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It is well known that perturbative pressure calculations show poor convergence. Calculations using a
two-particle irreducible (2PI) effective action show improved convergence at the 3 loop level, but no
calculations have been done at 4 loops. We consider the 2PI effective theory for a symmetric scalar theory
with quartic coupling in four dimensions. We calculate the pressure and two different nonperturbative
vertices as functions of coupling and temperature. Our results show that the 4 loop contribution can become
larger than the 3 loop term when the coupling is large. This indicates a breakdown of the 2PI approach, and
the need for higher order nPI approximations. In addition, our results demonstrate the renormalizability of
2PI calculations at the 4 loop level. This is interesting because the counterterm structure of the 2PI theory at
4 loops is different from the structure at n ≤ 3 loops. Two vertex counterterms are required at the 4 loop
level, but not at lower loop order. This unique feature of the 2PI theory has never been verified numerically.
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I. INTRODUCTION

There are many interesting systems which involve non-
perturbative physics. Problems of this kind cannot be solved
by expanding in some small parameter. One possible
technique is the use of n-particle irreducible (nPI) effective
theories [1–3]. The basic motivation is the hope that they can
be applied to non-Abelian gauge theories, but there has been
little progress to date in this direction. Calculations are
complicated by issues with gauge fixing [4,5] and renorma-
lizability. The renormalizability of the symmetric theory was
proven through contributions from many authors including
Refs. [6–9]. The renormalization of the nonsymmetric theory
has been studied more recently (see Refs. [10,11]).
In this paper we work with the simplest nPI theory,

which is the 2PI version (also known as the Φ-derivable
approximation). One of the first successful uses of the 2PI
theory was a calculation of entropy in QCD [12]. It can also
be used to study transport coefficients in scalar theories
[13] and QED [14], and the approach to equilibrium in far
from equilibrium systems [15–20]. The gauge dependence
of the QED pressure at 2 loops was studied in [21]. Phase
transitions in the SUðNÞ Higgs theory were studied at the 3
loop level in [22]. We also note that other methods exist
for the calculation of purely thermodynamic quantities in
nonperturbative systems. One of the most successful is
screened perturbation theory, which has been applied to
scalar theories [23–26], QED [27] and QCD [28,29].
In this paper we study an equilibrium symmetric φ4

theory, and work at 4 loop order in the 2PI theory. We use

the renormalization method developed in [8]. The primary
goal of this work is to study the convergence of the skeleton
expansion. Calculations were done at the 3 loop level in
[30], and improved convergence properties were found,
relative to perturbative calculations. We find that the 4 loop
approximation agrees well with the 3 loop one when the
coupling constant is not too large, but as the coupling grows
4 loop contributions become important. This indicates that
in a situation where nonperturbative physics is important,
higher order nPI approximations may be needed.
In addition, our calculation is interesting because it

provides numerical verification of the renormalizability
of the 2PI theory at the 4 loop level. The renormalization of
the symmetric 2PI theory requires, in general, two different
coupling constant counterterms which must be determined
from two renormalization conditions that are imposed on
different 4-point functions. However, at the 2 loop and 3
loop levels the structure is much less complicated—only
one counterterm is required. Our calculation thus provides
a nontrivial check of the renormalizability of the 2PI
effective theory.
We remark that the approximation we use in this paper

breaks down in the spontaneously broken phase or near the
critical temperature of the phase transition. Phase transitions
have been studied in the 2PI formalism in Refs. [31,32].
This paper is organized as follows. In Sec. II we review

the 2PI formalism. We describe the numerical method in
Sec. III (more details can be found in Refs. [30,33–35]). In
Sec. IV we present our results, and we conclude in Sec. V.

II. THE 2PI EFFECTIVE THEORY

In this section we review some definitions and tech-
niques used in 2PI calculations. In most equations in this
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paper we suppress integrals and the arguments that denote
the space-time dependence of functions. As an example of
this notation, the quadratic term in the action is written as

i
2

Z
d4xd4yφðxÞG−1

no·intðx − yÞφðyÞ → i
2
φG−1

no·intφ: ð1Þ

A. Action

The classical action is

S½φ� ¼ i
2
φG−1

no·intφ −
i
4!
λbφ

4;

iG−1
no·int ¼ −ð□þm2

bÞ: ð2Þ

For notational convenience we use a scaled version of the
physical coupling constant. The extra factor of i will be
removed when rotating to Euclidean space to do numerical
calculations. The effective action is obtained in the standard
way. We use a Bogoliubov-Parasiuk-Hepp-Zimmermann
renormalization procedure and write all expressions in
terms of renormalized quantities. The effective action
can be written generically as

Γ½ϕ; G� ¼ Γno·int½ϕ; G� þ Γint½ϕ; G�: ð3Þ

We define iΓ½G� ¼ Φ½G�, iΓno·int½G� ¼ Φno·int½G� and
iΓint½G� ¼ Φint½G�. We work to order λ3 in the skeleton
expansion. The noninteracting part of Eq. (3) is

Γno·int½G� ¼
i
2
ϕG−1

no·intϕþ i
2
Tr lnG−1 þ i

2
TrG−1

no·intG: ð4Þ

The interacting piece can be divided into terms that do
and do not contain counterterms. The counterterm con-
tributions are (see Fig. 1)

Φint·ct ¼ −
i
2
ðδZ2□þ δm2

2Þϕ2 −
i
2
ðδZ0□þ δm2

0ÞTrG

þ 1

4!
δλ4ϕ

4 þ 1

4
δλtpϕ

2Gþ 1

3
λδλeggϕ

2G3

þ 1

8
δλetG2 þ 1

24
δλbbλG3 þOðλ4Þ: ð5Þ

In the exact theory, all counterterms of the same type are
equal (for example, all vertex counterterms are equal:
δλ4 ¼ δλtp ¼ δλegg ¼ δλet ¼ δλbb). At a finite order of
truncation, the different counterterms in Eq. (5) could in
principle be defined differently. The noncounterterm con-
tributions to Φint are represented as

Φint·no·ct ¼
1

4!
λϕ4 þ 1

8
λG2 þ 1

6
λ2G3ϕ2 þ 1

48
λ2G4

þ 1

8
λ3G5ϕ2 þ 1

48
λ3G6: ð6Þ

In the symmetric theory the only loop diagrams that
contribute are the second, fourth and sixth terms in (6),
which are shown in Fig. 2.
We define the kernels:

ΦðnmÞ½ ~G� ¼ 2m
δnþm

δϕnδGmΦint½ϕ; G�
����
ϕ¼0
G¼ ~G

: ð7Þ

These kernels appear in the self-consistent integral equa-
tions that generate the nonperturbative n-point functions of
the theory.

B. Integral equations

The stationary condition is

δΦ½ϕ; G�
δG

����
ϕ¼0
G¼ ~G

¼ 0: ð8Þ

This equation takes the form

~G−1 ¼ G−1
no·int − Σ½ ~G�; ð9aÞ

where Σ is the kernel Φð01Þ defined in (7):

Σ½ ~G� ¼ 2
δΦint½ϕ; G�

δG

����
ϕ¼0
G¼ ~G

: ð9bÞ

Equation (10) is a self-consistent equation for the propa-
gator ~G which has the structure of a Dyson equation.
In our calculation there are two four vertices, which we

call M and V. These vertices are obtained from the self-
consistent equations

M½ ~G� ¼ Λ½ ~G� þ 1

2
Λ½ ~G� ~G2M½ ~G�; ð10aÞ

V½ ~G� ¼ λþ 3ðM½ ~G� − Λ½ ~G�Þ; ð10bÞ

where Λ is the 4-kernel Φð02Þ obtained from (7),
FIG. 1. Contributions to Φct to order λ3. The diagrams represent
the terms in Eq. (5) in the order they appear in the equation.

FIG. 2. The second, fourth and sixth terms in (6).
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Λ½ ~G� ¼ 4
δ2Φint½ϕ; G�

δG2

����
ϕ¼0
G¼ ~G

: ð10cÞ

We comment on the physical content of Eq. (11), which is
somewhat obscured by the notation we are using. The
vertexM, which is called the Bethe-Salpeter vertex, resums
the kernel Λ in the s channel. The vertex V is usually
referred to as the physical 4-vertex. Physical vertices are
defined in terms of the change in the effective action with
respect to variations in the field evaluated at the stationary
point. The definition of V is

V ¼ δ4Φintðϕ; GðϕÞÞ
δϕ4

ð11Þ

with GðϕÞ defined through the equation

δΦðϕ; GÞ
δG

����
G¼GðϕÞ

¼ 0: ð12Þ

The vertex V involves a resummation in all three (s, t and u)
channels. Using our shorthand notation which suppresses
indices, the three channels are not shown separately, but
combine to produce the factor (3) in Eq. (10b). Details of
the derivations of these expressions are given in
Refs. [30,36,37].
The goal is to solve the self-consistent integral equa-

tions (10) and (11). These equations contain counterterms
introduced by contributions to the effective action of the
form given in Eq. (5). The numerical calculation in the
symmetric theory requires one mass counterterm (which
we call δm2), one wave function renormalization counter-
term (which we call δZ), and three vertex counterterms
(which we call δλ, δ~λ and Δλ). The renormalization
conditions used to define these counterterms are given
below. All of them correspond to terms that have the same
structure as a contribution in the original Lagrangian, as
they must. The precise relationship between the numeri-
cal counterterms and the ones in Eq. (5) is explained in
detail in Ref. [8].
It appears that the integral equations (10) and (11) are not

coupled, and that we could first solve (10) for the
propagator ~G, and then use the result and solve (11) for
the verticesM and V. In fact, we will see below that the two
integral equations are coupled, because of the counterterm
structure. Once the counterterms have been determined, the
two equations decouple, and finite temperature calculations
are therefore easier.
From this point on we suppress the tilde on the self-

consistent propagator and write simply G. We work in
Euclidean space. We use an obvious shorthand notation in
which functional dependence on independent four-momen-
tum components is represented as a single capital letter.
When the four-momentum is zero, we again use only one

argument. For example, Λðp4; p1; p2; p3; k4; k1; k2; k3Þ →
ΛðP;KÞ, Gð0; 0; 0; 0Þ → Gð0Þ, etc.
The equation for the 4-kernel [from (10c)] is

ΛðP;KÞ≈−λ− δ~λþ λðλþ 2δ~λÞ
Z

dLGðLÞGðLþPþKÞ

− λ3
Z

dL
Z

dSGðSÞGðLÞ

×

�
GSþLþPGLþP−K þGSþL−PGL−P−K

þ 1

2
GLþPþKGSþPþK

�
; ð13Þ

where we have used a shorthand notation for the propa-
gators that depend on three momenta to save space [for
exampleGðSþ Pþ KÞ ¼ GSþPþK]. The kernelΛ contains
counterterms from the sixth and seventh diagrams in Fig. 1
(the reason they are denoted with tildes as δ~λ will be
explained below). Note that the expression for Λ in (13)
does not come directly from (10c). The full Λ contains
contributions from the t and u channels which can be
written as 2 times the t channel piece when the kernel is
embedded in the BS equation (16), by shifting dummy
variables. This symmetrization has already been done in
(13), and this is indicated by the wiggly equal sign. The
counterterm δ~λwill be determined from the renormalization
condition

Λð0; 0Þ ¼ −λ: ð14Þ
We rewrite this renormalization condition as follows:

ΛðP;KÞ ¼ −δ~λþ ΛdðP;KÞ; ð15aÞ

δ~λ ¼ λþ Λdð0; 0Þ; ð15bÞ

ΛðP;KÞ ¼ −λþ ½ΛdðP;KÞ − Λdð0; 0Þ�: ð15cÞ

Equation (16) is a self-consistent equation for δ~λ, since
ΛdðP;KÞ is a function of δ~λ [see Eq. (13)]. It is straightfor-
ward to show that the quantity in square brackets in
Eq. (15c) is finite.
The BS equation (10a) in momentum space is

MðP; 0Þ ¼ −Δλþ ΛðP; 0Þ

þ 1

2

Z
dQ½−Δλþ ΛðP;QÞ�G2ðQÞMðQ; 0Þ:

ð16Þ
We note that since this equation resums only the s channel,
one can fix the momentum on one side of the vertexM. The
new counterterm Δλ is an addition contribution to the
kernel of the BS equation from the sixth diagram in Fig. 1.
It is determined from the renormalization condition
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Mð0; 0Þ ¼ −λ ð17Þ

which, together with (16), gives a self-consistent equation
for Δλ of the form

Δλ ¼ 1

2

Z
dQ½−Δλþ Λð0; QÞ�G2ðQÞMðQ; 0Þ: ð18Þ

Notice that (16) and (18) are coupled, since Λð0; QÞ
depends on δ~λ. To understand the role of the counterterm
Δλ, we imagine expanding the BS equation instead of
solving it self-consistently. The kernels Λ, which were
made finite with the counterterm δ~λ, are chained together in
the s channel. The 2PI nature of the kernels guarantees that
no new divergences are generated, except in the loops that
join the kernels together. These divergences are canceled by
the counterterm Δλ.
Next we consider the 2-point function which is obtained

from Eq. (10), including counterterm diagrams of the form
shown in the second, sixth and seventh parts of Fig. 1. The
vertex counterterm is the sum of the two counterterms
calculated above:

δλ ¼ δ~λþ Δλ: ð19Þ

The resulting equations are

ΣðPÞ ¼ δm2þ δZP2þðλþ δλÞ
2

Z
dQGðQÞ

−
1

6
λðλþ 2δλÞ

Z
dQ

Z
dLGðLÞGðLþQÞGðPþQÞ

þ λ3

4

Z
dS

Z
dL

Z
dMGðSÞGðLÞ

×GðSþMÞGðLþMÞGðP−MÞ; ð20Þ

GðPÞ ¼ ðP2 þm2 þ ΣðPÞÞ−1: ð21Þ

The counterterms δZ and δm2 are obtained from the usual
renormalization conditions

G−1ð0Þ ¼ m2;

d
dP2

G−1
����
P¼0

¼ 1: ð22Þ

For later use we define the quantity ΣdðPÞ:

ΣðPÞ ¼ δm2 þ δZP2 þ ΣdðPÞ: ð23Þ

C. Comparison with 3 loop 2PI theory

At this point it is easy to see that calculations in the
2PI theory are considerably simpler when the effective
action is truncated at the 3 loop level. The reason is that the

4-point kernel has only a global divergence at this order.
Equations (13) and (15a) give

ΛdðP;KÞj3 loops ¼ −λþ λ2
Z

dLGðLÞGðLþ Pþ KÞ;

ð24Þ

and from (15b) we see that the equation that determines δ~λ
is not a self-consistent equation at 3 loop order. The result is
that the two counterterms Δλ and δ~λ can be immediately
combined as in (19), and the BS equation can be written so
that it depends on only one coupling constant counterterm,
which can be determined from (17). Schematically we have

kernel4 loops ¼ −Δλ − δ~λþ Λð4Þ
d ½~δλ�; ð25Þ

kernel3 loops ¼ −Δλ − δ~λþ Λð3Þ
d ¼ −δλþ Λð3Þ

d : ð26Þ

D. Pressure

The pressure can be obtained from the effective action
using

P ¼ T
V
Φ ð27Þ

where V is the 3-volume. We include all contributions to Φ
from Eqs. (4), (5) and (6):

P0 ¼ −
1

2

Z
dQ lnG−1

no·intðQÞ → π2T4

90
ð28Þ

P1 ¼ −
1

2

Z
dQ ln½G−1ðQÞGno·intðQÞ�

−
1

2

Z
dQ½G−1

no·intðQÞGðQÞ − 1� ð29Þ

P2 ¼ −
1

2

Z
dQðQ2δZ þ δm2ÞGðQÞ ð30Þ

P3 ¼ −
1

8
ðλþ δλÞ

Z
dQGðQÞ

Z
dLGðLÞ ð31Þ

P4 ¼
1

48
λðλþ 2δλÞ

Z
dS

Z
dL

×
Z

dQGðSÞGðLÞGðQÞGðSþ LþQÞ ð32Þ

P5 ¼ −
1

48
λ3

Z
dQ

�Z
dSGðSÞGðSþQÞ

×
Z

dLGðLÞGðLþQÞ
Z

dMGðMÞGðM þQÞ
�

ð33Þ
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Psum ¼ P0 þ P1 þ P2 þ P3 þ P4 þ P5: ð34Þ

There is an overall temperature independent divergence that
can be removed by a “cosmological constant” renormal-
ization, which means requiring that the vacuum pressure be
zero:

ΔP ¼ Psum − PsumðT ¼ 0Þ: ð35Þ

The arrow on the right side of (28) indicates that a
temperature independent constant has been dropped.
This constant would be removed by the shift in (35)
anyway. The term P0 is the noninteracting (λ ¼ 0) pressure.
We want to compare ΔP to the noninteracting expression,
so we define

P ¼ ΔP
P0

: ð36Þ

III. NUMERICAL METHOD

We want to solve the integral equations (13), (16), (20)
and (21). The counterterms are determined from (14), (17),
(19) and (22). We use always m ¼ 1, which means we give
all dimensionful quantities in mass units. In order to do
the numerical calculation, we restrict to a box in coordinate
space of finite volume L3β. Fourier transforming to
momentum space one obtains discrete frequencies and
momenta. This can be written

Z
dp4

2π

Y3
i¼1

Z
∞

−∞

dpi

2π
fðp4; piÞ

→
mtm3

s

ð2πÞ4
XNt

2

n4¼−Nt
2
þ1

Y3
i¼1

XNs
2

ni¼−Ns
2
þ1

fðmtn4; msniÞ; ð37Þ

mt ¼ 2πT ¼ 2π

Ntat
; ms ¼ 2πL−1 ¼ 2π

Nsas
;

L ¼ asNs; T ¼ 1

atNt
: ð38Þ

The parameters at and as are the lattice spacing in the
temporal and spatial directions. Indices which fall outside
of the range f−N=2þ 1; N=2g are wrapped inside using
periodic boundary conditions.
It is well known that the scalar ϕ4 theory in four

dimensions is noninteracting if it is considered as a
fundamental theory valid for arbitrarily high momentum
scales (quantum triviality), but the renormalized coupling is
nonzero if the theory has an ultraviolet cutoff and an
infrared regulator. In our calculation the mass m regulates
the infrared and the lattice spacing parameter provides an
ultraviolet cutoff.

There are certain restrictions on the values that can be
chosen for the parameters at, as, Nt and Ns, which are
discussed below. We have checked that results are inde-
pendent of the choices of these parameters, within these
restrictions. We use lattice spacing at ¼ as ¼ 1=12 and in
the spatial direction we use Ns ¼ 32. The renormalization
is done with Nt ¼ 128. We have verified numerically
that the corresponding temperature gives the zero temper-
ature limit, and we refer to it from here on as zero
temperature. The renormalization conditions give a set of
temperature independent counterterms to be used in sub-
sequent finite temperature calculations, which are obtained
from 126 ≥ Nt ≥ 6.
The numerical method replaces a continuous integration

variable with infinite limits by a discrete sum over a finite
number of terms. For numerical accuracy, we need the
upper limit of the sum to be big and the step size to be
small. This means we require Pmax ∼ 1

as
≫ 1 and ΔP ∼ 1

L ¼
1

Nas
≪ 1. The number of lattice points N is limited by

memory and computation time, and therefore there is a
limit on how small as can be taken while maintaining Nas
big. However, there is another more subtle issue that limits
how small we can choose as. The theory has a Landau pole
at a scale that decreases when λ increases. When λ becomes
large, as must increase (Pmax must decrease) so that the
integrals are cut off in the ultraviolet at a scale below the
Landau scale. However, decreasing the ultraviolet cutoff
Pmax will eventually cause important contributions from the
momentum phase space to be missed. When λ has increased
to the point that the Landau scale has moved down and
dipped into the momentum regime over which the inte-
grand is large, physically meaningful results cannot be
obtained. In our calculation we have determined that the
maximum coupling we can calculate is λ ≈ 8 (using
as ¼ 1=12 and Ns ¼ 32).
We use an iterative relaxation method to solve the self-

consistent equations. In the equations below, an index in
round brackets indicates the iteration number of a given
quantity. We start with the bare propagator and the BS
vertex obtained from the renormalized 4-kernel:

Gð0ÞðPÞ ¼ Gno·intðPÞ ¼ ½P2 þm2�−1 ð39Þ

Λð0Þ
d ðP;QÞ ¼ Λ½Gð0Þ; δ~λ ¼ 0� ð40Þ

δ~λð0Þ ¼ λþ Λð0Þ
d ð0; 0Þ ð41Þ

Λð0ÞðP;QÞ ¼ −δ~λð0Þ þ Λð0Þ
d ðP;QÞ ð42Þ

Mð0ÞðQ; 0Þ ¼ Λð0ÞðQ; 0Þ: ð43Þ

At the first iteration we update the propagator using

Σð1Þ
d ðPÞ ¼ Σd½Gð0Þ; δλð0Þ� ð44Þ
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δm2ð1Þ ¼ −Σð1Þ
d ð0Þ ð45Þ

δZð1Þ ¼ −
1

m2
s
ðΣð1Þ

d ð0; 0; 0; 1Þ − Σð1Þ
d ð0; 0; 0; 0ÞÞ ð46Þ

Σð1ÞðPÞ ¼ δm2ð1Þ þ δZð1ÞP2 þ Σð1Þ
d ðPÞ ð47Þ

Gð1ÞðPÞ ¼ ½ðGð0ÞðPÞÞ−1 þ Σð1ÞðPÞ�−1: ð48Þ

Using this updated propagator we calculate the updated
4-kernel and BS vertex:

Λð1Þ
d ðP;QÞ ¼ Λd½Gð1Þ; δ~λð0Þ� ð49Þ

δ~λð1Þ ¼ λþ Λð1Þ
d ð0; 0Þ ð50Þ

Λð1ÞðP;QÞ ¼ −δ~λð1Þ þ Λð1Þ
d ðP;QÞ ð51Þ

Mð1ÞðP; 0Þ ¼ ð−Δλð0Þ þ Λð1ÞðP; 0ÞÞ

þ 1

2

Z
dQð−Δλð0Þ þ Λð1ÞðP;QÞÞ

× ðGð1ÞðQÞÞ2Mð0ÞðQ; 0Þ ð52Þ

Δλð1Þ ¼ Δλð0Þ þ λþMð1Þð0; 0Þ ð53Þ

δλð1Þ ¼ δ~λð1Þ þ Δλð1Þ: ð54Þ

Continuing in the same fashion, the quantities obtained
from the first iteration are used to obtain the second
iteration results. Iterations are terminated when the relative
maximum difference between the (iþ 1)th iteration and the
ith, for any quantity, at any point in momentum space, is
less than 10−4.

IV. RESULTS

We compare results from a truncation in the skeleton
expansion at 2, 3 and 4 loops. We will use circles (blue),
diamonds (green) and boxes (red) as markers to represent
truncation at 2, 3 and 4 loops. On graphs that show both of
the 4-verticesM and V, we use open symbols for the vertex
M and solid symbols for V.
In Fig. 3 we show the zero momentum BS vertex

Mð0; 0; 0; 0Þ and symmetric vertex Vð0; 0; 0; 0Þ at fixed
temperature as a function of g ¼ ffiffiffiffiffiffiffiffiffiffi

λ=24
p

(which would
correspond to an interaction term in the Lagrangian of the
form λ

24
φ4 ¼ g2φ4). Agreement is good among all levels

of truncation when g is small, as expected. The 4 loop
contributions become large as g increases.

In Fig. 4 we show the two vertices at fixed λ as functions
of the temperature. At zero temperature they are renormal-
ized to the chosen value of the coupling. Deviations
between different orders in the approximation are evident
as the temperature increases.
In Fig. 5 we show the pressure as a function of g ¼ffiffiffiffiffiffiffiffiffiffi
λ=24

p
at T ¼ 2. The well-known oscillations that appear

in the perturbative calculation are not present. However, as
the coupling grows the 4 loop result deviates increasingly
from the 3 loop one.
Figure 6 demonstrates that the renormalization is done

correctly. We reduce the lattice spacing in the spatial
direction (as) while holding the length of the box
(L ¼ asN) fixed. In momentum space this means that
we increase the cutoff while holding the discretization
parameter constant. The graph shows −Vð0; 0; 0; 0Þ versus
logð1=asÞ for λ ¼ 2 and T ¼ 1. For comparison we show
the curve that results when the renormalization is done
incorrectly, using the 3 loop approximation but including

FIG. 3. The four vertices M and V versus g ¼ ffiffiffiffiffiffiffiffiffiffi
λ=24

p
for two

different values of temperature.
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an additional vertex counterterm on the 3 loop basketball
diagram. When the renormalization is done correctly, the
curve is almost completely flat. We have also checked that
the results are stable when we increase L (decrease ΔP)
while holding the ultraviolet cutoff (1=as) fixed.

V. DISCUSSION AND CONCLUSIONS

There is a hierarchial relationship between the order of
the truncation and the number of variational vertices that
can be included [3]. If the effective action is truncated at L
loops in the skeleton expansion, the corresponding nPI
effective actions are identical for n ≥ L. In this sense, a 3
loop calculation done within the 3PI formalism, a 4 loop
calculation done within the 4PI formalism, etc., is com-
plete. It is equivalent to say that one necessarily works with
L ≥ n. As noted in Sec. I, several calculations have been
done with the 2PI effective action at the 2 and 3 loop level.
Since the introduction of higher order variational vertices is
numerically very difficult, we would like to know if we can
extend these previous calculations by increasing L without
simultaneously increasing n.
There is evidence that an L loop calculation in the nPI

formalism should, in general, be done with L ¼ n. In a
gauge theory, it can be shown that the n loop nPI effective
action respects gauge invariance, to the order of the
truncation [4,5]. In particular, it is known that to calculate
leading order transport coefficients in gauge theories with an
nPI formalism, one must use the 3 loop 3PI effective action
[38]. In QED a 2 loop 2PI calculation (which is complete at 2
loop order according to the hierarchial relationship discussed
above) found weak dependence on the gauge parameter [21].
A recent 3 loop 2PI calculation in SUðNÞ Higgs theory [22]
has found strong dependence on the gauge parameter. A
possible exception however is a calculation where infrared
divergences play an important role, in which case 2PI
calculations at higher loop order can be useful [39,40].
The issue ofwhether or notnPI calculationswithL > n are

useful has not been investigated previously in scalar theories.
Three loop 2PI calculations have only been done in sym-
metricϕ4 theory, where the symmetry prevents 3-vertices and

FIG. 4. The four vertices M and V versus temperature for two
different values of λ.

FIG. 5. Pressure versus g ¼ ffiffiffiffiffiffiffiffiffiffi
λ=24

p
at T ¼ 2.

FIG. 6. The vertex −Vð0; 0; 0; 0Þ versus logð1=asÞ. The box
(black) symbols are the 3 loop calculation with the renormaliza-
tion performed incorrectly, using an extra counterterm on the
basketball diagram (see text for further explanation). The dia-
monds (green) and circles (red) are the 3 loop and 4 loop
calculations with the renormalization done correctly.
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the 3PI theory reduces to the 2PI one. We have studied the
convergence of the 2PI expansion at the 4 loop level. The
Landau pole limits our ability to study large couplings, but
the accessible range of parameters shows clearly that 4 loop
contributions in the skeleton expansion become important at
large coupling. This kind of behavior indicates that one
should extend the calculation to the 4PI level.
Higher order effective actions can be derived using a

variety of methods [3,41–43], but solving the resulting
variational equations is extremely difficult and little
progress has been made. The calculation of scalar vis-
cosity at next-to-leading order was formulated using a

4PI effective theory [44]. A scalar 4PI theory was studied
in three dimensions in [33,34] and the 3PI action was
used to study Yang-Mills theory in three dimensions in
[45]. In spite of the inherent difficulties with these
calculations, the results of this paper indicate that they
are important at next-to-leading order, and motivate
further efforts.
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