operator H contributing to the beta function is

Hμ
νab ¼ ωδνμδ

ab□nþ1 þ � � � þ 16sgðFbμσFaρνÞ∂ρ∂σ□
n−2 þ 16sgðFcμσFcρνÞδab∂ρ∂σ□

n−2 þ � � � : ðA45Þ

Now, we have to take the trace of the logarithm of the above operator H, namely,

Tr lnHμ
νab ¼ Tr lnðωδνμδab□nþ1 þ � � � þ 16sgðFbμσFaρνÞ∂ρ∂σ□

n−2 þ 16sðFcμσFcρνÞδab∂ρ∂σ□
n−2 þ � � �Þ

¼ Tr ln

�
ωδκμδ

ac□nþ1

�
δνκδ

cb þ � � � þ 16sgω−1ðFb
κ
σFcρνÞ∂ρ∂σ

1

□
3
þ 16sgω−1ðFd

κ
σFdρνÞδcb∂ρ∂σ

1

□
3
þ � � �

��

¼ ðnþ 1ÞTr lnðδκμδac□Þ
þ Tr lnðδνκδcb þ � � � þ 16sgω−1ðFb

κ
σFcρνÞ∂ρ∂σ□

−3 þ 16sgω−1ðFd
κ
σFdρνÞδcb∂ρ∂σ□

−3 þ � � �Þ: ðA46Þ

We concentrate on the second contribution, and we expand it in Taylor series, namely,

Tr lnðδνκδcb þ � � � þ 16sgω−1ðFb
κ
σFcρνÞ∂ρ∂σ□

−3 þ 16sgω−1ðFd
κ
σFdρνÞδcb∂ρ∂σ□

−3 þ…Þ
¼ Trð16sgω−1ðFb

κ
σFcρνÞ∂ρ∂σ□

−3 þ 16sgω−1ðFd
κ
σFdρνÞδcb∂ρ∂σ□

−3Þ
¼ 16

sg
ω
TrððFb

κ
σFcρνÞ∂ρ∂σ□

−3 þ ðFd
κ
σFdρνÞδcb∂ρ∂σ□

−3Þ

¼ 16
sg
ω
TrððFb

κ
σFcρν þ Fd

κ
σFdρνδcbÞ∂ρ∂σ□

−3Þ ¼ TrðUκ
νcb;ρσ∂ρ∂σ□

−3Þ; ðA47Þ

where we defined

Uκ
νcb;ρσ ¼ 16

sg
ω
ðFb

κ
σFcρν þ Fd

κ
σFdρνδcbÞ: ðA48Þ
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Using again (A36) and (A37), the trace (A47) is

TrðUκ
νcb;ρσ∂ρ∂σ□

−3Þ ¼ tr

�
Uκ

νcb;ρσ i lnL
2

64π2
ηρσ

�
¼ i lnL2

64π2
trðUκ

νcb;ρσηρσÞ

¼ 16
sg
ω

i lnL2

64π2
trððFb

κ
σFcρν þ Fd

κ
σFdρνδcbÞηρσÞ ¼

sg
ω

i lnL2

4π2
trðFb

κρFcρν þ Fd
κρFdρνδcbÞ

¼ sg
ω

i lnL2

4π2
trðFb

νρFcρν þ Fd
νρFdρνδcbÞ ¼ −

sg
ω

i lnL2

4π2
trðFb

νρFcνρ þ Fd
νρFdνρδcbÞ

¼ −
sg
ω

i lnL2

4π2
½trðFb

μνFcμνÞ þ Fd
μνFdμνtrðδcbÞ� ¼ −

sg
ω

i lnL2

4π2
½Fb

μνFbμν þ Fd
μνFdμνNG�

¼ −
sg
ω

i lnL2

4π2
Fb

μνFbμνðNG þ 1Þ ¼ −
sg
ω

i lnL2

4π2
F2ðNG þ 1Þ; ðA49Þ

where NG ¼ δcc is the number of generators of the Lie group. Using again lnL ¼ 1=ϵ, we end up with the following
contribution to the beta function:

−
1

ϵ

i
2π2

sg
ω
F2ðNG þ 1Þ: ðA50Þ

Hence, the divergent part of one-loop effective action equals

Γð1Þ
div ¼

i
2
Tr lnHμ

νab ¼ −
1

ϵ

i
2

i
2π2

sg
ω
ðNG þ 1Þ

Z
d4xF2 ¼ 1

ϵ

NG þ 1

4π2
sg
ω

Z
d4xF2: ðA51Þ

All the results in the text are obtained making the replacement n → γ.
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