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A very simple, quadratic potential is used to construct vortex strings in a generalized Skyrme model and
an additional quadratic potential is used to embed sine-Gordon-type halfkinks onto the string worldline,
yielding half-Skyrmions on a string. The strings are furthermore compactified onto a circle and the
halfkinks are forced to appear in pairs; in particular 2B halfkinks (half-Skyrmions) will appear as beads on a
ring with B being the number of times the host vortex is twisted and also the baryon number (Skyrmion
number) from the bulk point of view. Finally, we construct an effective field theory on the torus, describing
the kinks living on the vortex rings.
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I. INTRODUCTION

Among various topological solitons, Skyrmions are the
ones having the longest history [1,2]. Nevertheless they are
still under active consideration, partly because they have
been proposed to be identified with baryons of (large-Nc)
QCD and provide a first-principles angle to nuclear
physics; for some recent results see e.g. [3–9].
In a series of papers, we have studied a number of different

incarnations of Skyrmions [10–12]; the simplest form is just
the Skyrmion [1,2], whereas the topological charge of the
Skyrmion—the baryon number—can be absorbed into a host
soliton, yielding a daughter soliton living in the world
volumeof its host ormother soliton. The simplest incarnation
is taking a domain wall and embedding either a baby-
Skyrmion or a lump in its world volume [13]; this gives a
Skyrmion from the bulk point of view, but of course with
infinite energy due to the infinite (2þ 1)-dimensional world
volume of the domain wall.
Another class of incarnations of Skyrmions is to construct a

vortex stringwith aU(1)modulus and subsequently twist said
moduluswhich will form kinks on theworldline of the string;
each kink will correspond to either a half or a full baryon
charge, dependingonwhether thekinkwindsπ or2πwhich in
turn is determined by the type of potential in the model. In
Ref. [14] we explicitly constructed a vortex string in com-
pactified form; that is, compactified onto a circle. The
potential used in Ref. [14] was inspired by a limit of a
potential used in Bose-Einstein condensates (BEC) [15,16]
(see also [17,18]) and it breaks a U(2) subgroup of the O(4)
symmetry of the Skyrmemodel to Uð1Þ × Uð1Þ; one of them
is used for constructing the vortex and the other will be the
mentioned U(1) modulus living on the string worldline. In
Ref. [12]we constructed straight vortex strings using the same
BEC potential and embedded kinks and halfkinks on their
worldlines. The last possibility in this direction is to com-
pactify the strings and embed kinks on them; in this case the

number of kinks is forced to be integer as the baryon number
is quantized for finite energy configurations; this implies that
when thevortex ringpossesses halfkinks, itmust have an even
number of halfkinks. This case of a vortex ring with
embedded kinks on its worldline has not been explicitly
constructed before; this will be a new result in the present
paper. A lower dimensional analog, however, has been
studied in the baby-Skyrme model in 2þ 1 dimensions
[19] by compactifying a domain wall worldline, with
baby-Skyrmions on it [20], to a circle.
The last incarnation of Skyrmions is a half-Skyrmion

inside a monopole [21]. The unit-charged Skyrmion is split
into a set ofmonopole and antimonopole both of which carry
a half baryon number. If a half-Skyrmion is separated from its
other half, then it will have a divergent total energy because it
is a global monopole. This also has a lower dimensional
analogue in the baby-Skyrme model [22], in which case half
a baby-Skyrmion lives inside a global vortex.
Besides the four-dimensional incarnations of Skyrmions,

in five dimensions it is possible to create a stringwith Skyrme
charge that ends on a domain wall [23]; interestingly, this is
possible in theO(4)model, which is just the standard Skyrme
model (but generalized to 4þ 1 dimensions).
In this paper, we show that there exists a simpler potential

than theBEC-type potential used inRefs. [12,14] admitting a
vortex string and vortex rings. Using a notation with two
complex fields ϕ1;2 ∈ C, the BEC-type potential is of the
form jϕ1j2ð1 − jϕ1j2Þ, whereas the simplest possibility for
forming a vortex string is the potential we study in this paper,
i.e. of the form ð1 − jϕ1j2Þ. An interesting side mark about
this potential is that it is induced at the classical level by
introducing an isospin-breaking chemical potential of the
form ∂0U → ∂0U − i½μσ3; U�. However, this chemical
potential—at the classical level—also induces other terms;
in particular, the Skyrme term induces a noncanonical kinetic
termwhich effectively can drive the coefficient of the kinetic
term negative for large enough μ. Although such chemical
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potential at the classical level has been discussed in the
literature [24–27], Ref. [28] pointed out that due to a subtlety
in the large-Nc counting of μ, one should not include the
effects of the chemical potential at the classical level if one
wishes to study the proton or neutron, because the large-Nc
nature of the model will pick out the largest spin state of the
nucleon; hence not the proton or neutron. Therefore, if one
does not include the effect of the chemical potential at the
classical level, there is nopresence of the potential thatweuse
to construct vortex strings. We also do not consider the other
terms that would be induced from said chemical potential.
We simply take the potential and prove that it can be used to
construct strings in the Skyrme model.
In this paper, as in Refs. [12,14,21,29,30], we compare

the Skyrme term to the sixth-order derivative term, which is
composed by squaring the baryon current; this term is
inspired by the BPS-Skyrme model [31–33]. The BPS-
Skyrme model was motivated by the long-standing problem
of the large binding energies in the standard Skyrme model;
in the BPS-Skyrme model, which is a particular submodel
of the Skyrme model, the BPS bound can be saturated—
unlike [34] the one in the standard Skyrme model
[35]—and so classically the binding energies vanish.
Finally, in Ref. [30] we constructed a framework of

effective field theories for solitons living on host solitons of
generic shapes. In Ref. [30] we applied it to straight
vortices with the BEC potential. In this paper, we will
use the same framework for the vortices in the new
potential and use it to construct kinks directly in the
effective field theory approach. Finally, as a new result,
we derive the effective field theory for sine-Gordon half-
kinks living on vortex rings—that is, vortex strings com-
pactified onto a circle—and use it to calculate the kinks and
baryon charge density in the effective theory approach.
The paper is organized as follows. In Sec. II we introduce

the model, set the notation and discuss the vacua and
symmetries. In Sec. III we construct the straight, infinitely
long, vortex string, which we in Sec. IV compactify onto a
circle with one and two twists, yielding a B ¼ 1 and B ¼ 2
vortex ring, respectively. In Sec. V we then, finally, embed
kinks onto both the straight vortex and the vortex ring and
we also construct the relevant leading-order effective field
theories for all cases. We conclude in Sec. VI with a
discussion of our results. The appendix provides evidence
for the two-vortex to split up into two separate Skyrmions.

II. SKYRME-LIKE MODEL

We consider a Skyrme-type model in 3þ 1 dimensions

L ¼ 1

4
TrðLμLμÞ þ c4L4 þ c6L6 − VðUÞ; ð1Þ

that includes the Skyrme term and a sixth-order term—
made of the square of the baryon current—which we will
call the BPS-Skyrme term [31–33],

L4 ¼
1

32
Trð½Lμ; Lν�2Þ; ð2Þ

L6 ¼
1

144
ðϵμνρσTr½LνLρLσ�Þ2; ð3Þ

where we have defined the suð2Þ-valued left-invariant
current Lμ ≡ U†∂μU, U is the 2-by-2 nonlinear sigma-
model field obeying the constraint U†U ¼ 12, the space-
time indices μ; ν; ρ; σ ¼ 0, 1, 2, 3 run over all 3þ 1
dimensions, the Lagrangian coefficients c4 ≥ 0 and
c6 ≥ 0 are both positive semidefinite1 and finally, we use
the mostly positive metric signature.
Since (one of) our objective(s) is to study vortices, it will

prove convenient to switch notation from the matrix fieldU
to a complex vector field ϕ as

ϕ≡
�
ϕ1

ϕ2

�
: ð4Þ

The two fields are related as follows

U ¼
�
ϕ −iσ2ϕ�

�
¼

�
ϕ1 −ϕ�

2

ϕ2 ϕ�
1

�
; ð5Þ

and the nonlinear sigma-model constraint translates to

detU ¼ jϕ1j2 þ jϕ2j2 ¼ 1: ð6Þ
Rewriting the Lagrangian density (1) using the field ϕ,
we get

L ¼ −
1

2
∂μϕ

†∂μϕþ c4L4 þ c6L6 − Vðϕ;ϕ†Þ; ð7Þ

where the Skyrme term and BPS-Skyrme term now read

L4 ¼ −
1

4
ð∂μϕ

†∂μϕÞ2 þ 1

16
ð∂μϕ

†∂νϕþ ∂νϕ
†∂μϕÞ2; ð8Þ

L6 ¼
1

4
ðϵμνρσϕ†∂νϕ∂ρϕ

†∂σϕÞ2: ð9Þ

The Lagrangian density (1) enjoys manifest SUð2Þ ×
SUð2Þ symmetry when the potential is switched off; this
symmetry is however spontaneously broken to its diagonal
subgroup, SUð2Þ × SUð2Þ → SUð2Þ by the presence of any
finite-energy configuration. Turning on a mass term for the
pions, e.g. V ∼ Tr½12 −U�, results in the same symmetry
breaking, however explicitly. This symmetry breaking is
important because it is the basis of the existence of the
Skyrmion or simply baryon charge. The Skyrmions are
characterized by the degree of the map from space with
infinity identified as a point (R3∪f∞g≃ S3) to SU(2),

1Either c4 or c6 has to be positive in order for the model to
possess a stable Skyrmion.
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π3ðSUð2ÞÞ≃ π3ðS3Þ ¼ Z ∋ B: ð10Þ

The integer B is the degree, the topological charge or
simply the baryon number, and can be calculated from a
configuration as

B ¼ −
1

24π2

Z
d3xϵijkTrðLiLjLkÞ

¼ −
1

4π2

Z
d3xϵijkϕ†∂iϕ∂jϕ

†∂kϕ: ð11Þ

In order to construct a vortex in our model at hand, we need
a special potential that breaks the symmetry explicitly and
further than to simply SU(2). One such potential—which
was inspired by Bose-Einstein condensates [15,16]—was
considered in Ref. [12]. That potential is fourth order in ϕ
and of the form jϕ1ϕ2j2 ¼ jϕ1j2ð1 − jϕ1j2Þ. This potential
breaks the symmetry of the model to Uð1Þ × Uð1Þ, explic-
itly. One of the U(1)s are then used to construct the vortex
and the other manifests itself as a U(1) modulus living on
the vortex world sheet.
In this paper, we show that there is an even simpler

potential than that considered in Refs. [12,30], which
allows for vortices in the model and it reads

Vvortex ¼ 1

2
m2

�
1 −

1

2
ϕ†ð12 þ τ3Þϕ

�
¼ 1

2
m2ð1 − jϕ1j2Þ:

ð12Þ
This is one of the purposes of this paper, namely to
construct the vortex strings in the simplest potential in
Skyrme-type models.
Although not manifest in the formulation of the

Lagrangian (7) in terms of ϕ, it contains a symmetry group
[12]—which is a subgroup of O(4)—in the absence of the
potential term

~G≃ Uð2Þ; ð13Þ
which can be seen as formed by

Uð2Þ≃ SUð2ÞL × Uð1ÞR; ð14Þ
where the latter U(1) group is generated by τ3 in SUð2ÞR.
The potential that allows for vortices will break

~G → G ¼ Uð1Þ0 × Uð1Þ3; ð15Þ
explicitly; Uð1Þ0 is the tracepart of U(2) and Uð1Þ3 is the
U(1) subgroup of SU(2). Explicitly, each group acts on ϕ as

Uð1Þ0∶ ϕ → eiαϕ; ð16Þ
Uð1Þ3∶ ϕ → eiβτ

3

ϕ: ð17Þ
Unlike the potential that was considered in Ref. [12] which
possessed two distinct vacua with in turn each of their kind
of vortices, the potential (12) only has the vacuum

hϕiT ¼ ðeiα; 0Þ; ð18Þ
and the unbroken symmetry group H is

H ¼ Uð1Þ0–3∶ ϕ → eiαð12−τ3Þϕ: ð19Þ
We can therefore write the moduli space as

M≃G=H ¼ Uð1Þ0 × Uð1Þ3
Uð1Þ0–3

≃ Uð1Þ0þ3; ð20Þ

which in turn gives rise to the nontrivial homotopy group

π1ðMÞ ¼ Z ∋ n; ð21Þ
which admits vortices andwewill denote the vortexwinding
number by n.
Although, as mentioned above, the system at hand

generally contains also nonzero baryon charge, the straight
vortex in this model does not a priori contain such. Inside
the core of the vortex jϕ1j≃ 0 and so the vortex carries a
U(1) modulus, jϕ2j≃ 1. In order for the configuration to
acquire baryon charge, we need to twist the modulus; that
is, the modulus needs to wind along the string. A 2π
winding of the U(1) modulus corresponds topologically to
a single sine-Gordon kink on the vortex world sheet.
Let us explicitly construct a potential that gives rise to

(sine-Gordon) kinks

Vkink ¼ −
1

2
m2

2ðℜϕ2Þ2: ð22Þ

Now with the addition of this kink potential, we should
discuss the vacuum manifold again in order to assess the
topological charges present in the theory.
The total potential is given by

V ¼ Vvortex þ Vkink ¼ 1

2
m2cos2v −m2

2cos
2vcos2β; ð23Þ

where we have parametrized the field configuration as

hϕiT ¼ ðeiα sin v; eiβ cos vÞ; ð24Þ
with α; β; v ∈ ½0; 2πÞ, and thus for m > m2, the vacuum
solution is

v ¼ π

2
þ qπ; ð25Þ

where q ∈ Z is an integer that we without loss of generality
can set to zero: q ¼ 0, and β is undetermined. For m < m2

there exists another vacuum which possesses no vortices
and the vacuum solution is v ¼ qπ and β ¼ q0π with
q0 ∈ Z. For both solutions Vvortex þ Vkink

2 ¼ 0 in the vacua.
Since we are interested in vortices, which exist only in the
first case we will choose m > m2 and hence the first
vacuum solution. It is important here to note that the
vacuum manifold, with the addition of the quadratic kink
potential, is unchanged with respect to the one for only the
vortex potential (20). Thus
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MVvortexþVkink ¼ MVvortex ¼ Uð1Þ0þ3: ð26Þ
We can think of the vortex solution in the following way.

If we identify α ¼ ϕ to be the winding phase and sin v to be
the radial profile function of the vortex, then β is a U(1)
modulus field living on the vortex string when the kink
potential is turned off. When we turn on the kink potential
m2 > 0, then although β can take any value in the vacuum,
β ¼ q0π induces the smallest vortex mass (and thus smallest
vortex tension); the vacua of the modulus on the string
world sheet are β ¼ q0π, again with q0 ∈ Z.
We can now evaluate the topological kink number on the

vortex core. The vortex core is defined byϕ1 ¼ 0 and so due
to the nonlinear sigma model constraint (6), we have
jϕ2j ¼ 1. In the parametrization (24) this corresponds to
v ¼ qπ and the vacua for β ¼ q0π on the string world sheet
as mentioned just above. The topological kink number is
thus

π0ðMvortexÞ ¼ π0ðZÞ ¼ Z ∋ k; ð27Þ
where k is the number of sine-Gordon halfkinks. We define
these kinks to be halfkinks because they only wind π in the
U(1) modulus, as compared to 2π, for which we would call
the kinks full kinks or simply kinks.
The baryon number in the bulk of the total system can be

calculated as

B ¼ nk
2
; ð28Þ

where n is the vortex number and k is the sine-Gordon
halfkink number.

III. THE STRAIGHT VORTEX

We are now ready to construct the vortex in the model
introduced in the last section. With no potential, a string-
like configuration is of course unstable to decay [36], but
the potential (12) considered here admits a stable vortex
string. We begin with the case where the vacuum is at
jϕ1j ¼ 1 and so v ¼ π=2. This for the kinkless case:
m2 ¼ 0. Now we can choose an appropriate Ansatz for
the vortex as

ϕ1 ¼ sin fðrÞeiϕ; ϕ2 ¼ cos fðrÞeiχ ; ð29Þ
where fðrÞ is the profile of the vortex and ðr;ϕÞ are polar
coordinates in the xy-plane: x ¼ r cosϕ and y ¼ r sinϕ.
The constant χ is the U(1) modulus residing on the vortex
string and in this section we take it to be its vacuum value
which is χ ¼ q0π and so without loss of generality we can
set χ ¼ 0. Inserting the above Ansatz into the Lagrangian
density (7), we get

−L ¼ 1

2
f2r þ

1

2r2
sin2f þ c4

2r2
sin2ðfÞf2r þ

1

2
m2cos2ðfÞ;

ð30Þ

which by variation with respect to the vortex profile
function f, leads to the equation of motion

frr þ
1

r
fr −

1

2r2
sin 2f þ c4

r2
sin2f

�
frr −

1

r
fr

�

þ c4
2r2

sinð2fÞf2r þ
1

2
m2 sin 2f ¼ 0; ð31Þ

where fr ≡ ∂rf, etc. In order to construct a vortex solution,
we need to impose the following boundary conditions on
the vortex profile function f,

fð0Þ ¼ 0; fð∞Þ ¼ π

2
: ð32Þ

First notice that the vortex Lagrangian density does
not contain any term stemming from the sixth-order BPS-
Skyrme term present in Eq. (7). This is clear because first
when the vortex string has a nontrivial dependence along
the string (the z-direction in our frame), then the baryon
charge operator (which is the square root of the BPS-
Skyrme term) can acquire nonvanishing values.
Around r ¼ 0we can expand f in a power series in r and

expanding the equation of motion (31) up to third order,
determines f up to fifth order

f ¼ f1r −
24f1 þ f31 − 2f51

12þ 48f21
r3 þOðr5Þ; ð33Þ

in terms of f1, which is called the shooting parameter and
encodes nonperturbative information about the vortex.
Expanding instead the vortex profile function around
spatial infinity leads to

f ≃ gdðmrÞ; ð34Þ

where gd is the Gudermannian function defined
by gdðzÞ≡ 2 arctanðezÞ − π=2.
A comment in store is about the energy. The energy

density for static configurations is simply given by −L,
where the Lagrangian density is that of Eq. (30). The total
energy, however, diverges, in more than one (spatial)
direction. Considering first the plane transverse to the
vortex (for concreteness we can choose this plane to be
the xy-plane), the vortex tension diverges logarithmically
because the vortex is a global vortex.2 Next, if the vortex is
not compactified on a circle, i.e. if it is an infinitely long
straight string, then the total energy diverges like L logL,
where L is a cutoff in length scale.
Let us now consider the tension in more detail. As we

already mentioned, the tension (energy per unit length)
diverges logarithmically. Let us consider the contributions
from the different terms to the asymptotic tension, by
plugging the asymptotic form of the profile function (34)
into the energy [−L in Eq. (30)] and integrate over the

2This is in agreement with Derrick’s theorem [37].
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FIG. 1. Vortex solutions for various values of c4 ¼ 0, 0.125, 0.25, 0.5, 1, 2, 3, 4: (a) profile function f, (b) the condensate jϕ1j ¼ sin f
and jϕ2j ¼ cos f, (c) energy density and (d) total energy. For the figure we have fixed the length scales by setting m ¼ 4.

FIG. 2. Single vortex ring in the 2þ 4 model. The figure is an xy-slice of the baryon charge density at z ¼ 0 for the vortex potential
mass parameter m ¼ 0, 1, 2, 3, 4, 5, 6, 7 from top-left to bottom-right panel.
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xy-plane (the plane transverse to the vortex). The kinetic
term has two contributions to the energy

lim
R→∞

�Z
drrf2r ∼

Z
dr

2memr

1þ e2mr ¼ 2r arctan emr

−
i
m
Li2ð−iemrÞ þ i

m
Li2ðiemrÞ

�
r¼R

¼ 0;

Z
R
dr

1

r
sin2f ∼

Z
R
dr

tanh2mr
r

∼ logR; ð35Þ

but only the latter diverges (logarithmically). The contri-
bution from the Skyrme term, however, is finite

lim
R→∞

�Z
dr

1

r
sin2ðfÞf2r∼

Z
dr

m
r
sechmr tanhmr

�
r¼R

¼0;

as is that of the potential

lim
R→∞

�Z
drrm2cos2f ∼

Z
dr

m2re2mr

ð1þ e2mrÞ2

¼ mRð1þ tanhmRÞ − log½1þ e2mR�
4

�
r¼R

¼ 0:

As the equation of motion (31) cannot be solved
analytically, we turn to numerically methods; namely we
use a fourth-order Runge-Kutta method to find numerical
solutions for various values of c4. The solutions, the
corresponding condensate, energy densities and integrated
energies are shown in Fig. 1.
The mass parameter m can be scaled away and physi-

cally just corresponds to setting the length scale. The only
free parameter in the system is then c4m2 which turns on

the Skyrme term and results in a wider vortex string. The
energy density of the wider vortex string is likewise wider
but also has a lower density at the vortex core, see Fig. 1(c).
The total energy, however, increases monotonically as
function of c4m2, as expected, see Fig. 1(d).

IV. VORTEX RINGS AS SKYRMIONS

In this section, we study the vortex ring in the simpler
vortex potential (12) as compared to that considered in
Refs. [12,14,30]. We will consider this potential in two
variants of our model, which we shall call the 2þ 4 model
and the 2þ 6 model

FIG. 3. Single vortex ring in the 2þ 4 model. The figure is an xy-slice of the energy density at z ¼ 0 for the vortex potential mass
parameter m ¼ 0, 1, 2, 3, 4, 5, 6, 7 from top-left to bottom-right panel.
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FIG. 4. The ratio of the square root of the second moment of the
baryon charge density in the z and in the x direction, zB=xB, for
the single vortex ring in the 2þ 4model as function of the vortex
potential mass parameter m.
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2þ 4 model∶ c4 ¼ 1; c6 ¼ 0; ð36Þ

2þ 6 model∶ c4 ¼ 0; c6 ¼ 1: ð37Þ

This choice of coefficients is made such that we can see the
differences between the normal Skyrme term and the sextic
term of the BPS-Skyrme model.
Since the potential (12) breaks spherical symmetry and the

potential (22) furthermore breaks axial symmetry, we will
perform the numerical calculations of the partial differential
equations (equations of motion) on a cubic lattice using the

finite difference method in conjunction with the relaxation
method. We typically use 1213 lattices, but also smaller
lattices like 813 and 1013, where the denser grid is not
necessary. We should warn the reader that the configurations
shown in the figures are cropped to better show the features of
the plots and thus the size of the grids used appears to be
smaller than what was used for the calculations.

A. Singly twisted vortex rings as Skyrmions

We start by performing numerical calculations of the
standard hedgehog Skyrmion in the 2þ 4model, gradually

FIG. 5. Single vortex ring in the 2þ 6 model. The figure is an xy-slice of the baryon charge density at z ¼ 0 for the vortex potential
mass parameter m ¼ 0, 1, 2, 3, 4, 5, 6, 7 from top-left to bottom-right panel.

FIG. 6. Single vortex ring in the 2þ 6 model. The figure is an xz-slice of the baryon charge density at y ¼ 0 for the vortex potential
mass parameter m ¼ 0, 1, 2, 3, 4, 5, 6, 7 from top-left to bottom-right panel.
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turning on the vortex potential (12). Our initial condition
for the relaxation method is taken as the hedgehog Ansatz
in the following form

ϕT
initial ¼ ðcos f − i sin f cos θ; eiϕ sin f sin θÞ: ð38Þ

Figures 2 and 3 show xy-slices at z ¼ 0 of the baryon
charge densities and energy densities for the single
Skyrmion in the 2þ 4 model for various values of the
vortex potential mass parameter m ¼ 0; 1;…; 7. As can be

seen from the figures, all the Skyrmion configurations are
nearly spherical and so we have shown only the xy-slices.
In fact, the only effect of the vortex potential on the

Skyrmion solutions other than shrinking them and increas-
ing their energies, is that their spherical symmetry gets
broken; that is, they become slightly squashed spheres. To
measure the squashing of the Skyrmions as function of the
vortex potential mass parameter m, we define

ðxiBÞ2 ≡ 1

B

Z
d3xðxiÞ2B; ð39Þ

FIG. 7. Single vortex ring in the 2þ 6 model. The figure is an xy-slice of the energy density at z ¼ 0 for the vortex potential mass
parameter m ¼ 0, 1, 2, 3, 4, 5, 6, 7 from top-left to bottom-right panel.

FIG. 8. Single vortex ring in the 2þ 6 model. The figure is an xz-slice of the energy density at y ¼ 0 for the vortex potential mass
parameter m ¼ 0, 1, 2, 3, 4, 5, 6, 7 from top-left to bottom-right panel.
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i not summed over and

B ¼ −
1

4π2
ϵijkϕ†∂iϕ∂jϕ

†∂kϕ
†; ð40Þ

is the baryon charge density. Then the size in one spatial
direction is taken as xiB ¼

ffiffiffiffiffiffiffiffiffiffiffi
ðxiBÞ2

p
. In Fig. 4 we show the

ratio of the size in the z-direction to the x-direction (for
these configurations xB ¼ yB).
Next, wewill turn to the 2þ 6model, in which the vortex

potential has a quite different effect on the Skyrmion.
Figures 5 and 6 show xy-slices at z ¼ 0 and xz-slices at
y ¼ 0, respectively, of the baryon charge densities for the
single Skyrmion in the 2þ 6model for various values of the
vortex potential mass parameter m ¼ 0; 1;…; 7, while

Figs. 7 and 8 show xy-slices at z ¼ 0 and xz-slices at
y ¼ 0, respectively, of the energy densities.
We can see from Figs. 5 and 6 that the vortex potential

turns (even) the single Skyrmion into a torus-like object.
The dip in the baryon charge density at the center of the
configuration starts to happen for a critical value of the
vortex potential mass parametermcritical between 2 and 3. In
the last figure depicted in Fig. 5, the baryon charge density
at the center of the Skyrmion is about 1=2 of the
maximum value.
We observe also—analogously to what was seen in

Ref. [12]—that the energy density is far more torus-like
than the corresponding baryon charge density. The critical
value of the vortex potential mass parameter m for which a
dip appears in the center of the Skyrmion is also lower than
that for the baryon charge density and is between 1 and 2.
Finally, we show in Fig. 9 the ratio between the baryon

charge density at the center (of mass) of the configuration
to the maximum value, Bð0Þ=maxðBðxÞÞ. It can be seen
from the figure that the critical value for the dip to form is
slightly smaller than, but about m≲ 2.

B. Doubly twisted vortex rings as B = 2 Skyrmions

In this subsection we consider the vortex rings of baryon
charge B ¼ 2. As is well known, the normal Skyrmion of
charge B ¼ 2 already takes the shape of a torus; therefore
we consider this case for completeness to study the effect of
the vortex potential in the B ¼ 2 sector and it will serve as a
basis for when we later in the paper want to add kinks to the
B ¼ 2 vortex ring. Let us clarify that although B ¼ 2, the
vortex has only vortex charge n ¼ 1 but it is twisted up
twice, in our language.

or
ig
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 / 
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 1
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FIG. 9. The ratio of the baryon charge density at the origin and
the maximum baryon charge density, Borigin=Bmax, for the single
vortex ring in the 2þ 6 model as function of the vortex potential
mass parameter m.

FIG. 10. A B ¼ 2vortex ring in the 2þ 4model. The figure is an xy-slice of the baryon charge density at z ¼ 0 for the vortex potential
mass parameter m ¼ 0, 1, 2, 3, 4, 5, 6, 7 from top-left to bottom-right panel.
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As the initial condition for the B ¼ 2 Skyrmion, we use
the following Ansatz

ϕT
initial ¼ ðcos f − i sin f cos θ; ei2ϕ sin f sin θÞ; ð41Þ

for an appropriate profile function f. This is of course just
the standard axially symmetric generalization to B ¼ 2 of
the hedgehog.
In Figs. 10 and 11 we show xy-slices at z ¼ 0 and

xz-slices at y ¼ 0, respectively, of the baryon charge

densities for the B ¼ 2 vortex ring in the 2þ 4 model
for various values of m ¼ 0; 1;…; 7, while in Figs. 12 and
13 we show the corresponding xy-slices at z ¼ 0 and xz-
slices at y ¼ 0, respectively, of the energy densities. We see
from the figures that the baryon charge densities and the
energy densities are practically the same also in the B ¼ 2

case and so from now on we can focus on the baryon charge
densities in the 2þ 4 model. We also note that turning on
the vortex potential in the B ¼ 2 sector has a quite small
effect on the 2þ 4 model; it merely shrinks the vortex ring
and as a good approximation looks simply like a scale

FIG. 11. A B ¼ 2vortex ring in the 2þ 4model. The figure is an xz-slice of the baryon charge density at y ¼ 0 for the vortex potential
mass parameter m ¼ 0, 1, 2, 3, 4, 5, 6, 7 from top-left to bottom-right panel.

FIG. 12. A B ¼ 2 vortex ring in the 2þ 4 model. The figure is an xy-slice of the energy density at z ¼ 0 for the vortex potential mass
parameter m ¼ 0, 1, 2, 3, 4, 5, 6, 7 from top-left to bottom-right panel.
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transformation on the B ¼ 2 Skyrmion without the vortex
potential.
Next we turn to the 2þ 6 model and Figs. 14 and 15

show xy-slices at z ¼ 0 and xz-slices at y ¼ 0, respectively,
of the baryon charge densities for the B ¼ 2 vortex ring for
various values of m ¼ 0; 1;…; 7, while in Figs. 16 and 17
show the corresponding slices of the energy densities.
Let us first warn the reader that the surface plots shown

in the figures are cropped with respect to the calculations
(which are done on far larger grids than shown here); so one

should not worry about boundary effects from the lattice
being a finite one.
As in the case of the 2þ 4 model, increasing the mass of

the vortex potential m has the effect of shrinking the vortex
ring, however, in the 2þ 6 the hole in the torus actually
grows,which is a big difference between the 2þ 6 and 2þ 4
models. Let us also note that the baryon charge densities
have a quite distinct difference from their respective energy
densities. The holes in the baryon charge densities are
convex, whereas the holes in the energy densities turn from

FIG. 13. A B ¼ 2 vortex ring in the 2þ 4 model. The figure is an xz-slice of the energy density at y ¼ 0 for the vortex potential mass
parameter m ¼ 0, 1, 2, 3, 4, 5, 6, 7 from top-left to bottom-right panel.

FIG. 14. A B ¼ 2vortex ring in the 2þ 6model. The figure is an xy-slice of the baryon charge density at z ¼ 0 for the vortex potential
mass parameter m ¼ 0, 1, 2, 3, 4, 5, 6, 7 from top-left to bottom-right panel.
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convex to concave asm is increased. This is also a difference
between the 2þ 6 and the 2þ 4 model.
One last consideration for the B ¼ 2 sector is whether

the doubly wound vortex (k ¼ 2), twisted once is stable or
not. In Ref. [14] this case was studied in the BEC type
vortex potential (as opposed to the simpler vortex potential
considered here) and the findings were negative; that is, the
k ¼ 2 vortex twisted once would decay into two separate
k ¼ 1 vortices. The initial condition for the k ¼ 2 vortex
ring twisted once is given by [14]

ϕT
initial ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2fsin2θ

q
ei2 arctanðtan f cos θÞ; sin f sin θ

�
:

ð42Þ

All our numerical attempts at finding a k ¼ 2 vortex ring
twisted once were unstable, so we conclude that the simpler
vortex potential share the same instability as that of BEC
type, see Appendix A.

FIG. 15. A B ¼ 2vortex ring in the 2þ 6model. The figure is an xz-slice of the baryon charge density at y ¼ 0 for the vortex potential
mass parameter m ¼ 0, 1, 2, 3, 4, 5, 6, 7 from top-left to bottom-right panel.

FIG. 16. A B ¼ 2 vortex ring in the 2þ 6 model. The figure is an xy-slice of the energy density at z ¼ 0 for the vortex potential mass
parameter m ¼ 0, 1, 2, 3, 4, 5, 6, 7 from top-left to bottom-right panel.
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V. CONFINED SKYRMIONS

In this section we will consider the full potential (23); i.e.
the vortex potential plus the kink potential. In particular,
this potential allows for two kinks to be absorbed and
confined on the vortex world sheet and in turn yielding a
full unit of baryon charge from the bulk point of view.
In this section, we will begin with the straight vortex and

then turn to embedding halfkinks on the vortex world sheet.
Then we curl up the vortex strings and the result will be an
even number of kinks on the vortex ring; more precisely 2B
kinks on a single vortex ring (with B twists).

A. Straight vortex

It is straightforward to construct the straight vortex—
without a kink on its world sheet—but with the kink
potential turned on. It suffices to see that with the Ansatz
(29), the mass parameter m in Sec. III should simply be
replaced by

m2
vortex ≡m2 −m2

2 > 0: ð43Þ

All the discussion of Sec. III thus goes through.
The next step is to add the kink to the vortex world sheet,

which we will turn to in the next subsection. First,
however, we will compare the 3-dimensional solutions to
1-dimensional ones found in Sec. III.

1. Comparison of the PDE and ODE
solutions for the vortex

Since the kink breaks translational symmetry along the
vortex string, we need at least to consider a 2-dimensional

partial differential equation (PDE). We choose however to
work in Cartesian coordinates as in the last section, and
calculate the vortex-kink system again on a cubic lattice
using the relaxation method. Here we use a 1213 lattice
with the smallest stepsizeΔx ¼ Δy≃ 0.025þ 0.017c4 and
the largest stepsize is Δz≃ 1=ð30m2Þ.
Far from the kink, the vortex should be unaltered with

respect to that found in Sec. III, except for the fact that the
vortex mass m is replaced with mvortex in Eq. (43). We
therefore—as a cross check on our calculations—compare
the solutions found in Sec. III using the ordinary differential
equation (ODE) and the Runge-Kutta method to the full 3D
PDE solutions used in this section as bases for the kinks. The
two vortex profiles are shown in Fig. 18, where the lines are
ODE solutions and the points are PDE data. As we can see
the lattice calculation gives exactly the same solution.

B. Halfkinks on a vortex as half-Skyrmions

In this section we twist the U(1) modulus of the vortex
string, which gives rise to a kink on the vortex worldline
and to a Skyrmion in the bulk volume (all space).

1. A single halfkink on a vortex as a half-Skyrmion

As mentioned already in the introduction, the funda-
mental kink in the (quadratic) kink potential is a halfkink,
meaning that in terms of a U(1) modulus it winds only π (as
opposed to a full winding of 2π). The fact that the modulus
winds only π makes the calculation very easy since the
halfkink is fixed by the boundary conditions at z → �∞
and the solution is simply the interpolation that minimizes
the energy of the configuration connecting these two vacua.

FIG. 17. A B ¼ 2 vortex ring in the 2þ 6 model. The figure is an xz-slice of the energy density at y ¼ 0 for the vortex potential mass
parameter m ¼ 0, 1, 2, 3, 4, 5, 6, 7 from top-left to bottom-right panel.
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The halfkink actually exists even in the case without
higher derivative terms, i.e. in the case c4 ¼ c6 ¼ 0; we
will call this case the 2 model

2 model∶ c4 ¼ 0; c6 ¼ 0: ð44Þ

The string itself, asymptotically far away from the halfkink
is the same as that in the 2þ 6 model. This is because the
BPS-Skyrme term is sixth order in derivatives and due to
the antisymmetrization, it vanishes on the (straight) string.
This statement is equivalent to the fact that there is no
baryon charge on the string itself before the kink is
embedded to its world sheet. In the 2þ 4 model, on the
other hand, the string feels the fourth-order derivative term
and gets widened by it; see Figs. 1 and 18.
We are now ready to embed the halfkink to the string

world sheet. Let us consider the Ansatz (29), but with
χ ¼ χðzÞ; in particular let us consider as a guess

χinitialðzÞ ¼
π

2
ðtanh½m2z� − 1Þ; ð45Þ

which corresponds to the boundary conditions χð−∞Þ ¼
−π and χð∞Þ ¼ 0.
The baryon charge with the vortex Ansatz (29) and χ ¼

χðzÞ is nontrivial only for a nonzero kink number (k > 0)
and it reads

B ¼ −
1

2π

Z
drdz sinð2fÞfrχz

¼ 1

4π
½cos 2f�r¼∞

r¼0 ½χ�z¼∞
z¼−∞ ¼ χð−∞Þ − χð∞Þ

2π
; ð46Þ

where we have plugged in the boundary conditions for the
vortex (32) in the last equality. Using now the boundary
conditions for the kink corresponding to the Ansatz (45),
we get B ¼ −1=2; i.e. an anti-halfkink. A parity trans-
formation turns the anti-halfkink into a halfkink, so we will
not care about the charge being negative.
In Figs. 19, 20 and 21 are shown the halfkink solutions in

terms of the isosurfaces, baryon charge densities and
energy densities, for the 2 model, 2þ 4 model and 2þ 6
model, respectively. The isosurfaces of energy densities
and baryon charge densities are all shown at half-maximum
values of their respective quantities. The coloring scheme
used for the baryon charge isosurfaces is made by con-
structing a normalized 3-vector n ¼ ðℑϕ2;ℜϕ2;ℑϕ1Þ=
jðℑϕ2;ℜϕ2;ℑϕ1Þj of length 1. The first two components
are then mapped to the color hue circle where n1 þ in2 ¼
eiθ and θ ¼ 0; π=3; 2π=3 corresponds to red, green, blue.
jn3j corresponds to the lightness with n3 ¼ 0 being black
and jn3j ¼ 1white. The (d) panel of the figures displays the
kink energy, which we calculated by subtracting the
asymptotic string energy from the total energy, leaving
roughly the energy density of the kink on top of the string
world sheet, see Eq. (48).
First we note that the length of the halfkinks differ

between the different models and the shortest is that of the 2
model, while the longest halfkink is that of the 2þ 6
model. Next we can see that the string width is larger in the
2þ 4 model than in the other two models, as expected.

FIG. 19. A halfkink in the 2 model; (a) isosurfaces of energy density (pink) and baryon charge density (colored), (b) yz-slice of baryon
charge density, (c) yz-slice of total energy density and (d) yz-slice of kink energy density, all at x ¼ 0. The baryon charge is calculated to
be Bnumerical ¼ −0.4993. For coloring of the baryon charge isosurface, see the text. In this figure m ¼ 4 and m2 ¼ 1.
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FIG. 18. Comparison of vortex condensates between the ODE
(points) and PDE (lines) calculations. Here the mass parameters
are m ¼ 4 and m2 ¼ 1 giving the effective vortex mass
mvortex ¼

ffiffiffiffiffi
15

p ≃ 3.873.
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Finally, we observed from the kink energy densities that in
the 2 and 2þ 4 models, the shape is peaklike, whereas in
the 2þ 6 model the shape of the energy density is like a
twin peak, where the two peaks sit on each side of the
string. Since this figure is a yz-slice, the kink energy
density is hence slightly torus-like. The dip in energy in the
center of the kink is however only slightly less than the
maximum value.
In this subsection, we have numerically calculated the

solutions of the halfkinks in three different models. The
lengths of these halfkinks are given inTable I, wherewe have
defined the kink length as zB in Eq. (39). This definition uses
the baryon charge density as a measure, which is argued in
the recent paper [38] to be a natural definition. We will
alternatively perform the same calculation of the halfkink
lengths using the kink energy density as a measure

z2Ekink ≡
R
d3xz2EkinkR
d3xEkink ; ð47Þ

where the kink energy density is defined as the total energy
density with that of the vortex subtracted off

Ekink ≡ E − Evortex: ð48Þ

Note that the integral of the kink energy density is
convergent.
In the next section, we will, as an example, calculate the

lengths of the halfkinks using an effective field theory
approach.

2. Effective theory on the straight vortex

Now we will consider the effective theory on vortex
string, following Ref. [30]. The idea is simple, namely
integrating out the vortex to obtain the leading-order
effective theory of the U(1) modulus

FIG. 20. A halfkink in the 2þ 4 model; (a) isosurfaces of energy density (pink) and baryon charge density (colored), (b) yz-slice of
baryon charge density, (c) yz-slice of total energy density and (d) yz-slice of kink energy density, all at x ¼ 0. The baryon charge is
calculated to be Bnumerical ¼ −0.4998. For coloring of the baryon charge isosurface, see the text. In this figure m ¼ 4 and m2 ¼ 1.

FIG. 21. A halfkink in the 2þ 6 model; (a) isosurfaces of energy density (pink) and baryon charge density (colored), (b) yz-slice of
baryon charge density, (c) yz-slice of total energy density and (d) yz-slice of kink energy density, all at x ¼ 0. The baryon charge is
calculated to be Bnumerical ¼ −0.4997. Note that the isosurfaces in (a) are not shown with the proper scale ratio; it is widened to render the
figure readable. For coloring of the baryon charge isosurface, see the text. In this figure m ¼ 4 and m2 ¼ 1.

TABLE I. Lengths of halfkinks in various models.

Model znumerical
B znumerical

Ekink zeff
Ekink 1.570zeff

Ekink

2 1.475 1.424 π=
ffiffiffiffiffi
12

p ≃ 0.9069 1.424
2þ 4 3.365 3.080 2.128 3.358
2þ 6 22.48 20.14 15.04 23.62
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−Leff;kink¼
�
a2;0;0
m2

vortex
þc4ða2;2;0þa2;0;2Þþ2c6a2;2;2m2

vortex

�

×ð∂αχÞ2þ
a2;0;0m2

2

m2
vortex

sin2χ; ð49Þ

where mvortex is the mass scale of the vortex defined in
Eq. (43), α ¼ t, z and the dimensionless coefficients in the
effective Lagrangian density read

ak;l;m ≡ πm2−l−m
vortex

Z
drr1−lcoskfsinlfðfrÞm: ð50Þ

Since we cannot solve the vortex profile analytically, the
above integrals, a, have to be evaluated numerically. As
they are unitless numbers, they do not depend on the vortex
mass scale when c4 is turned off (c4 ¼ 0). However, when
c4 > 0, they depend on the combination c4m2

vortex. The
numerically evaluated integrals are shown in Table II. Note
that all the integrals in Table II are convergent. As we
observed in the last section, basically the only divergent
integral (for positive values of the indices) is a0;2;0 whose
integrant goes only like 1=r. Once a (positive) factor of
cos f or fr is turned on, there is an exponential falloff of the
integrant and hence the integral converges.
Using the effective theory approach, we can calculate the

halfkink analytically from the effective Lagrangian (49),

χ ¼ −2 arctan e−meffz; ð51Þ

where the effective mass is given by

m2
eff ¼

a2;0;0m2
2

a2;0;0 þ c4m2
vortexða2;2;0 þ a2;0;2Þ þ 2c6m4

vortexa2;2;2
:

ð52Þ

Note that for c4 ¼ c6 ¼ 0, the effective kink mass sim-
plifies to meff ¼ m2. The solution satisfies the boundary
conditions

χð−∞Þ ¼ −π; χð∞Þ ¼ 0: ð53Þ

As all the dimensionless coefficients, a, are positive
definite, the effect of turning on c4 or c6 is a decrease
in the effective kink mass and hence a prolongation of the

kink length. Only the kink mass term has the effect
of contraction of the kink and hence a shortening of the
kink length. This is exactly what one would expect in a
(1þ 1)-dimensional effective theory.
Now with the exact kink solution (51) and the effective

mass (52) at hand, we can calculate the kink length in the
effective field theory framework. The energy density is

Ekink ¼ 2m2
2a2;0;0

m2
vortex

sech2ðmeffzÞ; ð54Þ

from which we can directly calculate

z2E ¼
R
dzz2sech2ðmeffzÞR
dzsech2ðmeffzÞ

¼ π2

12m2
eff

; ð55Þ

giving the length L ∼ π=ð2 ffiffiffi
3

p
meffÞ. Using this result, we

calculate the theoretical result for the kink lengths of the
halfkinks presented in Sec. V B; the result is shown as the
second last column in Table I. The last column in the table
is the same calculation, but with a rescaled prefactor
matched to fit the numerical integration. We can see that
the lengths calculated within the effective field theory
framework matches the full PDE calculation qualitatively,
but quantitatively only within about the 60% level.
We should warn the reader—as explained in Ref. [30]—

that this leading order effective field theory calculation
neglects the backreaction of the kink to the vortex
background.

C. Vortex rings with halfkinks as Skyrmions

In this section we will consider the vortex rings of
Sec. IV, but in the presence of the quadratic kink potential.

1. Singly twisted vortex rings

We start with the single vortex ring, which is the vortex
string twisted once, yielding baryon number B ¼ 1. Since
single the vortex ring is naturally twisted by 2π (in order to
close it), the quadratic kink potential will induce two
halfkinks on the vortex ring. Since the halfkinks are
repulsive to one another, they will naturally reside on
opposite sides of the ring. This incarnation of the Skyrmion
is the final possibility and has not been considered before in
the literature.
Now this configuration is quite nontrivial, because the

single vortex ring does not generally exist; only in the case
of the 2þ 6 model and for large enough vortex potential
mass m. We will therefore only consider the 2þ 6 model
with m ¼ 7 and then turn on the quadratic kink potential
m2 > 0.
In Fig. 22 is shown the vortex ring in the 2þ 6model for

m ¼ 7 and with the quadratic kink potential turned on:
m2 ¼ 3. At the half-maximum level isosurfaces, the ring
looks basically unperturbed by the quadratic kink potential.

TABLE II. Numerically evaluated integrals, a, defined in
Eq. (50).

c4m2
vortex 0 3 8 15

a2;0;0 1.5708 3.6391 5.3157 6.9352
a2;2;0 1.2178 1.1397 1.1232 1.1150
a2;0;2 0.92328 0.97555 0.98732 0.99329
a2;2;2 0.95707 0.36546 0.24404 0.18479
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However, at a closer look, one can see from the xy-slice of
the baryon charge density at z ¼ 0 [Fig. 22(b)] that the
maximum of the baryon charge density now does not form
a ring, but has two maxima; these represent the centers of
the two halfkinks. It is quite interesting to compare this
figure to the xy-slice of the energy density at z ¼ 0
[Fig. 22(c)], which remains unperturbed by the presence
of the quadratic kink potential; the maximum energy
density retains the form of a ring. Finally, in Fig. 22(d)
is shown the isosurfaces at 92% of the maximum values of
the baryon charge density (colored) and energy density
(pink), respectively. Also this figure shows that the energy
density retains the form of a torus, whereas the baryon
charge density oscillates from a larger value—which we
interpret as the center of a halfkink—to a smaller value.3

The halfkinks looking like beads on a ring are half-
Skyrmions.
One may consider the effective field theory approach

also in this case in order to describe the halfkinks. However,
the fact that the energy density remains unperturbed is a
clear indication that there is a strong backreaction from the
kink onto the host vortex ring (Skyrmion).

2. Doubly twisted vortex rings

We now turn to the single vortex ring, twisted twice,
yielding baryon number B ¼ 2. As mentioned in Sec. IV B,
this is the normal Skyrmion of charge B ¼ 2; here however
we turn on both the vortex potential as well as the kink
potential (23). Since the B ¼ 2 vortex ring is twisted twice
along the ϕ direction and the kink potential induces
halfkinks, we expect the resulting vortex ring to host four
halfkinks and again evenly distributed around the ring. In
some sense this vortex ring is simpler than the B ¼ 1 vortex
ring, because it already takes the shape of torus without the

addition of the vortex potential (12). However, in order to
ensure the correct symmetry breaking—as discussed in
Sec. II—we turn on the vortex potential with a larger
coefficient than that of the kink potential: i.e. we take
m > m2. For the sake of comparison with the singly twisted
vortex ring kinks, we choose to use the same values of the
potential parameters, namely m ¼ 7 and m2 ¼ 3; but other
parameters will also yield vortex rings with four kinks for
this B ¼ 2 case.
In Fig. 23 and 24 we show doubly twisted vortex rings

with four halfkinks on their world sheets in the 2þ 4 and
2þ 6 models, respectively. As in the case of the singly
twisted vortex rings, the kinks are not quite visible at the
isosurfaces at the half-maximum baryon charge density
level. From the xy-slices [panel (b) of the figures] we can
see that the kink oscillations are at the 5-10% level of the
baryon charge density. The xy-slices of the energy density
at z ¼ 0 show an interesting difference between the 2þ 4
and the 2þ 6model, namely the kinks are—as in the singly
twisted vortex ring case—not visible from the energy
densities in the 2þ 6 model, whereas in the 2þ 4 model
they are. Finally, we fix the isosurface level-set to match the
oscillation amplitude of the baryon charge density due to
the kinks in panels (d). We can confirm that in the 2þ 4
model the energy density oscillates—and hence shows the
presence of the kinks—whereas in the 2þ 6 model, it does
not. We also see that for the same values of the potential
parameters, m and m2, the oscillation in the baryon charge
density in the 2þ 6 model is almost twice as large in
amplitude as it is in the 2þ 4 model.
In the next subsubsection we will try to compare these

oscillations of the baryon charge densities due to the kinks
in the various cases in the framework of the effective theory
on the vortex ring.

3. Effective theory on the vortex ring

We will again calculate the effective theory for the
“modulus” living on the vortex and for the first time
present the effective theory for the field on the torus.

FIG. 22. Avortex ring with two halfkinks on its world sheet in the 2þ 6model; (a) baryon charge isosurface at half-maximum value of
the baryon charge density (the energy density is slightly smaller and quite similar in shape and hence not shown here), (b) xy-slice of
baryon charge density at z ¼ 0, (c) xy-slice of energy density at z ¼ 0, (d) isosurfaces of baryon charge density (colored) and energy
density (pink) both at 92% of the maximum value of their respective densities. The baryon charge is calculated to be
Bnumerical ¼ 0.99986. For coloring of the baryon charge isosurfaces, see the text. In this figure m ¼ 7 and m2 ¼ 3.

3The shape of the configuration—like beads on a ring—looks
on the surface quite similar to a different model, where we have
constructed half-Skyrmions [21]. The similarity between the two
configurations is, however, only visual.
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This case was mentioned in Ref. [30] but not derived. We
consider the same type of Ansatz as given in Eq. (38), but
substituting the azimuthal coordinate with a field ΦðϕÞ:

ϕT
initial ¼ ðcos f − i sin f cos θ; eiΦ sin f sin θÞ; ð56Þ

and f is now promoted to be a function of the polar angle as
well as the spherical radius: f ¼ fðr; θÞ. After the dust has
settled, we can write

−Leff;kink¼
�
a2;0;0;0
mvortex

þc4mvortexða4;0;0;0þa2;2;0;0þa2;0;2;0Þ

þ2c6a4;2;0;0m3
vortex

�
ð∂αΦÞ2

þm2
2a0;0;0;2
m3

vortex
sin2Φ; ð57Þ

where we have defined the coefficients

ak;l;m;n ≡ 1

2
m3−k−l−m

vortex

Z
drdθ

sin1þnθ

rkþm−2 sin
kþnðfÞflr fmθ :

ð58Þ

Although the exact solutions to the equation of motion
derived from the effective theory (57)

Φϕϕ −m2
eff sin 2Φ ¼ 0; ð59Þ

are known in terms of the Jacobi amplitude related to
elliptic integrals, adjusting the parameters in order for the
solution to match the boundary conditions

Φð0Þ ¼ 0; Φð2πÞ ¼ 2πB; ð60Þ

is somewhat intricate. We therefore choose to consider only
numerical solutions to Eq. (59). The effective mass
(squared) in Eq. (59) is given by

FIG. 24. A doubly twisted vortex ring with four halfkinks on its world sheet in the 2þ 6 model; (a) baryon charge isosurface at half-
maximum value of the baryon charge density (the energy density is slightly smaller and quite similar in shape and hence not shown
here), (b) xy-slice of baryon charge density at z ¼ 0, (c) xy-slice of energy density at z ¼ 0, (d) isosurfaces of baryon charge density
(colored) and energy density (pink) both at 91.5% of the maximum value of their respective densities. The baryon charge is calculated to
be Bnumerical ¼ 1.9991. For coloring of the baryon charge isosurfaces, see the text. In this figure m ¼ 7 and m2 ¼ 3.

FIG. 23. A doubly twisted vortex ring with four halfkinks on its world sheet in the 2þ 4 model; (a) baryon charge isosurface at half-
maximum value of the baryon charge density (the energy density is slightly smaller and quite similar in shape and hence not shown
here), (b) xy-slice of baryon charge density at z ¼ 0, (c) xy-slice of energy density at z ¼ 0, (d) isosurfaces of baryon charge density
(colored) and energy density (pink) both at 95.5% of the maximum value of their respective densities. The baryon charge is calculated to
be Bnumerical ¼ 1.9997. For coloring of the baryon charge isosurfaces, see the text. In this figure m ¼ 7 and m2 ¼ 3.
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m2
eff ≡

�
m2

2

2m2
vortex

�
a0;0;0;2

a2;0;0;0 þ c4m2
vortexða4;0;0;0 þ a2;2;0;0 þ a2;0;2;0Þ þ 2c6m4

vortexa4;2;0;0
: ð61Þ

Instead of measuring the kink length, in this case we will
consider the baryon charge density in the effective field
theory framework; in particular, we see from the last
section that the kink potential induces an oscillation in
the baryon charge density as we go around the azimuthal
angle. In terms of the effective theory, we get

B ¼ −
1

π2
a2;1;0;0Φϕ; ð62Þ

from which the total baryon charge is calculated as
B ¼ R

dϕB. We can easily confirm the qualitative behavior
by inspecting the effective theory (57) and using the fact
that the baryon charge density is proportional to the
azimuthal derivative of Φ; namely that there will be 2B

maxima of the baryon charge density on the vortex
ring.
As a more quantitative comparison, let us calculate the

relative difference between the maximal and minimal
baryon charge density on the torus. For this we need to
evaluate the effective field theory coefficients (58). We use
the numerical solution in Sec. IVas basis for the evaluation
of said coefficients and the results are given in Table III.
Calculating the oscillation amplitude numerically within

the effective theory, we can estimate the lowest value of the
baryon charge density on the ring; for simplicity we
normalize the maximum baryon charge density to unity.
The result is shown in Table IV. We can see that the
effective theory estimate is quite good in the case of the
2þ 4 model, whereas in the 2þ 6 model the effective
theory overestimates the oscillation amplitudes by more
than a factor of two.
Let us warn the reader that in the true calculation, the

profile function f is not an axially symmetric function in
the presence of the kink. In principle all fields become
functions of ðr; θ;ϕÞ. In the full PDE calculations, there is
no Ansatz and so all fields depend on all coordinates. The
effective theory is simply an approximation, valid when
m2 ≪ m; however for practical calculations, we can barely
observe the oscillation in the PDE results if we take such
small kink masses. Nevertheless, even though we use a
sizable kink mass, the effective theory managed to repro-
duce the quantitative oscillation in the 2þ 4 model within
the one-percent level.
Finally, and most important, the effective field theory

captures the qualitative behavior of the system quite well,
although the quantitative comparisons are not all very
precise at this level of leading order effective theory.

VI. DISCUSSION AND CONCLUSION

In this paper we have demonstrated that vortex strings
can be constructed in a simpler potential than that of BEC
type used previously. We constructed both straight vortices
as well as vortex rings with baryon numbers one and two.
All these vortices were then embedded with sine-Gordon-
type halfkinks, both numerically and in the effective field
theory approach. We find that only the 2þ 6 model has a
ring-like structure for at single vortex twisted once when
the vortex potential is turned on, whereas both the 2þ 4
model and the 2þ 6 model have ring-like structure for
doubly twisted vortices (B ¼ 2). An interesting observation
is that in the 2þ 6 model, the energy density of the vortex
rings for both baryon number one and two (B ¼ 1, 2) does
not reveal the kink structure living on its worldline, whereas
the baryon charge density does show an oscillation due to

TABLE III. Numerically evaluated coefficients, a, for the
effective theory.

Singly twisted vortex ring in the 2þ 6 model

a2;0;0;0 a4;0;0;0 a2;2;0;0 a2;0;2;0 a4;2;0;0 a0;0;0;2
12.47 � � � � � � � � � 0.03178 193.4

Doubly twisted vortex ring in the 2þ 4 model

a2;0;0;0 a4;0;0;0 a2;2;0;0 a2;0;2;0 a4;2;0;0 a0;0;0;2
14.86 0.8817 1.715 0.04187 0.1163 144.0

Doubly twisted vortex ring in the 2þ 6 model

a2;0;0;0 a4;0;0;0 a2;2;0;0 a2;0;2;0 a4;2;0;0 a0;0;0;2
12.79 � � � � � � � � � 0.01319 326.4

TABLE IV. Oscillation amplitudes due to halfkinks on the
world sheet of vortex rings measured in the baryon charge
density; the PDE calculations are compared to the effective field
theory predictions.

Singly twisted vortex ring in the 2þ 6 model

meff ðBmin=BmaxÞPDE ðBmin=BmaxÞEFT
0.560 0.920 0.732

Doubly twisted vortex ring in the 2þ 4 model

meff ðBmin=BmaxÞPDE ðBmin=BmaxÞEFT
0.367 0.955 0.967

Doubly twisted vortex ring in the 2þ 6 model

meff ðBmin=BmaxÞPDE ðBmin=BmaxÞEFT
0.862 0.915 0.830
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said halfkinks. However, the 2þ 4 model does not have
this feature in common with the 2þ 6 model so both the
energy density and the baryon charge density oscillates on
the vortex rings when kinks are embedded in the 2þ 4
model. Our effective theory approach to leading order has
been compared to full PDE calculations and at the
qualitative level it works quite well; however, at the
quantitative level, it can predict numerical quantities only
within a factor of less than two. There are two reasons for
this, first we made some rough assumptions about the
dependencies of the fields when constructing the effective
theory and second we did not consider any backreaction
from the kinks onto its host soliton.
One future development could be to consider more

precise effective field theories on solitons, in particular
taking backreaction and massive modes into account. An
interesting question in this direction concerns the (de-)
stabilization at next-to-leading order of lumps on domain
walls [39,40].
In Refs. [12,13] we considered the linear kink potential

−ℜϕ2 on equal footing with the quadratic kink potential
−ðℜϕ2Þ2, considered in this paper. In the latter references
the linear kink potential was treated as a small perturbation;
however, mathematically, the linear kink potential intro-
duces a tiny shift in the vacuum, technically complicating
the topological structure of the vortex solution; in particular
in conjunction with the interpretation of the Skyrmion
being absorbed into the vortex string. Although we have not
studied the exact details, we expect the exact solution to
have two strings, one big and one very tiny, in the situation
where a unit-charge Skyrmion is absorbed into the string
and this effect is expected to break the axial symmetry of
both vortices. Of course, in the approximation of a small
perturbation (m2 ≪ m), the effect is so small that it is
practically unobservable. However, if one considers a
sizable coefficient of the linear kink potential, m2 ≲m,
then this effect should become visible. We will leave this
interesting effect for future studies.
By embedding U into an SLð2;CÞ matrix M, one can

construct a supersymmetric Skyrme model [41]. The
bosonic part of the action contains the Skyrme term but
no kinetic term as is the case of the supersymmetric BPS
baby Skyrme model [42–44]. The potential Vvortex ∝
Tr½σ3; U�2 considered in this paper can be obtained by a
twisted dimensional reduction along one compactified
spatial direction, implying that such a potential term can
be made supersymmetric. In such a theory, vortices may be
BPS, preserving some fraction of supersymmetry, which is
possibly of a compacton type like BPS baby Skyrmions
preserving 1=4 of supersymmetry [44,45].
Recently, some progress has been achieved in deepening

our understanding of black hole Skyrme hair. In particular,
Refs. [46,47] show that the Skyrme term is a necessity for
having stable black hole scalar hair, whereas the sixth-order

derivative term is unable to stabilize the system; in our
terminology the 2þ 4 model allows for stable black hole
hair, but the 2þ 6model does not. Axially symmetric black
hole Skyrme hair configurations have been studied in
Refs. [48,49]. It would be interesting to study whether
the vortex rings constructed in this paper could be black
hole hair with a fractional vortex charge. This would have
to be in the 2þ 4 or 2þ 4þ 6 model. We will leave this
problem for future studies.
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APPENDIX: STRING SPLITTING FOR HIGHER
VORTEX NUMBERS

In this appendix we consider a charge-two vortex
(n ¼ 2) curled up once to be a vortex ring of baryon
charge B ¼ 2. This is in contrast to the single vortex
(n ¼ 1) twisted twice to give a stable B ¼ 2 torus-like
Skyrmion, as shown in Sec. IV B. We expect, in view of the
studies of Ref. [14] which uses instead the BEC-type
potential to create vortices, that the vortex rings with
vortex charge larger than one are unstable. To confirm
this expectation in this model, i.e. with the potential (12),
we performed various calculations for different values
of m.
Figures 25 and 26 show the cooling-time evolution of the

charge-two vortex compactified to a B ¼ 2 Skyrmion, for
m ¼ 0 and m ¼ 5, respectively. Both configurations are
created with the Ansatz (42) and both configurations split
up into two disconnected single (B ¼ 1) Skyrmions. Note
that the m ¼ 0 configuration simply splits into two spheri-
cal Skyrmions, whereas the m ¼ 5 one turns into a distinct
torus-like object before it splits up into single Skyrmions.
The two single Skyrmions are slightly torus-like form ¼ 5,
which however look like squashed spheres at the level of
isosurfaces at half-maximum values of the baryon charge
density, see Fig. 6.
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