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representations of the gauge group. Any such theory has a nonanomalous singletUð1ÞA symmetry, yielding
an additional Nambu-Goldstone boson when spontaneously broken. We calculate the next-to-leading order
corrections for the pseudoscalar masses and decay constants, which include the singlet Nambu-Goldstone
boson, as well as for the two condensates. The results can be generalized to more than two representations.
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I. INTRODUCTION

Within the StandardModel, all of the quarks transform in
the fundamental representation of the QCD group SUð3Þc.
However, exotic fermions in higher irreducible representa-
tions (irreps) of SUð3Þc have long been considered an
intriguing possibility for physics beyond the Standard
Model, with a potentially rich phenomenology [1–19].
More generally, fermions in multiple representations of a
strongly coupled gauge group can appear in other exten-
sions of the Standard Model, including composite Higgs
[20–22] and composite dark matter [23] models. In
particular, composite Higgs models of “partial composite-
ness” [24], in which the elementary top quark mixes with
a composite top partner, tend to require the presence of
fermions in two different representations of the new
strongly coupled gauge group [25–29].
In any of the extensions of the Standard Model noted

above, the presence of strong gauge interactions impedes
the use of perturbation theory for most quantities of
interest. If the strong sector exhibits spontaneous chiral
symmetry breaking, then the dynamics of the resulting
Nambu-Goldstone bosons (NGBs) can be described by a
low-energy effective theory known as chiral perturbation
theory (ChPT) [30–33]. ChPT is an invaluable tool for
understanding the associated phenomenology, and has been
used with great success in the context of QCD. Looking
beyond QCD, ChPT is also well understood for the case
of an arbitrary number of fermions in a single representa-
tion, including complex [34] as well as real or pseudoreal
representations [35–38]. However, ChPT has not been
systematically explored in the case of a strong sector
containing two or more fermion representations.
With fermions in two different representations, the chiral

symmetry breaking pattern remains mostly unchanged: if
each fermion species r in isolation has an associated global
chiral symmetry Gr which is spontaneously broken to Hr,

then when multiple species are present the global symmetry
contains the product group G1 ×G2 × � � � ×Gn, and the
residual unbroken symmetry group isH1 ×H2 × � � � ×Hn.
However, this is not the whole story; with two or more
fermion representations, additional Abelian axial sym-
metries appear as linear combinations of the individually
anomalous flavor-singlet axial rotations of each fermion
species. These additional symmetries are then spontane-
ously broken, giving rise to singlet NGBs [11,39].
Any additional singlet NGB which appears in a theory

with multiple fermion representations is a particularly
interesting object. It can play the role of a composite axion
[40–44], offering a potential solution to the strong CP
problem. In various extensions of the Standard Model, the
singlet may provide a candidate to explain the 750 GeV
diphoton excess observed by ATLAS and CMS [45,46];
within compositeHiggsmodels it appears quite naturally as a
relatively isolated light statewith anomaly induced couplings
to pairs of Standard Model vector bosons [29,47].
In this paper, we study ChPT through next-to-leading

order (NLO) for a theory with two fermion species charged
under distinct representations of a confining gauge group;
generalization to more than two species is straightforward.
All fermion masses for a particular representation are taken
to be degenerate for simplicity. We derive formulas for the
pseudoscalar masses and decay constants of all states,
including the singlet NGB. We also give formulas for the
two chiral condensates.
The outline of the paper is as follows: In Sec. II we

describe the symmetries and patterns of breaking for the
three types of irreps. While being well established, we
found it useful to include this discussion, to make this paper
more self-contained. In Sec. III we write down the chiral
Lagrangian through order p4 for a theory with two
representations of fermions. One-loop results for the
pseudoscalar masses, decay constants, and condensates
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are presented in Sec. IV. We conclude in Sec. V. The three
appendixes deal with technicalities.

II. SYMMETRIES AND PATTERNS OF BREAKING

There are three types of irreps: complex, real, and
pseudoreal. We consider a vectorlike field content, which
implies that fermions in a complex or pseudoreal irrep fit
into N Dirac fermions. For a real irrep, we will allow any
number Nw of Weyl (or, equivalently, Majorana) fermions.
In the chiral limit, where all masses are zero, the familiar
symmetry breaking patterns are [48]

complex∶ SUðNÞL × SUðNÞR → SUðNÞV;
pseudoreal∶ SUð2NÞ → Spð2NÞ;

real∶ SUðNwÞ → SOðNwÞ: ð2:1Þ

As a natural generalization of the familiar terminology of
QCD, for all types of irreps we will refer to the sponta-
neously broken symmetries as axial symmetries, and to the
unbroken ones as vector symmetries. For simplicity, we
will consider only mass matrices that do not break
explicitly any of the vector symmetries, so that all pions
made out of a single fermion species will have the
same mass.

A. Symmetry breaking patterns

In this subsection we describe in some detail the
symmetry breaking pattern for each type of irrep, and
how it is reflected in the field content of the effective chiral
theory.

1. Complex representations

We consider N Dirac fermions ψ i, ψ i, where the flavor
index is i ¼ 1;…; N. We suppress color and Dirac indices.
The global symmetry of the massless theory is
SUðNÞL × SUðNÞR, which is spontaneously broken to
the diagonal subgroup SUðNÞV . The effective field Σ takes
values in the coset SUðNÞL × SUðNÞR=SUðNÞV ≅ SUðNÞ.
It describes the long-distance fluctuations of the bilinears

Σij ↔ trðPLψ iψ jÞ ¼ trðψL;iψR;jÞ;
Σ�
ij ↔ trðPRψ jψ iÞ ¼ trðψR;jψL;iÞ; ð2:2Þ

where the traces on the right-hand side are over color
and Dirac indices, PR;L ¼ ð1� γ5Þ=2, and ψL;R ¼ PL;Rψ ,
ψL;R ¼ ψPR;L. The chiral spurion χijðxÞ is introduced by
adding to the Lagrangian of the massless theory the
following source term:

Lsrc ¼ ψLχψR þ ψRχ
†ψL: ð2:3Þ

The symmetry transformations act as

ψL;R → gL;RψL;R; ψL;R → ψL;Rg
†
L;R; ð2:4aÞ

Σ → gLΣg
†
R; χ → gLχg

†
R; ð2:4bÞ

where gL;R ∈ SUðNÞL;R.
The mass matrix is given by the “expectation value” of

the chiral spurion, Mij ¼ hχiji. By applying an SUðNÞL ×
SUðNÞR transformation the mass term can be brought to a
diagonal form, Mij ¼ miδij, where in general mi are
complex numbers. In this paper, we will consider only
the equal-mass limit, mi ¼ m, and we take m to be real and
positive. The fermion condensate will therefore be oriented
in the direction of the identity matrix, hψ iψ ji ∝ δij.
Correspondingly, for the effective field we will have
hΣiji ¼ δij.

2. Real and pseudoreal representations

For any real or pseudoreal irrep there exists a matrix S
with the invariance property

gTSg ¼ S; ð2:5Þ

for any element g of the gauge group. Here S is a real
orthogonal matrix. Equivalently, the Hermitian generators
of the Lie algebra Ta satisfy

TT
aS ¼ T�

aS ¼ −STa: ð2:6Þ

For a real representation S is symmetric, whereas for a
pseudoreal representation it is antisymmetric.
We start by considering again N Dirac fermions, and

begin by studying their properties under charge conjuga-
tion. The massless action for any number of Dirac fermions
in a complex irrep is invariant under charge conjugation,
which acts on the fermion and gauge fields as

ψ → CψT;

ψ → ψTC;

Aμ → −A�
μ; ð2:7Þ

where the charge-conjugation matrix C satisfies
Cγμ ¼ −γTμC, and C−1 ¼ C† ¼ CT ¼ −C.
For Dirac fermions that belong to a real or a pseudoreal

irrep, the massless fermion action is invariant under an
additional, similar-looking discrete symmetry that leaves
the gauge field invariant, and acts nontrivially on the
fermion fields only, according to1

ψ → SCψT;

ψ → ψTCST: ð2:8Þ

1This is referred to as “anti-unitary” symmetry in Ref. [49].
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Because the gauge field is invariant, the transformation
(2.8) can be applied to each Dirac fermion individually.
Motivated by this symmetry, we express the microscopic

theory in terms of purely left-handed Weyl fermions,
ξI ≡ PLξI ≡ ξL;I, ξI ≡ ξIPR ≡ ξL;I, where I ¼ 1;…; 2N,
which are related to the left- and right-handed components
of the Dirac fermions via2

ξL;i ¼ ψL;i;

ξL;Nþi ¼ SCψT
R;i;

ξL;i ¼ ψL;i;

ξL;Nþi ¼ ψT
R;iS

TC: ð2:9Þ

In terms of the Weyl fields, the Lagrangian takes the form

L ¼
X2N
I¼1

ξL;IDξL;I; ð2:10Þ

which is invariant under the SUð2NÞ flavor transformation

ξL → gξL; ξL → ξLg†: ð2:11Þ

Because of the Grassmann nature of the field, we have

ξTL;ICSξL;J ¼ ξTL;JCS
TξL;I;

ξL;ICSξ
T
L;J ¼ ξL;JCSTξ

T
L;I: ð2:12Þ

It follows that these bilinears are (anti)symmetric in I ↔ J
when S is (anti)symmetric.
The chiral field Σ now lives in SUð2NÞ, with the

correspondence

trðξL;IξTL;JCSÞ ↔ ΣIJ ¼ sΣJI; ð2:13aÞ

trðξTL;IξL;JCSTÞ ↔ Σ�
IJ ¼ sΣ�

JI; ð2:13bÞ

where it follows from Eq. (2.12) that s ¼ 1 (s ¼ −1) for a
real (pseudoreal) irrep. In both cases we have the trans-
formation rules

Σ → gΣgT; χ → gχgT; ð2:14Þ

and the source term in the Lagrangian is now

Lsrc ¼ ξLχCSTξ
T
L þ ξTLCSχ

†ξL: ð2:15Þ

For a real irrep, we will allow the number of Weyl fields
Nw to be either even or odd. In the latter case, one can then
use a Weyl basis or a Majorana basis (see Appendix A), but
not a Dirac basis. For all values of Nw, we have that Σ is an

element of the coset generated by the broken generators,
and thus an element of SUðNwÞ.
As usual, the symmetry-breaking order parameter is a

fermion bilinear, now given by the expectation value of
Eq. (2.12). We will assume that the mass matrix orients the
fermion condensate such that

hξTL;JCSξL;Ii ∝ JIJ; ð2:16Þ

where J is a real orthogonal matrix, and where J is
symmetric (antisymmetric) for a real (pseudoreal) irrep.
While we will be making specific choices for the explicit
form of the matrix J, our discussion of the chiral effective
theory applies assuming only that hΣi ¼ J, where J has the
properties listed above, and, in addition, det J ¼ 1.
For a pseudoreal irrep, we will again assume that the

Dirac mass matrix is given by Mij ¼ mδij, with m ≥ 0.
When translated to the Weyl basis, the mass term takes the
form

mψψ →
1

2
mðξTLCSJAξL þ ξLCSJAξ

T
LÞ; ð2:17Þ

with

JA ¼
�
0 −1
1 0

�
: ð2:18Þ

The fermion condensate is oriented in the direction of the
2N × 2N matrix JA, and the symmetry breaking pattern is
SUð2NÞ → Spð2NÞ. Note that det JA ¼ þ1, independent
of N. It follows that the ground state is represented in the
effective theory as hΣIJi ¼ ðJAÞIJ, consistent with the fact
that Σ ∈ SUð2NÞ.
In the case of a real irrep one can conceive of two simple

choices for the mass matrix. First, for any number Nw of
Weyl (or Majorana) fermions, we may consider the
Majorana mass MIJ ¼ mδIJ, where again m ≥ 0. The
fermion condensate is then ∝ δIJ, and the ground state
of the effective theory is hΣIJi ¼ δIJ. By taking the chiral
limit m → 0, we see that the symmetry breaking pattern is
indeed SUðNwÞ → SOðNwÞ.
In the case of an even number of Majorana fermions, we

may regroup the fields into N ¼ Nw=2 Dirac fermions. Let
us endow these Dirac fermions with a common mass,
Mij ¼ mδij. Upon translating back to theWeyl or Majorana
basis, the mass matrix takes the same form as in Eq. (2.17),
except the 2N × 2N matrix JA gets replaced by JS, with

JS ¼
�
0 1

1 0

�
: ð2:19Þ

Note, however, that
2Technically, we define the Weyl fermions as 4-component

fields whose right-handed components vanish identically.
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det JS ¼
�þ1; N even;

−1; N odd:
ð2:20Þ

Only in the case that the number of Dirac fermions is even
(equivalently, the number of Majorana fermions is a
multiple of 4) is JS an element of SUð2NÞ, so that we
may assume that hΣIJi ¼ ðJSÞIJ. In the case of an odd
number of Dirac fermions, it is in general not possible to
have hΣi ¼ JS. This elementary fact is sometimes over-
looked in the literature.

B. Parametrization of the coset field: single irrep

In the case of a complex irrep we have hΣiji ¼ δij. The
expansion around this classical vacuum is facilitated by
writing ΣðxÞ ¼ ÛðxÞ ∈ SUðNÞ, with

ÛðxÞ ¼ exp

�
i

ffiffiffi
2

p
πðxÞ
F

�
¼ exp

�
i

ffiffiffi
2

p
πaðxÞTa

F

�
; ð2:21Þ

with πa the Nambu-Goldstone bosons associated with
the spontaneous symmetry breaking, and where Ta,
a ¼ 1;…; N2 − 1, are the generators of SUðNÞ, normal-
ized as3

trðTaTbÞ ¼ δab; ð2:22Þ

and F is the pion decay constant in the chiral limit.
Following Ref. [36] we adopt the convention

h0jAμaðxÞjπbi ¼ ipμ

ffiffiffi
2

p
Fδabeipx; ð2:23Þ

where Aa
μ is the axial current. Introducing the (external)

vector gauge field vμ ¼ vμaðxÞTa and the axial gauge
field aμðxÞ ¼ aμaðxÞTa, the covariant derivative takes the
form

DμΣ ¼ DμÛ ¼ ∂μÛ þ i½vμ; Û� þ ifaμ; Ûg: ð2:24Þ

Moving on to real and pseudoreal irreps, we first split the
generators of the global symmetry group SUðNwÞ into
broken generators Xâ and unbroken generators Q ~a, which
satisfy

JQ ~a ¼ −QT
~aJ; ð2:25Þ

JXâ ¼ þXT
âJ; ð2:26Þ

where the matrix J was introduced in Eq. (2.16). In both
cases, the expansion of the nonlinear field can be written as

ΣðxÞ ¼ ÛðxÞJ; ð2:27Þ

where

ÛðxÞ ¼ exp

�
i

ffiffiffi
2

p
πðxÞ
F

�
¼ exp

�
i

ffiffiffi
2

p
πâðxÞXâ

F

�
: ð2:28Þ

It can be verified that ΣðxÞ is symmetric (antisymmetric) for
a real (pseudoreal) irrep, as it should be. As before, the
vector gauge field is constructed from the unbroken
generators, while the axial one is constructed from the
broken ones, i.e.,

vμ ¼ vμ ~aQ ~a; aμ ¼ aμâXâ: ð2:29Þ

By using the infinitesimal form of the transformation
(2.14), the covariant derivative is

DμΣ ¼ ∂μÛJ þ iðvμ þ aμÞÛJ þ iÛJðvμ þ aμÞT
¼ ð∂μÛ þ i½vμ; Û� þ ifaμ; ÛgÞJ
≡ ðDμÛÞJ: ð2:30Þ

In writing down the chiral Lagrangian it will be
convenient to use notation which is as uniform as possible
for all three cases. To this end, we generalize Eq. (2.27) to
the case of a complex irrep by simply taking J to be the
N × N identity matrix in this case. In all three cases,
complex, real, and pseudoreal, the covariant derivative is
then given by Eq. (2.30).
While we have discussed convenient choices for the

matrix J for the three types of irreps, our results are valid
more generally. In particular, for the real and pseudoreal
cases, the derivation is valid for any matrix J which
satisfies the properties discussed in the previous subsec-
tion. For the convenience of the reader we summarize
them: J must be an Nw × Nw real orthogonal matrix with
det J ¼ 1, and it should be symmetric (antisymmetric) for
the real (pseudoreal) case.

C. Singlet axial symmetries

In addition to the non-Abelian flavor symmetry group,
we may apply to the fermions of each irrep a flavor-singlet
axial transformation. For Dirac fermions, this transforma-
tion is given by

ψ i → e−iθγ5ψ i; ψ i → ψ ie−iθγ5 : ð2:31Þ

with a similar transformation for Majorana fermions. The
corresponding Uð1ÞA current is

Aμ ¼
(P

N
i¼1 ψ iγμγ5ψ i; Dirac fermions;PNw
I¼1ΨIγμγ5ΨI; Majorana fermions:

ð2:32Þ3The same normalization is used for the real and pseudoreal
cases.
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The Dirac version may be used for complex and pseudoreal
irreps, whereas the Majorana version is used for real
irreps.4

The individual Uð1ÞA currents are anomalous

∂μAμ ¼
g2

32π2
NwTFaμν

~Faμν; ð2:33Þ

where the group-invariant T is defined by

trðTaTbÞ ¼ Tδab; ð2:34Þ

where the Ta are the generators of the gauge group in the
given irrep, with T ¼ 1

2
for the fundamental irrep. As usual,

Nw ¼ 2N in the case of Dirac fermions.
Consider an asymptotically free theory with fermions in

n different irreps. We will assume that if a given irrep, r, is
real, the fermions are arranged as Nw;r Majorana fields. If r
is complex or pseudoreal, we assume that the fermions may
be assembled into Nr ¼ Nw;r=2 Dirac fermions.5 In any
such theory, only the overall Uð1ÞA transformation is
anomalous, whereas n − 1 linearly independent combina-
tions of the individual Uð1ÞA currents are anomaly free.

D. Parametrization of the coset fields: two irreps

From now on, we specialize to theories with fermions in
two different irreps. The irreps can be of the same type, e.g.,
both complex; or they can be of different types, e.g., one
complex irrep and one real irrep, as in the model of
Ref. [27]. Out of the two flavor-singlet axial currents,
we can make one linear combination which is anomaly
free. Using indices r; s;… ¼ 1, 2 to label the two irreps, the
nonanomalous current is6

Aμ ¼
X
r

qrAr;μ; ð2:35Þ

where, adopting a convenient normalization, the axial
charges of the two irreps are

q1 ¼
Nw;2T2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2
w;1T

2
1 þ N2

w;2T
2
2

q ;

q2 ¼ −
Nw;1T1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2
w;1T

2
1 þ N2

w;2T
2
2

q : ð2:36Þ

The requirement that the current Aμ be anomaly free only
fixes the ratio q1=q2. As is usually the case for an Abelian
symmetry, the overall normalization of the current is arbi-
trary.Obviously, physics should not depend on this choice. In
Appendix Cwe discuss the choice of normalization in a little
more detail, showing that this is indeed the case.
For each irrep, the fermion condensate carries twice the

axial charge of a single field. It follows that the non-
anomalousUð1ÞA is spontaneously broken, too. To account
for the corresponding NGB, we introduce a new effective
field,

ΦðxÞ ¼ exp

�
iζðxÞffiffiffi
2

p
Fζ

�
∈ Uð1Þ; ð2:37Þ

with unit charge under Uð1ÞA. The covariant derivative of
this field is

DμΦ ¼ ∂μΦþ iαμΦ ¼ iΦ
� ∂μζffiffiffi

2
p

Fζ

þ αμ

�
; ð2:38Þ

where αμ is the (external) Uð1ÞA gauge field.
In order to match all quantum numbers of the order

parameters, including their Uð1ÞA charges, Eq. (2.2) gets
replaced by

trðψL;iψR;jÞ ↔ Φ2qΣij;

trðψR;jψL;iÞ ↔ Φ−2qΣ�
ij; ð2:39Þ

for the complex case, while (2.13) gets replaced by

trðξL;IξTL;JCSÞ ↔ Φ2qΣIJ;

trðξTL;IξL;JCSTÞ ↔ Φ−2qΣ�
IJ; ð2:40Þ

for the real and pseudoreal cases. In all cases, the chiral
source χ carries charge þ2q.

III. CHIRAL LAGRANGIAN

We are now ready to write down the chiral Lagrangian
for two different irreps, labeled by indices r; s;… ¼ 1, 2.
As before, when r is a complex irrep the flavor indices are
i; j;… ¼ 1;…; Nr, where Nr is the number of Dirac
fermions. For real and pseudoreal irreps, the flavor indices
are I; J;… ¼ 1;…; Nw;r, whereNw;r is the number of Weyl
fermions.7 To allow for more uniformity of our notation, we
also introduce nr, which will be equal Nr for a complex
irrep, and to Nw;r for real and pseudoreal irreps.

A. Leading order

The leading-order (LO) Lagrangian consists of kinetic
terms and mass terms,

4See Appendix A for the definition of the Majorana fermionΨ.
5If r is a complex irrep, we count both r and its complex

conjugate as the same irrep, for the obvious reason that a Dirac
fermion in a complex irrep corresponds to two same-handedness
Weyl fermions in the two complex conjugate irreps.

6For Eq. (2.35) to be true to all orders, Ar;μ on the right-hand
side should be the renormalized singlet axial current of the rth
irrep. 7Recall that Nw is even for a pseudoreal irrep.
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L2 ¼ Lk þ Lm: ð3:1Þ

There is a separate kinetic term for each coset field,

Lk ¼ F2
ζðDμΦÞ†DμΦþ

X
r

F2
r

4
hðDμΣrÞ†DμΣri; ð3:2Þ

where, from now on, we will use the notation h� � �i to
indicate tracing over the flavor indices.
The mass terms take the form

Lm ¼ −
X
r

F2
r

4
hχ†rUr þ U†

rχri; ð3:3Þ

where we have introduced the product fields

UrðxÞ ¼ ΦðxÞ2qrΣrðxÞ ¼ ΦðxÞ2qrÛrðxÞJr: ð3:4Þ

The presence of Φ2qr is forced upon us because χr carries
charge 2qr. Using the results of Sec. II D it can be checked
that Lm is invariant under all the flavor symmetries,
including the nonanomalous Uð1ÞA. With the external
gauge fields turned on, the entire Lagrangian L2 is thus
invariant under local flavor transformations.
The LO Lagrangian is also invariant under an “intrinsic”

parity symmetry that acts simultaneously on all fields. For a
complex irrep, the intrinsic parity is

Σr → Σ†
r ; χr → χ†r ;

vrμ → vrμ; arμ → −arμ; ð3:5Þ

whereas for the other two cases it is

Σr → srΣ
†
r ; χr → srχ

†
r ;

vrμ → −vTrμ; arμ → −aTrμ; ð3:6Þ

where, as in Eq. (2.13), sr ¼ 1 (sr ¼ −1) for a real
(pseudoreal) irrep. The transformation of the pion fields
is πr → −πr for a complex irrep, and πr → −πTr for real and
pseudoreal irreps.8 Finally, for the singlet sector, the
intrinsic parity is

Φ → Φ�; αμ → −αμ: ð3:7Þ

In order to develop the perturbative expansion we let the
chiral sources assume their “expectation values,” i.e., we set

χr ¼ 2mrBrJr; ð3:8Þ

where mr ≥ 0, and the allowed choices for Jr are summa-
rized in Sec. II B. Using Eqs. (2.30), (3.4) and (3.8) it can

be checked that the Jr matrices completely drop out when
the LO Lagrangian is expressed in terms of the fields Φ and
Ûr. We next use Eqs. (2.21), (2.28) and (2.37) to extract the
quadratic part of the LO Lagrangian, obtaining

Lquad
2 ¼ 1

2
ð∂μζ∂μζ þM2

ζζ
2Þ þ 1

2

X
r

h∂μπr∂μπr þM2
rπ

2
ri;

ð3:9Þ

where we have now turned off the external gauge fields.
The tree-level masses are

M2
r ¼ 2mrBr; ð3:10Þ

for the pions, and

M2
ζ ¼ 2

X
r

F2
r

F2
ζ

q2rmrBrh1ri ¼
X
r

F2
r

F2
ζ

q2rM2
rnr; ð3:11Þ

for the flavor singlet pseudoscalar ζ, where nr is defined at
the beginning of Sec. III. Note thatM2

ζ vanishes only when
the fermion masses of both irreps vanish. The tree-level
“quark flow” propagators are obtained using closure
relations that we have collected in Appendix B. For a
complex irrep (dropping the irrep’s index r) the propa-
gator is9

hπijðxÞπklðyÞi ¼
Z

d4p
ð2πÞ4

eipðx−yÞ

p2 þM2

�
δilδjk −

1

N
δijδkl

�
:

ð3:12Þ

For a real or pseudoreal irrep, it is

hπIJðxÞπKLðyÞi ¼
Z

d4p
ð2πÞ4

eipðx−yÞ

p2 þM2

×

�
1

2
ðδILδJK þ JIKJJLÞ −

1

Nw
δIJδKL

�
:

ð3:13Þ

This structure follows from the fact that the pion matrix
obeys the relation π ¼ 1

2
ðπ þ JπTJTÞ and that it is

traceless.
An advantage of the quark-flow Feynman rules is that the

vertices can be read off mechanically, and the coset
structure is reflected only in the above expressions for
the propagators. In particular, this is the only place where
one encounters the Jr matrices once the Lagrangian has
been expressed in terms of the Φ and Ûr fields.

8It follows from Eq. (2.26) that if Xa is a coset generator,
so is XT

a .

9In Eqs. (3.12) and (3.13) the notation h� � �i stands for an
expectation value, not a flavor-index trace.
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The expansion of the kinetic terms in the pion fields is
standard. In the mass terms, on the other hand, we
encounter terms that depend on both the pion and flavor
singlet fields. For example, the quartic part of Lm is

Lquart
m ¼ −

X
r

M2
r

�
nrq4rF2

r

12F4
ζ

ζ4 þ q2r
2F2

ζ

ζ2hπ2ri

þ qr
3FζFr

ζhπ3ri þ
1

12F2
r
hπ4ri

�
: ð3:14Þ

The ζhπ3ri term appearing in this Lagrangian is a novel
feature, as, by itself, hπ3ri violates intrinsic parity. This
interaction allows the decay ζ → 3π to proceed at tree level
even when all fermion masses for a single irrep are
degenerate (if that mass is small enough), unlike the similar
decay η → 3π in QCD which requires isospin violation
to occur.

B. Next-to-leading order

The next-to-leading order Lagrangian

L4 ¼ Ls þ Ld þ Lζ; ð3:15Þ

consists of several kinds of terms. Following closely the
classification of the QCD case [31,32], we start with the
single-trace terms

Ls ¼
X
r

ðL0rP0r − L3rP3r þ L5rP5r − L8rP8r −H2rX2rÞ;

ð3:16Þ

where10

P0r ¼ hðDμÛrÞ†DνÛrðDμÛrÞ†DνÛri; ð3:17aÞ

P3r ¼ hðDμÛrÞ†DμÛrðDνÛrÞ†DνÛri; ð3:17bÞ

P5r ¼ hðDμÛrÞ†DμÛrðχ†rUr þU†
rχrÞi; ð3:17cÞ

P8r ¼ hχ†rUrχ
†
rUr þU†

rχrU
†
rχri; ð3:17dÞ

X2r ¼ hχ†rχi: ð3:17eÞ

HereH2r is a “high-energy” constant, multiplying a contact
term. The minus signs in Eq. (3.16) and following, relative
to Refs. [31,32], are present because we work in Euclidean
metric while their metric is Minkowski, and we want our
results for observables to agree with theirs in the single-
representation case. Note that, through Ur, some of these
operators depend on the singlet field Φ. Next, there are
double-trace terms

Ld ¼
X
rs

ð−L1rsP1rs − L2rsP2rs þ L4rsP4rs

− L6rsP6rs − L7rsP7rsÞ; ð3:18Þ

where all low-energy constants (LECs) except L4rs are
symmetric under r ↔ s, and

P1rs ¼ hðDμÛrÞ†DμÛrihðDνÛsÞ†DνÛsi; ð3:19aÞ

P2rs ¼ hðDμÛrÞ†DνÛrihðDμÛsÞ†DνÛsi; ð3:19bÞ

P4rs ¼ hðDμÛrÞ†DμÛrihχ†sUs þU†
sχsi; ð3:19cÞ

P6rs ¼ hχ†rUr þ U†
rχrihχ†sUs þU†

sχsi; ð3:19dÞ

P7rs ¼ hχ†rUr −U†
rχrihχ†sUs − U†

sχsi: ð3:19eÞ

Finally, there are additional terms that involve the singlet
field’s two-derivative operator

Lζ ¼ L0
0P

0
0 −

X
r

ðL0
1rP

0
1r þ L0

2rP
0
2r þ L0

3rP
0
3rÞ; ð3:20Þ

where

P0
0 ¼ ððDμΦÞ†DμΦÞ2; ð3:21aÞ

P0
1r ¼ hðDμÛrÞ†DμÛriðDμΦÞ†DμΦ; ð3:21bÞ

P0
2r ¼ hðDμÛrÞ†DνÛriðDμΦÞ†DνΦ; ð3:21cÞ

P0
3r ¼ hχ†rUr þU†

rχriðDμΦÞ†DμΦ: ð3:21dÞ

IV. NEXT-TO-LEADING ORDER RESULTS

In this section we will present the NLO corrections for
the masses and the decay constants of the (pseudo) NGBs,
and for the condensates. Since the calculations leading to
these results are straightforward, we will not give any
details. We have cross-checked all applicable single-
representation results in these formulas (i.e., analytic terms
and chiral logarithms which do not involve ζ) against the
corresponding NLO results in the literature [36].

A. Pseudoscalar masses

The inverse propagator takes the general form

p2 þM2 þ Γðp2Þ; ð4:1Þ

whereM2 is the tree-level mass, and Γðp2Þ is the NLO self-
energy. The physical mass-squared M2

phys ¼ M2 þ δM2 is
equal to the value of −p2 for which this vanishes. At NLO,
we may set p2 ¼ −M2

phys → −M2 in Γðp2Þ, and we obtain
10P0r is redundant for N ≤ 3 for complex irreps, or Nw ≤ 3 for

real and pseudoreal irreps [33].
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δM2 ¼ Γð−M2Þ: ð4:2Þ

We first consider the pions. The NLO correction can be
expressed as

δM2
r ¼ δM2

r;an þ δM2
r;π þ δM2

r;ζ: ð4:3Þ

The origin of the various terms is the following. δM2
r;an

is the analytic contribution from the NLO Lagrangian,
given by

δM2
r;an¼

8M2
r

F2
r

�
ð2L8r−L5rÞM2

rþ
X
s

ð2L6rs−L4rsÞM2
sns

�
:

ð4:4Þ

δM2
r;π is the usual nonanalytic contribution from a pion

tadpole, which arises from a single quartic vertex of the LO
Lagrangian. It is given by [36]

δM2
r;π ¼ M2

rCrΔr; ð4:5Þ

where Cr ¼ 1=nr for complex, −1=2þ 1=nr for real, and
1=2þ 1=nr for pseudoreal representations, and with

Δr ¼
M2

r

16π2F2
r
log

M2
r

μ2
: ð4:6Þ

We are using the standard ChPT subtraction scheme in
which the tadpole is given entirely by the logarithm
and its constant terms are absorbed into the renormalized
Li’s [32].
Finally δM2

r;ζ is a similar nonanalytic contribution
involving a ζ tadpole, which arises from the second term
on the right-hand side of Eq. (3.14). Explicitly

δM2
r;ζ ¼ −q2rM2

rΔζ; ð4:7Þ

Δζ ¼
M2

ζ

16π2F2
ζ

log
M2

ζ

μ2
: ð4:8Þ

For the one-loop correction to the mass of the pseudo-
scalar singlet we similarly find

δM2
ζ ¼ δM2

ζ;an þ δM2
ζ;ζ þ δM2

ζ;π: ð4:9Þ

The analytic contribution is

δM2
ζ;an ¼

1

F2
ζ

X
r

M2
rnrð16L8rM2

rq2r þ 2L0
3rM

2
ζÞ

þ 1

F2
ζ

X
rs

M2
rM2

snrnsð8L6rsðq2r þ q2sÞ

þ 16L7rsqrqsÞ: ð4:10Þ

The nonanalytic contribution from a ζ tadpole is

δM2
ζ;ζ ¼ −

X
r

M2
rnrq4r

F2
r

F2
ζ

Δζ; ð4:11Þ

and the nonanalytic contribution from pion tadpoles is

δM2
ζ;π ¼ −

X
r

DrM2
rq2r

F2
r

F2
ζ

Δr; ð4:12Þ

where the dimensionality of the coset,Dr, is equal to n2r − 1

for a complex representation, 1
2
nrðnr þ 1Þ − 1 for a real

representation, and 1
2
nrðnr − 1Þ − 1 for a pseudoreal

representation.

B. Decay constants

As in the case of the pion mass, we write

δFr ¼ δFr;an þ δFr;π þ δFr;ζ: ð4:13Þ

We find that

δFr;an ¼ 4Fr

�
L5r

M2
r

F2
r
þ
X
s

L4rsns
M2

s

F2
r

�
;

δFr;π ¼ −
1

2
FrnrΔr;

δFr;ζ ¼ 0: ð4:14Þ

There are no loop contributions to Fζ, and we find a purely
analytic result

δFζ ¼ −Fζ

X
r

L0
3rnr

M2
r

F2
ζ

: ð4:15Þ

C. Condensates

The condensate Σr ≡ hψ rψ ri per flavor of irrep r is
defined by

Σr ¼ −
1

nr

∂ logZ
∂mr

: ð4:16Þ

To leading order this yields Σ0
r ¼ −F2

rBr, using Eq. (3.3).
At NLO, we again define

δΣr ¼ δΣr;an þ δΣr;π þ δΣr;ζ; ð4:17Þ

for the analytic, pion-loop and ζ-loop contributions. A
straightforward calculation finds
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δΣr;an ¼ 4Σ0
r

�
ð2L8r þH2rÞ

M2
r

F2
r
þ 4

X
s

L6rsns
M2

s

F2
r

�
;

δΣr;π ¼ −Σ0
r
Dr

nr
Δr;

δΣr;ζ ¼ −Σ0
rq2rΔζ; ð4:18Þ

where Dr was defined below Eq. (4.12).

V. CONCLUSION

In this paper, we developed chiral perturbation theory for
a vectorlike gauge theory with fermions transforming in
two different irreducible representations of the gauge
group. We considered fermions in any type of representa-
tion of the gauge group, complex, real or pseudoreal. We
assumed that bilinear condensates develop for each of these
fermions, breaking the flavor symmetry of each fermion
species spontaneously.
The low-energy effective field theory contains Nambu-

Goldstone bosons associated with the vacuum manifolds
for each of the two condensates. In addition, it contains one
more singlet Nambu-Goldstone boson, because a linear
combination of the two axial Uð1Þ symmetries remains
nonanomalous. The two fermion condensates both break
this singlet axial Uð1Þ, and the associated axial current
thus creates a singlet Nambu-Goldstone boson from the
vacuum.
We allowed for degenerate masses for each fermion

species; of course, they are not degenerate between
different irreducible representations. This turns the
Nambu-Goldstone bosons into massive pseudo Nambu-
Goldstone bosons. The (tree-level) mass-squared of the
singlet Nambu-Goldstone boson is a linear combination of
the masses of the two fermion species, and it is thus not
possible to give this Nambu-Goldstone boson a mass
without giving at least one of the nonsinglet Nambu-
Goldstone boson multiplets a mass. We presented next-
to-leading order results for all meson masses, decay
constants, and the two condensates. It should be straight-
forward to generalize the framework of this paper to a
theory with more than two different types of fermions.
We can imagine two potential uses for these results. The

first, as mentioned in the Introduction, is that theories as
considered here have applications in models for physics
beyond the standard model. We have not seen a systematic
construction of the chiral Lagrangian for theories with more
than one representation of fermions presented to date, so
our results might be a resource for model builders. From
this perspective, we think that the most interesting aspect
of these systems is the appearance of the additional
Uð1Þ Nambu-Goldstone boson. The nonsinglet Nambu-
Goldstone bosons come in degenerate-mass multiplets, if
degenerate masses are given to the fermions in the under-
lying theory. On the other hand, the singlet appears as a

somewhat isolated state, particularly if the masses of the
two nonsinglet multiplets are somewhat separated. This is a
distinctive feature in the context of e.g. composite Higgs
models, where new resonances tend to appear with large
multiplicity and similar masses. Unusually for a Nambu-
Goldstone boson, the singlet can decay at tree level as
ζ → 3π even when all fermion masses for each represen-
tation are degenerate, which may have interesting phenom-
enological consequences in some theories.
The second potentially useful application of these results

is as a theoretical benchmark for the interpretation of lattice
simulations relevant for various extensions of the Standard
Model [50]. Three of us are involved in such an effort [51].
The interesting physics issues are whether such a system is
confining and chirally broken, and if so, how the dimen-
sionful parameters (decay constants, masses, condensates)
for the different representations are related to each other. Is
it possible that there are ranges of bare parameters in which
the fermions in one representation condense, while those in
the others do not? Speculations about such behavior are
longstanding (see e.g. Ref. [52]). Of course, the results of
this paper apply only in the case that the fermions in both
representations condense.
Seeing the additionalUð1Þ Nambu-Goldstone boson in a

lattice calculation might be difficult. One would have to
measure “quark-disconnected” diagrams like those used in
the measurement of the η0 mass in QCD. An elaborate
multichannel analysis along the lines of Ref. [53] might be
needed to observe them. The ordinary pions will be easier
to study. There, the interesting physics is the dependence of
the squared mass M2

r of a pseudoscalar, or of its decay
constant Fr, on the mass of a fermion in a representation
s ≠ r when the mass of a fermion in representation r
is fixed.
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APPENDIX A: MAJORANA FERMIONS

When the Dirac fermions belong to a real irrep
we may alternatively introduce Majorana fermions ΨI ,
I ¼ 1;…; 2N, where
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ΨL;i ¼ ψL;i;

ΨL;Nþi ¼ SCψT
R;i;

ΨR;i ¼ SCψT
L;i;

ΨR;Nþi ¼ ψR;i; ðA1Þ

and where i ¼ 1;…; N as before. Defining

Ψ≡ΨTCS; ðA2Þ

the Lagrangian becomes

L ¼ 1

2

X2N
I¼1

ΨIDΨI: ðA3Þ

For a real irrep, the number of Majorana (or Weyl) fermions
Nw is also allowed to be odd, in which case we can use a
Majorana (or Weyl) basis, but not a Dirac basis.
Correspondingly, allowing the range of summation in
Eq. (A3) to be an arbitrary positive integer Nw, the flavor
symmetry acts as

Ψ → ðPLgþ PRg�ÞΨ; ðA4Þ

where g ∈ SUðNwÞ. For Nw ¼ 2N, it can be checked that
Eq. (A4) agrees with Eq. (2.11).
In terms of the Majorana fields, we have [compare

Eq. (2.12), and recall ST ¼ S)]

ΨT
I CSΨJ ¼ ΨT

JCSΨI: ðA5Þ

Moreover, since Cγ5 ¼ γT5C, this remains true if the same
chiral projector is inserted on both sides of the equation. All
these bilinears are therefore symmetric on their flavor
indices, as expected.

APPENDIX B: PROJECTORS

In writing down the expressions for the tree-level
propagators we use that, with the normalization (2.22),
the projector on the traceless Hermitian generators of
SUðNÞ is

PIJKL ≡ TaIJTaKL ¼ δILδJK −
1

N
δIJδKL: ðB1Þ

Splitting it into a projector on the space spanned by the Q’s
of Eq. (2.25) and the X’s of Eq. (2.26), we have P ¼
PQ þ PX where

PQ
IJKL ≡Q ~aIJQ ~aKL ¼ 1

2
ðδILδJK − JIKJJLÞ; ðB2Þ

PX
IJKL ≡ XâIJXâKL ¼ 1

2
ðδILδJK þ JIKJJLÞ −

1

N
δIJδKL:

ðB3Þ

These results can be proved by rewriting Eqs. (2.25) and
(2.26) as

Q ~a ¼
1

2
ðQ ~a − JQT

~aJ
TÞ; ðB4Þ

Xâ ¼
1

2
ðXâ þ JXT

âJ
TÞ; ðB5Þ

which are valid for any real orthogonal matrix J.

APPENDIX C: NORMALIZATION OF THE
SINGLET AXIAL CURRENT

In Eq. (2.36) we chose a particular normalization of
the charges q1 and q2, and thus a particular normalization
of the nonanomalous singlet axial current defined in
Eq. (2.35). Furthermore, the singlet’s decay constant Fζ

is defined by11

h0jAμðxÞjζi ¼ ipμ

ffiffiffi
2

p
Fζeipx; ðC1Þ

in analogy with Eq. (2.23). Fζ will show up in, for example,
the ζ decay rate, and it is therefore instructive to check that
ζ physics is not affected by the choice of normalization.
If we change the normalization of Aμ by a factor λ, it

follows from Eq. (C1) that the decay constant is rescaled as
Fζ → λFζ, and from Eq. (2.35) that qr → λqr. If we now
turn off the external gauge fields, and reexpress the LO
Lagrangian in terms of the ζ field, the result will depend
only on the ratios qr=Fζ, which are invariant. This is true, in
particular, for the factor of Φ2qr that occurs in Eq. (3.3).
Other concrete examples are provided by the LO singlet
mass (3.11), and the interaction vertices (3.14).
Proceeding to the NLO results we have calculated,

corrections to masses, to the pion decay constants, and
to the condensates, should be invariant under the rescaling,
whereas corrections to the singlet decay constant should
scale in the same way as Fζ itself.

12 One can then read off
from our NLO results how the NLO LECs should scale.
The unprimed NLO LECs are invariant, while the primed
ones rescale as L0

ir → λ2L0
ir, i ¼ 1, 2, 3, and L0

0 → λ4L0
0.

Alternatively, these scaling rules can be inferred from the
contribution of these NLO terms to the singlet axial current,
in comparison with the LO term following from Eq. (3.2).
Indeed, in our explicit NLO results, L0

3r always appears in
the combination L0

3r=F
2
ζ , which is independent of λ.

We conclude with one more example. In the context of
composite Higgs models, when the couplings to Standard
Model gauge fields are turned on, the Aμ current becomes
anomalous, and ζ develops anomaly-induced couplings to

11Fζ is the decay constant in the full chiral limit, where the
masses of all fermions in the underlying theory vanish.

12Note that in order to probe the singlet decay constant we
need to turn back on the singlet axial gauge field.
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pairs of Standard Model vector bosons. If, for example, we
turn on electromagnetism, this anomaly takes the form

∂μAμ ¼ e2Fμν
~Fμν

X
r

qrcr; ðC2Þ

where Fμν is the electromagnetic field strength, and where
cr is a weighted sum over the squared electric charges of the
fermions that belong to the rth irrep. Using that

Aμ ¼
ffiffiffi
2

p
Fζ∂μζ þ higher orders; ðC3Þ

we find what is essentially the ζ equation of motion to this
order, i.e.,

□ζ ¼ e2ffiffiffi
2

p Fμν
~Fμν

X
r

qr
Fζ

cr: ðC4Þ

Again, only the ratio qr=Fζ appears, implying that the
decay rate is independent of the arbitrary choice of
normalization of the singlet axial current Aμ.
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