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We construct a class of Abelian and non-Abelian local gauge theories that consist only of matter fields of
fermions. The Lagrangian is local and does not contain an auxiliary vector field nor a subsidiary condition
on the matter fields. It does not involve an extra dimension nor supersymmetry. This Lagrangian can be
extended to non-Abelian gauge symmetry only in the case of SU(2) doublet matter fields. We carry out an
explicit diagrammatic computation in the leading 1=N order to show that massless spin-one bound states
appear with the correct gauge coupling. Our diagram calculation exposes the dynamical features that
cannot be seen in the formal auxiliary vector-field method. For instance, it shows that the s-wave fermion-
antifermion interaction in the 3S1 channel (ψ̄γμψ ) alone cannot form the bound gauge bosons; the fermion-
antifermion pairs must couple to the d-wave state too. One feature common to our class of Lagrangian is
that the Noether current does not exist. Therefore it evades possible conflict with the no-go theorem of
Weinberg and Witten on the formation of the non-Abelian gauge bosons.
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I. INTRODUCTION

The U(1) gauge theory normally consists of a gauge field
and matter fields. The Lagrangian is invariant under the
simultaneous gauge transformation of the gauge field and the
matter fields. After this was generalized to the non-Abelian
group [1], we learned that the non-Abelian extension under-
lies the dynamics of the fundamental particles.
Let us take a side step andaskout of curiosity the following

question: is it possible to construct a gauge-invariant
Lagrangian with matter fields alone? For instance, can we
construct a local field theory with the electron-positron field
alone such that it is invariant under the space-time-dependent
rotation ψðxÞ → eiαðxÞψðxÞ even in the absence of an
auxiliary gauge field? If the particles are bosons, the
CPN=CPN−1 model [2] would probably be the best known
example of this type. Its supersymmetric extension was also
discussed [3]. In the case that the matter fields are fermions
alone, the history actually goesmuch further back to thework
by Bjorken [4], but the work along this line has not been
fruitful.1

The method of the auxiliary vector fields was often used
in the past to proceed in this kind of argument. It introduces
nonpropagating gauge fields at the start and their kinetic
energy terms are added later by the loop contribution,
ending up with the Lagrangian of matter and propagating
gauge fields. Many argued that the nonpropagating gauge
field implanted as an auxiliary field in the Lagrangian
should be interpreted as turning into a bound state once it
has acquired its kinetic energy from the loop contributions.
But it is an inevitable consequence of the gauge invariance

of the Lagrangian that such an auxiliary field, elementary or
otherwise, ought to acquire a gauge-invariant kinetic
energy term − 1

4
GμνGμν after loops are included. Would

it not be more illuminating if the composition of the
massless vector state can be seen explicitly in terms of
the constituent matter fields? Such a diagrammatic com-
putation was indeed made by Haber, Hinchliffe and
Ravinovici [5] for the CPN−1 model many years ago.
Unfortunately, this demonstration cannot be repeated when
the constituents are fermions, since a simple local gauge-
invariant Lagrangian corresponding to that of the CPN

model is not known in the case of fermion constituents.
More recently, an attempt has been made to introduce

composite gauge bosons through the fifth dimension of the
Randall-Sundrum model [6]. The gauge bosons live in the
branes and can be interpreted as wholly or partially
composite. This is a new class or concept of composite
gauge bosons. Models were built and phenomenology was
discussed for possible extensions of the standard model
along this line [7,8].
In this paperwewould like to focus on the dynamics of the

formation of composite gauge bosons at an elementary level
of particle physics. Many of us have the underlying con-
viction or speculation that when a Lagrangian is locally
gauge invariant, gauge bosons must emerge as composite
states even if they are not placed as elementary particles. We
would like to see it with ourmodel Lagrangians in an explicit
diagrammatic way. In order to separate the issue from the
argument based on the auxiliary vector field trick, we study
the Lagrangians consisting of fermion fields alone.
Furthermore, since our Lagrangian consists only of fermions,
supersymmetry is not relevant to our argument, barring
the nonlinear realization [9]. We stay in the flat space-time
of dimension four all the time. We have no need of an extra

1A review of some of the early history can be found at the
beginning of Ref. [3], including references.
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dimension explicitly or implicitly. Given our Lagrangian, we
can carry out the diagram calculation at the leading 1=N
order with no further approximation or assumption. In this
way we can observe how the composite gauge bosons are
made of their constituents dynamically. Our reasoning for the
construction of the Lagrangian is simple and resorts to no
sophisticated mathematical argument or technique.
The primary purpose of this paper is to give model

Lagrangians that advocate the inevitability of gauge bosons
in gauge-symmetric theories. Although the application of
our class of model Lagrangians to the real world is not our
primary concern at this moment, short comments are made
at the end on issues in electroweak phenomena. At the end,
looking back at the history of “compositeness” including
findings in some supersymmetric theories, we wonder if it
is really a meaningful concept at a fundamental level.
At present, we do not have in mind an immediate

application of our model Lagrangian to particle phenom-
enology. The gauge bosons have been generally accepted as
the “elementary” particles and, experimentally, there is no
compelling evidence of compositeness. Therefore we shall
not pursue the experimental relevance of our models
seriously in this paper. Our emphasis at present is primarily
on their theoretical implications in composite gauge bosons
in general. When Yang and Mills introduced the non-
Abelian gauge field theory [1], it had no immediate
application. Even the ρ meson was not known at that time
although the concept of the weak intermediate bosons was
entertained by theorists. The Yang-Mills theory became a
subject of intense phenomenological interest only after the
Higgs mechanism [10], Weinberg’s “A Model of Leptons”
[11], and quantum chromodynamics were unexpectedly
developed one after another. If we recall this history, we
may have the chance to see some feature of our models
develop into a subject of experimental interest as the Large
Hadron Collider upgrades its luminosity and energy.
We organize the paper as follows. In Sec. II, following in

the footsteps of theCPN model, we introduce theU(1) gauge
model of charged Dirac fields alone. We emphasize that, in
contrast to the CPN model, one cannot write a local
Lagrangian of fermion fields alone with the so-called
auxiliary field trick. In Sec. III we show that the Noether
current is inevitably absent in the gauge theories that consist
of matter fields alone. In Sec. IV, we show the dynamics of
the U(1) gauge-boson formation first in the bosonic matter
model and then in the fermionicmatter model.We introduce,
as usual, theN families of matter fields and take the large-N
limit in order to solve the models explicitly in a compact
form. We find that a massless bound state appears in the 3S1
channel of elastic fermion-antifermion scattering, but that the
fermion-antifermion pair must interact in the 3D1 channel as
well in order to form the massless bound state of spin one. In
Sec. V we extend our models to the non-Abelian gauge
symmetry. Choosing the matter fields in the SU(2) doublet,
we can build a non-Abelian model with Dirac fields.

Computing the elastic scattering amplitude, we find the
non-Abelian gauge bosons in the SU(2)-triplet channel as
bound states with the correct self-couplings as required by
the non-Abelian gauge invariance. In our class ofmodels, the
SU(2)-doublet matter plays a special role; it is impossible to
extend themodel to matter fields of general SU(2) multiplets
or general Lie groups. The special role of the SU(2) doublet
is discussed in the text and also with two examples in one of
theAppendixes. In the final Sec.VI, we discuss the relevance
of the missing Noether currents to the no-go theorem of
Weinberg and Witten [12]. We conclude with comments on
possible relevance to the electroweakphenomenology andon
the historical mutation of the concept of compositeness.

II. U(1) MODELS

We proceed by following an elementary line of argu-
ment. The first step is to construct a local Lagrangian
Lðψ ;ψÞ such that

LðeiαðxÞψðxÞ; e−iαðxÞψðxÞÞ ¼ LðψðxÞ;ψðxÞÞ; ð1Þ

where LðψðxÞ;ψðxÞÞ depends on space-time coordinates xμ
only through the unconstrained fields ψðxÞ=ψðxÞ. We
cannot construct such a Lagrangian backward from the
QED Lagrangian by integrating out the gauge field AμðxÞ:
we would need a gauge fixing to integrate over AμðxÞ, but
fixing a gauge breaks manifest gauge invariance. We make
our search here with the CPN model as a guide.
Quantum electrodynamics cannot be modified or

extended in our way if both renormalizability and locality
are required in the space-time of (3þ 1) dimensions. We do
not consider here genuinely or intrinsically nonlocal field
theories in which the fundamental fields and/or interaction
contains nonlocality.2 In contrast to nonlocality, nonrenor-
malizability can be controlled formally by dimensional
regularization or by a covariant cutoff in phenomenology.
Therefore, here we abandon renormalizability in (3þ 1)
dimensions for the moment and move to a world of
(3þ 1) dimensions or consider a covariant cutoff theory
in (3þ 1) dimensions.

A. Boson matter

In order to construct a local Lagrangian with fermion
matter fields alone, we first reexamine the gauge invariance
of the bosonic matter model—namely, the CPN model—
from a slightly different viewpoint.
In the CPN model the gauge noninvariance of the free

Lagrangian L0 due to ∂μϕ under ϕ → eiαðxÞϕ must be
counterbalanced with that of the interaction Lint. Therefore,
Lint must have at least the same number of derivatives as
L0. Since L0 and Lint have the same space-time dimension,

2For example, the field theories once considered by Yukawa
[13] and his followers.
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we must introduce an inverse of ðϕ�ϕÞ in Lint to make up
for the dimension due to ∂μ in the numerator of Lint.
Keeping the number of ∂μ in Lint the smallest, we reach
almost uniquely the simplest form of the gauge-invariant
Lagrangian made of the matter fields alone as

Ltot ¼ L0 þ Lint; ð2Þ

where L0 is the standard free Lagrangian,

L0 ¼
XN
i¼1

∂μϕ�i ∂μϕi −
XN
i¼1

m2ϕ�iϕi; ð3Þ

and the interaction Lagrangian Lint is given by

Lint ¼ λ

P
N
i¼1ðϕ�i ∂

↔μ
ϕiÞ

P
N
j¼1ðϕ�j ∂

↔

μϕjÞ
4
P

N
k¼1ðϕ�kϕkÞ

; ðλ → 1Þ: ð4Þ

The indices ði; j; kÞ run from 1 to N so that the model is
solvable in the leading order of 1=N. They are referred to as
the copy indices hereafter. From time to time, however, the
summation over the copy indices will be suppressed unless
we need to recall it.
Under the local U(1) gauge transformation, the fields

transform with a space-time-dependent phase αðxÞ
common to all copy indices i as

ϕi → eiαðxÞϕi; and ϕ�i → e−iαðxÞϕ�i : ð5Þ

For the total Lagrangian, both L0 and Lint vary nontrivially
under the gauge transformation (5), but the variations δL0

and δLint are so made as to be proportional to each other:

δL0 ¼ −i
�X

i

ϕ�i ∂
↔

μϕi

�
∂μαþ

�X
i

ϕ�iϕi

�
∂μα∂μα;

δLint ¼ −λδL0: ð6Þ

These gauge variations cancel each other between L0 and
Lint for

λ ¼ 1 ðgauge limitÞ: ð7Þ

If we remove the mass term and impose the constraintP
iϕ
�
iϕi ¼ N=2f in Eq. (4), we recognize this Lagrangian

(with λ ¼ 1) as that of the CPN−1 model [2]. However, we
have introduced N copies solely to simplify the computa-
tion of the leading 1=N expansion. Our interest is not in the
SUðNÞ symmetry among the different copies.
As far as U(1) gauge invariance is concerned, we may add

toEq. (2) the terms that are gauge invariant by themselves, for
instance, nonderivative ϕ4 couplings such as

L0int ¼ −
XN
i;j¼1

λijðϕ�iϕiÞðϕ�jϕjÞ; ð8Þ

where λij are arbitrary real constants. However, in the leading
1=N order the interactions such as L0int do not affect bound-
state formation.3 Therefore, we leave out such interactions
hereafter. It is reassuring to see later that the vector bound
state becomes massless with the correct gauge coupling
irrespective of the additional gauge-invariant interactions
such as L0int.

B. Fermionic model

Following the reasoning outlined above, we can obtain—
with a little stretchof the imagination—a fermionic extension
of the bosonic model Lagrangian (2). Since the free
Lagrangian L0 contains only one the first derivative of ψ ,
the interactionLint can counterbalance the gauge variation of
L0 with only one first derivative of the field. Just as in the
bosonic case, we need to introduce the inverse of the scalar
densityψψ inLint in order tomatch thedimension. Following
the same reasoning as in the bosonic model, we reach the
Lagrangian L0 þ Lint,

L0 ¼
X
i

ψ iði∂ −mÞψ i;

Lint ¼ −iλ
P

iðψ iγμψ iÞ
P

jðψ j∂
↔μ

ψ jÞ
2
P

kψkψk
; ðλ → 1Þ; ð9Þ

where the gauge invariance is realized at λ ¼ 1. Under the
gauge transformation

ψ → eiαðxÞψ ;

ψ → ψe−iαðxÞ; ð10Þ

the Lagrangian of Eq. (9) is invariant due to the cancellation
between the gauge variations of L0 and Lint at λ ¼ 1:

δL0 ¼ −ψð∂αÞψ ;
δLint ¼ λψð∂αÞψ : ð11Þ

We may add to Lint the self-gauge-invariant terms such as

L0int ¼ −
fm
4
ðψγμψÞ

1

ðψψÞ ðψγ
μψÞ; ð12Þ

where the insertion of the fermion massm is just to make the
constant f dimensionless. The constantf is unconstrained by
gauge invariance. Afterwe compute themassless bound state
with Lint of Eq. (9) alone, we shall examine how the

3Because we compute the bound state of spin one, not of spin
zero.
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interactions like L0int affect its mass and coupling. Since they
will turn out to be irrelevant to the determination of the mass
and coupling of the massless bound state, we shall not
include them in our diagram calculation. Before calculating
the diagram, some may suspect that the fermion-antifermion
interaction through ∝ ðψγμψÞðψγμψÞ might be responsible
for or relevant to binding a gauge boson. This is wrong. Such
an interaction does not exist in ourLint. Even if one includes it
inLint, it does not participate in the formation of the massless
gauge boson nor in the determination of the gauge coupling,
as we shall see later.
Our fermionic Lagrangian (9) is obviously nonrenorma-

lizable in four space-time dimensions just like that of the
CPN model. As we know, the only renormalizable U(1)
gauge field theory with a charged fermion is quantum
electrodynamics: the propagating gauge field Aμ is needed
explicitly in the Lagrangian.

C. Auxiliary vector-field trick

Our bosonic Lagrangian (2) with λ ¼ 1 takes the same
form as what we could obtain by starting with the gauge-
invariant Lagrangian of a nonpropagating auxiliary gauge
field Aμ,

Laux ¼
X
i

ð∂μ − ieAμÞϕ�i ð∂μ þ ieAμÞϕi −m2ϕ�iϕi: ð13Þ

Either by integrating Eq. (13) over Aμ or by substituting the
equation of motion for Aμ,

eAμ ¼
i
2

�X
i

ϕ�i ∂
↔

μϕi

�
=

�X
j

ϕ�jϕj

�
; ð14Þ

we obtain for m2 → 0 the CPN Lagrangian (before impos-
ing the constraint and turning it into CPN−1) [14].
When we compute the dimension-four operator of Aμ

for the effective action using the loop correction, we
obtain the “kinetic energy term” − 1

4
FμνFμν. One cannot

obtain anything other than the gauge-invariant FF term
(“the Maxwell term”) since the Lagrangian (13) is gauge
invariant by construction. Whether this appearance of the
FF term is to be interpreted as the “generation of a
bound state” or not should be subject to debate. If we
accepted such an interpretation, a massless spin-one state
would emerge irrespectively of the strength of the
interaction e2 which is implanted in Eq. (13) at the
beginning. After a rescaling of the Aμ field, the physical
coupling of Aμ to ϕ=ϕ� is fixed to some number, which
is independent of e at one loop and logarithmically
divergent in four dimensions. The field Aμ is guaranteed
to turn into a massless boson once the field is introduced
as an auxiliary field. In contrast, in our model the
strength of the interaction Lint must be tuned to the
optimum value (λ ¼ 1) in order to make the bound state

massless. In this way we see that the masslessness of the
vector bound state is a dynamical consequence of gauge
invariance rather than a kinematical outcome.
The substitution of the equation of motion (14) also

needs scrutiny: if one computes ∂μFμν with this Aμ, one
would obtain ∂μFμν ¼ 0 instead of ∂μFμν ¼ Jν. Therefore,
the field Aμ of Eq. (14) is not acceptable as the composite
gauge field. One would need contributions from loops to
write a dynamical gauge field that obeys the correct
equation of motion. We do not know how to write such
an object in a local composite field.
What would happen if one attempted to introduce the

auxiliary field Aμ in the fermionic model? For the fermionic
matter, the Lagrangian with a nonpropagating auxiliary
field is simply equal to

Laux ¼
X
i

ψ iði∂ þ eA −mÞψ i: ð15Þ

The equation of motion with respect to Aμ is trivially equal
to

P
iψ iγμψ i ¼ 0 and provides us with nothing. As for the

functional integration over the auxiliary field Aμ, one
cannot carry it out at the tree level since the auxiliary
Lagrangian (15) is not quadratic in Aμ, unlike that of the
bosonic model. When the two-point loop diagrams of AμAν

are computed, the local limit of the two-point functions
ought to be proportional to FμνFμν by the underlying gauge
invariance. But we cannot obtain a compact local
Lagrangian of the matter fields alone such as ours out of
the auxiliary Lagrangian of Eq. (15).
The auxiliary vector-field trick bypasses the important

part of the dynamics of the matter fields. In contrast, our
explicit Lagrangian models provide dynamical details of
binding which are either missing in the auxiliary field trick
or are very different from it.

III. NOETHER CURRENT

When we attempt to write a conserved current in our
models,we encounter one peculiar problem:we are unable to
construct a conserved current with the prescription of the
Noether theorem. In fact, such a current simply does not
exist.
According to the general prescription, the Noether

current JNμ is obtained when the Lagrangian is invariant
under a set of space-time-independent phase transforma-
tions of fields. In the bosonic model, it would be generated
by the transformation

ϕi → ð1þ iαÞϕi and ϕ�i → ð1 − iαÞϕ�i ; ð16Þ

where α is infinitesimal and independent of the space-time.
The variation δLtot of OðαÞ under this transformation leads
to the divergence of the Noether current through the
identification
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∂μJNμ ¼ −δLtot=δα: ð17Þ

Using the equation of motion on the right-hand side, one
ought to obtain the Noether current JNμ as

JNμ ¼ −i
X
i

� ∂Ltot

∂ð∂μϕiÞ
ϕi − ϕ�i

∂Ltot

∂ð∂μϕ�i Þ
�
: ð18Þ

When we follow this standard procedure in our models, we
find that the right-hand side of Eq. (18) is identically zero in
the gauge symmetry limit due to the cancellation between
the contributions from L0 and Lint:

JNμ ¼ ið1 − λÞ
X
i

ðϕ�i ∂
↔

μϕiÞ; ð19Þ

where the term proportional to λ comes from Lint and the
gauge symmetry holds at λ ¼ 1. One may be puzzled when
one thinks of the perturbative calculation: since ϕ and ϕ�
always appear pairwise in a product in the Lagrangian, one
may assign the conserved U(1) charge�1 to ϕ and ϕ�. Then
this charge ought to be conserved in all diagrams of physical
processes (such as scattering and decay) even in the gauge
symmetry limit where the Noether current disappears.
The same happens in the fermionic model too. Just as in

the bosonic model, the conserved Noether current disap-
pears in the gauge symmetry limit:

JNμ ¼ ð1 − λÞ
X
i

ψ iγμψ i: ð20Þ

The current
P

ψ iγμψ i is not the Noether current. It is a
general property of the gauge theories with no gauge field
that the Noether current is identically zero; JNμ ≡ 0. It is
easy to trace the root cause of this absence of the Noether
current to local gauge invariance itself. An almost trivial
proof is given in Appendix A. The proof can be easily
extended to the non-Abelian models. It has an important
implication in the non-Abelian case: if the Noether current
existed, the generation of the massless gauge bosons would
face a potential conflict with the no-go theorem of
Weinberg and Witten [12].
Unlike the Noether current, the conserved energy-

momentum tensor exists in the Abelian and non-Abelian
gauge theories of matter fields alone. For the fermionic U
(1) model with the Lagrangian of Eq. (9), the conserved
energy-momentum tensor is given by

Tμν ¼ i
X
i

ψ iγμ∂νψ i −
iλðPiψ iγ

μψ iÞð
P

jψ j∂
↔ν

ψ jÞ
2
P

kðψkψkÞ
− gμνLtot: ð21Þ

It is manifestly gauge invariant with the matter fields
alone.

IV. COMPOSITE U(1) GAUGE BOSON

It is natural to wonder if our U(1) models contain a gauge
boson as a composite state even though we have not
inserted it by hand. In order to answer to this question,
we carry out a diagram calculation in this section in order to
exhibit the dynamical mechanism of formation of the
composite gauge boson. We compute our models pertur-
batively in the 1=N expansion: we sum an infinite series of
the leading-1=N-order terms and show explicitly that a
massless vector boson indeed appears as a pole in scattering
amplitudes with the properties required by gauge symmetry
both in the bosonic and the fermionic model. In the case of
the CPN−1 model in which ϕ�ϕ is subject to a constraint,
this diagram computation was done by Haber et al. [5].
Our primary interest is in the fermionic model, which is
technically complex since channel coupling occurs
between the 3S1 and 3D1 channels. Unlike the formal
argument based on the auxiliary vector-field trick [15], the
diagrammatic computation allows us to see explicitly how a
massless bound state is formed dynamically with the matter
particles. For instance, when we examine elastic fermion-
antifermion scattering of JPC ¼ 1−−, we find that the
massless bound state appears in the 3S1 channel, not in
the 3D1 channel. That is, the bound state couples with the

fermions through the vertex ψγμψ , not through ψ ∂↔μψ .
Nonetheless, the interactions of both types are needed to
form a massless bound state.

A. Gauge boson in the bosonic model

We start with our U(1) bosonic model to study a
composite gauge boson before our study of the fermionic
model since the computation is simpler for the bosonic
model, yet it demonstrates the essential aspects of the
diagram calculation.
We consider the two-body ϕþϕ− p-wave scattering

(JPC ¼ 1−−), treating all N copies of the fields
(i ¼ 1; � � �N) as independent. We show that a pole of a
massless bound state appears in this channel. Then we
proceed to make sure that the pattern and magnitude of the
coupling of this bound state indeed obey what we expect
for the U(1) gauge boson.
We study the p-wave amplitude for the two-body

scattering,

ϕþi ðp1Þ þ ϕ−
i ðp2Þ → ϕþj ðp3Þ þ ϕ−

j ðp4Þ: ð22Þ

We compute the amplitude in the leading 1=N order since a
compact explicit solution can be obtained only at this order.
In the scattering (22), the copy indices are chosen to be the
same for the initial particles and also for the final particles.
In the diagram calculation, Lint is separated from Ltot in
Eq. (4) and treated as the interaction. While this statement
sounds trivial, we point out one subtlety. That is, when we
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carry out the perturbative calculation by splitting the
Lagrangian into L0 and Lint, we have fixed once and for
all the gauge ambiguity of our Lagrangian (2). That is,
when we write the propagator of ϕ=ϕ� in the momentum
space as 1=ðp2 −m2Þ, we do not need more gauge fixing
since there is no Aμ field in the Lagrangian. With this
separation, the fields obey the equation of motion of L0 that
violates gauge symmetry. Consequently, the Noether cur-
rent of L0 is the conserved current in the diagrams. For the
purpose of visualizing how the gauge-invariance limit is
reached, we float λ in Lint as a free parameter until we set it
to unity at the end of the calculation.
In the diagram calculation of the leading 1=N order, we

normal-order the operator ϕ�ϕ in the denominator of Lint
and expand it around its vacuum value as

1=
X

ϕ�ϕ ¼ 1=

�X
h0jϕ�ϕj0i þ

X
∶ϕ�ϕ∶

�

¼ 1Ph0jϕ�ϕj0i
X∞
n¼0
ð−1Þn

� P
∶ϕ�ϕ∶Ph0jϕ�ϕj0i

�
n
;

ð23Þ

where the summation
P

with no index attached means the
summation over the copy index ið¼ 1; � � �NÞ. This sepa-
ration of the vacuum value is important for handling the
denominator of Lint in a systematic 1=N expansion. [5]
The vacuum expectation value h0jϕ�ϕj0i is infinite in the
(3þ 1) space-time, so it is regularized dimensionally as

X
h0jϕ�ϕj0i ¼ lim

x→0

X
h0jTðϕ�ðxÞϕð0ÞÞj0i;

¼ NΓð1 −D=2Þ
ð4πÞD=2ðm2Þ1−D=2 ; ð24Þ

whereN copies of bosons contribute to the vacuum value of
the scalar density. The space-time dimension D is even-
tually set to four. Hereafter, we denote this vacuum
expectation value by Ib0,

Ib0 ≡
X
h0jϕ�ϕj0i: ð25Þ

Now we are ready to compute the two-body scattering of
Eq. (22). The great simplification of the leading 1=N order
is that for elastic scattering we only have to sum the chain
of the bubble diagrams, as shown in Fig. 1, in which the
copy index i runs within a loop of each bubble.
Let us define with the S matrix the two-body scattering

amplitude Tðp3; p4;p1; p2Þ as

hp3; p4jS − 1jp1; p2i
¼ ið2πÞ4δ4ðp3 þ p4 − p1 − p2Þ

× Tðp3; p4;p1; p2Þ: ð26Þ

The amplitude T has the Lorentz structure of the form

Tðp4; p3;p1; p2Þ ¼ ðp3 − p4Þμðp1 − p2ÞνTðqÞμν; ð27Þ

where q ¼ p1 þ p2 ¼ p3 þ p4 and the one-particle states
are normalized as hpijpji ¼ 2Eiδðpi − pjÞ so that the
amplitude Tðp3; p4;p2; p1Þ is a Lorentz scalar. For the
elastic scattering in the leading 1=N order, it is sufficient
to keep only the first term of the expansion (23) in the
denominator of Lint. The normal-ordered product
ðP ∶ϕ�ϕ∶Þ starts contributing to the next-to-leading order
of 1=N in the elastic scattering.
The amplitude TðqÞμν starts with a contact interaction

term with no bubble, the first term on the right-hand side of
Fig. 1, which is equal to

T0
μν ¼

λ

2Ib0
gμν; ð28Þ

where the superscript “zero” of T0
μν indicates the zero-loop

contribution ofOðλÞ. The bubble summation can be carried
out by solving the algebraic equation (Fig. 2)

TðqÞμν ¼ T0
μν þ KðqÞμκTκ

νðqÞ: ð29Þ

where the kernel KðqÞμκ is given by the single bubble
diagram in which the copy index flows around the loop.
Equation (29) will become powerful later when we sum the
corresponding series in the fermionic model in which two
eigenchannels contribute and entangle in the formation of a
bound state.
A straightforward computation gives us the kernel as

KμκðqÞ ¼
λNΓð1 −D=2Þ

ð4πÞD=2ðm2Þ1−D=2Ib0

×

�
gμκ þ

1 −D=2
6m2

ðgμκq2 − qμqκÞ
�

þOðq4Þ: ð30Þ

FIG. 1. The chain of the bubble diagrams for the elastic boson
scattering.

FIG. 2. The iteration equation of bubbles into a chain.
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Since we want to extract the pole and residue of a massless
bound state at q2 ¼ 0, we need KμκðqÞ only to orders no
higher than Oðq2Þ. The factor outside the large bracket in
Eq. (30) is simply equal to λwhen Eq. (24) is substituted for
Ib0 , so that

KμκðqÞ ¼ λ

�
gμκ þ

1 −D=2
6m2

ðgμκq2 − qμqκÞ
�
þOðq4Þ:

ð31Þ
Note here that KμκðqÞ does not satisfy transversality,
qμKμκ ≠ 0. This is not a violation of gauge invariance.
In the standard Lagrangian where the elementary Aμ field is
present, one would need the AμAμϕ�ϕ term to realize
transversality of the photon self-energy, qμΠðqÞμκ ¼ 0,
namely, gauge invariance. The term needed for trans-
versality does exist in our model, but it is tucked away
elsewhere at this stage. As we shall see in a moment, it is
this nontransversality of KμκðqÞ that makes the composite
boson massless.4

Let us substitute Eq. (31) into the iteration equation (29)
and move the term λgμκ of the kernelKμκðqÞ to the left-hand
side. We may drop the term proportional to qμqμ by using
q · ðp1 − p2Þ ¼ 0 ¼ q · ðp3 − p4Þ on the external boson
lines. Then Eq. (29) turns into

ð1 − λÞTðqÞμν ¼ T0
μν þ

λð1 −D=2Þq2
6m2

TðqÞμν þOðq4Þ:
ð32Þ

Now we go to the gauge limit λ → 1. Since T0
μν is

independent of q, Eq. (32) tells us that in this limit there
is a pole at q2 ¼ 0 in the amplitude TðqÞμν as

TðqÞμν ¼ −
6m2

ð1 −D=2Þq2 T
0
μν þOðq2Þ; ðλ ¼ 1Þ: ð33Þ

When the parameter λ is off the gauge limit (λ ≠ 1), the
pole is located away from zero at q2 ¼ ½6ð1 − λÞ=λð1 −
D=2Þ�m2 so that the bound state would be either a massive
vector boson or a tachyon. We extract the residue of the
pole at q2 ¼ 0 for λ ¼ 1 and compare this residue with
what we would obtain from the Feynman diagram of the
standard U(1) gauge Lagrangian of the charged scalar
fields,

Ltot ¼ −
1

4
FμνFμν þ ð∂μϕ� − ieAμϕ�Þð∂μϕþ ieAμϕÞ

−m2ϕ�ϕ: ð34Þ

By equating our residue with that of the Feynman diagram,
we obtain the coupling e2 of our model as

e2 ¼ 3ð4πÞD=2ðm2Þ2−D=2

NΓð2 −D=2Þ : ð35Þ

When we approach the space-time dimension of D ¼ 4,
this coupling can be expressed in terms of the logarithmic
cutoff of divergence as

e2 ¼ 48π2

N lnðΛ2=m2Þ ; ð36Þ

where lnΛ2 ¼ ð2 −D=2Þ−1 þ ln 4π − γE (γE ¼ Euler
constant). The sign of e2 comes out to be positive. It is
amusing to observe that the factor ð1 −D=2Þ in the
denominator of Eq. (33) is combined with Γð1 −D=2Þ
in 1=I0b of T0

μν to turn into Γð2 −D=2Þ, which is the
logarithmic divergence in the space-time dimension of
D ¼ 4. That is, a quadratic divergence Γð1 −D=2Þ meta-
morphoses into a logarithmic divergence, which can
happen in dimensional regularization.
If we had started with the auxiliary Aμ field and

generated the − 1
4
FμνFμν to the leading 1=N order, we

would have obtained a coupling constant identical to
Eq. (36) after rescaling Aμ by wave-function renormaliza-
tion. [3] This equality is not unexpected since the one-loop
self-energy diagram of the auxiliary Aμ field leading to
Eq. (36) is identical to the bubble diagram of the p-wave
ϕ†ϕ scattering in the leading 1=N order. There is no
guarantee that this equality holds beyond the leading
1=N order since noncontact interactions enter the scattering
amplitude while the self-energy diagram remains the two-
point function.
In order to claim that the massless bound state discov-

ered above is indeed the U(1) gauge boson, we must show
that other couplings of this state obey the pattern required
for the gauge boson. One may bypass this part by resorting
to the gauge invariance that has been embedded in the
Lagrangian of our model. But we show here explicitly how
the U(1) gauge invariance arises diagrammatically for the
coupling of the massless bound state.
The absence of the coupling eAμ∂μðϕ�ϕÞ is obvious

since the form of our Lint requires the bound state to couple

with ϕ�=ϕ through ðϕ�∂↔μ
ϕÞ, not through ∂μðϕ�ϕÞ. This is

also required by C invariance of our Lagrangian. However,
there must exist a coupling e2ϕ�ϕAμAμ, where Aμ is the
effective gauge field and e2 is given by Eq. (35). Aside from
this coupling, there should be no coupling of dimension
four such as a nonderivative quartic coupling of Aμ.
The coupling of ϕ�ϕAμAμ requires a little computation.

Here the first nontrivial term of the expansion of 1=ðϕ�ϕÞ
enters the computation,

−
λ

4I20
ðϕ�∂↔μ

ϕÞðϕ�∂↔μϕÞð∶ϕ�ϕ∶Þ: ð37Þ
4This is the case in the CPN−1 model analyzed in Ref. [5] too.
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At the leading 1=N order, we attach a chain of the bubble

diagrams to ðϕ�∂↔μ
ϕÞ and another chain to ðϕ�∂↔μϕÞ to form

the composite Aμ and Aμ bosons, respectively (see Fig. 3).
Then we equate this diagram at the poles of the Aμ and Aμ

bosons to the diagram of Fig. 4 which is obtained with the
interaction e2ϕ�ϕAμAμ of the standard U(1) gauge
Lagrangian (34).
This calculation gives us the relation

e4 ¼
�
3ð4πÞD=2ðm2Þ2−D=2

NΓð2 −D=2Þ
�

2

: ð38Þ

Two powers e2 out of e4 in Eq. (38) are to be attributed to
the couplings of the ϕ�ϕ pairs with Aμ and with Aν at the
outer ends of two bubble chains in Fig. 3. The remaining e2

is to be assigned to the four-body AμAμϕ�ϕ coupling at the
center. Therefore, the coupling e4 of Eq. (38) is precisely
what we want to see.

The absence of the triple self-coupling of Aμ is a
consequence of C invariance. Diagrammatically, this is
assured in the U(1) model by the cancellation between a
pair of diagrams where the two chains are interchanged.
Since they do not cancel in the non-Abelian models and
there is some subtlety, we add a few comments here in
anticipation of the non-Abelian cases. The relevant diagram
is depicted in Fig. 5.
If we indeed compute this coupling with individual

diagrams, we must be careful about the surface-term
ambiguity. The triangular loop at the center is linearly
divergent in four space-time dimensions and therefore its
constant term is ambiguous by the surface term of the loop
integral. The value depends on how the loop momentum is
routed, just as in the chiral anomaly or the finite part of the
electron self-energy in QED. To fix this finite ambiguity,
one must impose invariance and/or symmetry that must be
preserved in theory. In this case the C invariance of Ltot
and/or the Bose statistics of the composite Aμ fixes the
ambiguity. With the right choice of the routing momentum,
a pair of triangular loop diagrams cancel each other
and change the net triple self-coupling to zero in the U(1)
model.
In comparison, we need an explicit computation of

diagrams to show that the net quartic self-coupling van-
ishes, although there is no subtlety with regards to the
surface-term ambiguity. In the presence of the six-body
coupling of Eq. (37), three classes of loop diagrams can
potentially contribute to the quartic self-coupling of the
composite gauge boson in the leading 1=N order (Fig. 6).
The square box diagrams [Fig. 6(a)] alone do not cancel

among themselves. When we add all three classes of the
diagrams, however, they sum up to zero at the zero external
momentum limit where the on-shell quartic coupling

e e

e2

FIG. 4. The corresponding Feynman diagram for e2ϕ�ϕAμAμ.

s

FIG. 3. The diagram for the formation of the ϕ�ϕAμAμ

coupling. The ϕ�ϕ pair arises from the six-body interaction of
Eq. (37) at the center. The letter S denotes that the external ϕ�ϕ
pair at the center is in the scalar state ϕ�ϕ, not in the vector state

ϕ�∂↔μϕ.

FIG. 5. The triple self-coupling of the composite Aμ, which can
appear potentially from the center of the diagrams containing
three chains of ϕ�=ϕ bubbles.
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constant is defined. Up to an overall constant, the cancella-
tion occurs among the three types of diagrams in Fig. 6 as

∝
�
1

4
−
1

2
þ 1

4

�
1

Γð2 −D=2Þ ; ð39Þ

where the first, second, and third terms in thebracket are from
the three types of diagrams in Figs. 6(a), 6(b), and 6(c),
respectively. Of course, this cancellation is not an accident.
Its origin is traced back to the U(1) gauge invariance
incorporated into the Lagrangian.5

Our fundamental Lagrangian Ltot is invariant under the
gauge transformation ϕðxÞ → eiαðxÞϕðxÞ and the conjugate.
Once a massless vector bound state emerges with the

effective coupling ieðϕ�∂↔μϕÞAμ, the only way for it to be
compatible with the gauge invariance is that the additional
interaction e2ϕ�ϕAμAμ exists for this effective Aμ field
and that Aμ transforms as eAμ → eAμ þ i∂μα under
ϕðxÞ → eiαðxÞϕðxÞ. As far as the interactions of dimension
four are concerned, there is no other way known to us that
satisfies the U(1) gauge invariance incorporated in Ltot. As
for the self-couplings of Aμ, we would have to satisfy U(1)
gauge invariance with the Aμ fields alone without deriv-
atives. That is, there is no room to accommodate a
nonderivative self-interaction of Aμ in four dimensions.
When we argue in this way, the gauge invariance of the
composite Aμ coupling is an inevitable and trivial conse-
quence of the gauge symmetry of Ltot, once a massless
spin-one bound state emerges with the coupling

ieðϕ�∂↔μϕÞAμ. When we take this viewpoint, the crucial
step is whether or not a massless bound state of spin one is
indeed formed out of the interactions among the matter
fields themselves. The rest may be interpreted as logical
inevitability.

Before closing this subsection, we comment on the
interactions of dimension higher than four (in the world
of space-time dimension four or 3þ 1). The interaction
ðϕ�ϕÞ2AμAμ has dimension six. It can arise from the third
term (n ¼ 2) of the expansion of the denominator 1=ðϕ�ϕÞ
in Eq. (4), that is,

Lint ¼
1

4ðIb0Þ3
ð∶ϕ�ϕ∶Þ2ðϕ�∂↔μϕÞðϕ�∂

↔μ
ϕÞ: ð40Þ

By attaching the chains of the ϕ bubbles to ðϕ�∂↔μϕÞ
and ðϕ�∂↔μ

ϕÞ, then going to the gauge-boson mass shells on
the chains, we can extract the effective interaction of
dimension six for the composite gauge boson,

Lint ¼
e2

Ib0
ðϕ�ϕÞ2AμAμ; ð41Þ

where the coupling e2 is given by Eq. (35). This coupling is
not gauge invariant by itself. However, there is another
effective coupling of dimension six, which contains only a
single Aμ. We can compute it with the interaction of
Eq. (40) and put it in the form of an effective interaction,

Lint ¼
ie
Ib0
ðϕ�ϕÞðϕ�∂↔μϕÞAμ: ð42Þ

When the two interactions (41) and (42) of dimension six
are combined and added to the first term of the expansion of
1=ðϕ�ϕÞ,

1

4Ib0
ðϕ�∂↔μϕÞðϕ�∂

↔μ
ϕÞ; ð43Þ

the sum total is gauge invariant. That is, when all the
couplings of Oð1=Ib0Þ [Eqs. (41), (42), and (43)] are
combined, the interaction of dimension six for the effective
field Aμ is gauge invariant. The combined effective inter-
action can be cast into the form

Leff
int ¼

1

4Ib0
ðϕ�D↔μ

ϕÞðϕ�D↔μϕÞ; ð44Þ

whereDμ¼ ∂μþ ieAμ and ðϕ�D
↔

μϕÞ≡ ϕ�Dμϕ − ðDμϕÞ�ϕ.
The interaction of Eq. (44) illustrates what happens for the
effective interactions of higher dimension in general. It is
obvious for dimensional reasons that Leff

int must be inversely
proportional to powers of Ib0 . Although Ib0 is formally
proportional to m2 in the dimensional regularization, it is
quadratically divergent in the cutoff (∼NΛ2) in the world of
D ¼ 4. If we give a physical meaning to the cutoff,
therefore, the interactions of dimension six are suppressed
byOðp2=NΛ2Þ in the region of energy scaleOðp2Þ relative
to those of dimension four. Meanwhile, the divergences of
OðN lnΛ2Þ are absorbed into the gauge coupling e2 as we
have seen in Eq. (35). Therefore, if our model should turn

S
S

S

(b)(a) (c)

FIG. 6. Three classes of diagrams can contribute to the quartic
self-coupling of composite Aμ. The letter S for the six-body ϕ�=ϕ
interaction point in the loop at the center denotes that the ϕ�ϕ pair
is in the scalar state. (a) No six-body coupling, (b) one six-body
coupling, and (c) two six-body couplings.

5We freely switch between ϕ�ϕ and ∶ϕ�ϕ∶ in this calculation
since our computation of the couplings involves only those
diagrams in which a ϕ=ϕ� particle emitted from one Lint
annihilates at another Lint in the center of the diagram; see
Figs. 6(b) and 6(c). The normal ordering makes no difference in
Figs. 6(b) and 6(c) for this reason.
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out to be phenomenologically relevant in one way or
another, its cutoff Λ would place these higher-dimensional
interactions under control. Whether or not these inter-
actions can generate anything phenomenologically inter-
esting is a separate question.
We can cast the amplitudes of higher-dimension proc-

esses in the standard U(1) gauge theory with the elementary
gauge boson into the form of effective interactions.
However, such effective interactions are generally not
identical to the higher-dimensional interactions that have
been obtained above from our Lagrangian (2). The loop-
diagram amplitudes produced by the standard U(1) gauge
theory do exist equally in our model since the gauge boson
exists as a composite. Our model contains the additional
terms that are generated by matter fields and suppressed by
the large cutoff scale of Ib. At these orders the physics is
generally different from the standard gauge theory of the
elementary gauge boson. If our model were identical to the
standard U(1) gauge theory, it would be perfectly renor-
malizable in our world of four dimensions. But that is not
the case: our model contains the higher-dimensional local
interactions that are additional to the standard gauge theory
and suppressed by powers of 1=Ib ¼ OðΛ2Þ.

B. Gauge boson in the fermionic model

The computation of the massless bound state is techni-
cally a little complex in the fermionic model since there
exist two channels of JPC ¼ 1−−. We compute the elastic
fermion-antifermion scattering

fþðp1; s1Þ þ f−ðp2; s2Þ→ fþðp3; s3Þ þ f−ðp4; s4Þ ð45Þ
in the leading 1=N order with the Lagrangian (9). The copy
indices are chosen to be the same for the initial fþf− and
the final fþf−. We shall suppress spin indices siði ¼
1; � � � 4Þ in the following since they are obvious in most
places. We leave out the self-gauge-invariant interactions
such as Eq. (12). Although those interactions certainly
contribute to the fermion-fermion scattering in general, we
show later that the omission of such interactions does not
affect the properties of the massless bound state.
We follow our path taken for the bosonic model: we

separate ψψ in the denominator of Lint into a sum of the
vacuum expectation values and the normal-ordered prod-
ucts ∶ψψ∶ and then expand it in the power series ofP

∶ψψ∶=
Ph0jψψ j0i. The vacuum expectation value

h0jψψ j0i is divergent and dimensionally regularized as
X
h0jψψ j0i ¼ −lim

x→0
trh0jTðψðxÞψð0Þj0i

¼ −
4NmΓð1 −D=2Þ
ð4πÞD=2ðm2Þ1−D=2 ; ð46Þ

where the trace (tr) in the first line of the right-hand side
refers to the spinor indices of ψ and ψ . We shall denote the
right-hand side of Eq. (46) by If0 hereafter,

If0 ≡ h0jψψ j0i ¼ −4mIb0: ð47Þ

If0 is opposite in sign to Ib0 of the boson (25) and its
dimension is three instead of two.
Now we proceed to compute the two-body scattering

amplitude of JPC ¼ 1−−. There exist two eigenchannels in
the fermion scattering. The fermion-antifermion pair is in
the configuration of v−pγup in one channel and in 2pv−pup
in the other in the center-of-momentum frame. The spins of
v−p and up are combined into a triplet in both cases so that
they make the 3S1 and 3D1 states of fþf−, respectively.
With our choice of Lint in Eq. (9), the fermion-antifermion

pair turns from ψγμψ on one side to ðψ ∂↔μ
ψÞ on the other,

or conversely from ðψ ∂↔μψÞ to ψγμψ at every interaction
point in the chain of bubbles.
Let us define the Lorentz scalar amplitude

Tðp1; p2;p3; p4Þ with the S matrix as

hp3; p4jS − 1jp1; p2i
¼ ið2πÞ4δ4ðp3 þ p4 − p1 − p2Þ

× Tðp3; p4;p1; p2Þ; ð48Þ

where the one-fermion states are so normalized that the
amplitude Tðp3; p4;p1; p2Þ is a Lorentz scalar and its
Lorentz structure is given in the (2 × 2) matrix form by

T ¼ ðup3
γμvp4

; up3
ðp3 − p4Þμvp4

=mÞ
�
Tμν
11ðqÞ Tμν

12ðqÞ
Tμν
21ðqÞ Tμν

22ðqÞ

�

×

�
vp2

γνup1

vp2
ðp1 − p2Þνup1

=m

�
; ð49Þ

where q ¼ ðp1 þ p2Þ ¼ ðp3 þ q4Þ. The perturbation
series for TðqÞμν starts with the tree diagram, which gives
−ðλ=2If0Þgμν to the off-diagonal elements of T0

μν:

T0
μν ¼ −

1

2If0

�
0 λ

λ 0

�
gμν: ð50Þ

The summation of the bubble chains can be carried out by
solving the matrix equation,

TðqÞμν ¼ T0
μν þ KðqÞμκTκ

νðqÞ; ð51Þ

where the kernel KðqÞμκ is the 2 × 2 matrix of the four
single-bubble diagrams that connect between the γμ-type

vertex (3S1) and the ∂↔μ-type vertex (3D1) (see Fig. 7),

KμκðqÞ ¼
�
KðqÞ11 KðqÞ12
KðqÞ21 KðqÞ22

�
μκ

: ð52Þ
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In order to extract the mass and coupling of the
composite boson from TðqÞμν, we need ðI − KðqÞÞμκ near
q2 ¼ 0 in Eq. (51). To be more specific, we need the terms
of gμκ and ðq2gμκ − qμqκÞ for Kij. In fact, for the off-
diagonal elements K12 and K21, all we need are the leading
terms that give K12K21 ¼ Oðq2Þ. By straightforward dia-
gram computation, we find the relevant terms of KμκðqÞ
near q2 ¼ 0 as

KμκðqÞ11 ¼ λ

�
gμκ þ Γð2 −D=2Þ

6m2Γð1 −D=2Þ ðg
μκq2 − qμqκÞ

�

¼ KμκðqÞ22;

KμκðqÞ12 ¼ −λ
�

Γð−D=2Þ
Γð1 −D=2Þ − 2

�
gμκ;

KμκðqÞ21 ¼ −λ
�

Γð2 −D=2Þ
6m2Γð1 −D=2Þ

�
ðgμκq2 − qμqκÞ: ð53Þ

We have kept Γ functions above since they are partially
canceled with Γð1 −D=2Þ coming from 1=If0 of T0 when
ðI − KÞ−1 is operated on T0 later. The terms in Eq. (53) that
turn out to determine the pole and residue of the massless

bound state are the first term λgμκ of the diagonal element
KðqÞμκ11ð¼ KðqÞμκ22Þ and the off-diagonal element KðqÞμκ12 ≠
0 at q2 ¼ 0.
Let us examine the pole and residue of the matrix

amplitude Tμν at q2 ¼ 0 by solving Eq. (51) as

Tμν ¼
�

1

I − K

�
κ

μ

T0
κν: ð54Þ

Since the external fermion lines are on mass shell, the terms
proportional to qμqκ in Kμκ have been removed by use of
the Dirac equation and the mass shell condition on the
external lines. We then approach the gauge symmetry limit
λ ¼ 1 of T ¼ ðI − KÞ−1T0. The result is

TðqÞμν ¼
ð4πÞD=2ðm2Þ2−D=2

Γð2 −D=2Þ
� 3

4q2
C
m2

C
m2

C
m2

�
gμν; ð55Þ

where

C ¼ DðD − 2Þ
32ðDþ 1Þ : ð56Þ

A pole appears only in the (11)-matrix element at the upper
left corner in Eq. (55) and the other entries are regular at
q2 ¼ 0. This is depicted in Fig. 8.
This means that the bound state appears in the channel of

ψγμψ → ψγμψ , that is, in the 3S1 channel, not in the 3D1

channel.6 If either end of the chain is ψ ∂↔μψ , no massless
pole appears in such a chain.
By comparing the matrix element Tμν

11 with the one-
photon pole diagram of the standard U(1) gauge interaction
−eψγμψAμ, we can identify the gauge coupling e2 with the
residue at the pole to obtain

e2 ¼ 3ð4πÞD=2ðm2Þð2−D=2Þ

4NΓð2 −D=2Þ ; ð57Þ

or, in terms, of the covariant ultraviolet cutoff in the space-
time of D ¼ 4,

e2 ¼ 12π2

N lnðΛ2=m2Þ : ð58Þ

This is the parallel of Eq. (35) in the bosonic model. While
the quartic divergence [∝ Γð−D=2Þ ∼ Λ4] and quadratic
divergence (∼Λ2) are present in TðqÞμν, they do not enter
the residue of the pole at q2 ¼ 0. Therefore, the coupling e2

d

d d d

d

d

d d d d

d d d d

d

ddd

γ γ γ

γ

γ

γ

γ γ γ γ

γ γ γ γ

γ γ

γ

γ

   0

  0

FIG. 7. Iteration of bubble diagrams for fermion scattering.
The letters γ and d denote that the fermion pair at the interaction

point is ψ̄γμψ and ψ̄ ∂↔μψ , respectively.

T

γ γ γ

γ

d

ddd

μν

FIG. 8. The massless bound state appears only in the upper left
corner, which is the 3S1 channel.

6This has nothing to do with the d-wave threshold behavior
∼jpjlðl ¼ 2Þ. The threshold behaviors reside in the spinorial
factors in Eq. (49) and have been separated out in defining
TðqÞμνij .
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involves only the logarithmic divergence (∼1=N lnΛ2) as it
does for the bosonic model.
As we have pointed out, we may add to our fermionic

model the interaction L0int of Eq. (12) which is gauge
invariant by itself. Let us denote the shifts of the matrices
KðqÞ and T0 due to L0int as KðqÞ → KðqÞ þ ΔKðqÞ and
T0 → T0 þ ΔT0. Near q2 ¼ 0, these shifts are given by

ΔT0
μν ¼

1

2If0
gμν

�
fm 0

0 0

�
ð59Þ

and

ΔKμκ ¼ 1 −D=2
6m2

�
f 0

0 0

�
ðgμκq2 − qμqκÞ: ð60Þ

It is not difficult to see that these modifications, Eqs. (59)
and (60), do not alter either the location of the pole at
q2 ¼ 0 or its residue. In terms of diagrams, we can visualize
the effect of Eqs. (59) and (60) as follows. We should first
notice the fact that the newly added bubble consisting of γμ
on one end and γκ on the other end vanishes like ðgμκq2 −
qμqκÞ at q ¼ 0. Let us say that this bubble is of the type
γμ ⊗ γκ. When the γμ ⊗ γκ bubble enters the middle of the
eigenchannel that produces the bound state, the chain
would thus acquire a factor of Oðq2Þ from this bubble.
Therefore it cancels the pole and becomes irrelevant to the
formation of the massless bound state. The pole at q2 ¼ 0 is
produced only by the gμκ term of KðqÞμκ in the chain of

bubbles of the types γμ ⊗ ∂↔ν and ∂↔μ ⊗ γν alone. With the
addition of L0int, therefore, the massless pole is undisturbed
and its residue is unaffected.
Let us move on to the self-coupling of the gauge field.

Charge-conjugation invariance forbids the triple self-
coupling, but the quartic self-coupling is not forbidden by
any discrete symmetry. Since the massless bound state
couples only to the 3S1 vertex, namely, to ψγμψ , the relevant
diagrams have a square box at the center with six permu-
tations of the four γ vertices, that is, the diagramofFig. 6(a) in
which the boson lines are replaced by the fermion lines and
the γ matrices sit at the four corners of the box. However, the
sum of these box diagrams vanishes in the zero-energy-
momentum limit of the bound-state bosons—not just the
leading divergent term (∼ lnΛ2) but rather all finite terms in
this limit. This fact is well known as the gauge-invariance
requirement ∼e4Fν

μFκ
νFλ

κF
μ
λ on the photon-photon scattering

amplitude in quantum electrodynamics.
For the diagrams corresponding to Figs. 6(b) and 6(c)

with the boson lines replaced by fermions, the two chains of
bubbles are attached to the six-body fermion interaction.
However, since the six-body fermion interaction is of the

form ðψγμψÞðψ ∂↔μ
ψÞðψψÞ, one of the vector vertices starts

with the γ vertex but the other starts with the ∂↔ vertex.

As we have already observed, the massless bound-state
pole cannot appear in the latter chain. Therefore, the
massless vector bound state can be formed only in one
of the two chains attached to the six-body interaction point,
not in both. That is, only three massless bound states can be
formed in Fig. 6(b) and two in Fig. 6(c). Combining this
observation with that for Fig. 6(a) above, we conclude that
there is no nonderivative quartic self-coupling of the
massless U(1) bound state in the fermion model either,
just as gauge invariance requires.
The lowest possible coupling of higher dimension with

fermion fields is the Pauli term iψσμνψFμν. This coupling is
gauge invariant by itself. With our interaction Lint, how-
ever, our composite boson does not have this coupling. To
see this, recall the decomposition of the photon-fermion
vertex for the fermion on mass shell, iuσμνqνv0 ¼
uðpþ p0Þμv0 − 2muγμv0. This relation tells us that if the
massless bound state had the Pauli-term interaction, we

would have its pole in the channels of both ψ ∂↔μ ψ and
ψγμψ . In our preceding study, however, we have found a
massless pole only in ψγμψ . This means that there is no
Pauli term.
The effective interaction ψψAμAμ is also of dimension

five and not gauge invariant by itself. As in the bosonic
model, if an interaction of Aμ appears with a dimension
higher than four, it ought to appear in a gauge-invariant
combination since the underlying Lagrangian is gauge
invariant. As for this specific interaction, the accompanying

gauge-covariant partners are ∂μψ∂μψ and ieðψ ∂↔μψÞAμ.

But we have already found that the coupling ðψ ∂↔μψÞAμ

does not exist in our model, and ∂μψ∂μψ does not exist in
Ltot. Therefore the coupling ðψψÞAμAμ can be generated as
an effective interaction in our model.
One of the merits of our fermionic model is that it reveals

the dynamical details explicitly in regard to how the self-
interaction of the constituent fermions conspires to generate
the composite gauge boson. Specifically, the composite
gauge boson is formed with fermions in the presence of the
process of the transition between the 3S1 and the 3D1

channel. No massless bound state can be formed with the
3S1 channel alone. There is no place to see this dynamics in
the auxiliary field trick on fermions in which the auxiliary
vector field only has the 3S1 interaction.

V. NON-ABELIAN EXTENSIONS

It is possible to extend our U(1) models to non-Abelian
models. The non-Abelian extension turns out to be quite
easy if we choose matter fields in the SU(2) doublet. In this
section we present the SU(2)-doublet model for both
bosons and fermions and compute the composite gauge
bosons again in the leading 1=N order. The extension of our
U(1) models to a general Lie group or even to a SU(2)
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representation other than the doublet encounters difficulty.
This is not a simple technical difficulty; rather, it involves
some problem at a fundamental level in our class of models.
We explain this difficulty in the text, then go a little further
with a few examples of the bosonic models in Appendix B.
Those who approach the problem with the auxiliary field

trick would trivially extend the U(1) model to general
groups and representations by simply replacing the 2 × 2

matrices 1
2
τa of SU(2) with the n × n generator matrices Ta

of a general Lie group. In our case, however, such a simple
substitution does not extend our models to those of general
groups or representations.7 This is another indication of
the fact that our models are physically different at some
fundamental level from what the auxiliary field trick gives.

A. Non-Abelian bosonic model

Let us introduce N families of scalar boson fields in the
SU(2) doublet,

Φi ¼
�
ϕi
1

ϕi
2

�
; ði ¼ 1; � � �NÞ; ð61Þ

and their conjugates Φi†, which we write in a row. The
subscripts (1,2) are those of SU(2). We shall suppress the
copy index and/or the SU(2) index wherever there is no
confusion. Our bosonic Lagrangian is given simply by

L0 ¼
X
i

∂μΦi†∂μΦi −
X
i

m2Φi†Φi;

Lint ¼ λ

P
iðΦi†τ∂↔μΦiÞ ·PjðΦj†τ∂↔μ

ΦjÞ
4
P

kðΦk†ΦkÞ ðλ → 1Þ; ð62Þ

where i, j, and k are copy indices and τ denotes the Pauli
matrices τaða ¼ 1; 2; 3Þ.8 For the SU(2) gauge invariance
of L0 þ Lint, we give the proof here for the infinitesimal
rotation,

Φ →

�
1þ i

2
τ · α

�
Φ;

Φ† → Φ†
�
1 −

i
2
τ · α

�
; ð63Þ

where α is a space-time-dependent vector function. Let us
compute the variations L0 → L0 þ δL0 and Lint → Lint þ
δLint separately and confirm tthe cancellation to OðαÞ
between the two variations. For L0, it is easy to obtain

δL0 ¼ −
i
2
ðΦ†τ∂↔μΦÞ · ∂μαþOðα2Þ: ð64Þ

The computation of δLint requires a little care. To the order
OðαÞ, it is not difficult to obtain the transformation

ðΦ†τ∂↔μ
ΦÞ → Φ†U†τU∂μΦ

− ð∂μΦ†ÞU†τUΦþ 2iðΦ†ΦÞ∂μαþOðα2Þ; ð65Þ

whereU ¼ 1þ iτ · α=2. The third term proportional to ∂μα
on the right-hand side has been obtained by use of the
relation

τðτ · ∂μαÞ þ ðτ · ∂μαÞτ ¼ 2∂μα: ð66Þ

Since an isoscalar product remains unchanged under global
SU(2) rotations, it holds for arbitrary SU(2)-doublet func-
tions A, B, C, and D that

ððUAÞ†τUBÞ · ððUCÞ†τUDÞ ¼ ðA†τBÞ · ðC†τDÞ: ð67Þ

Thanks to this relation, when we take the product of
Eq. (65) with itself in Lint, four products made of the first
two terms are invariant by themselves as

ðΦ†U†τU∂μΦÞ · ðΦ†U†τU∂μΦÞ ¼ ðΦ†τ∂μΦÞ · ðΦ†τ∂μΦÞ;
ð68Þ

and so forth. The product of the third term with itself is
Oðα2Þ. In the cross products of the first two terms with the
third term 2iðΦ†ΦÞ∂μα, we may set U ¼ 1 since we are
computing to OðαÞ. Dividing these terms of OðαÞ in the
numerator of δLint by 4ðΦ†ΦÞ, we obtain that the variation
of Lint is equal to

þ i
2
λðΦ†τ∂↔μΦÞ · ∂μαþOðα2Þ; ð69Þ

which cancels δL0 for λ ¼ 1.
The proof to all orders of α is not difficult, although it is a

bit tedious. We can carry it out with brute force using the
local rotation matrix U for the SU(2) doublet matter fields,

U ¼ cos αþ iðα̂ · τÞ sin α; ð70Þ

where α̂ ¼ α=α. Alternatively, in the case of bosons, we
could introduce the auxiliary fields and integrate over them
to reach the Lagrangian (62). Operationally, this turns out
to be a much simpler avenue. While its physical meaning is
subject to debate and some people may feel it is ques-
tionable, we can use the auxiliary field method as a
mathematical tool of manipulation without a problem.
If one wants to proceed along this line, one starts with

7One well-known example of the special role of SU(2) may
come to mind, i.e., the instanton. The instanton is special to
SU(2), as it is not extendable to SUðNÞ ðN ≥ 3Þ or other general
groups because of its topological property. In our case, however,
topology is not an issue. What is important is the self-duality of
the group and the representation.

8This bosonic Lagrangian as well as its Abelian version appear
in the earlier paper [3].
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Ltot ¼ ð∂μ þ iAμΦÞ† · ð∂μ þ iAμÞΦ −m2Φ†Φþ 1

2
μ2AμAμ;

ð71Þ

whereAμ ¼ 1
2
τaA

μ
a. Although we do not really need it here,

we have added the mass term μ2 to Aμ for gauge fixing,
which is to be removed after the functional interaction is
completed.
Having seen the Lagrangian of Eq. (62), it is tempting to

speculate that if the isospin 1
2
τa is replaced by the n × n

matrices of the generator Ta of some other group G, we
could obtain the non-Abelian extension to the case where
the matter fields form the n-dimensional multiplets of the
group G; namely,

Ltot ¼
X
i

∂μΦi†∂μΦi −m2Φi†Φi

þ λ

P
iðΦi†Ta∂

↔

μΦiÞ ·PjðΦj†Ta∂
↔μ

ΦjÞP
kðΦk†ΦkÞ ðλ → 1Þ;

ð72Þ

where Ta ≠ 1
2
τa. Unfortunately, this does not work.

The Lagrangian of Eq. (72) is not gauge invariant. We
can pinpoint the step where the proof fails in this attempt:
the relation of Eq. (66) is crucial in achieving non-Abelian
gauge invariance in the Lagrangian (62). This relation holds
only for the SU(2) doublet.
Some may yet wonder why one cannot resort to the

auxiliary field trick starting with

Ltot ¼ ð∂μ þ iAμΦÞ† · ð∂μ þ iAμÞΦ −m2Φ†Φ; ð73Þ

where Aμ ¼ TaAa
μ. The equation of motion for the auxiliary

field Aa
μ is to be obtained by solving

−iðΦ†Ta∂
↔

μΦÞ þ Φ†fTa; TbgΦAb
μ ¼ 0: ð74Þ

Then × nmatrixfTa; Tbg is not proportional to a unitmatrix
except in the case ofTa ¼ 1

2
τa. In fact, its determinant is zero

in most cases. Consequently, the set of the algebraic
equations (74) is generally unsolvable. This same problem
derails an attempt to integrate over the field Aa

μ to get an
effective action in terms of Φ and Φ† alone. We have
illustrated this difficulty using two examples in Appendix B.
When one attempts the diagram calculation with the

wrong Lagrangian of Eq. (72), one could tune the location
of a pole in the chain of the bubble diagrams to zero by
setting λ off unity. However, when one proceeds to
calculate the coupling of Φ†ΦAμAμ (see Fig. 3), the
Lagrangian of Eq. (72) would generate the form

Φ†ΦAμ ·Aμ; ð75Þ

where the structure Aμ ·Aμ arises from the denominator of
Lint and enters the center of the triangular loop in Fig. 3.
However, the correct non-Abelian structure for these
couplings ought to be

Φ†fTa; TbgΦAa
μAμb: ð76Þ

This conflict is another manifestation of the fact that the
Lagrangian of Eq. (72) is not gauge invariant.
These arguments are more than what we really need, but

they hopefully clarify the special role of the SU(2) doublet
matter fields when we attempt to write a local non-Abelian
gauge-invariant Lagrangian with matter fields alone. We
have not succeeded in finding such a Lagrangian in a
reasonably simple form except for the SU(2) doublet
matter.

B. Non-Abelian fermionic model

The non-Abelian extension is possible for the fermionic
model if one follows the bosonic model given above. For
the SU(2) gauge group where the Dirac fields form SU(2)
doublets with N copies,

Ψi ¼
�
ψ i
1

ψ i
2

�
;

Ψi ¼ ðψ i
1;ψ

i
2Þ ði ¼ 1; 2 � � �NÞ; ð77Þ

the gauge-invariant Lagrangian is given by

L0 ¼
X
i¼1

Ψiði∂ −mÞΨi;

Lint ¼ −iλ
P

iðΨiτγμΨiÞ ·PjðΨjτ∂↔μ
ΨjÞ

2
P

kðΨkΨkÞ ðλ → 1Þ:

ð78Þ

Gauge invariance can be proved in a similar way as in the
bosonic model, although the auxiliary field method never
leads us to this Lagrangian. To the first order in αðxÞ under
the space-time-dependent rotation Ψ → expðiτ · αðxÞ=2ÞΨ
and its conjugate, the gauge variations are given by

δL0 ¼ −
1

2
ðΨγμτΨÞ · ∂μαþOðα2Þ;

δLint ¼ −λδL0ðλ → 1Þ: ð79Þ

We can prove the gauge invariance to all orders of αðxÞ
using Eq. (70). In fact, a brute-force proof to all orders of α
is mathematically less cumbersome for the fermionic model
than for the bosonic model.
Just as in the case of bosonic matter, this simple form of

the non-Abelian model is possible only for the doublet
matter fields in SU(2) gauge symmetry. It should be
emphasized that our non-Abelian fermionic model cannot
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be obtained from the Lagrangian of nonpropagating aux-
iliary vector fields.

C. Noether current

As it happens in the Abelian models, the Noether current
does not exist in our bosonic and fermionic non-Abelian
models. The reason is the same as in the Abelian case: for
the Lagrangians with the matter fields alone, the contri-
butions to the Noether current from L0 and Lint cancel each
other as a consequence of gauge invariance. The proof in
Appendix A can be trivially extended to the non-Abelian
models. Even without such a general proof, the Noether
currents off the gauge symmetry limit (which are given
below) clearly show their absence in the gauge symmetry
limit.
The Noether current exists off the gauge symmetry limit.

Following the standard prescription, we obtain the Noether
currents from our Lagrangians of Eqs. (62) and (78) in the
form

JNμ ¼ ið1 − λÞΦ† τ
2
∂↔μΦ ðbosonicÞ;

JNμ ¼ ð1 − λÞΨ τ
2
γμΨ ðfermionicÞ: ð80Þ

As for the energy-momentum tensor, the conserved
tensor operator exists for any value of λ just as in the
U(1) models.

D. Composite gauge bosons

In the case of the SU(2)-doublet matter fields, the non-
Abelian diagram calculation is almost identical to the
Abelian one. The only difference is in the insertion of
the τ matrix at every point of the vectorial interactions in
Figs. 1 and 7. The massless composite bosons emerge in the
JPC ¼ 1−− channels of the adjoint representation of SU(2).
In the case of fermion matter the composite massless
bosons appear in the 3S1 eigenchannel, that is, they couple
only throughΨτγμΨ. The correct properties of the massless
bound states are confirmed just as in the Abelian cases.
We summarize the differences between the SU(2)-dou-

blet models and the Abelian models:
(A) For the non-Abelian models of SU(2)-doublet matter

fields, thevacuumexpectationvalues Ib0 ¼ h0jΦ†Φj0i
and If0 ¼ h0jΨΨj0i are twice as large as their Abelian
values, respectively, since both the upper and lower
components of the doublet matter contribute.

(B) The bubble diagrams entering the kernel K of the
iteration equation are scaled upward by the same
factor of 2 since a trace is taken within the bubble
loop: trðτa · τbÞ ¼ 2δab.

(C) Since the multiplication of the factor of 2 in (A) and
(B) occurs in both the numerator and the denomi-
nator of the kernel K in Eqs. (31) and (53), it keeps

the kernel K unchanged from the Abelian value.
Meanwhile, the lowest-order T matrix T0 is scaled
down by a factor of 2 since it is inversely propor-
tional to Ib0 (If0), as is the amplitude T ¼
ðI − KÞ−1T0.

Since the kernel Kμν remains unchanged, (I − K) is
still transverse and starts with a term proportional to
gμνq2 − qμqν with the same nonvanishing coefficient.
Consequently, the solution for the iterated amplitude T
takes the same form as in the corresponding Abelian
models, but the residue at q2 ¼ 0 is half as large, reflecting
the fact that the lowest-order term T0 is scaled down by a
factor of 2.
Summing up this argument, the location of the pole at

q2 ¼ 0 remains the same and its residue is scaled down by a
factor of 2, relative to the Abelian models, for both the
bosonic and the fermionic model. We describe below some
more details specific to each of the non-Abelian models.

1. The bosonic model

We compute the chain of bubble diagrams as shown in
Fig. 1 where the τ matrices are inserted at every point of
interaction. The residue at the massless pole is compared
with that of the corresponding Feynman diagram computed
with the standard Lagrangian of the SU(2) gauge sym-
metry,

Lint ¼ ig2ðΦ†Aμ∂μΦ − ∂μΦ†AμΦÞ þ g22Φ
†ðAμ · AμÞΦ;

ð81Þ

where Aμ ¼ 1
2
τaA

μ
a. We obtain the gauge coupling of the

composite SU(2) gauge bosons Aμ to the matter fields,

g22
4π
¼ 96π2

N lnðΛ2=m2Þ ; ð82Þ

when it is expressed with the cutoff Λ in four space-time
dimensions.9 Recall that the standard definition of g2
accompanies the generators 1

2
τ instead of just τ. [See the

definition of Aμ following Eq. (81).] In the leading 1=N
order, the magnitude of the coupling (82) coincides with
what one would obtain in the auxiliary field trick since it
comes from the same single bubble diagram with τ on
both ends.
The four-body interaction Φ†ΦAμAμ can be computed

with the second term of the expansion for 1=ðΦ†ΦÞ around
its vacuum value in Lint, namely,

−
1

4ðIb0Þ2
ðΦ†τ∂↔μΦÞ · ðΦ†τ∂↔μ

ΦÞð∶Φ†Φ∶Þ: ð83Þ

9For Λ̄, see Eq. (36) and the line following it.
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Attaching chains of bubbles to ðΦ†τ∂↔μ
ΦÞ and ðΦ†τ∂↔μΦÞ of

this interaction and approaching the zero-momentum limit,
we obtain g42, of which g

2
2 is assigned to the gauge couplings

of two composite gauge bosons with the external Φ†τΦ at
the outer ends of the chains and the remaining g22 is
assigned to the Φ†ΦAμAμ coupling. This step is a repeat
of what we have done for the Abelian model depicted in
Figs. 3 and 4. Going through this computation, we find that
the resulting g22 for Φ

†ðAμ · AμÞΦ is equal to the value given
in Eq. (82), as we expected.
For the non-Abelian gauge bosons, theremust be the triple

self-coupling and the quartic self-coupling. They are com-
puted with the diagrams of Figs. 5 and 6 after inserting the τ
matrices appropriately. The triple self-coupling diagrams, of
course, do not cancel among themselves in the non-Abelian
case. Charge-conjugation invariance allows for the triple
self-coupling since the non-Abelian charge flowing in the
opposite directions in a pair of triangular diagrams survives
with τaτb − τbτa ¼ 2iϵabcτc ≠ 0. Paying attention to the
subtlety of the linear divergence that has been cautioned
earlier, we find that the value obtained for the triple self-
coupling agrees with what the SU(2) gauge symmetry
requires by − 1

4
Gμν ·Gμν. The quartic self-coupling arises

from the diagrams with four-corner, three-corner, and two-
corner loops at the center [i.e., Figs. 6(a), 6(b), and 6(c)] and
survives in the limit of zero externalmomenta. They have the
correct magnitude and group structure as required by the
SU(2) gauge symmetry.
All this should not be surprising after we have found a

triplet of spin-one massless bound states out of the
manifestly gauge-invariant Lagrangian. Once we have
found that the effective fields of these bound states couple
with the matter fields in the form

Lint ¼ ig2ðΦ†Aμ∂μΦ − ∂μΦ†AμΦÞ; ð84Þ
with Aμ ¼ 1

2
τaA

μ
a, all other couplings of Aμ necessary to

satisfy the SU(2) gauge invariance ought to be generated by
loop and chain diagrams in the same 1=N order. Otherwise,
the models would violate the SU(2) gauge invariance that
was embedded in the Lagrangian at the beginning. We know
of no other way for this to be compatible with the SU(2)
gauge symmetry once the interaction of Eq. (84) emerges.

2. The fermionic model

Let us turn to the fermionic model. While the presence of
two JPC ¼ 1−− channels requires a 2 × 2 matrix calcula-
tion, the diagram computation of the bound-state gener-
ation is identical to that of the Abelian case except for the
insertion of the τ matrices into the 2 × 2 matrix equation of
Fig. 7 after replacing the boson lines with the fermion lines.
Massless bound states appear in the 3S1 channel here again,
and the squared SU(2) gauge coupling expressed in g22 is
larger than that of the U(1) fermionic model by a factor of 2
just as in the bosonic case:

g22
4π
¼ 24π2

N lnðΛ2=m2Þ ; ð85Þ

where the coupling g2 is defined by

Lint ¼ −g2ΨγμAμΨ: ð86Þ
Whenwework on the other couplings of dimension four, we
do not encounter any complication new to the non-Abelian
symmetry. The reason is that the massless bound states
couple to the matter fields only through the vertex of

ðΨγμτΨÞ, not through ðΨτ∂↔μΨÞ. Therefore the computation
of the triple and quartic self-couplings can be carried out in
the sameway as in theU(1)model. The relevant diagrams are
those of Figs. 5 and 6 where the boson lines are replaced by
the fermion lines. Since the composite bound states gen-
erated in the chains of bubbles couple with the fermions

only through ðΨτγμΨÞ and not through ðΨτ∂↔μ
ΨÞ, the

vertices of the triangle (Fig. 5) and the box [Fig. 6(a)] at

the center of the diagram are only those of γμ, not of ∂
↔

μ. The
diagrams of Figs. 6(b) and 6(c) do not contribute since the

six-body interaction ðΨτγμΨÞðΨτ∂↔μ
ΨÞðΨΨÞ is incapable of

producing two composite bosons. (Recall the argument in the
Abelian fermionic model.) As for the fermionic triangular
and box diagrams corresponding to Figs. 5 and 6(a), the same
large-N computation was actually carried out 20 years ago
in a similar model [16] that contains an explicit gauge-
symmetry breaking but only through the gauge boson mass.
We do not repeat the calculation of the self-couplings for the
non-Abelian fermionic model here. The bottom line is that
the same coupling g2 as the matter-gauge-boson coupling of
Eq. (85) appears in the self-interaction of the gauge bosons,
as we expected.
All these beautiful outcomes conforming to non-Abelian

gauge symmetry are manifestations of the gauge invariance
that was embedded in the Lagrangian at the beginning.
Hoping that we are not overly repetitious, we emphasize
that once the massless bound states of spin one appearing
and their effective fields Aμ couple with the matter fields
like g2ΨγμAμΨ, the bound states must be gauge bosons and
the associated gauge self-couplings of Aμ in − 1

4
GμνGμν

must be generated in order to satisfy the SU(2) gauge
invariance of Ltot. We know no other way to realize the non-
Abelian gauge invariance.

VI. DISCUSSION

We start this final section with an obvious observation
common to all of our models. In our models we cannot
introduce an elementary gauge field using the substitution
rule ∂μ → ∂μ þ ieAμ in our Lagrangian. The reason is
obvious from the structure of the models: this substitution
operation is nothing other than one special gauge trans-
formation. Take for example the fermion fields ψ in our
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U(1) Lagrangian. The substitution ∂μψ → ð∂μ þ ieAμÞψ is
realized by the rotation

ψðxÞ→ exp

�
ie
Z

x
AμðyÞdyμ

�
ψðxÞ: ð87Þ

Since Eq. (87) is one of the gauge transformations with

αðxÞ ¼ e
Z

x
AμðyÞdyμ; ð88Þ

the function αðxÞ is canceled out between L0 and Lint by
gauge invariance and disappears from the Lagrangian
entirely. Therefore the elementary Aμ field cannot be
introduced into our Lagrangians in this way. The inability
to introduce the elementary Aμ field in our Lagrangians
using the so-called substitution rule closely parallels the
vanishing of the Noether current.
The next observation concerns the no-go theorem of

Weinberg and Witten. The theorem was stated in the
following way [12].
Theorem: A theory that allows the construction of a

Lorentz-covariant conserved four-vector current Jμ cannot
contain massless particles of spin j > 1=2 with nonvanish-
ing values of the conserved charge

R
J0d3x.

The proof is simple. First fix the Lorentz scalar value of
the matrix element hp0jJμjpi for the massless spin-one
particle in the forward limit p0 → p. Then make a Lorentz
transformation and examine its rotational property around
the momentum p in the brick-wall frame (p0 ¼ −p). We
need the conserved current Jμ that provides the Lorentz
scalar charge

R
J0d3x.

The theorem holds whether the massless boson is
elementary or composite. As was emphasized by the
authors [12], however, the theorem does not apply to the
standard non-Abelian gauge bosons (without spontaneous
symmetry breaking). The catch is in the word “Lorentz-
covariant.” The state of zero helicity does not exist for
massless gauge bosons. In order to make the theory
manifestly Lorentz covariant and gauge invariant at the
same time, one has to fix a gauge by introducing an
unphysical ghost state in the Lagrangian. Otherwise, one
cannot carry out the diagram calculation. Fixing a gauge by
a subsidiary condition either violates manifest gauge
invariance or introduces a state that does not exist as a
physical particle state. Therefore, Lorentz scalar charges
that meet the conditions of the Theorem do not exist in the
standard non-Abelian gauge theory.10

What should we do with this theorem for our non-
Abelian models? If we could write the non-Abelian
Noether currents with the matter fields alone, we would
potentially interfere with this theorem. However, the
Lorentz-covariant conserved currents do not exist in our
models. They exist only off the gauge symmetry limit
(λ ≠ 1) and disappear as we go to the gauge symmetry limit
of λ ¼ 1, and it is only at this point that the vector bound
states become massless. We thus circumvent the theorem.
Is this really the answer to the potential conflict of the
composite non-Abelian gauge bosons with the Weinberg-
Witten theorem? To be frank, we are not totally comfortable
with this answer. But it appears in our models that the
generation of the massless non-Abelian composite bosons
evades the conflict with the Weinberg-Witten theorem.11

It is explicitly visible in our models that gauge invariance
requires that the force in the 1−− channel be attractive
(λ > 0) and that the bound state in this channel be massless
ðλ → 1). Repulsive forces (λ < 0) cannot be gauge invari-
ant. We are tempted to speculate that even if gauge fields
are not introduced explicitly, gauge bosons must appear as
composite states if a theory is gauge invariant. While it
sounds like a trivial proposition, it is desirable to elevate it
to a rigorous theorem of field theory.
One obvious question is whether our models have

anything to do with the real world. At an early stage of
the electroweak theory, people discussed the possibility of
composite W and Z bosons. [17,18] A quarter century ago
we also proposed a nonrenormalizable phenomenological
model of composite W and Z bosons where an explicit
symmetry breaking enters only through the W=Z masses
[16,19]. This occurred right after the experimental con-
firmation of theW and Z bosons at accelerators [20,21]. At
that time very little was known experimentally about the
properties ofW and Z bosons. One sensitive theoretical test
was to study how much deviation from the gauge symmetry
could be accommodated for the self-couplings of dimen-
sion four through their loop contributions [22]. A more
general test irrespective of sources was proposed [23] and is
still being used for experimental tests of the minimal
standard model. Now that the Higgs boson has been
discovered with its properties roughly in agreement with
theoretical expectations, the next step is to raise the
precision in the interaction of W and Z bosons by direct
measurement. The early indication of the two-photon
anomaly at 750 GeV is one example that may open up a
new window. However, since the invariant mass of
750 GeV is near the upper end of the two-photon phase
space in the current data and “the anomaly” is still no more
than a three-standard-deviation effect even with the ATLAS
and CMS data combined, we need to wait some time before

10If one takes the purist viewpoint that the initial and final
states of the matrix element hp0jJμjpi must be asymptotic states,
the theorem does not apply to the non-Abelian gauge theory like
QCD, which is singular in the infrared limit so that one-gluon
states are not asymptotic states. Our non-Abelian models contain
Nð→ ∞Þ doublets of matter particles so that the infrared limit is
nonsingular, i.e., not confining.

11TheW and Z bosons in the extra-dimension model [7] are the
lowest-lying Kaluza-Klein modes with mass so that they do not
conflict with the theorem.
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a consensus is reached among experimentalists on this
anomaly. Both experimentalists and phenomenologists are
working toward to this goal [24,25].
When our model is expressed as a composite gauge

theory with the effective fields Aμ, the difference from the
minimal standard model would appear in the interactions of
dimension higher than four which are suppressed by
powers of p2=Λ2 at jp2j < Λ2. When experiments explore
the region of energies comparable or higher than Λ, we
shall be able to directly discriminate our model Lagrangian
from the standard model of W and Z bosons. But we
currently have no theoretical basis to speculate on the
magnitude of Λ.
We conclude with one disturbing question to which we

give no good answer. Is it really possible to tell exper-
imentally or even theoretically whether a given particle is
elementary or composite? This is a nagging question that
confronted theorists [26] at the height of nuclear democracy
in the early 1960s. Theorists proposed various criteria of
compositeness, but no consensus emerged. Although we
have started with the matter fields alone and constructed
the massless gauge bosons explicitly as their bound states,
can we exactly describe the same physics with some other
Lagrangian in which all particles are elementary? Can we
really answer the question of elementarity vs composite-
ness once for all?
The following theorem was given by Kamefuchi,

O’Rafeartaigh, and Salam [27] in 1961. If a composite
local operator carries all quantum numbers of a given
particle in regard to space-time (JPC) and other properties
(charge, isospin, etc.), it gives the same S-matrix ampli-
tudes on the particle mass shell up to overall normaliza-
tions. The difference shows up only off the mass shell. But
the “off-shell amplitudes” are not really scattering ampli-
tudes of the particle, but include continuum contributions.
According to this theorem, therefore, the definition of
particle fields is infinitely ambiguous with respect to their
continua. When a different particle field is used, its
interaction Lagrangian takes a different form. To avoid
this ambiguity and the issue of renormalizability, we were
tempted to replace the field theory with the S-matrix theory
in the 1960s so as to deal only with the on-shell amplitudes
and the observables. As we know, it led us to the dual
resonance model and then back to the Lagrangian theory of
strings with the Nambu-Goto action.
Meanwhile, our attention has been drawn to one inter-

esting observation in supersymmetric theory. Along the line
of the Olive-Montonen conjecture, Seiberg and Witten [28]
showed in the N ¼ 2 supersymmetric theory that the
strong- and weak-coupling limits are dual to each other.
To be more specific, the roles of a particle and a soliton of
the same spin parity are interchanged between the strong
and weak limits of coupling. Since solitons are composite
in everyone’s picture, in such theories elementarity vs
compositeness loses its absolute meaning. It depends on the

strength of coupling. A similar duality was shown earlier
for an N ¼ 4 model as well [29]. The proof of this duality
relies on the simple holomorphicity special to supersym-
metry. If something similar holds in nonsupersymmetric
theory as well, the meaning of elementarity and compos-
iteness of particles would finally disappear and the naming
would become just a matter of convenience; if a Lagrangian
takes the simplest form with a certain choice for a set of
particle fields, one would call such particles elementary for
convenience.
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APPENDIX A: NONEXISTENCE OF THE
NOETHER CURRENT

The Noether current does not exist in the theories that
satisfy local gauge invariance with matter fields alone. The
proof is almost trivial. We give it here only for the U(1)
bosonic model since the extension to fermions and non-
Abelian theories is straightforward.
Under the U(1) gauge transformation, the Lagrangian

satisfies the local invariance

Lðe−iαðxÞϕ�; eiαðxÞϕÞ ¼ Lðϕ�;ϕÞ; ðA1Þ

where αðxÞ is an arbitrary function of space-time that
satisfies mild conditions such as differentiability. The copy
index i (¼ 1; � � �N) has been suppressed in Eq. (A1). For
the infinitesimal αðxÞ, gauge invariance requires

− i

�
ϕ�

∂L
∂ϕ� þ ∂μϕ

� ∂L
∂ð∂μϕ

�Þ
�
α

þ i

�∂L
∂ϕϕþ ∂L

∂ð∂μϕÞ
∂μϕ

�
α

þ i

�
−ϕ�

∂L
∂ð∂μϕ

�Þ þ
∂L

∂ð∂μϕÞ
ϕ

�
∂μα ¼ 0: ðA2Þ

Since αðxÞ and ∂μαðxÞ are two independent functions when
αðxÞ is an arbitrary function of xμ, the condition of Eq. (A2)
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requires that the terms proportional to αðxÞ and to ∂μαðxÞ
must be separately equal to zero. After using the equations
of motion, the coefficient of αðxÞ equal to zero gives

−∂μ

�
ϕ�

∂L
∂ϕ�μ

�
þ ∂μ

�
ϕ
∂L
∂ϕμ

�
¼ 0: ðA3Þ

Normally this would be the statement of conservation of
the Noether current, ∂μJNμ ¼ 0. However, the third term
proportional to ∂μαðxÞ in Eq. (A2) gives

−
∂L

∂ð∂μϕ
�Þϕ

� þ ∂L
∂ð∂μϕÞ

ϕ ¼ 0: ðA4Þ

This is nothing other than the statement of

JNμ ≡ 0 ðA5Þ

at all space-time locations. In the case that the elementary
gauge field Aμ exists in the Lagrangian, the gauge trans-
formation Aμ → Aμ þ i∂μα generates an additional term
proportional to ∂μαðxÞ and adds to the third term in
Eq. (A2) to exactly cancel the variation due to ϕ=ϕ�.
This cancellation is nothing other than gauge invariance
itself. Consequently, Eq. (A5) does not follow in the
conventional gauge theory. An extension of this proof to
the fermion models and the non-Abelian models is just as
simple and easy.
Despite this general proof of JNμ ≡ 0, somemaywonder if

it is possible to define a conserved current in the gauge
symmetry limit by factoring out ð1 − λÞ from the current Jμ
defined byEq. (19) off thegauge limit (λ ≠ 1) and thengoing
to the limit of λ ¼ 1. If physics is somehow “continuous” in
this respect in the neighborhoodof λ ¼ 1, thismight allowus
to circumvent the difficulty. That is, we choose as a
conserved current simply the current

J0μ ¼ i
X
i

ðϕ�i ∂
↔

μϕiÞ; ðA6Þ

so that the charge is Q≡ R
J00d

3x. This charge is not gauge
invariant, but let us leave it aside for a moment. If one
computes bybrute force the divergence of this currentJ0μwith
the equation of motion, one would not be led to ∂μJ0μ ¼ 0.
Instead, one would end up with the trivial circular identity as
follows: since ∂μJ0μ ¼ i

P
iðϕ�i□ϕi −□ϕ�iϕiÞ, one multi-

plies the equation of motion for ϕi with the field ϕ�i and
subtracts the corresponding bilinear object with ϕi ↔ ϕ�i .
Then the result is a trivial identity: i

P
iðϕ�i□ϕi − ϕ�i□ϕiÞ ¼

i
P

iðϕ�i□ϕi −□ϕ�iϕiÞ. Therefore the conclusion from this
exercise is as follows: only when one violates gauge
invariance by staying away from the symmetry limit
(λ ≠ 1) can the Noether theorem define a conserved current
in the familiar form with strength reduced by ð1 − λÞ.

The same happens for our fermion model. Just as in the
bosonic model, the current

P
iψ iγμψ i is not the conserved

Noether current in the gauge symmetry limit.12 The
equation of motion of Ltot does not allow us to compute
∂μðψγμψÞ in the gauge symmetry limit: such a computation
drives us around a circular loop just as in the case of
bosons.
In the perturbative diagram calculation which is per-

formed in the interaction picture, however, the fields obey
the equation of freemotion. Therefore ϕ�∂↔μϕ and ψγμψ are
both divergence free, that is, they are conserved currents.

APPENDIX B: DIFFICULTY IN GENERAL
NON-ABELIAN MODELS

The local Lagrangian of matter fields alone has been
easily obtained by the auxiliary gauge field method for the
SU(2) model with the doublet matter. But we cannot extend
it to other groups and representations. We show it here
using two explicit examples.
Let us start with the Lagrangian of the nonpropagating

auxiliary gauge fields,

L ¼ Φ†ð ∂ μ − iAμÞð∂μ þ iAμÞΦ

−m2Φ†Φþ 1

2
μ2Aa;μA

μ
a; ðμ2 → 0Þ; ðB1Þ

where Φ and Φ† are the column and row fields belonging to
the n-dimensional representation of group G. We have
absorbed the coupling e into Aμ. Let the group G be
induced by the generators Ta (a ¼ 1; � � � k), which are
n × n matrices. We represent the nonpropagating gauge
fields Aμ

aða ¼ 1 � � � kÞ in the n × n matrices,

Aμ ¼
Xk
a¼1

TaA
μ
a: ðB2Þ

The Lagrangian (B1) is invariant under the local gauge
transformation

Φ → UΦ;

Aμ → UAμU† − ið∂μUÞU†; ðB3Þ

where U ¼ expðiTaαaÞ. In order to integrate the exponen-
tiated action of L over Aμ

a, we combine the terms bilinear
and linear in Aμ

a into a quadrature and “shift the origin.” In
the case of the SU(2)-doublet matter fields, we see with
fτa; τbg ¼ 2δab that the coefficients of the bilinear terms of
Aμ
a are simply δabΦ†Φ so that no diagonalization is needed

for the symmetrized product of the generators fTa; Tbg ¼
1
4
fτa; τbg ¼ 1

2
δab. Upon integration over Aμ

a, the

12Unlike the corresponding object in the bosonic case, this
current is gauge invariant.
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denominator of LintðΦ†;ΦÞ comes out to be the singlet
Φ†Φ, as given in Eq. (62). Upon integration, an additional
term

−2tr lnðΦ†ΦÞ ðB4Þ

appears in the effective action. But we may remove this term
since it is gauge invariant by itself.We retain the remainder as
the gauge-invariant Lagrangian in terms of Φ†=Φ.
However, this procedure does not work in the cases other

than the SU(2) doublet.When fTa; Tbg∝δabI, it happens that
the integral over Aμ is generally impossible. Even if it were
possible, the trace-log term would not be invariant by itself
under rotationsof thegroupG, not evenunderglobal rotations.
While thewholeactionisgauge invariant, it isnot separatelyso
for the effective Lagrangian and the trace-log term.
Unfortunately, this is what happens in the cases other than
the SU(2) doublet. We show two simple examples below.
Let us first examine the case of the real triplets of SU(2).

In this case the coefficient of the bilinear terms of Aμ
a

(a ¼ 1, 2, 3) is written in terms of the 3 × 3 matrices
ðTaÞbc ¼ −iεabc and the matter fields Φ ¼ ðϕ1;ϕ2;ϕ3Þt
and Φ† ¼ Φt. The bilinear terms of Aμ

a are given by

ðΦtTaTbΦÞAμ
aAb;μ: ðB5Þ

It can be diagonalized by the orthogonal transformation
A0μ ¼ OAμ into

ðA0μ1 ; A0μ2 ; A0μ3 Þ

0
B@

ΦtΦ 0 0

0 ΦtΦ 0

0 0 0

1
CA
0
B@

A01μ
A02μ
A03μ

1
CA: ðB6Þ

When this is placed in the action and exponentiated, we
cannot integrate it over the third component ofA0μ since the
action is flat along that direction (at μ → 0). The action

blows up as μ → 0 and there is no way to keep it well
defined.
How about the SU(3)-triplet matter fields as the next-to-

simplest example? For the triplet matter fields, the bilinear
terms in Aμ

aða ¼ 1; � � � 8Þ can be written as

Aa
μMabAb;μ; ðB7Þ

where Mab ¼ 1
8
Φ†fλa; λbgþΦ is a symmetric matrix under

a ↔ b. The matrix Mab can be diagonalized into D by
some orthogonal rotation O as

ðA0μÞtOtMOA0μ ¼ A0a;μDaaA
0μ
a : ðB8Þ

Can the diagonal matrix D be proportional to the unit
matrix? If so, the functional integral over Aa

μ would produce
a denominator common to all a in Lint just as in the case of
SU(2). But that is obviously not the case: if D ∝ I, then
Mab ¼ ðODOtÞab would also have to be proportional to δab
even before the rotation. We can easily see by simple
inspection (using the representation Ta ¼ 1

2
λa familiar to

physicists) that Mab is not proportional to an 8 × 8 unit
matrix. Consequently, the resulting Lagrangian in terms of
matter fields alone would not take a form as compact as in
the SU(2)-doublet case, if one could write it at all.13

These two examples show that the auxiliary field method
can lead to a simple local field theory only for the U(1) and
the SU(2)-doublet models of bosonic matter fields.
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