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We report on a numerical study of real-time dynamics of electromagnetically interacting chirally
imbalanced lattice Dirac fermions within the classical statistical field theory approach. Namely, we perform
exact simulations of the real-time quantum evolution of fermionic fields coupled to classical electro-
magnetic fields, which are in turn coupled to the vacuum expectation value of the fermionic electric current.
We use Wilson-Dirac Hamiltonian for fermions, and noncompact action for the gauge field. In general, we
observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring
chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, the electric
field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In
the case of evolution with initially present chirality imbalance, axial charge tends to transform to helicity of
the electromagnetic field. By performing simulations on large lattices we show that in most cases this decay
process is accompanied by the inverse cascade phenomenon, which transfers energy from short-wavelength
to long-wavelength electromagnetic fields. In some simulations, however, we observe a very clear signature
of inverse cascade for the helical magnetic fields that is not accompanied by the axial charge decay.
This suggests that the relation between the inverse cascade and axial charge decay is not as straightforward
as predicted by the simplest form of anomalous Maxwell equations.
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I. INTRODUCTION AND BRIEF SUMMARY

Over the past few decades, real-time instability of the
system of chiral fermions coupled to dynamical gauge
fields has been attracting a lot of attention in various fields
of physics, ranging from astrophysics to condensed matter
physics. This instability manifests itself in the decay of the
initial imbalance between the densities of the left- and
right-handed fermions at the expense of the generation of
magnetic fields with nonzero magnetic helicity (or, in other
words, winding number of magnetic flux lines). In the
astrophysical context, the phenomenon of chiral plasma
instability is actively discussed as the mechanism respon-
sible for the generation and enhancement of primordial
magnetic fields [1–5] as well as for the transfer of magnetic
field energy from short to cosmological scales [3,6,7].
In the context of condensed matter physics, it was

considered as a mechanism of spontaneous magnetization
of topological magnetic insulators [8]. In experiments in
which chirally imbalanced Weyl semimetal states are
created from Dirac semimetals by applying parallel electric
and magnetic fields [9–11] chiral plasma instability might
manifest itself in the spontaneous emission of circularly
polarized terahertz-range electromagnetic radiation [12].

In heavy-ion collisions, chiral plasma instability might
lead to enhanced emission of circularly polarized soft
photons [12]. It should be also important for the correct
estimate of the lifetimes of chirality imbalance and magnetic
fields [13,14]. However, the estimates of [15] suggest that in
heavy-ion collisions thevolumeand the lifetimeof the quark-
gluon plasma might be too small for the instability to
develop.
The origin of this instability of chirally imbalanced Dirac

fermions is the chiral magnetic effect (CME) [16,17]—
electric current flowing parallel to the magnetic field in the
presence of chirality imbalance. Within the linear response
approximation the contribution of the CME to the electric
current is

~jCME ¼ σCME
~B: ð1Þ

The commonly quoted value for the chiral magnetic
conductivity σCME is σCME ¼ μA

2π2
, where μA is the so-called

chiral chemical potential, which parametrizes the difference
between the Fermi levels of right- and left-handed fermions
and hence also the total axial charge of the system. The
value of σCME, however, strongly depends on frequency w

and wave vector ~k of the electromagnetic field, and, in
the limit of constant and homogeneous magnetic field, on
the way in which the limits w → 0 and k → 0 are
taken [17–23].
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In order to see how the CME current (1) can lead to
instability, one can insert it into the classical Maxwell
equations, along with the conventional Ohmic current
~j ¼ σ ~E, where σ is the electric conductivity. Assuming
the unbroken translational invariance both in time and
space, we can write these so-called anomalous Maxwell
equations [1,3,4,12,13,15,24–26] in frequency-momentum
space as

iw~B ¼ −i~k × ~E; iw~E ¼ i~k × ~B − σ ~E − σCME
~B: ð2Þ

From these equations we find the following four-branch
dispersion relation for transversely polarized plane waves

with the wave vector ~k ¼ k~e3 [15]:

ws;r ¼
iσ
2
þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ rσCMEk −

σ2

4

r
; ð3Þ

where s ¼ �1 and r ¼ �1 label different branches of the
dispersion relation. The corresponding polarization vectors

ϵr ¼ 2−1=2ð1;−ir; 0Þ for the electric field ~E correspond to
circularly polarized waves with opposite helicities (handed-
ness) for opposite r.
While for nonzero electric conductivity σ the imaginary

part of w in (3) is always positive and hence corresponds to
decaying plane waves, nonzero chiral magnetic conduc-
tivity can also lead to exponentially growing solutions if the
absolute value of the wave vector k is smaller than σCME.

From (3) it is also easy to see that for a given wave vector ~k,
only one of the two helical modes exhibits exponential
growth. For example, for μA > 0 (and hence QA > 0 and
σCME > 0) and σCME > k > 0 the exponentially growing
solution has the form

E1 ¼ feκt cosðkx3Þ; E2 ¼ −feκt sinðkx3Þ;

B1 ¼ −f
k
κ
eκt cosðkx3Þ; B2 ¼ f

k
κ
eκt sinðkx3Þ;

E3 ¼ 0; B3 ¼ 0; ð4Þ

where f is an arbitrary amplitude and κ ≡ −iw ¼
− σ

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

4
− k2 þ σCMEk

q
. It is important to stress that since

this solution grows monotonously in time, here we use the
terms “circular polarization,” handedness, and helicity to

describe the rotation of the vectors ~E and ~B along the x3
axis, rather than in time. The growth of long-wavelength
electromagnetic waves and the decay of short-wavelength
waves predicted by the anomalousMaxwell equations (2) is
a novel mechanism for the inverse cascade in relativistic
magnetohydrodynamics [3,6], which transfers energy from
long- to short-wavelength helical magnetic fields.
The fact that the exponentially growing solution (4) has

the helical structure of the form (4) also suggests the

mechanism that can stop the growth of the electromagnetic
field at later times. Namely, let us recall that for massless
chiral fermions the time evolution of the axial charge is
governed by the anomaly equation,

∂tQA ¼ g2

2π2

Z
d3x~E · ~B; ð5Þ

where the axial charge QA ¼ QR −QL is defined as the
difference between the chargesQR andQL of the right- and
left-handed fermions, g is the electromagnetic coupling
constant, and we have integrated over space to get rid of the
spatial divergence of the axial current. For simplicity, in this
paper we consider only a single flavor of Dirac fermions
with electromagnetic coupling g ¼ 1.
For the exponentially growing solution (4) the product

~E · ~B is negative: ~E · ~B ¼ −f2 k
κ e

2κt [27]. The anomaly
equation (5) then dictates that the time derivative ∂tQA of
the axial charge is negative. Since we have assumed
QA > 0, μA > 0, we see that the growing helical solution
(4) results in the decrease of QA and hence of μA. This
depletion of chirality imbalance should eventually suppress
the chiral magnetic conductivity in (1) and hence slow
down or stop completely the exponential growth in (4).
However, the above analysis of the chiral plasma

instability, which follows [3,4,12,13,15,24–26,28], essen-
tially relies on an assumption that the electric current takes
the form ~j ¼ σ ~Eþ σCME

~B with constant Ohmic and chiral
magnetic conductivities. In reality, both σ and σCME depend
on the frequency and wave vector of the electromagnetic
field in a nontrivial way [17–23]. One can also expect a
strong dependence of σ and σCME on the spatial and
temporal modulation of the axial charge density, which
in general appears at late evolution times [26]. Moreover, as
the instability might lead to quite large strengths of electric
and magnetic fields, nonlinear effects beyond the linear
response result (1) might become important. Using linear
response approximation to describe the interactions
between the fermions and the electromagnetic fields is in
fact similar to the Lyapunov analysis of the full quantum
evolution, which is in general nonlinear. Interfermion
interactions so far have been taken into account only
indirectly, by using the relaxation time approximation
[14] or the decoherence of the fermionic wave functions
[29]. A consistent inclusion of all these effects in the
anomalous Maxwell equations (2) would certainly be
difficult with approaches based, e.g., on the chiral kinetic
theory [24–26,30], chiral hydrodynamics [6,31], or the
Langevin-type effective theory [32].
This situation clearly calls for a more first-principles

description of the real-time dynamics of chirally imbalanced
plasma that overcomes these limitations and approximations.
In this paper, we report on the numerical study of the real-
time chiral plasma instability within the framework of the
so-called classical statistical field theory (CSFT) [33–38],
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which captures the first nontrivial order of the expansion of
the full quantum evolution operator in powers of the Planck
constant. CSFT is currently the state-of-the-art method for
numerical simulations of real-time quantum evolution. The
CSFT approximation is justifiable as long as the character-
istic occupation numbers of the physically relevant gauge
field modes are large. That is, the dynamics of the gauge
fields should be almost classical. On the other hand, the real-
time dynamics of fermions is exact in CSFT. Taking into
account that in all previous studies gauge fields were also
treated classically, the applicability of the CSFT approach is
obviously wider than that of the previously used approaches.
An approach very similar to CSFT has been recently used in
[39] to study the real-time dynamics of the CME. However,
in this work the backreaction of fermions on the electro-
magnetic field, which is the origin of the chiral plasma
instability, was not taken into account. The real-time dynam-
ics of axial chargewas also studied in the 1þ 1-dimensional
Abelian Higgs model in the pioneering work of Ref. [33].
Our studies are based on the noncompact formulation of

lattice quantum electrodynamics, which avoids potential
problems with monopole condensation in the strong-
coupling phase [40]. For fermions, we use the massless
Wilson-Dirac Hamiltonian, which has a low-energy chiral
symmetry. At sufficiently high energies, this symmetry is
broken due to the Wilson term. In the condensed matter
context, this breaking is a natural feature of any model
description of Dirac and Weyl semimetals [41–43]. In
Sec. III we demonstrate that the effect of this explicit
breaking is, however, not very large (see also [44]).
Therefore, we hope that our results are also at least
qualitatively relevant in the context of high-energy physics,
where the chiral symmetry is exact at the level of the
Lagrangian, or tends to be exact at sufficiently high
energies.
In order to introduce the initial chirality imbalance, we

have started the simulations with a state in which more right-
handed eigenstates and less left-handed eigenstates are filled,
as depicted on the right panel of Fig. 1. Such a state is an
excited state of the many-body Dirac Hamiltonian, even in

the absence of electromagnetic fields. It is an idealized
description of the result of the chirality pumping process in
parallel electric and magnetic fields [9,45] or in intense
circularly polarized laser beams.
Alternatively, we have also considered the introduction

of the chiral chemical potential into the single-particle
Dirac Hamiltonian, which changes the energies of the right-
and the left-handed Dirac points (see the left panel of
Fig. 1). Such an initial state has nonzero axial charge but
is still the ground state of the many-body Hamiltonian in
the absence of interactions with electromagnetic fields. In
simulations that started from this state we have not found
any signatures of instability or the transfer of helicity from
fermions to electromagnetic fields. The axial charge density
exhibited only small fluctuations on top of the large mean
value. Presumably, the reason for such a behavior is that
nonzero chiral chemical potential corresponds to the
physical situation in which our system is connected to
an infinite reservoir of axial charge, which is capable of
maintaining its initial value at a constant level. Since the
anomaly equation (5) holds also at nonzero chiral chemical
potential, this also implies that the magnetic helicity can
only exhibit small fluctuations, possibly related to the
violation of the anomaly equation due to lattice artifacts.
Since such behavior is not really interesting, we do not
discuss this setup in what follows.
The structure of this paper is the following: in Sec. II we

start with a brief summary of the details of our numerical
CSFTalgorithm. In Appendix Awe provide a more detailed
derivation of this algorithm with a bias towards non-
relativistic field theories and condensed matter systems,
which will hopefully complement the existing literature on
CSFT (see, e.g., [33,38] for derivations that are more in the
spirit of relativistic quantum field theory). In this appendix
we also demonstrate explicitly the absence of any nontrivial
Jacobian in the integration measure in the CSFT algorithm,
and discuss some practical aspects of our CSFT simulations
on parallel computers. In Sec. III we present the results of
the simulations of the chirality pumping process. First, we
consider chirality pumping in external parallel electric and
magnetic fields in the absence of backreaction and verify
the validity of the anomaly equation (5) in our numerical
setup. After that we consider the effect of backreaction of
fermionic current on the chirality pumping process and
demonstrate that the dynamical screening of the external
electric field prevents the system from acquiring large axial
charge density at late evolution times.
In Sec. IV, we consider the decay of the initial chiral

imbalance and the generation of electromagnetic fields
with nonzero helicity. In order to trigger the decay, we start
simulations with several initially excited modes of electro-
magnetic field. Following the energies of helical modes in
momentum space, we demonstrate that only long-wave-
length modes of definite helicity grow and all other modes
decay with time. This is direct numerical evidence of the

FIG. 1. Two ways of introducing initial chiral imbalance for the
many-body Dirac Hamiltonian: on the left, by introducing the
chiral chemical potential μA in the single-particle Dirac Hamil-
tonian; and on the right, by filling more right-handed eigenstates
and less left-handed eigenstates (or vice versa).
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inverse cascade phenomenon [3,6,12,46] due to chiral
plasma instability. We find, however, that the dependence
of the strength of the inverse cascade on the initial
conditions and parameters of the simulations is signifi-
cantly more complex than predicted by the anomalous
Maxwell equations (2). In particular, in the simulations that
exhibit the most rapid growth of helical magnetic fields the
axial charge does not decay at all. Correspondingly, the
mechanism that stops the inverse cascade in our simula-
tions is not related to the axial charge decay, again in
contrast to the expectations based on Eqs. (2) [3,4,6,
12–14]. Rather, we observe that in most simulations that
do exhibit axial charge decay the inverse cascade emerges
for the electric rather than for magnetic fields. In Sec. V we
conclude with a general discussion of our results and an
outlook.

II. CLASSICAL STATISTICAL FIELD THEORY
APPROXIMATION TO REAL-TIME

EVOLUTION

We consider the many-body fermionic Hamiltonian
coupled to dynamical noncompact electromagnetic fields
on the lattice, so that the full Hamiltonian Ĥ of our system
is Ĥ ¼ ĤF þ ĤEM. The fermionic Hamiltonian ĤF reads

ĤF ¼
X
x;y

ψ̂†
xhx;yψ̂y; ð6Þ

where the labels x, y denote the sites of the three-dimensional
cubic lattice, ψ̂†

x, ψ̂x are the spinor-valued fermionic creation
and annihilation operators that satisfy the anticommutation
relation fψ̂†

x; ψ̂yg ¼ δxy, and hx;y is the massless single-
particle Wilson-Dirac Hamiltonian with the Wilson coeffi-
cient r ¼ 1,

hx;y ¼ 3vFβδx;y þ
ivF
2

X3
i¼1

ðiβ þ αiÞeigAx;iδy;xþei

þ ivF
2

X3
i¼1

ðiβ − αiÞe−igAx−ei;iδy;x−ei : ð7Þ

Here Ax;i is the vector potential of the lattice gauge field, ei
denotes the unit lattice vector in the direction i, vF is the
Fermivelocity,β andαi are theDiracβ andα-matrices, and γ5
is the generator of chiral rotations,

β ¼
�
0 1

1 0

�
; αi ¼

�
σi 0

0 −σi

�
;

γ5 ¼
�
1 0

0 −1

�
; ð8Þ

where σi are the Pauli matrices. In (7) we have assumed that
the lattice spacing is unity. Thus, in what follows all

dimensionful quantities are expressed in units of the lattice
spacing.
The lattice Hamiltonian ĤEM of the electromagnetic field

is the straightforward lattice discretization of the corre-
sponding continuum Hamiltonian,

ĤEM ¼
X
x

X3
i¼1

�
Ê2
x;i

2
þ
X3
j¼i

F̂2
x;ij

2
þ Âx;iJ x;iðtÞ

�
; ð9Þ

where J x;iðtÞ is the external current (which is required,
e.g., to switch the external electric and magnetic fields on
and off) and the operator of the magnetic field strength
tensor F̂x;ij is defined in terms of the finite differences of
the vector potential operator Âx;i as

F̂x;ij ¼ Âx;i þ Âxþei;j − Âxþej;i − Âx;j: ð10Þ

The operators of the electric field Êx;i and the vector
potential Âx;i are canonically conjugate and satisfy the
commutation relations ½Êx;i; Ây;j� ¼ −iδxyδij. We impose
periodic boundary conditions in all spatial directions both
for the gauge and the fermionic fields.
In our CSFTalgorithm, described in detail in AppendixA,

we numerically solve the classical equations of motion of
the electromagnetic field with the Hamiltonian (9),

∂2
t Ax;iðtÞ ¼ −J x;iðtÞ − hjx;iðtÞi

−
X
j

ðFx;ijðtÞ − Fx−ej;ijðtÞÞ; ð11Þ

where the initial value of the time derivative ∂tAx;iðtÞjt¼0

is the initial value of the electric field Ex;ið0Þ and hjx;iðtÞi is
the vacuum expectation value of the fermionic electric
current, which can be calculated as

hjx;iðtÞi ¼ Trðρ0uð0; tÞjx;iu†ð0; tÞÞ; ð12Þ

where jx;i ¼ ∂h
∂Ax;i

is the single-particle operator of electric

current, uð0; tÞ is the quantum evolution operator defined
by the single-particle Schrödinger equation

∂tuð0; tÞ ¼ ih½Ax;iðtÞ�uð0; tÞ; uð0; 0Þ ¼ I; ð13Þ

and ρ0 is the initial density matrix that characterizes the
initial occupation numbers na of single-particle states jψai,

ρ0 ¼
X
a

jψainahψaj: ð14Þ

In our case, jψai are the eigenstates of the single-particle
Hamiltonian (7). If some occupation numbers are exactly 0
(which can be the case at zero temperature), some compo-
nents of the quantum evolution operator u completely
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decouple and can be discarded in the solution of the
equation (13). This can be used to speed up the algorithm,
typically by a factor of 2 (for a standard zero-temperature
Fermi distribution). The expectation value hjx;iðtÞi in (11)
describes the effect of backreaction of fermions on the
electromagnetic fields.
We thus have a closed set of equations (11)–(13), which

allows us to evolve the fermionic quantum states and the
classical electromagnetic fields in a self-consistent way.
One can also explicitly check that this evolution conserves
the total energy HEM þ hĤFi of the electromagnetic field
and fermions up to the work done by the external current
J x;iðtÞ,

∂tðHEM þ hĤFiÞ ¼ −
X
x;i

J x;iðtÞEx;iðtÞ;

HEM ¼ 1

2

X
x;i

�
ð∂tAx;iÞ2 þ

X
j

F2
x;ij

�
;

hĤFi ¼ Trðρ0uð0; tÞhu†ð0; tÞÞ: ð15Þ

We have solved the evolution equations (11) and (13) using
the leapfrog integrator, which slightly violates the con-
servation of energy (15). At a sufficiently small time step
this violation is completely under numerical control; see
Fig. 14 in Appendix A.
In the CSFT approach, one can also partially take into

account the quantum fluctuations of the electromagnetic
fields, encoded in the nontrivial Wigner transform
ρEMðA0; E0Þ of the initial density matrix ρEM, where A0 ≡
Aðt ¼ 0Þ and E0 ≡ Eðt ¼ 0Þ are the initial values of
electric and magnetic fields. To this end one should
additionally average all observables over A0 and E0,
sampled with the probability ρ̄EMðA0; E0Þ [47]. However,
in our work we have not taken these initial quantum
fluctuations into account for the following reasons. First,
in the case of anomaly equation (5) with massless fermions
we have found that the effect of initial fluctuations of
electromagnetic fields is much more significant than in the
case of, e.g., Schwinger pair production [38] [48], and
hence many more samples of the initial fields are required
to reach acceptable statistical errors. Partially this can be
explained by the large value of the electromagnetic cou-
pling constant, which was g ¼ 1.0 in most of our simu-
lations. We expect that the role of initial fluctuations will be
smaller for a smaller value of g, say g ¼ 0.1. In the latter
case, however, the characteristic time scale of the chiral
plasma instability increases significantly above our current
simulation times.
In addition, taking into account initial quantum fluctua-

tions of electromagnetic fields makes it impossible to
assume spatial homogeneity of electromagnetic fields
along some of the lattice directions, which is essential to
speed up the CSFT simulations at large lattice sizes.

Thus, while the effect of quantum fluctuations on the
chiral plasma instability might be potentially very signifi-
cant and interesting, we cannot study it with our presently
available computational resources and we leave it for future
work. In this work, we avoid the statistical averaging over
the initial values of the fields E0, A0 by using the very
simple form of the initial density matrix ρ̄EMðA0; E0Þ,
which is just a delta function on some particular, specifi-
cally chosen initial values. We thus completely neglect
the quantum fluctuations of the electromagnetic fields.
Nevertheless, this approximation is still certainly wider than
the chiral kinetic theory or hydrodynamical approximation.

III. CHIRALITY PUMPING IN PARALLEL
ELECTRIC AND MAGNETIC FIELDS

In this section we study the real-time evolution of the
axial charge QA in the background of constant parallel
external electric and magnetic fields. In the absence of
backreaction, such a setup provides a direct check of how
well the anomaly equation (5) holds for the Wilson-Dirac
Hamiltonian with inexact chiral symmetry [44], which we
further use to study the chiral plasma instability in Sec. IV.
The effect of backreaction is also interesting since the
anomaly equation (5) is known to receive nontrivial
corrections if the electromagnetic fields are dynamical
[49–51].
In order to induce the constant external electric field

~E ¼ E~e3, we switch on the external current of the form
J x;iðtÞ ¼ δi;3Et. Constant external magnetic field is
induced by the static circular external current flowing
around the plaquettes with x1 ¼ L1 − 1, x2 ¼ L2 − 1 for
all x3 ¼ 0…L3 − 1, where L1, L2 and L3 are lattice sizes.
This static current is like a thin solenoid piercing a stack of
lattice plaquettes, with the field strength being equal to B
outside of the solenoid and B − BL1L2 inside it. Lattice
fermions, however, acquire only the Aharonov-Bohm
phase eigB when encircling such a solenoid if one imposes
the flux quantization condition

gBL1L2 ¼ 2πΦ; Φ ∈ Z: ð16Þ

The total external current that we insert in Eqs. (11) is the
sum of the two currents that create constant electric and
magnetic fields.
For the initial state of the fermionic fields, we use the

eigenstates of the Wilson-Dirac Hamiltonian h½A0�, where
A0 is the initial gauge field configuration with constant
magnetic field B as described above. In this work we
consider only the limit of zero temperature; correspond-
ingly, only the states with negative energies are initially
occupied.
The Wilson-Dirac Hamiltonian that we use in our

simulations does not have exact chiral symmetry, and there
is no uniquely defined axial charge operator that would
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exactly satisfy the anomaly equation (5) and commute with
the Hamiltonian. Rather, the anomaly equation (5) can only
hold approximately, in the limit of large lattice volume and
sufficiently smooth, slowly changing and small gauge
fields [52,53]. We thus use the simplest possible definitions
of the operators of the axial charge density qAx and the total
axial charge QA,

q̂Ax ¼ ψ̂†
xγ5ψ̂x; Q̂A ¼

X
x

q̂Ax: ð17Þ

The time-dependent expectation value of the axial charge
density is calculated similarly to the expectation value of
the electric current in (12),

hqAxðtÞi ¼ Trðρ0uð0; tÞγ5Pxu†ð0; tÞÞ; ð18Þ
where Px is the single-particle projector on a single lattice
site x: ½Px�x1x2 ¼ δx1xδxx2 .
First, we neglect the backreaction of the fermionic

electric current on the electromagnetic field and measure
the time dependence of the axial charge in constant parallel
external electric and magnetic fields. The results are shown
on the left panel of Fig. 2 for the 10 × 10 × 32 lattice with
Φ ¼ 1 quantum of magnetic field flux. One can see thatQA
grows linearly with time until it reaches some maximal
value QA=V ≈ 0.006, where V ¼ L1L2L3 is the total
number of lattice sites (lattice volume). After that, QA
decreases again. This decrease is a lattice artifact related to
the fact that the characteristic momentum p ∼ Et of
fermions accelerated by an electric field E approaches
the UV cutoff set by the compact size of the lattice
momentum space kμ ∈ ½−π…π�. Because of the periodicity
of lattice momentum space, at large time scales the
behavior of the axial charge (in the absence of back-
reaction) is well described by QA ∼ sinðEt=2Þ. There are
also some short-time fluctuations on top of the clearly
visible linear growth at early times.

In order to estimate the linear growth rate at early times,
we perform the linear fit of the form QAðtÞ=V ¼ αðEÞt in
the range t ∈ ½0…50� for E ¼ 0.01 and E ¼ 0.02 and in the
range t ∈ ½0…30� for other values of E. The dependence of
the coefficient αðEÞ on the electric field is shown on the
right panel of Fig. 2. Again, this dependence is linear
with a good precision, and we perform another linear fit
αðEÞ ¼ CE, where C corresponds to the anomaly coef-

ficient relating ∂tQA and
R
d3~x ~E ·~B in (5). On Fig. 3 we

show the dependence of C on the size of the lattice (in the
directions perpendicular to the magnetic field). One can see
how C approaches the value C ¼ 1

2π2
in the limit of large

lattices, in agreement with the anomaly equation (5). Let us
also note that for a larger number of flux quanta one can
perform a similar fitting procedure. However, finite-volume
artifacts in C are significantly larger for larger magnetic
fluxes. For this reason, in this work we have only used
external magnetic fields with one flux quantum.
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It is also interesting to check how the axial charge
depends on time after the external electric field is switched
off and the external magnetic field remains constant (which
we believe to be a more realistic experimental setup than
the simultaneous switching off of all fields). The time
dependence of the axial charge for such a situation is shown
on the left plot of Fig. 4 (green line). External electric field
is switched off at the time t ¼ 50. One can see that starting
from this moment of time the axial charge exhibits only
some small-scale fluctuations around the nonzero mean
value. This demonstrates that the effect of explicit chiral
symmetry breaking due to the Wilson term in the
Hamiltonian (7) is rather small for such simulation param-
eters, and the total axial charge is almost a conserved
quantity.
After establishing the validity of the anomaly equa-

tion (5) in our simulation setup, we study the effect of
backreaction of dynamical electromagnetic fields on the
chirality pumping process. Technically, the backreaction is
taken into account by inserting the expectation value of the
fermionic electric current hjx;ii into the Maxwell equations
for the electromagnetic field. We now consider the situation
in which the external electric and magnetic fields are
switched on permanently. As we will see, in simulations
with backreaction switching off the electric field at suffi-
ciently late times anyway does not affect the evolution
significantly due to screening by the dynamically generated
electric field. Time dependence of the axial charge QAðtÞ
for the simulation with backreaction is shown on Fig. 4. For
comparison, in the same figure we also show QAðtÞ for
simulations without backreaction, where the electric field is
permanent or switched off at t ¼ 50.
One can see that while at t≲ 30QAðtÞ grows approx-

imately linearly with t both with and without backreaction,
at later times backreaction leads to a rapid decay ofQA with
subsequent fluctuations around 0. In order to understand
the origin of this effect, remember that axial anomaly can
also be regarded as the Schwinger pair production in the

effective 1þ 1-dimensional theory of fermions on the
lowest Landau level. It is thus natural to expect that
particle-antiparticle pairs produced by the external electric
field will tend to screen this field, just as in the case of the
Schwinger effect in ð3þ 1Þ dimensions. To check this
conjecture, on the right panel of Fig. 4 we plot the volume-
averaged electric field projected in the direction of the
magnetic field. One can see that indeed it quite quickly
decreases from the initial value E ¼ 0.01, reaching 0 at
around t ≈ 30, exactly at the time at which the growth of the
axial charge stops (see the left panel of the same figure).
After that the electric field exhibits some fluctuations
around 0 with the amplitude, which is approximately five
times smaller than the initial field value. We thus conclude
that the effect of backreaction on the chirality pumping is to
stop the growth of the axial charge by screening the
external electric field down to 0.

IV. CHIRAL PLASMA INSTABILITY AND
DECAY OF AXIAL CHARGE

In this section, we consider a situation in which some
initial chiral imbalance is already created, e.g., by chirality
pumping, and the parallel electric and magnetic fields are
adiabatically switched off while keeping nonzero the value
of the total axial charge QA and hence the chiral chemical
potential μA. In this setup we study the existence and the
late-time evolution of the exponentially growing solutions
(4) of the anomalous Maxwell equations (2), as well as the
associated inverse cascade of energy of helical electromag-
netic fields.
In order to implement the initial chirality imbalance as

discussed in Sec. I (see the right panel of Fig. 1), we divide
all the eigenstates of the single-particle Wilson-Dirac
Hamiltonian h½A0�, where A0 is the initial value of
the vector potential, into the positive chirality states with
hψajγ5jψai > 0 and the negative chirality states with
hψajγ5jψai < 0. For positive chirality states we fill all
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FIG. 4. A comparison of chirality pumping processes with and without backreaction of the fermionic electric current on the
electromagnetic field. On the left is time dependence of the axial charge. On the right is time dependence of the component of the
volume-averaged electric field parallel to the magnetic field. Lattice size is 10 × 10 × 32, the flux of the external magnetic field is
Φ ¼ 1, and external electric field is 0.01.
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the levels with ϵa < μA, and for negative chirality states we
fill all the levels with ϵa < −μA. While the eigenstates of
the Wilson-Dirac Hamiltonian are not in general the
eigenstates of the γ5 operator, for eigenstates with suffi-
ciently small momenta our definition is maximally close to
the notion of distinct Fermi levels of left- and right-handed
continuum massless fermions. In practice, this definition is
unambiguous as long as all the energy levels ϵa are
nondegenerate. In the case of degenerate energy levels
(as, e.g., in the case of the Wilson-Dirac Hamiltonian with
zero gauge fields or in the background of a single plane
wave), one can additionally rotate the eigenstates within the
degenerate subspaces in order to maximize the absolute
values of matrix elements hψajγ5jψai.
With lattice discretizations of the Dirac Hamiltonian it is

not possible to have very large values of the chiral chemical
potential μA, since the dispersion relation at the Fermi energy

μA ≳ 1 starts deviating from theDirac cone ϵð~kÞ ¼ vFj~kj due
to lattice artifacts. At μA ¼ 2, the Fermi energy touches the
lowest van Hove singularity (saddle point) of the dispersion
relation, and the excitations around the Fermi surface no
longer correspond to Dirac fermions. On the other hand, the
solution (4) of the anomalousMaxwell equations (2)with the
conventional value σCME ¼ μA

2π2
of the chiral magnetic con-

ductivity suggests that the wave vectors at which the chiral

plasma instability can occur are bounded by j~kj < μA
2π2
. On a

finite spatial lattice of size L with periodic boundary

conditions, the smallest nonzero value of j~kj is j~kj ¼ 2π
L ,

which dictates the lower boundon the size of the latticewhere
the instability can be observed,

L >
4π3

μA
: ð19Þ

Thus, it is advantageous to use large values of μA in order to
reduce the lattice size used for simulations. Taking the
moderate value μA ¼ 0.75, at which the dispersion relation
is still linear with a good precision, we obtain L > 165.
Performing simulations on an isotropic three-dimensional
lattice of such a size is a formidable numerical task. For this
reason we have used the lattices with different sizes in
different directions, so that the size L3 in the direction x3
of electromagnetic wave propagation is much larger than the
sizes L1 ¼ L2 ≡ Ls in the transverse directions x1 and x2. In
addition, we have assumed that electromagnetic fields do not
dependon the transverse coordinatesx1 andx2. This allowsus
to represent the single-particle evolution operator uð0; tÞ in
the block-diagonal form in the basis of plane waves propa-
gating along x1 and x2, which greatly reduces the dimension-
ality of the linear space on which the single-particle
Schrödinger equation (13) should be solved. By comparing
the results of simulations with Ls ¼ 20 and Ls ¼ 40 at fixed
L3 ¼ 200 (see Table I and Figs. 5, 6, 10, 11, and 12) we have
checked that the dependence on the transverse lattice size is
rather weak. Let us also note that one of the reasons for not

using the final state of the chirality pumpingprocess described
in Sec. III for the study of chiral plasma instability is that in
this case it is not possible to assume spatial homogeneity in
transverse directions due to the breaking of translational
invariance by the external magnetic field [54].
While the fermionic initial state described above is an

excited state that can spontaneously decay due to chiral
plasma instability, in numerical simulations one always
needs some small seed perturbation to start the decay
process in a controllable way. For this reason we have
started our simulations with a state in which some finite
number n of electromagnetic field modes are also excited.
All of them are plane waves propagating along the lattice
direction x3 with the largest size L3, with a few of the
smallest nonzero wave numbers km ¼ 2πm

L3
, m ¼ 1…n and

random linear polarizations. In order to facilitate the
detection of the inverse cascade, we choose the amplitudes
of all modes in such a way that their contributions to the
total energy of electromagnetic field are equal. Thus, the
explicit form of our initial electromagnetic field configu-
ration is

Ax;iðt ¼ 0Þ ¼
Xn
m¼1

f
wðkmÞ

nmi cosðkmx3 þ ϕmÞ;

Ex;iðt ¼ 0Þ≡ ∂tAx;iðtÞjt¼0

¼
Xn
m¼1

fnmi sinðkmx3 þ ϕmÞ; ð20Þ

where nmi are the random unit transverse polarization
vectors that are chosen to coincide with one of the basis
vectors ~e1, ~e2 with equal probability, ϕm ∈ ½0; 2π� are the

random phases, and wðkmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 sin2ðkm

2
Þ

q
corresponds to

TABLE I. Summary of parameters and results of our simu-
lations of chiral plasma instability. The column QA↓ summarizes
the decay of the axial charge and the columns IE;Bk ↑ summarize
the growth of the energies of long-wavelength electric and
magnetic fields. The symbols ✓, ⨯, and ? denote, respectively,
the clearly visible growth, clearly visible absence of growth, and
intermediate situations for which it is difficult to make any
conclusion within a finite simulation time.

Set
No. L3 Ls μA n f vF QA↓ IBk↑ IEk↑

1 200 20 0.75 10 0.20 1.00 ✓ ⨯ ✓

2 200 40 0.75 10 0.20 1.00 ✓ ⨯ ✓

3 200 20 1.50 10 0.20 1.00 ✓ ✓ ✓

4 200 20 0.75 10 0.05 1.00 ⨯ ✓ ⨯
5 200 20 0.75 4 0.20 1.00 ✓ ✓ ?
6 200 20 0.75 4 0.05 1.00 ⨯ ✓ ?
7 200 20 1.50 10 0.05 1.00 ⨯ ✓ ?
8 200 20 0.75 10 0.20 0.75 ✓ ⨯ ✓

9 20 20 1.00 1 0.20 1.00 ✓ ⨯ ⨯
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the lattice dispersion relation for free massless fields on the
lattice.
In order to understand how the evolution process

depends on various lattice parameters, we have performed
simulations with nine different parameter sets, which are
summarized in Table I. We have varied both the transverse
and the longitudinal lattice sizes, the initial electromagnetic
field amplitude f, the number n of initially excited
electromagnetic field modes, the initial value of the axial
charge, and the Fermi velocity vF. The parameter set
number 1 with L3 ¼ 200, Ls ¼ 20, μA ¼ 0.75, n ¼ 10,
f ¼ 0.2, and vF ¼ 1 is the “default” parameter set, and all
other sets differ from it by a change in a few parameters.
Correspondingly, in what follows we label the data points
on the plots that combine the results from several simu-
lations by the number of parameter sets (preceded by the
hash symbol #), in parentheses giving only those param-
eters that differ from the default ones.
In Fig. 5 we show the time dependence of axial charge in

simulations with parameters summarized in Table I. In
simulations with the initial amplitude of electromagnetic
fields being equal to f ¼ 0.2 the axial charge QA decays
with time. Interestingly, simulations with the smallest
lattice size (parameter set number 9) exhibit the fastest
decay of QA. On the other hand, with the initial amplitude
f ¼ 0.05 the axial charge density exhibits only a rather
small decrease at intermediate evolution times, sub-
sequently followed by a slight increase. This nontrivial
dependence on the electromagnetic field strength suggests
that the dynamics of the decay process is more complicated
than suggested by the anomalous Maxwell equations (2). It
is interesting that the evolution of the axial charge seems to
depend only weakly on simulation parameters other than
the initial amplitude f and the longitudinal lattice size L3

(through the value of the lowest wave number 2π
L3
). Even the

dependence on the chiral chemical potential μA appears to

be rather weak (after a trivial rescaling with respect to the
initial value); see the right plot in Fig. 5. The characteristic
time scale for the evolution of the axial charge appears to be
essentially larger than in the chirality pumping simulations
in the previous section. This difference can be qualitatively
explained by much weaker field strengths in the simula-
tions described in this section. We also note that the initial
values of the axial charge are roughly consistent with the
continuum formula QA=V ¼ μ3A=ð3π2Þ, where V is the
lattice volume. Deviations from this value can be explained,
first, by the inclusion of the initial vector potential A0 in the
initial Hamiltonian, and second, by the smaller value of
chirality jhψajγ5jψaij < 1 for high-energy eigenstates jψai
of the Wilson-Dirac Hamiltonian (7).
A scaling analysis of the anomalous Maxwell equations

suggests that at late evolution times the time dependence of
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the axial charge density approaches the simple power law
[12,46],

QAðtÞ ∼ 1=
ffiffi
t

p
: ð21Þ

In order to check this scaling, in Fig. 6 we plot the time
dependence of the inverse square of the axial charge, which
should approach the linear function 1=Q2

AðtÞ ∼ t according
to (21). This asymptotic behavior indeed seems to emerge
at late evolution times for simulations with Ls ¼ 20,
n ¼ 10, f ¼ 0.2, and μA ¼ 0.75, both with vF ¼ 1 and
vF ¼ 0.75 (parameter sets number 1 and 8). The linear fits
of ðQAð0Þ=QAðtÞÞ2 for these simulations are shown in
Fig. 6 with dashed black lines.
We now check whether the decay of the axial charge is

accompanied by the growth of the long-wavelength modes
of the electromagnetic field, as predicted by the anomalous
Maxwell equations (2). To this end we perform the Fourier
transforms of the transverse electric and magnetic fields
(taking into account that they depend only on the x3
coordinate),

Ek;iðtÞ ¼
1ffiffiffiffiffiffi
L3

p
X
x3

eikx3Ex;iðtÞ;

Bk;iðtÞ ¼
1ffiffiffiffiffiffi
L3

p
X
x3

eikx3Bx;iðtÞ; ð22Þ

where i ¼ 1, 2, and further decompose the Fourier-trans-
formed fields into the helical components Ek;R=LðtÞ and
Bk;R=L with right- and left-handed helicities,

Bk;RðtÞ ¼
1

2
ðBk;1ðtÞ þ B−k;1ðtÞÞ

þ 1

2i
ðBk;2ðtÞ − B−k;2ðtÞÞ;

Bk;LðtÞ ¼
1

2i
ðBk;1ðtÞ − B−k;1ðtÞÞ

þ 1

2
ðBk;2ðtÞ þ B−k;2ðtÞÞ: ð23Þ

For electric fields, the definition of helical components is
exactly the same. Again, here the term helicity refers to the
direction of rotation of transverse electric and magnetic
fields along the spatial direction of wave propagation (the
x3 axis in our setup).
After such a decomposition, we calculate the energies of

left- and right-handed helical electric and magnetic fields
with a given wave number k as

IBk;R=LðtÞ ¼ jBk;R=LðtÞj2=2þ jB−k;R=LðtÞj2=2;
IEk;R=LðtÞ ¼ jEk;R=LðtÞj2=2þ jE−k;R=LðtÞj2=2; ð24Þ

where k ¼ 2πm
L3

and m ¼ 0…⌊L3=2⌋ now spans only half of
the discrete latticemomenta. Since the initial configurationof

electromagnetic fields contains plane waves with (random)
linear polarizations and equal energies, at t ¼ 0 the energies
Ik;R=LðtÞ of all left- and right-handed electromagnetic modes
with 0 < k ≤ 2πn

L3
are equal.

We have found that for all simulations the energies
IE;Bk;R=LðtÞ exhibit quite large short-scale fluctuations with a
period of order Δt ∼ 10…100, which is smaller for short-
wavelength modes and larger for long-wavelength ones.
For illustration, see Fig. 7, where we plot the time
dependence of IEk;RðtÞ within a short initial period of time
for simulation with parameter set number 1. These oscil-
lations indicate that the helical magnetic and electric fields
represented by the basis (23) are not the eigenstates of the
evolution process, which is in sharp contrast to the solution
(4) of the anomalous Maxwell equations (2). We have
explicitly checked that if the backreaction of fermions on
the electromagnetic fields is neglected, these oscillations
disappear and the energies IE;Bk;R=LðtÞ are constant in time for
all values of k and for all polarizations. This observation
suggests that the short-scale oscillations might originate
from the nontrivial dependence of fermionic current on the
frequency, wave number, and amplitude of the electromag-
netic field, which turns the solutions of the anomalous
Maxwell equations (2) into waves with generic elliptic
polarizations.
Despite the short-scale fluctuations, we still find it

useful to decompose our fields in the basis (23), since
the corresponding electromagnetic modes carry definite
helicity and thus the energies of helical modes can be used
to define, at least approximately, the helicity on the lattice.
This definition is advantageous since direct lattice discre-
tizations of the continuum formula H ∼

R
d3x~A · ~B are in

general flawed by lattice artifacts. In order to abstract
ourselves from the short-scale fluctuations, we define the
energies Īk;R=LðtÞ that are averaged over some finite time
interval T,

FIG. 7. Time dependence of the energies IEk;R=LðtÞ of right-
handed components of the electric field on a short time interval at
the beginning of the evolution for parameter set number 1
(Ls ¼ 200, n ¼ 10, μA ¼ 0.75, f ¼ 0.2). The wave numbers
are coded in color, from pure blue for the smallest nonzero value
k ¼ 2π

L3
(largest wavelength) to pure red for k ¼ 2πn

L3
.
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IE;Bk;R=LðtÞ ¼
1

T

Z
tþT=2

t−T=2
dt0IE;Bk;R=Lðt0Þ: ð25Þ

We have used the value T ¼ 25, which is sufficient to
remove practically all short-scale oscillations.
In Figs. 8 and 9 we separately illustrate the time

dependence of the energies of the left-handed (on the left)
and right-handed (on the right) helical magnetic and
electric fields with wave numbers k ≤ 2πn

L3
for several of

the most characteristic sets of simulation parameters. The
wave numbers are coded in color, from pure blue for the
smallest nonzero value k ¼ 2π

L3
(largest wavelength) to pure

red for k ¼ 2πn
L3
. Semitransparent colored regions show the

range of short-scale oscillations of IE;Bk;R=LðtÞ, and thick solid
lines show the time dependence of the time-smeared
energies Ik;R=LðtÞ defined in (25). Horizontal green lines
show the initial energies that are equal for all helical
components of electric and magnetic fields.
From Fig. 8 we see that in some simulations (parameter

sets number 3–7) the energies of the helical components of
the magnetic field exhibit the expected signatures of the
inverse cascade due to chiral plasma instability [3,6,12,46].
Namely, the energy of a single longest-wavelength right-
handed helicalmode rapidly grows at early times and reaches
some saturation limit at late evolution time, whereas the
energies of all the other modes decrease with time. As
expected from the anomalous Maxwell equations (2) with
σCME ¼ μA=ð2π2Þ, increasing μA by a factor of 2 (to
μA ¼ 1.5, parameter set number 3, second row in Fig. 8)
results in the growth of two right-handed modes. Comparing
the data in Figs. 8 and 5, we conclude that the growth of
helical magnetic fields is not necessarily accompanied by
the decay of the axial charge, and vice versa (see also Table I
for a summary of all simulations). Yet another observation
that supports this conclusion is that in simulations on the
smallest lattice, for which the axial charge exhibits the most
rapid decay, we have not found any signatures of the growing
electromagnetic fields. Interestingly, increasing the value of
μA and/or the number of initially excited electromagnetic
field modes also does not necessarily speed up the inverse
cascade and the decay of QA.
An even more interesting picture emerges if we also

consider the energies of the helical components of electric
fields, shown on Fig. 9. It turns out that for some simulation
parameters the long-wavelength helical components of the
electric field, rather than the magnetic field, are enhanced
during the evolution (parameter sets number 1, 2, and 8).
For parameter set number 3, both magnetic and electric
fields grow in time. It is remarkable that precisely for these
parameter sets the axial charge exhibits the most rapid
decay. It seems that both the growth of the helical electric
fields and the decay of the axial charge are triggered by
sufficiently large initial amplitudes of electromagnetic
fields. Thus, it seems that the roles of electric and magnetic

fields in the chiral plasma instability scenario are essen-
tially different, in contrast to the simple solution (4) of the
anomalous Maxwell equations. It is also interesting to note
that we observe the maximal growth of long-wavelength
helical electric fields in simulations with a smaller value of
Fermi velocity vF ¼ 0.75 (parameter set number 8). Such a
strong dependence on the Fermi velocity calls for a proper
theoretical analysis.
In order to quantify the net transfer of energy due to the

inverse cascade, we follow [46] and introduce the magnetic
and electric correlation lengths ξBðtÞ and ξEðtÞ as

ξE;BðtÞ ¼
P

k
2π
k I

E;B
k ðtÞP

kI
E;B
k ðtÞ ; ð26Þ

where IE;Bk ðtÞ ¼ IE;Bk;R ðtÞ þ IE;Bk;L ðtÞ. The time dependence of
ξEðtÞ and ξBðtÞ, shown on Fig. 10, quantifies the direction
of the transfer of energy between short- and long-wave-
length modes. ξBðtÞ and ξEðtÞ can also be thought of as the
average wavelengths of magnetic and electric fields at a
given moment of time. The data shown in Fig. 10 indicate
that ξE and ξB on average increase with time practically for
all our simulations, thus providing more quantitative
evidence for the inverse cascade. The growth is somewhat
more pronounced for the electric correlation length ξE,
especially in simulations with larger initial amplitude
f ¼ 0.2. At late evolution times, ξE saturates at its upper
bound ξE ¼ L3 equal to the lattice size. In contrast, the
magnetic correlation length ξB exhibits rapid growth only at
early times, and later seems to saturate at values smaller
than L3. In Fig. 10 we do not show the data for the
parameter set number 9, since in this case we have found
that only a single initially excited mode strongly dominates
the spectrum throughout the whole evolution process, and
the quantities ξE and ξB are trivially equal to L3 up to some
very small corrections.
The effect of saturation of ξE;B at late evolution times

prevents us from checking the universal late-time behavior
ξE;B ∼

ffiffi
t

p
that follows from the scaling analysis of the

anomalous Maxwell equations [12,46], similarly to (21). It
seems, however, that the late-time behavior of ξE is more
similar to

ffiffi
t

p
than that of ξB.

So far almost all theoretical studies of the chiral plasma
instability assume that the axial charge is distributed
homogeneously in space and can be described by a
coordinate-independent chiral chemical potential μA at
all evolution times. The extension of the anomalous
Maxwell equations (2), which allows us to consider
spatially inhomogeneous distributions of axial charge
density, has been constructed only recently in [26]. It is
thus interesting to check how well the assumption of spatial
homogeneity of the axial charge density qAx holds in our
simulations. In order to quantify the spatial inhomogeneity
of qAx, we consider the space-averaged squared deviation
of qAx from its space-averaged value QA=V,
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FIG. 8. Time dependence of the energies of helical magnetic fields for several selected sets of simulation parameters. The wave
numbers are coded in color, from pure blue for the smallest nonzero value k ¼ 2π

L3
(largest wavelength) to pure red for k ¼ 2πn

L3
.

Semitransparent colored regions show the range of short-scale oscillations of IBk;R=LðtÞ, and thick solid lines show the time dependence of

the time-smeared energies ĪBk;R=LðtÞ defined in (25). In the black-and-white version pure blue and pure red correspond to black and light
grey, respectively. Horizontal green (light grey) lines show the initial energies, which are equal for all modes. Left-handed and right-
handed modes are in the left and in the right columns, respectively.
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FIG. 9. Time dependence of the energies of helical electric fields for several selected sets of simulation parameters. The wave numbers
are coded in color, from pure blue for the smallest nonzero value k ¼ 2π

L3
(largest wavelength) to pure red for k ¼ 2πn

L3
. Semitransparent

colored regions show the range of short-scale oscillations of IEk;R=LðtÞ, and thick solid lines show the time dependence of the time-

smeared energies ĪEk;R=LðtÞ defined in (25). In the black-and-white version pure blue and pure red correspond to black and light grey,
respectively. Horizontal green (light grey) lines show the initial energies, which are equal for all modes. Left-handed and right-handed
modes are in the left and in the right columns, respectively.
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σ½qA� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x

ðqAx −QA=VÞ2
r

: ð27Þ

The time dependence of the ratio σ½qA�=ðQA=VÞ is shown
in Fig. 11 for those sets of simulation parameters that
exhibit axial charge decay (in particular, this fixes f ¼ 0.2).

Since the Hamiltonian that we use to define the initial state
of our simulations involves the initial spatially inhomo-
geneous configuration A0 of the vector potential, even at the
start of the evolution the axial charge density is slightly
inhomogeneous, with deviations from the mean value being
of the order of 5%. As one can see from Fig. 11, at late
evolution times the inhomogeneity of qxA tends to slightly
increase; however, this increase is not dramatic and does
not exceed 20%. This suggests that the approximation of
spatially homogeneous axial charge distribution is not
unreasonable even when the long-wavelength modes are
strongly enhanced and dominate the evolution. For simu-
lations with f ¼ 0.05 that do not exhibit the decay of the
axial charge, the inhomogeneities of the axial charge
density remain approximately constant or even tend to
decrease.
An interesting question is also the net transfer of energy

between fermions and electromagnetic fields. As discussed
in Sec. II, in the classical statistical field theory algorithm
the total energy of fermions and electromagnetic fields is
conserved up to the work performed by the external current
(see Fig. 14 in Appendix A for a numerical demonstration).
Since in the simulations of chiral plasma instability
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discussed in this section the external currents are absent, the
transfer of energy can be characterized by the time
dependence of the energy of the electromagnetic field
alone, which is illustrated in Fig. 12. We see that in almost
all simulations the energy of the electromagnetic field
decreases or stays constant. The only exception is the
simulation with parameter set number 7 (n ¼ 10, f ¼ 0.05,
μA ¼ 1.5), for which the energy of the electromagnetic field
quickly increases by almost a factor of 3 at t≳ 6 · 103.
Analysis of power spectra suggests that this increase can be
at least partly attributed to the enhancement of helical long-
wavelength electric fields (similarly to the one observed for
parameter set number 3; see the second row in Fig. 9). The
decrease of electromagnetic field energy in all the other
simulations indicates that it might be not completely correct
to think of chiral instability as a “discharge” of an excited
state of the Dirac sea into electromagnetic waves.

V. CONCLUSIONS

In this work, we have studied the real-time quantum
evolution of chirally imbalanced Wilson-Dirac lattice
fermions coupled to the dynamical classical electromag-
netic field within the classical statistical field theory
approach. The quantum evolution of fermions was simu-
lated exactly (up to small fully controlled errors originating
from discretization of time). Our simulations of the
chirality pumping process, described by the volume-
integrated anomaly equation (5), suggest that the effect
of explicit chiral symmetry breaking due to the Wilson term
in the lattice Dirac Hamiltonian is not very large. We hope
therefore that our results can be confronted at least at the
qualitative level with the theoretical predictions for con-
tinuum chiral fermions.
We have considered both the generation of chirality

imbalance in parallel electric and magnetic fields and the
decay of initially present chirality imbalance at the expense
of generating electromagnetic fields with nonzero helicity.
We have observed that in general the backreaction of
dynamical electromagnetic fields prevents fermions from
acquiring large chirality imbalance—either by suppression
of the chirality pumping or by accelerating the decay of
initially present chirality imbalance. The suppression of the
chirality pumping process can be understood as the dynami-
cal screening of the external electric field, similarly to what
happens in the Schwinger pair creation process [36,38].
In simulations with nonzero initial axial charge QA we

have also found numerical evidence of the inverse cascade
phenomenon due to the chiral plasma instability—that is,
rapid growth of long-wavelength magnetic fields of definite
helicity at early evolution times and the decay of all other
magnetic field components. In some cases, helical electric
fields were found to grow, even when magnetic fields did
not exhibit any enhancement. A summary of our simu-
lations given in Table I suggests that the growth (or at least
the absence of decay) of long-wavelength helical electric

fields is a necessary condition for the dynamical decay of
the axial charge. The fact that the enhancement of helical
electric fields is switched on only for a sufficiently large
initial amplitude of the electromagnetic field indicates that
nonlinear responses such as the dynamical refringence [55]
might be important for the evolution of chirally imbalanced
plasma.
We have observed that the mechanism that eventually

stops the growth of long-wavelength modes in our simu-
lations is not directly related to the decay of the axial
charge. This observation, together with quite different roles
of electric and magnetic fields in the evolution process,
suggests that the nontrivial momentum and frequency
dependence of both the electric conductivity and the chiral
magnetic conductivity might be important for the quanti-
tative description of chiral plasma instability. On the other
hand, our simulations also indicate that the approximation
of the spatially homogeneous axial charge distribution,
assumed in most theoretical considerations of anomalous
Maxwell equations, is reasonably good even at late
evolution times, when the instability has fully developed
and the growth of long-wavelength helical electromagnetic
fields has saturated.
An interesting further development of our work would be

to use chiral lattice fermions in the CSFTalgorithm, with the
possible choice of the overlap Hamiltonian [56]. In this case,
axial charge is conserved in the absence of electromagnetic
fields, and the effects of explicit chiral symmetry breaking at
highmomenta should be absent. Such a setup should bemore
relevant in the context of high-energy physics, where chiral
symmetry tends to be exact at sufficiently high energies (at
least at the level of the bare Lagrangian). Yet another
interesting open question is the effect of the quantum
fluctuations of the electromagnetic field, which are encoded
in the nontrivial initial density matrix.
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APPENDIX: CLASSICAL STATISTICAL FIELD
THEORY ALGORITHM

The starting point of our derivation of the CSFT
algorithm is the general expression for the time-dependent
expectation value of some quantum operator Ô,
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hÔðtÞi ¼ Trðρ̂0Ûðt0; tÞÔÛ†ðt0; tÞÞ; ðA1Þ

where ρ̂0 is the initial density matrix and the evolution
operator Ûðt0; tÞ is the time-ordered exponent

Ûðt0; tÞ ¼ T exp

�
−i

Z
t

t0

dt0Ĥðt0Þ
�
; ðA2Þ

where the Planck constant is set to 1 by an appropriate
choice of units. The Hamiltonian operator is defined by
Eqs. (6), (7), and (9) in Sec. II. We have allowed for an
explicit time dependence of the Hamiltonian, for example,
due to the time dependence of the external current J x;iðtÞ.
The evolution operator (A2) can be expanded into a product
of elementary evolution operators for small time step
δ ¼ t−t0

N , where δ−1 should be much larger than any relevant
energy scale in the system,

Ûðt; t0Þ ¼ lim
δ→0

ðe−iĤðt0Þδe−iĤðt0þδÞδ…e−iĤðtÞδÞ: ðA3Þ

Let us now insert the decompositions of the identity
operator Î ¼ Q

x;i

R
dAx;ijAx;iihAx;ij in the Hilbert space of

the electromagnetic field between the infinitesimal factors
as well as at the beginning and at the end of the product in
(A3) in order to arrive at the path integral representation
of the evolution operator (A2). We do this both for the
forward and the backward evolution operators Ûðt0; tÞ and
Û†ðt0; tÞ in (A1). It is convenient to enumerate the gauge
fields that enter identity decompositions in the forward
evolution operators with the discrete lattice time variable
τ ¼ 0…N, and in the backward branch—with
τ ¼ N þ 1…2N þ 1. The variable τ is a discrete para-
metrization of the Keldysh contour going from t0 to t and
back (see Fig. 13 for an illustration). Now we have to
express the matrix elements hAτje∓iĤðτÞδjAτþ1i of the
elementary evolution operators in terms of the fields Aτ

and Aτþ1. In the derivation of the CSFT algorithm, it is
most convenient to use the approximate expression

hAτje−iĤðτÞδjAτþ1i ≈ eþ
i
2δ

P
x;i
ðAτþ1

x;i −Aτ
x;iÞ2

× e−
iδ
2

P
x;i;j

ðFτ
x;i;jÞ2−iδĤF½Aτ�−iδ

P
x;i
Aτ
x;iJ

τ
x;i

ðA4Þ

for the forward evolution operators, and the different
approximate expression

hAτjeþiĤðτÞδjAτþ1i ≈ e−
i
2δ

P
x;i
ðAτþ1

x;i −Aτ
x;iÞ2

× eþ
iδ
2

P
x;i;j

ðFτþ1
x;ij Þ2þiδĤF½Aτþ1�

þiδ
X

x;i
Aτþ1
x;i J

τþ1
x;i ðA5Þ

for the backward evolution operators. In the first expres-
sion (A4), we order the electromagnetic field operators
Êx;i and Âx;i in such a way that all the operators in the
exponent containing Âx;i act on the vector hAτj. In the
second expression (A5), these operators act on the vector
jAτþ1i. These approximations are both valid to order OðδÞ
and differ only in the terms of order Oðδ2Þ, hence being
equivalent in the limit δ → 0.
Using (A4) and (A5), we arrive at the path integral

representation of the expectation value hÔðtÞi, in which we
integrate over the gauge fields living on the discretized
Keldysh contour,

hÔðtÞi ¼
Z

dA0…dA2Nþ1ρEM½A0; A2Nþ1� × Trðρ̂Feþ
i
2δ

P
x;i
ðA1

x;i−A
0
x;iÞ2e−iδĤF ½A0�e−

iδ
2

P
x;i;j

ðF0
x;ijÞ2−iδ

P
x;i
A0
x;iJ

0
x;i

×…… × eþ
i
2δ

P
x;i
ðAN

x;i−A
N−1
x;i Þ2e−iδĤF ½AN−1�e−

iδ
2

P
x;i;j

ðFN−1
x;ij Þ2−iδ

P
x;i
AN−1
x;i J N−1

x;i Ô½AN; ANþ1�
× e−

i
2δ

P
x;i
ðANþ2

x;i −ANþ1
x;i Þ2eiδĤF½ANþ2�e

iδ
2

P
x;i;j

ðFNþ2
x;ij Þ2þiδ

P
x;i
ANþ2
x;i J N−1

x;i

×…… × e−
i
2δ

P
x;i
ðA2Nþ1

x;i −A2N
x;i Þ2eiδĤF½A2Nþ1�e

iδ
2

P
x;i;j

ðF2Nþ1
x;ij Þ2þiδ

P
x;i
A2Nþ1
x;i J 0

x;iÞ: ðA6Þ

It is important to stress that at this point we have used
the path integral representation only for the bosonic
fields, and the exponential factors e�iδĤF½Aτ � in (A6)
are still operators in the fermionic many-body Hilbert
space. Correspondingly, the trace in (A6) is taken
over this Hilbert space. The operator of the observable

Ô½AN; ANþ1� ¼ hAN jÔjANþ1i is also an operator on the
fermionic Hilbert space that depends on fields AN and
ANþ1. In deriving the above path integral representation, we
have made a simplifying assumption [38] that the initial
density matrix ρ̂0 factorizes into the direct product of the
fermionic density matrix ρ̂F (which might in general be

FIG. 13. An illustration of the Schwinger-Keldysh contour with
the discrete lattice time τ.
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correlated with the initial state of the electromagnetic field)
and the density matrix ρ̂EM of the electromagnetic field with
matrix elements ρEMðA0; A2Nþ1Þ ¼ hA0jρ̂EMjA2Nþ1i. While
this assumption is certainly not valid, say, for the density
matrix ρ̂ ¼ e−Ĥ=T describing the thermal equilibrium state
of the full Hamiltonian ĤEM þ ĤF, it is still justifiable in
the case of almost classical dynamics of electromagnetic
fields.
At this point let us assume that the observable operator

Ô½AN; ANþ1� can be represented as a sum of the identity
operator in fermionic Hilbert space (this summand corre-
sponds to purely bosonic observables) and of all possible
fermionic bilinear operators,

ÔðAN; ANþ1Þ ¼ OBðAN; ANþ1ÞÎ
þ
X
x;y

ψ̂†
x½OFðAN; ANþ1Þ�x;yψ̂y: ðA7Þ

This form is sufficiently general to describe all the
observables that we consider in this work. Furthermore,
let us assume that the fermionic density matrix ρ̂F can be
represented as an exponent of some fermionic bilinear
operator Ĥ0 ¼

P
x;yψ̂

†
x½h0�x;yψ̂y,

ρ̂F ¼ Z−1 expð−Ĥ0=TÞ; ðA8Þ

where T is some (perhaps fictitious) temperature. Note that
in the case of evolution that starts from the nonequilibrium
state the operator Ĥ0 can be different from the Wilson-
Dirac Hamiltonian ĤF that governs the quantum evolution.
For instance, the excited state with initial chiral imbalance
considered in Sec. IV corresponds to the following form of
h0 in the limit T → 0:

h0 ¼ h½A0� þ μA
X
a

jψaisignðhψajγ5jψaiÞhψaj; ðA9Þ

where jψai are the eigenstates of the Wilson-Dirac

Hamiltonian (7) with the initial gauge field A0. It is
obvious that for the exactly chiral Dirac Hamiltonian with
hψajγ5jψia ¼ �1 this definition reduces to the form
h0 ¼ hþ μAγ5.
Now we are in the position to further simplify the trace

over the many-body fermionic Hilbert space in (A6).
To this end we use the identities

TrðeB̂1…eB̂nÞ ¼ detð1þ eB1…eBnÞ; ðA10Þ

TrðeB̂1…eB̂nÔFÞ ¼ detð1þ eB1…eBnÞ
× Trðð1þ e−Bn…e−B1Þ−1OFÞ; ðA11Þ

where the operators B̂i ¼
P

x;yψ̂
†
x½Bi�x;yψ̂y and ÔF ¼P

x;yψ̂
†
xOx;yψ̂y are the fermionic bilinear operators, and

the corresponding symbols without hats denote operators
on the single-particle fermionic Hilbert space with matrix
elements ½Bi�x;y and OFx;y. Correspondingly, on the left-
hand side the traces are over the many-body fermionic
Hilbert space, and the determinants and traces on the right-
hand side are on the single-particle fermionic Hilbert space.
As yet another preliminary step in the derivation of the

CSFT algorithm, let us also decompose the gauge fields on
the forward and the backward branches of the Keldysh
contour into the classical gauge field Aτ

x;i and the quantum
gauge field ~Aτ

x;i as

Aτ
x;i ¼ Aτ

x;i þ
1

2
~Aτ
x;i;

A2Nþ1−τ
x;i ¼ Aτ

x;i −
1

2
~Aτ
x;i; τ ¼ 0…N: ðA12Þ

Relying on the assumptions (A7) and (A8) and using the
identities (A10) and (A11), one can rewrite the expression
(A6) in terms of the operators on the single-particle
fermionic Hilbert space and the variables Aτ

x;i and ~Aτ
x;i,

hÔðtÞi ¼ Z−1
Z

dA0…dAN
Z

d ~A0…d ~ANρEM

�
A0 þ

~A0

2
; A0 −

~A0

2

�
expðTr lnð1þ u−e−h0=TuþÞÞ

× exp

�
i
δ

XN−1

τ¼0

X
x;i

ð ~Aτþ1
x;i − ~Aτ

x;iÞðAτþ1
x;i − Aτ

x;iÞ − iδ
XN−1

τ¼0

X
x;i

~Aτ
x;i

�
J τ

x;i þ
X
j

Fτ
x;i;j − Fτ

x−ĵ;i;j

��

×

�
O0

�
AN þ

~AN

2
; AN −

~AN

2

�
þ Tr

�
ð1þ u−1þ eþh0=Tu−1− Þ−1O1

�
AN þ

~AN

2
; AN −

~AN

2

���
; ðA13Þ

where the field strength tensor Fτ
x;ij is constructed from the classical component of the gauge field Aτ

x;i exactly in the same
way as in (10) and we have introduced the unitary single-particle forward and backward evolution operators,
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uþ ¼ e−iδh½A
0þ ~A0

2
�…e−iδh½A

N−1þ ~AN−1
2

�;

u− ¼ eþiδh½AN−1− ~AN−1
2

�…eþiδh½A0− ~A0
2
�: ðA14Þ

The path integral representation (A6) is exact in the limit
N → ∞, δ → 0 with fixed t ¼ Nδ (up to the simplifying
assumptions on the form of the observable operator Ô and
the initial density matrix ρ̂), but is not suitable for numerical
analysis. The key step in the derivation of the CSFT
algorithm is to expand the fermion-induced effective action
of the electromagnetic field SF ¼ Tr lnð1þ u−e−h0=TuþÞ in
the first line of (A13) to the linear order in the quantum
electromagnetic field ~Ax;i,

SF ≈ SFj ~Aτ
x;i¼0 þ

XN
τ¼0

X
x;i

~Aτ
x;i

∂
∂ ~Aτ

x;i

SF

����
~Aτ
x;i¼0

: ðA15Þ

In order to calculate the first derivative of SF over ~Aτ
x;i, we

use the identities

∂
∂ ~Aτ

x;i

uþ

����
~Aτ
x;i¼0

¼ −
iδ
2
uð0; τÞj½Aτ�uðτ; NÞ;

∂
∂ ~Aτ

x;i

u−

����
~Aτ
x;i¼0

¼ −
iδ
2
u†ðτ; NÞj½Aτ�u†ð0; τÞ; ðA16Þ

where we have introduced the single-particle operator of
the conserved electric current

jx;i½A� ¼
∂h½A�
∂Ax;i

ðA17Þ

as well as the single-particle evolution operator in the
background of the classical electromagnetic field Aτ

x;i,

uðτ1; τ2Þ ¼ e−iδh½A
τ1 �…e−iδh½A

τ2−1�; τ2 ≥ τ1: ðA18Þ

The identities (A16) are exact up to the orderOðδ2Þ, since in
the derivatives of the forward and backward evolution
operators we have used different orderings of the elementary

evolution operator e−iδh½A
τ� and the current operator j½Aτ�.

Using (A16) and the relations uþð0; NÞj ~A¼0 ¼ uð0; NÞ
and u−ð0; NÞj ~A¼0 ¼ u†ð0; NÞ, after some simple algebraic
manipulations we can rewrite the derivative over ~Aτ

x;i in
(A15) as

∂
∂ ~Aτ

x;i

SF

����
~Aτ
x;i¼0

≡ hjτx;ii

¼ −iδTr
�

1

1þ eh0=T
uð0; τÞjx;i½Aτ�u†ð0; τÞ

�
:

ðA19Þ
Now that our action (A15) is assumed to be linear in

the quantum field ~Aτ
x;i for τ ¼ 1…N − 1, the quantum

field ~Aτ
x;i can be integrated out in a straightforward way

in the case of purely bosonic observables with OF ≡ 0.
The case of fermionic observables with nontrivial

OFðAN þ ~AN

2
; AN − ~AN

2
Þ is more subtle, since in the path

integral representation (A13) the fermionic observable itself
depends on ~Aτ

x;i [via the factor ð1þ u−1þ eþh0=Tu−1− Þ−1 under
the fermionic trace in the last line of (A13)]. It is a common
assumption in thederivationof theCSFTalgorithm toneglect
the ~Aτ

x;i dependence of the fermionic observables (see, e.g.,
[38]), which can be justified, e.g., if the relevant physical
processes involve a large number of virtual fermionic
particles. In this case one can argue that the exponent of
the effective action SF has a much stronger dependence on
~Aτ
x;i than the observable. A heuristic argument in favor of

such an assumption is that if one neglects the ~Aτ
x;i dependence

of the fermionic observables, the expectation values of
all fermionic bilinear operators take exactly the same
form as the expectation values of the electric current
(A19) and the fermionic energy [see Eq. (15) below].
Since these quantities are related to the observables charac-
terizing the classical electromagnetic field via the inhomo-
geneousMaxwell equations and the energy conservation law,
they are certainly also physical observables. While the ~Aτ

dependence of the observable operator might still encode
some interesting effects of the backreaction ofmeasurements
on the quantum evolution, taking it into account would
presumably lead to a significant complication of the CSFT
algorithm. For all these reasons,we also assume that the factor
ð1þ u−1þ eþh0=Tu−1− Þ−1 in (A13) depends negligibly weakly
on ~Aτ and replace it by ð1þ u−1ð0; NÞeþh0=Tuð0; NÞ†−1Þ−1.
In order to integrate out the fields ~A0

x;i and ~AN
x;i at the end

points of the Keldysh contour, it is convenient to introduce
the Wigner transforms ρEMðA0

x;i; E
0
x;iÞ and O1;2ðAN

x;i; E
N
x;iÞ

of the initial density matrix ρ̂EM and the operators OF;B

in (A7),

ρEM

�
A0 þ

~A0

2
; A0 −

~A0

2

�

¼
Z

dE0
x;iρEMðA0

x;i; E
0
x;iÞei

P
x;i
E0
x;i
~A0
x;i ðA20Þ

OF;B

�
AN þ

~AN

2
; AN −

~AN

2

�

¼
Z

dEN
x;iOF;BðAN

x;i; E
N
x;iÞe−i

P
x;i
EN
x;i
~AN
x;i ; ðA21Þ

where Eτ
x;i is the classical electric field. We also note that

the first sum over τ in the second line of (A13) can be
rewritten as
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XN−1

τ¼0

X
x;i

ð ~Aτþ1
x;i − ~Aτ

x;iÞðAτþ1
x;i − Aτ

x;iÞ ¼ −
XN−1

τ¼1

X
x;i

~Aτ
x;iðAτþ1

x;i þ Aτ−1
x;i − 2Aτ

x;iÞ þ
X
x;i

ð ~AN
x;iðAN

x;i − AN−1
x;i Þ − ~A0

x;iðA1
x;i − A0

x;iÞÞ:

ðA22Þ

Finally, we are ready to integrate out the quantum electromagnetic field ~Aτ
x;i, which leads to the following expression for

the expectation value hÔðtÞi:

hÔðtÞi ¼
Z

dE0dEN

Z
dA0…dAN ~ρEMðA0; E0Þ × δ

�
E0 −

A1 − A0

δ
− δR0

�

×
YN−1

τ¼1

δ

�
Aτþ1 þ Aτ−1 − 2Aτ

δ
þ δRτ

�
δ

�
EN −

AN − AN−1

δ

�

× ðO0ðAN; ENÞ þ Trðð1þ eh0=TÞ−1uð0; NÞO1ðAN; ENÞu†ð0; NÞÞÞ; ðA23Þ

where

Rτ
x;i ¼ J τ

x;i þ hĵτx;ii þ
X
j

ðFτ
x;ij − Fτ

x−ĵ;ijÞ; ðA24Þ

and hjτx;ii is the expectation value of the electric current
defined as in (A19). We note that the normalization factor
Z−1 in (A8) and (A13) is canceled by the zeroth-order term
of the expansion (A15).

From the explicit expression (A19) for the fermionic
electric current hjτx;ii one can immediately see that it
depends only on the classical electromagnetic field Aτ0

x;i

with τ0 < τ. Therefore, the delta functions in the integral
(A23) can be regarded as the constraints on the determin-
istic evolution of the classical electromagnetic field Aτ

x;i

interacting with the quantum fermionic field. To make
this more obvious, we can rewrite the chain of
δ-functions in (A23) as

δ½A1 −A1½A0; E0��
YN
τ¼2

δ½Aτ −Aτ½Aτ−1; Aτ−2; hjτ−1i��δ
�
EN −

AN − AN−1

δ

�
;

A1½A0; E0� ¼ A0 þ δðE0 − δR0Þ;
Aτ½Aτ−1; Aτ−2; hjτ−1i� ¼ 2Aτ−1 − Aτ−2 − δ2Rτ−1; ðA25Þ

where the last definition is for τ ¼ 2…N. From this
expression one can see that one can sequentially integrate
out the fields Aτ with τ ¼ 1…N − 1 and express the fields
AN , EN in terms of the initial values A0, E0. Namely,
integrating out the field A1 first, we remove the first delta
function in the product in (A25) and replace A1 by
A1½A0; E0� in the arguments of all the other delta functions.
Integrating out A2, we remove the second delta functions
and replace A2 by A2½A0; E0�≡A2ðA1½A0; E0�; A0; hj1iÞ.
We can repeat this process for all τ up to N − 1, each time
expressing Aτ in terms of the initial values A0 and E0 and
the functionalsAτ0 with τ0 < τ. It is important that in such a
sequential integration, the integrand Aτ always enters the
argument of the delta function being removed linearly.
Therefore, despite the nonlinearity of the chain of evolution
equations, such intermediate integrations do not produce a
nontrivial Jacobian. To our knowledge, the absence of the

Jacobian in the integration measure in the CSFT algorithm
so far has only been demonstrated for scalar field theory
[57,58]. It is nice to see here explicitly its absence for lattice
gauge theory coupled to fermions.
After integrating out all the intermediate fields Aτ with

τ ¼ 1…N − 1, we are left with the following form of
Eq. (A23):

hÔðtÞi ¼
Z

dA0dE0

Z
dANdENρEMðA0; E0Þ

× δ½AN −AN ½A0; E0��δ½EN − EN ½A0; E0��

×

�
O0ðAN; ENÞ

þ Tr

�
1

1þ eh0=T
uð0; NÞO1ðAN; ENÞu†ð0; NÞ

��
;

ðA26Þ
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where

EN ½A0; E0� ¼ AN ½A0; E0� −AN−1½A0; E0�
δ

ðA27Þ

and we have expressed the functionals AN and AN−1 in
terms of the initial values Ā0, Ē0 of the vector gauge
potential and the electric field. In this expression, it is
straightforward to integrate out ĀN and ĒN , which amounts
to substituting AN ½Ā0; Ē0� and EN ½Ā0; Ē0� in place of ĀN

and ĒN in the Wigner transforms of the observable
operators OB and OF.
To summarize, the CSFTalgorithm amounts to a simulta-

neous time evolution of the classical electromagnetic fields,
described by the vector potential Āτ

x;i and the electric field
Ēτ
x;i, and the quantum fermionic fields, described by single-

particle evolution operator uð0; τÞ in (A18). The discrete
equations that govern this evolution [arguments of the delta
functions in (A23)] have a well-defined continuum limit
δ → 0, N → ∞ with fixed t ¼ Nδ, which is given by
Eqs. (11)–(13) in the main text. To simplify the notation,
in the main part of the text we omit the bar over the classical
components of the gauge field and denote them as
Ax;iðtÞ≡ Āτ

x;i, Ex;iðtÞ≡ Ēτ
x;i, Fx;ijðtÞ≡ F̄τ

x;ij.
In practice, however, the numerical solution of the

continuum equations (11)–(13) should necessarily involve
some discretization of time. While the simple discretization
of the Keldysh contour used in the above derivation can be,
in principle, used for a numerical solution at sufficiently
small δ, for a given finite δ one can construct different,
more advanced discretizations that would reduce discreti-
zation errors, thus improving the conservation of energy
(15) and making the single-particle evolution operator
uð0; τÞ numerically closer to a unitary matrix.
In this work we follow [35,38] and use the leapfrog

evolution scheme for the single-particle evolution operator
uτ ≡ uð0; τÞ, which significantly improves the conservation
of the unitarity condition uð0; τÞu†ð0; τÞ ¼ 1 at finite
discrete time step δ,

uτþ1 ¼ uτ−1 − iδh½Aτ�uτ; τ ¼ 1…N − 1

u1 ¼ u0 − iδh½A0�u0; u0 ¼ 1: ðA28Þ

In practice it is convenient to work with the components of
uτ in the basis of eigenstates of the initial single-particle
Hamiltonian h½Ā0�. In particular, if translational invariance
along some of the space directions is preserved during the
evolution, uτ remains block diagonal in the basis of plane
waves propagating along these directions. This block-
diagonal structure can be used to greatly reduce the number
of independent components of uτ that enter the
equations (A28). We have used translational invariance
in two out of three spatial lattice directions to speed up the
evolution algorithm on large lattices with sizes up to

200 × 40 × 40, assuming translational invariance in two
out of three spatial directions.
For the evolution of the electromagnetic field we use the

equations that directly follow from (A23),

Eτþ1
x;i −Eτ

x;i

δ
¼−J τ

x;i− hĵτx;ii−
X
j

ðFτ
x;ij−Fτ

x−ĵ;ijÞ;

Aτþ1
x;i −Aτ

x;i

δ
¼Eτþ1

x;i ;

A1
x;i−A0

x;i

δ
¼E0

x;i−δ

�
J 0

x;iþhĵ0x;iiþ
X
j

ðF0
x;ij−F0

x−ĵ;ijÞ
�
:

ðA29Þ
In our simulations, we use the value δ ¼ 0.05. We have
checked that decreasing δ down to 0.02 does not change our
results up to some small unimportant fluctuations.
In principle, leapfrog-type time discretization (A28)

allows the existence of fermionic doublers in time
direction—that is, the symmetric finite differences in
(A28) are 0 if the mode functions oscillate as ð−1Þτ.
Such doubler modes correspond to another flavor of
Dirac fermions with an opposite signature of the γ5 matrix.
Thus, if such modes are excited, they can also contribute to
the anomaly equation (5) and effectively decrease the
anomaly coefficient, or lead to the decay of the initial
value of the axial charge [33]. In order to check whether
fermionic modes with such high frequencies are excited we
have calculated the average norm of forward finite
differences of uτ as 1

4V Trððuτþ1 − uτÞ†ðuτþ1 − uτÞÞ. Since
the size of the single-particle Hilbert space is equal to 4V
this quantity should be of the order of δ2 if uτ are smooth
functions of τ. On the other hand, doubler modes with uτ ∼
ð−1Þτ yield the contribution of the order of unity. In our
simulations we have checked that the above norm remains
of the order of 10−2 for all evolution times and does not
exhibit any tendency to grow. This suggests that the doubler
modes remain practically unexcited during the evolution.
Another important characteristic of the discretization of

the evolution equations (11) and (13) is the precision with
which the conservation of energy (15) holds. For the
leapfrog equations (A28) and (A29) the total energy of
electromagnetic fields and fermions is conserved only
approximately, up to the terms of the order of δ2. In order
to illustrate the conservation of energy in our simulations,
in Fig. 14 we show the time dependence of the fermionic
energy hĤFi, the energyHEM of electromagnetic fields, and
their total. One can see that while both hĤFi and HEM
change quite significantly during the evolution, their sum is
conserved with very good precision, which again shows
that the time step δ ¼ 0.05 is small enough.
The discrete evolution equations (A28) and (A29) are

ideally suited for parallelization on multinode computers.
Indeed, the largest amount of computer time is required to
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solve the evolution equation (A28) for the ð4VÞ × ð4VÞ
matrix uτ. Taking into account that only half of the single-
particle fermionic states is filled at zero temperature, this
size can be reduced by a factor of 2 down to ð2VÞ × ð4VÞ.
The evolution of the electromagnetic field (A29) requires
only the total electric current summed over all fermionic
modes, and is computationally very cheap. Thus, it is
natural to distribute the rows of the uτ matrix over multiple
nodes. On each node, one performs the elementary evo-
lution step (A28) for the rows attributed to this node and

calculates the partial traces of the electric current and other
fermionic bilinear operators over these rows. The results are
sent to the master node, which calculates the total current
and performs the evolution of the electromagnetic field
according to (A29). Since the amount of data transferred by
the network from each slave node to the master node is
significantly smaller than the amount of data stored at each
slave mode (for realistic lattice sizes and node numbers, the
number of rows of uτ per node is large), the speed of the
algorithm scales practically linearly with the number of
slave nodes.
Such parallelization also solves the problem with a very

large amount of RAM memory required to store the matrix
uτ (∼36 Gb for the 20 × 20 × 20 lattice when one uses
8-byte double accuracy numbers for all fields), which is
simply split over different nodes. In order to further
decrease the required RAM size, we use the 4-byte float
numbers to store uτ. We have explicitly checked that the
reduction from double to float real numbers practically
does not affect our results.
The extensive parallelization also allows us to avoid the

stochastic summation over all modes [35–38], which
introduces additional statistical noise in the results and
can therefore significantly affect potentially unstable evo-
lution, which we study in this work. Instead, we perform
exact summation over all initially occupied fermionic
states.
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(so that only the ground state energies ℏw=2 contribute)
have little effect on the Schwinger pair production rate.
Correspondingly, only a few samples of A0 and E0 are
enough for reliably computing the expectation values.

[49] S. L. Adler, arXiv:hep-ph/0405040.
[50] A. A. Anselm and A. A. Iogansen, JETP Lett. 49, 214

(1989).
[51] K. Jensen, P. Kovtun, and A. Ritz, J. High Energy Phys. 10

(2013) 186.
[52] L. H. Karsten and J. Smith, Nucl. Phys. B183, 103 (1981).
[53] H. J. Rothe and N. Sadooghi, Phys. Rev. D 58, 074502

(1998).
[54] M. H. Al-Hashimi and U. Wiese, Ann. Phys. (Amsterdam)

324, 343 (2009).
[55] N. Mueller, F. Hebenstreit, and J. Berges, arXiv:

1605.01413.
[56] M. Creutz, I. Horvath, and H. Neuberger, Nucl. Phys. B,

Proc. Suppl. 106–107, 760 (2002).
[57] S. Jeon, Phys. Rev. C 72, 014907 (2005).
[58] E. Gozzi and M. Regini, Phys. Rev. D 62, 067702 (2000).

P. V. BUIVIDOVICH and M. V. ULYBYSHEV PHYSICAL REVIEW D 94, 025009 (2016)

025009-22

http://dx.doi.org/10.1103/PhysRevD.89.096002
http://dx.doi.org/10.1103/PhysRevD.89.096002
http://dx.doi.org/10.1103/PhysRevD.90.076007
http://dx.doi.org/10.1103/PhysRevD.90.076007
http://dx.doi.org/10.1103/PhysRevD.93.105028
http://dx.doi.org/10.1103/PhysRevD.93.105028
http://arXiv.org/abs/1307.0138
http://arXiv.org/abs/1312.0895
http://dx.doi.org/10.1103/PhysRevLett.109.162001
http://dx.doi.org/10.1103/PhysRevLett.109.162001
http://dx.doi.org/10.1103/PhysRevLett.103.191601
http://dx.doi.org/10.1103/PhysRevLett.103.191601
http://dx.doi.org/10.1007/JHEP03(2016)210
http://dx.doi.org/10.1007/JHEP03(2016)210
http://dx.doi.org/10.1016/S0550-3213(99)00320-X
http://dx.doi.org/10.1103/PhysRevD.61.025002
http://dx.doi.org/10.1103/PhysRevD.79.065010
http://dx.doi.org/10.1103/PhysRevD.79.065010
http://dx.doi.org/10.1103/PhysRevD.87.125035
http://dx.doi.org/10.1103/PhysRevD.89.025001
http://dx.doi.org/10.1103/PhysRevD.89.025001
http://dx.doi.org/10.1103/PhysRevD.90.025016
http://dx.doi.org/10.1103/PhysRevD.90.025016
http://dx.doi.org/10.1103/PhysRevD.92.054009
http://dx.doi.org/10.1016/0370-2693(75)90162-8
http://dx.doi.org/10.1103/PhysRevLett.111.027201
http://dx.doi.org/10.1103/PhysRevLett.111.027201
http://dx.doi.org/10.1016/j.crhy.2013.10.010
http://dx.doi.org/10.1016/j.crhy.2013.10.010
http://dx.doi.org/10.7566/JPSJ.83.094710
http://dx.doi.org/10.7566/JPSJ.83.094710
http://dx.doi.org/10.1103/PhysRevD.93.074507
http://dx.doi.org/10.1103/PhysRevD.93.074507
http://dx.doi.org/10.1103/PhysRevX.4.031035
http://dx.doi.org/10.1103/PhysRevD.93.125016
http://arXiv.org/abs/hep-ph/0405040
http://dx.doi.org/10.1007/JHEP10(2013)186
http://dx.doi.org/10.1007/JHEP10(2013)186
http://dx.doi.org/10.1016/0550-3213(81)90549-6
http://dx.doi.org/10.1103/PhysRevD.58.074502
http://dx.doi.org/10.1103/PhysRevD.58.074502
http://dx.doi.org/10.1016/j.aop.2008.07.006
http://dx.doi.org/10.1016/j.aop.2008.07.006
http://arXiv.org/abs/1605.01413
http://arXiv.org/abs/1605.01413
http://dx.doi.org/10.1016/S0920-5632(01)01836-9
http://dx.doi.org/10.1016/S0920-5632(01)01836-9
http://dx.doi.org/10.1103/PhysRevC.72.014907
http://dx.doi.org/10.1103/PhysRevD.62.067702

