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We have argued previously, based on the analysis of two-dimensional stringy black holes, that
information in stringy versions of four-dimensional Schwarzschild black holes (the singular regions of
which are represented by appropriate Wess-Zumino-Witten models) is retained by quantumW symmetries
when the horizon area is not preserved due to Hawking radiation. It is key that the exactly marginal
conformal world-sheet operator representing a massless stringy particle interacting with the black hole
requires a contribution from W∞ generators in its vertex function. The latter correspond to delocalized,
nonpropagating, string excitations that guarantee the transfer of information between the string black hole
and external particles. When infalling matter crosses the horizon, these topological states are excited via a
process: (stringy black hole)þ infalling matter→ (stringy black hole)⋆, where the black hole is viewed as a
stringy state with a specific configuration ofW∞ charges that are conserved. Hawking radiation is then the
reverse process, with conservation of the W∞ charges retaining information. The Hawking radiation
spectrum near the horizon of a Schwarzschild or Kerr black hole is specified by matrix elements of higher-
order currents that form a phase-spaceW1þ∞ algebra. We show that an appropriate gauging of this algebra
preserves the horizon two-dimensional area classically, as expected because the latter is a conserved
Noether charge.
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I. INTRODUCTION AND SUMMARY

The black-hole information problem was posed by the
discoveries by Bekenstein [1] and Hawking [2] that four-
dimensional black holes have thermodynamical properties
such as temperature and nonzero entropy and so must be
described by mixed quantum-mechanical states. These
discoveries led Hawking [3], in particular, to suggest that
information would be lost across the black-hole horizon,
giving rise to a transition from a pure to a mixed state.
String theory has provided an explicit theoretical laboratory

for probing the black-hole informationproblem, notablyusing
the two-dimensional black-hole solution found by Witten [4]
that has an SU(1,1)/U(1) coset structure [5,6], coupled with
dualities [7], and subsequently using four-dimensional stringy
black holes constructed using D-branes [8,9]. We argued [10]

that two-dimensional black holes carry an infinite set of
quantum numbers associated with a W∞ symmetry and that
these W charges preserve the lost information in principle,
though this information could not in practice be extracted.
These observations apply also to spherically symmetric four-
dimensional stringy black holes [11], which have horizons of
which the geometry is also encoded in an SU(1, 1)/U(1) coset
structure that possesses a similar W∞ symmetry and an
associated infinite set of W “hair” [12].
D-brane constructions provide examples of four-

dimensional black holes of which the microstates could
be counted explicitly [8], with results consistent with the
Bekenstein-Hawking entropy, suggesting again that the
“lost” information was retained in principle. However, there
were still questions how this information was transferred
from external particles to these microstates, how it was
stored, and whether the information retained by the micro-
states could in practice be extracted from observations of
radiated particles.
An interesting, complementary approach to the black-

hole information problem has been taken recently by
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Strominger and collaborators [13,14]. They have argued
that spherically symmetric four-dimensional black holes
carry a previously undiscussed infinite set of soft gravita-
tional hair associated with Bondi-van-de-Burg-Metzner-
Sachs (BBMS) supertranslations and super-rotations
[15–17] on the retarded null infinity Iþ. These correspond
to vacua that differ by the addition of soft gravitons that
could in principle be measured via the gravitational
memory effect. Hawking, Perry, and Strominger (HPS)
[17] also discuss in detail an analogous infinite set of
inequivalent electromagnetic gauge configurations corre-
sponding to soft electromagnetic hair that differ by the
addition of soft photons and could also be distinguished in
principle by measurements.1 Assuming additionally that
soft hair localized spatially to much less than the Planck
length would not be excited in a physical process, HPS
found [17] an effective number of soft degrees of freedom
proportional to the horizon area, like the Hawking-
Bekenstein entropy. At the present stage of this proposal,
it is unclear whether supertranslations and the correspond-
ing super-rotations and electromagnetic gauge configura-
tions can encode the information carried by the incoming
particles [19], and HPS did not claim to have resolved the
information paradox. Moreover, the connection between
this approach and one based on stringy black holes is not
apparent, and it is the latter approach that we adopt in
this paper.
In contrast to the recent work of ‘t Hooft [20], we base our

work on string theory at a fundamental level. Our analysis
below of supertranslations on the horizon, viewed as the
recoil of a D-brane induced by infalling matter, is more
similar in spirit to the recent work of Polchinski [21], in
which a shock-wave approximation was used to calculate the
shift of a generator of the horizon caused by an incoming
wave packet. We recall also the work of Refs. [22,23] where
the fluctuation of the black-hole horizon induced by infalling
matter is argued to play an important role in retaining
information. In this connection, we recall that in string
theory the interaction of a massless particle with a black hole
is represented by a conformal operator on the world sheet of
the string, which is exactly marginal if and only if con-
tributions from W∞ generators are included in its vertex
function [6,24]. The corresponding renormalization-group
(RG) β function would be nonzero without these contribu-
tions, leading to a monotonic increase in entropy.
As reviewed recently in Ref. [25], we consider W1þ∞

symmetry [26,27] to be essential for “balancing the black-
hole information books.” This symmetry is manifest in the
effective two-target-space dimensional string theories that
describe the excitations in the near-horizon geometry of a
spherically symmetric stringy black hole. It is larger than
the symmetry group of supertranslations, and we consider

that the latter are insufficient to retain fully the black-
hole information. The purpose of this article is to study
further the role of these W∞ symmetries in retaining
information and to establish a connection with the work
of Refs. [28,29], in which the spectrum of Hawking
radiation is related to matrix elements of such an infinite-
dimensional W∞ algebra. In this connection, we recall
[10,24] that w∞ (the classical limit of the quantum W∞
symmetry) is the algebra of transformations that preserve
the two-dimensional phase-space volume of massless
(“tachyonic”) stringy matter propagating in the background
of a stringy black hole.
The quantum version of this w algebra is a symmetry of

the quantum scattering matrix of the corresponding two-
dimensional string theory [6,30], in the sense that the
operator product expansion between two appropriate vertex
operators reproduces the corresponding W algebra. In the
flat space-time case (where the string theory is just a two-
dimensional Liouville theory), the operators corresponding
to the discrete higher-spin operators of the W algebra are
discretized tachyon operators. However, as already men-
tioned, in the presence of a black hole, at the quantum level,
the corresponding W∞ symmetries necessarily mix mass-
less and massive stringy states that are topological and
delocalized [6]. The admixture of W∞ generators in the
exactly marginal vertex operator of a massless string
excitation makes manifest the transfer of information
between a stringy black hole and external particles.
In addition to its spectrum, another important feature of

the Hawking radiation is its sparsity at asymptotic infinity.
This feature can be explained by viewing the black holes as
“particles” and the Hawking radiation process as successive
two-body decays [31]. As we shall see, such a picture
emerges naturally in string theory, but with essential
differences, since the black holes are represented as string
states that are completely integrable, due to their infinity of
conserved W∞ charges.
In this article, we synthesize these ideas from a current

perspective. In Sec. II, we review the properties and
formalism underlying two-dimensional stringy black holes
and their embedding in four-dimensional space-times,
using them to represent spherically symmetric black-hole
configurations in four space-time dimensions. The under-
lying two-dimensional coset structure of the singularity is
essential for the complete integrability of these systems and
the retention of information via the corresponding w∞
space-time symmetry current algebras that characterize
them. A review of these symmetries and the construction
of the corresponding currents in terms of discrete higher-
spin string states is also given in this section. We also
review in this context our approach to quantifying
information loss by representing entropy increase in an
evaporating black hole in string theory as world-sheet
renormalization-group flow between fixed points in the
stringy world-sheet field theory space. We also mention

1See, however, Ref. [18] for a critical discussion and references
to earlier work.
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briefly the case of a string-inspired infinitely colored
SUð∞Þ black hole [32], where the conserved entropy is
linked classically to a w∞ symmetry living on the horizon
and preserving its area [25,33,34]. This property is con-
sistent with viewing the classical black-hole area as a
conserved Noether charge [35]. In Sec. III, we discuss
Hawking radiation in generic four-dimensional spherically
symmetric black holes and its link [28] with another form
of W1þ∞ phase-space symmetry algebra associated with
higher-spin currents that correspond to fluxes of Hawking
radiation in the effective two-dimensional field theory
representation of the Hawking radiation thermal spectrum
in the near-horizon geometry. We compare the situation
with our stringy case, which involves nonthermal higher-
spin discrete delocalised states, also associated with phase-
spaceW1þ∞ algebras. In Sec. IV, we discuss the gauging of
this algebra and its connection with the preservation of the
horizon area at the classical level, interpreted as the
conservation of a Noether charge, with some technical
details provided in the Appendix. Our conclusions are
presented in Sec. V where, in view of the role of W
symmetries in preserving information during matter infall
or Hawking radiation, the evaporation of the stringy black
hole is viewed as successive two-body decays.

II. STRINGY BLACK HOLES, W1þ∞ SYMMETRY
ALGEBRAS AND INFORMATION RETENTION

A. Two-dimensional stringy black holes as prototypes

The stringy black hole in two dimensions [4] can be
formulated as a world-sheet Wess-Zumino-Witten σ-model
on the coset space SLð2; RÞk=Uð1Þ, where k ¼ 9=4 is the
Kac-Moody algebra level. The two-dimensional target-
space metric induced by the conformal invariance condition
for this world-sheet σ-model corresponds to a Euclidean
black-hole background

ds2 ¼ dr2 þ tanh2rd~θ2; ð1Þ

where r is a radial coordinate and ~θ is a compact “angular”
coordinate that plays the role of an external temperature
variable. The Euclidean space-time (1) looks like a semi-
infinite cigar.
Far away from the singularity, this space-time is asymp-

totically flat, and the corresponding string theory is a c ¼ 1
two-target-dimensional (2D) ðX; ρÞ Liouville theory with a
spacelike Liouville mode ρ and a central charge deficit
Q ¼ 2

ffiffiffi
2

p
. In this asymptotic theory, the tachyon field

operator is the standard “massless matter” operator of the
2D Liouville theory [30],

T�ðpÞ ¼ eipXþð�jpj− ffiffi
2

p Þρ; ð2Þ
which describes a positive-norm physical state. The spec-
trum also contains discrete higher-spin J ¼ 0; 1

2
; 1; 2;…

states with the third component of the internal angular
momentum M ¼ f−J;−J þ 1;…; J − 1; Jg, which also
have positive norm, with vertex operators having the
asymptotic forms

ψ ð�Þ
J;M ∼ ðH−ÞJ−Mψ ð�Þ

J;J ∼ ðHþÞJþMψ ð�Þ
J;−J;

H� ¼
Z

dz
2πi

Tþð�
ffiffiffi
2

p
Þ; ð3Þ

where ∼ denotes a normalization factor, H� represents the
zero modes of the ladder operator of the SU(2) Kac-Moody
currents at the self-dual radius of the c ¼ 1 conformal field

theory, and ψ ð�Þ
J;�J ¼ Tð�Þð� ffiffiffi

2
p

JÞ.
The operator products (OPs) of these asymptotic discrete

states form a classical w∞ algebra [30],

Z
dz
2πi

ψþ
J1;M1

ðzÞψþ
J2;M2

ð0Þ

¼ ðJ2M1 − J1M2Þψþ
J1þJ2−1;M1þM2

ð0Þ þ � � � ; ð4Þ

where the � � � are explained below. This symmetry algebra
leads to an infinity of conserved currents and charges and
can be used to construct the (nonlocal) effective action in
the c ¼ 1 2D target-space Liouville theory [30,36] and its
matrix-model extension [37]. The classical w∞ symmetry is
elevated at the quantum level to a W1þ∞ algebra with a
central extension, where the extra subscript “1” is due to the
inclusion of a U(1) spin-1 current.
The c ¼ 1 theory has also zero-norm (ghostlike) discrete

gauge states (DGSs), which, as explained in Ref. [38], also
satisfy the physical-state Virasoro-operator conditions, like
the positive-norm discrete states, and represent the same
W1þ∞ algebra as the positive-norm states. These gauge
states have discrete momentum values corresponding
exactly to the physical positive-norm discrete states.
Detailed formulas for these discrete states are given in
Ref. [38] and will not be repeated here. For information, we
give the expression for one class of these states, in the ψþ
sector,

Gþ
J;M ¼ ðJ þM þ 1Þ−1

Z
dz
2πi

ðψþ
1;−1ðzÞψþ

J;Mþ1ð0Þ

þ ψþ
J;Mþ1ðzÞψþ

1;−1ð0ÞÞ; ð5Þ

where the … on the right-hand-side of (4) correspond to
ambiguities in the addition of such DGSs.
It can be shown [38] that the right-hand-side of (5)

[and all other discrete states in the (−) sector] can be
expressed in terms of products of Shur polynomials
Skðf− i

k

ffiffiffi
2

p ∂k
zXð0ÞgÞ, with Sk defined through
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exp

�X∞
k¼1

akxk
�

¼
X∞
k¼0

SkðfakgÞxk;

fakg≡ fai∶i ∈ Zkg; ð6Þ

with Sk ¼ 0 for k < 0. The presence of ∂k
zX terms implies

[26] that the OP of the DGS operators obeys a (classical)
w∞ symmetry algebra of the form (4) [38]:

Z
dz
2πi

Gþ
J1M1

ðzÞGþ
J2M2

ð0Þ

¼ ðJ2M1 − J1M2ÞGþ
J1þJ2−1;M1þM2

ð0Þ: ð7Þ

The DGSs are the carriers of the conserved w∞ charges.
They decouple from the correlation functions of the
physical states and can be considered as the symmetry
parameters of the theory.
In the specific context of strings propagating in target-

space black-hole backgrounds, the massless matter particle
(tachyon) is associated with the vertex operator,

ϕc;−c
−1=2;0;0 ¼ ðgþþg−−Þ−1

2F

�
1

2
;
1

2
; 1;

gþ−g−þ
gþþg−−

�
; ð8Þ

where F denotes a hypergeometric function and gab, a; b ¼
þ;− represent the components of a generic SL(2, R)
element. The asymptotic form of this operator gives the
massless tachyon vertex operator of the c ¼ 1 two-
dimensional string theory.
This operator is exactly marginal only in the flat-space

two-dimensional string theory. In the presence of a
Euclidean black-hole background (or Minkowski, the latter
being obtained by analytic continuation of the compact
“temperature” variable in the cigar metric of Ref. [4]), the
corresponding exactly marginal operator is [6]

L1
0L̄0

1 ¼ ϕc;−c
−1=2;0;0 þ iðψþþ − ψ−−Þ þ � � � ; ð9Þ

where

ψ�� ≡ ∶ðJ̄�ÞNðJ�ÞNðg��Þjþm−N; ð10Þ
with J� ≡ ðk − 2Þðg�∓∂zg�� − g��∂zg�∓Þ and J̄� ≡
ðk − 2Þðg∓�∂ z̄g�� − g��∂ z̄g∓�Þ, where k is the Wess-
Zumino level parameter [4]. The combination ψþþ −
ψ−− generates a level-1 massive string mode, and the dots
in Eq. (9) represent operators that generate higher-level
massive string states.
Another example of an exactly marginal operator is

L2
0L̄0

2 ¼ ψþþ þ ψ−− þ ψ−þ þ ψþ− þ � � �, which also
involves in an essential way operators for massive string
modes. The coupling corresponding to this world-sheet
deformation of the coset model is associated with a global
rescaling of the target space-metric [6] and therefore to a
global constant shift of the dilaton field. Thus, it produces
shifts in the black-hole mass [4], which is of relevance for

the discussion of an evaporating black hole with a time-
dependent mass.2

As discussed in Refs. [10,24], these modes are solitonic,
with fixed energy and momentum. As such, they are
completely delocalized in space-time. The vertex operators
describing these discrete positive-norm states satisfy a
W1þ∞ symmetry algebra [with the inclusion of a vector
spin-1 U(1) current], which is the gauge symmetry of
the string theory in the black-hole background. The
conserved W charges are carried by the corresponding
discrete gauge states (with zero norm), the asymptotic
forms of which coincide with the discrete gauge states of
Ref. [38] [cf. Eq. (5)].

B. World-sheet renormalization-group flow, time and
the increasing entropy of evaporating black holes

Since the flat-space tachyon vertex operator (8) is not
exactly marginal in a black-hole background, the corre-
sponding world-sheet RG β function is nonvanishing. This
induces world-sheet renormalization-group flow in the
noncritical string theory model of a quantum black hole,
which can be identified with the entropy increase rate of an
evaporating black hole in string theory, as we now
review [24].
The pertinent world-sheet action has deformations of

the form

Sσ ¼ S⋆σ þ
Z
Σ
d2ξ

ffiffiffiffiffiffi
−γ

p
giVi; ð11Þ

where S⋆σ is a conformal fixed-point σ-model action,
summation over repeated indices is implied, γ is a
world-sheet metric, and fgig is an (infinite in general)
set of target-space fields associated with the corresponding
vertex operators Vi. In a two target-space-dimensional
setting, where we start our discussion for instructive
purposes [10,24], the only propagating multiplet consists
of massless scalar fields (misleadingly called tachyons),
whereas the graviton and (the infinity of) higher-spin
multiplets are topological “massive” states with discrete
momenta. As we discussed in Ref. [11] and review later in
this article, such topological states exist also in higher-
dimensional target space-times, so their presence is rather
generic.
Introducing a global world-sheet RG scale μ, and

defining T ≡ ln μ, we consider renormalized world-sheet
couplings gi, “running” with T , according to the following
world-sheet RG equation,

2In the two-dimensional case, the horizon has no area, whereas
in the four-dimensional case discussed later, the area, and hence
the entropy, is proportional to the mass. The fact that mass
and hence entropy are changed by L2

0L̄0
2, which is not an

invariant of W1þ∞, is a consequence of the observation that
W1þ∞ symmetry is required for information retention and hence
entropy conservation.
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dgi

dT
≡ βi; ð12Þ

where βi is the RG β function for the “coupling” gi of the
two-dimensional world-sheet field theory.3

The presence of relevant deformations in the world-sheet
σ model, when only the propagating modes of the string
multiplet are taken into account, calls for Liouville dressing
[39]. This requires introducing an extra σ-model field, the
Liouville mode ρ that, for supercritical deformations such
as those in the black-hole case of interest [11], has a target
timelike signature, and may be identified with target time,
flowing irreversibly [24]. The Liouville mode can be
viewed as a local RG scale, as required because the string
world sheet is generally curved. For a nonmarginal cou-
pling gi, e.g., a massless tachyon field in the target-space of
the two-dimensional field theory in the vicinity of a
spherically symmetric stringy black hole, the Liouville
RG equation replacing (12) is given by [39]

g̈i þQðρ0Þ_gi ¼ −βiðgÞ ¼ −Gij δV½g�
δgj

; _A≡ d
dρ0

A; ð13Þ

where the overdot denotes a derivative with respect the
Liouville world-sheet zero mode ρ0 (with a canonically
normalized term in the world-sheet action [39]); β is the
world-sheet RG function for the (relevant) coupling gi,
given by (12), expressed as a gradient of an effective
target-space potential for the fields/couplings fgjg; and Gij

is the Zamolodchikov metric in the space of string theory
models [24]. The quantity Qðρ0Þ is the square root of the
central charge deficit Q2, which is > 0 for supercritical σ
models [24,40].
Upon identifying (see Ref. [24]) the flow of the world-

sheet zero mode of the Liouville field with the opposite
flow of the RG scale T and of the target time (for the
supercritical string case, as explained in detail in Ref. [24]),

t ¼ −T ð¼ −ρ0Þ; ð14Þ

and taking into account [40] that in the case of bosonic
target-space background fields gi there are tachyonic mass
shifts in their dispersion relations, i.e., terms in the potential,

V½g�boson∋ −
1

2
Q2gigjδij; ð15Þ

one may move half of this term to the left-hand side of the
Liouville RG equation (13). One may then write the

Liouville flow as an equation of motion for the fields gi

obtained from a one-dimensional gauge theory with time
(and only) component of the gauge potential 2A0 ¼ iQðtÞ,

LLiouv ¼ ðDtgiÞ†GijDtgj − ~V½g�; Dt ¼ ∂t − iA0ðtÞ; ð16Þ

where † denotes Hermitian conjugation and ~V contains the
remaining part of the tachyonic mass shift terms of the form
− 1

4
Q2gigjδij along with the rest of the interaction terms for

the fields gi. We shall make use of (16) when we discuss
scalar modes of Hawking radiation in the horizon of a
spherically symmetric black hole.
We also remark that, upon the identification (14) in a

noncritical string theory [24], the effective central charge
C½g� ¼ Q2 obeys an irreversible flow equation,

d
dρ0

Q2 ¼ −
d
dt

Q2 ∼ −βiGijβ
j < 0; ð17Þ

provided the Zamolodchikov metric is positive definite.
This happens in string theories with constant dilaton
backrounds and in Euclidean target space-times, as used
to describe a finite-temperature black-hole space-time.
Given that the central charge counts the degrees of

freedom of a system, the relation (17) implies that the
system flows toward an increase of its degrees of freedom
(and thus its entropy) as time t progresses, or equivalently
during the evolution from infrared to ultraviolet on the
world sheet,whenever a string propagates in a nonconformal
background. Hence, the entropy associated with massless
“matter” increases inexorably, i.e, information is lost, if the
higher-level stringmodes in (9) are neglected. Conversely, if
the discrete solitonic string modes (9), (10) are taken into
account, the corresponding RG β function vanishes, and
entropy does not increase with the world-sheet RG flow,
which we identify with the target-space temporal time flow
in our approach. Thus, there is no information loss; it is
stored by the higher-level string modes.
These topological modes are not detectable in a local

scattering experiment, leading to an apparent “loss” of
quantum coherence, which is an artifact of the phenom-
enological truncation of the scattering process within a
local effective field theory framework. Associated with
this apparent loss of quantum coherence, there is an
apparent “increase” in entropy at a rate quantified by the
right-hand side of (17), since the truncated RG βi functions
of the nonmarginal propagating modes do not vanish.
Nevertheless, the conserved W-hair charges are in principle
measurable, and ways for doing so in principle have been
outlined in Ref. [11].

C. Embedding of the two-dimensional black hole in four
space-time dimensions

The coset singularity structure of the two-dimensional
stringy black hole and generic properties of its associated

3More strictly speaking, in string theory, the target-space
dependences of the couplings gi imply some diffeomorphism
variations, which lead to the replacement of the corresponding
RG functions βi by the corresponding Weyl anomaly coefficients,
but such complications are not relevant for our main arguments
below, so we omit them here. For details, see Ref. [10].
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discrete states have counterparts for spherically symmetric
black-hole configurations in four space-time dimensions.
This can be seen by embedding the two-dimensional coset
describing the singularity in a four-dimensional space-time
[11] with the structure SUð1; 1Þ=Uð1Þ ⊗ S2, where S2 is a
two-dimensional manifold with the topology of the sphere
that is to be identified with the horizon of the four-
dimensional black hole. This enables us to place our
arguments on the importance of W∞ symmetries in a more
generic perspective.
To see this, consider a spherically symmetric gravitational

background of black-hole type, which is a solution of the
generalized Einstein equations in the effective field theory
derived from string theory. The metric tensor takes the form

ds2 ¼ gαβdxαdxβ þ eWðr;tÞdΩ2; ð18Þ

whereWðr; tÞ is a nonsingular function, the r, t coordinates
are denoted by xα;β, and the line element on a fixed spherical
surface is denoted by dΩ2 ¼ dθ2 þ sin2 θdϕ2. The standard
Schwarzschild solution describing a spherically symmetric
four-dimensional black hole can be cast in the form (18) with
an appropriate transformation of variables.
When written in Kruskal-Szekeres coordinates, the

Schwarzschild solution takes the form [41]

ds2 ¼ −
32M3

r
e−

r
2Mdudvþ r2dΩ2; ð19Þ

where r is a function of u, v, given by

�
r
2M

− 1

�
e

r
2M ¼ −uv: ð20Þ

Although the two-dimensional metric components depend
on the variables u, v, the black-hole solution is nevertheless
static.4 Changing variables to

e−
r
4Mu ¼ u0;

e−
r
4Mv ¼ v0; ð21Þ

we can write the two-dimensional metric in the form

gbhðu0; v0Þ ¼
eDðu0;v0Þdu0dv0

1 − u0v0
; ð22Þ

with the scale factor being given by 16M2e−
r0ðu0 ;v0Þ

2M Jðu0; v0Þ,
where r0 is the coordinate r reexpressed in terms of the
coordinates u0, v0, and J is the Jacobian of the

transformation of the area element dudv. The metric
(22) is a conformally rescaled form of Witten’s two-
dimensional black-hole solution [4]. The latter is described
by an exact conformal field theory, so the same is true after
this conformal rescaling, which simply represents a change
of renormalization scheme according to the σ-model point
of view. The function Dðu; vÞ in (22) can also be regarded
as part of the two-dimensional dilaton in the given
renormalization scheme.
The global properties, such as singularities, are the same

as in the two-dimensional string case. In particular, the
infinite-dimensional W symmetry associated with the
SU(1, 1)/U(1) coset structure of the dilaton-graviton sector
in the two-dimensional model is also a model-independent
feature of spherically symmetric four-dimensional string
configurations. Such structures are associated with topo-
logical solitonic nonpropagating states, which are spheri-
cally symmetric solutions of the low-energy equations of
motion obtained from string theory in a manifold with
topology SUð1; 1Þ=Uð1Þ ×M2, where M2 is a two-
dimensional manifold of constant curvature. They corre-
spond to jumps in the number of degrees of freedom at
discrete energy-momentum values, resulting from the
relaxation of certain gauge theory constraints, as shown
below. The simplest example of such a manifold is where
M2 ¼ S2, which describes a spherically symmetric four-
dimensional black hole. The infinite number of associated
discrete topological (nonpropagating) states, with discrete
energy-momentum values, couple to the massless propa-
gating tachyon string matter and render the associated
σ-model action conformally invariant, as in the two-
dimensional stringy black hole [4], described above.
A w∞ symmetry also arises in the phase space of matter

coupled to another example of a two-dimensional string
theory embedding in four dimensions [9], namely a four-
dimensional extremal solitonic black-hole background in
the context of N ¼ 2, D ¼ 4 supergravity. This is a BPS
(Bogomolnyi-Prasad-Sommerfeld) solution that interpo-
lates between an AdS2 ×H2 geometry (where AdS2 refers
to the radial-coordinate/time part of the space-time and H2

is a hyperbolic two-dimensional manifold of constant
curvature describing the angular part of the space-time)
that characterizes the space-time near the horizon of the
black hole and a maximally supersymmetric AdS4 space-
time at large radial distances. It was shown in Ref. [9] that a
quantum-mechanical massive particle with nontrivial mag-
netic charge in the near-horizon geometry has dynamics
described by a one-spatial-dimensional Hamiltonian H,
with a w∞ symmetry that preserves the two-dimensional
phase-space area symplectic form Ω ¼ dp∧dq − dH∧dt,
where q is the spatial coordinate, p is the canonical
momentum and t is the time.
The energy spectrum of this particle is continuous and

bounded from below, E > 0, but the ground state is non-
normalizable, with an IR divergence, which was regularized

4Moreover, in pure gravity, all the classical spherically
symmetric solutions to the equations of motion obtained from
higher-derivative gravitational actions with an arbitrary number
of curvature tensors are static [42], and a similar result holds for
stringy black holes at tree level.

ELLIS, MAVROMATOS, and NANOPOULOS PHYSICAL REVIEW D 94, 025007 (2016)

025007-6



in Ref. [9] by putting the system in a box. The IR-regularized
system is also invariant under a w∞ that contains a Virasoro
symmetry (26), which can be associated with the asymptotic
symmetries of the AdS2 space-time, i.e., the diffeomor-
phisms that leave invariant the AdS2 metric, the quantum
version of which includes a central extension. Such asymp-
totic symmetries are symmetries of the quantum-gravity
scattering matrix for the full four-dimensional AdS2 ×H2

extremal black hole of Ref. [9].5

The particle system in this example is characterized by
an infinite set of conserved charges corresponding to
diffeomorphisms preserving a two-dimensional symplectic
area two-form Ω defined for the “coordinates” x, y:

Ω ¼ dy∧dx: ð23Þ
These area-preserving diffeomorphisms are generated by
the quantities

vlm ¼ ylþ1xlþmþ1; ð24Þ
where l and m are integers. The Poisson brackets of these
generators satisfy the classical w∞ algebra

fvlm; vl0
m0 g ¼ ½mðl0 þ 1Þ −m0ðlþ 1Þ�vlþl0

mþm0 : ð25Þ

This includes a Virasoro symmetry generated by the
operators Ln ¼ v0n, the Poisson brackets of which obey
the algebra

fLn; Lmg ¼ ðm − nÞLmþn; ð26Þ
which is a subalgebra of the w∞ algebra (25).
In the case of the effective two-dimensional mechanics

of particles in the near-horizon geometry of the four-
dimensional black hole, the roles of the symplectic coor-
dinates x, y are played by appropriate combinations of the
phase-space coordinates of the particle [9], and hence the
system is completely integrable. The role of the w∞ algebra
for the particle near the horizon of the four-dimensional
black hole of Ref. [9] is exactly analogous to that
preserving the phase-space area for massless tachyonic
string matter in the two-dimensional stringy black hole [10]
—or its four-dimensional extension with topology
SUð1; 1Þ=Uð1Þ × S2—as discussed previously.
It was suggested in Ref. [10] that the infinite set of W

charges in the quantum version of the classical w∞
symmetry provides an infinite set of discrete gauge hair
(called W-hair), which maintains the quantum coherence
for the two-dimensional stringy black hole. This was based
on the fact that the quantum-gravity scattering matrix
obtained from correlation functions of marginal world-

sheet vertex operators is invariant under the quantum W
symmetry. The existence of an infinite set of conservation
laws for a particle in the near-horizon geometry of the black
hole discussed in Ref. [9], and hence an infinite set of
conserved charges vlm, also guarantees quantum coherence
by retaining information during the black-hole evaporation.
The elevation of the classical phase-space area-preserving
w∞ symmetry algebra to a quantum algebra capable of
preserving coherence necessarily involves the discrete
massive topological states of the string, as discussed
above. It is their mixing with the propagating massless
matter states that guarantees the conformal symmetry
of the corresponding vertex operators in a stringy black-
hole background [10] and thereby preserves quantum
coherence.
There are infinitely many discrete topological gauge

states in a string theory in a D-dimensional target space,
which have a similar nature to those in the two-dimensional
case [30,36,38] that appear in (5). The existence of these
states can be understood by examining the gauge con-
ditions for a rank-n tensor multiplet,

Dμ1Aμ1μ2…μn ¼ 0; ð27Þ

where Dμ is a (curved-space) covariant derivative. To see
this, consider for example weak gravitational perturbations
around flat space with a linear dilaton field of the form
ΦðXÞ ¼ QμXμ. In this case, one may Fourier transform (27)
to find

ðpþQÞμ1 ~AðkÞμ1μ2….μn ¼ 0: ð28Þ

This shows that the number of degrees of freedom increases
at the discrete momentum p ¼ −Q. Since this momentum
is fixed, it corresponds to a complete delocalized state,
which should be regarded as a quasitopological, non-
propagating solitonlike state. Such states carry a small
statistical weight in ordinary string theories, relative to the
continuous spectrum of the continuum string modes.
However, these discrete states assume particular impor-
tance when strings propagate in spherically symmetric
four-dimensional background space-times. These back-
grounds are effectively two-dimensional, and Ward iden-
tities of the form (27) may be used to gauge away all the
transverse modes of higher-rank tensors, except for
these topological modes. These s-wave topological modes
constitute the final stages of the evaporation of four-
dimensional spherically symmetric black holes [10] and
play key roles in maintaining quantum coherence [10,11].
These discrete solitonic states can be regarded as

singular gauge configurations [12], similar to the discrete
gauge states in two-dimensional strings (5), and their
conserved W charges could in principle be measured via
generalized Aharonov-Bohm phase effects. These higher-
spin topological string states also leave their imprints via

5An asymptotic symmetry of the quantum-gravity scattering
matrix under supertranslations of generic black-hole backgrounds
has been examined in Refs. [13,14].
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selection rules in the scattering matrix, where they appear
as (resonance) poles at discrete energies and momenta.
There is an infinite set of such black-hole soliton states in
the stringy black-hole case, which can be classified by the
quadratic Casimir and “magnetic” quantum numbers of an
internal symmetry group [12]. These resonances appear at
calculable energies and decay into distinctive combinations
of light final-state particles.
The stringy scattering matrix in such a black-hole

background is well defined in general, since the correlation
functions among the appropriate exactly marginal vertex
operators on the world sheet are unitary, since these
operators contain an infinity of nonpropagating topological
states as well as the parts corresponding to propagating
string states. In practice, these delocalized states cannot be
detected in laboratory scattering experiments, since they
involve a finite number of localized (in space-time) particle
states. Hence, there would apparently be decoherence from
the point of view of a local low-energy observer, even
though there are no pathologies in the full stringy theory of
quantum gravity.

D. Horizon-area-preserving w∞ classical symmetries

The area of a black hole can be regarded classically as a
conservedNoether charge [35]. The diffeomorphisms on the
black-hole horizon that preserve the horizon area belong to
the classicalw∞ symmetry algebra of transformations of the
horizon coordinates. These preserve the area of the horizon
of an isolated spherically symmetric four-dimensional black
hole by construction, thereby conserving its entropy in
agreement with the results of Ref. [35].
A classicalw∞ symmetry maymanifest itself in a number

of ways, as we now discuss. The horizon of a stringy black
hole may be regarded as a thick brane, which is known to be
describable as an SUð∞Þ gauge theory [33,34], leading to
the infinitely colored SUð∞Þ black-hole model of Ref. [32].
In this approach, open-string states terminating on the
horizon brane carry the SUð∞Þ charges. Such an SUð∞Þ
symmetry is classically isomorphic to the classical w∞
algebra preserving a two-dimensional area, which can be
identified in this case with the area of the horizon of the
infinitely colored, spherically symmetric black hole.
As we have discussed, there is a classical w∞ algebra that

preserves the two-dimensional area of an “internal space”
with the topology of a sphere [26,27]. The question is then
whether this internal sphere can be identified with the
horizon of the four-dimensional spherically symmetric
Schwarzschild black hole. To analyze this issue, we con-
sidered in Ref. [25] examples of four-dimensional spheri-
cally symmetric black holes with infinitely colored hair,
which realize explicitly a classical w∞ symmetry as dis-
cussed in the previous paragraph. This black-hole solution
of SUðN → ∞Þ gauge theory is formulated in a four-
dimensional anti-de Sitter (AdS) space-time with negative
cosmological constant, which plays the role of a regulator

making the black-hole solution well defined [32]. This AdS
regulator was given physical significance via the AdS/CFT
bulk/boundary correspondence and turned out to be physi-
cally important, as we argued in Ref. [25] and discuss
briefly below.
Our interest in these black holes is motivated by the

classical isomorphism between SUðN → ∞Þ and w∞
[26,33].6 To see this correspondence, one replaces the SU
(2) generators Si by rescaled versions, Ti ≡ 2

N Si, and finds

[25] that in the limit N → ∞ the N2 − 1matrices TðNÞ
lm obey

N
2i
½TðNÞ

l;m; T
ðNÞ
l0;m0 � → fYl;m; Yl0;m0 g; N → ∞; ð29Þ

where we denote by Ylmðθ;ϕÞ the spherical harmonics on
the sphere S2. It is well known that the (classical) Poisson
algebra of the spherical harmonics is that of SDiffðS2Þ, the
infinite set of area-preserving diffeomorphisms on the
sphere,

fYl;m; Yl0;m0 g ¼ Mðlþ l0 − 1; mþm0Þ
Mðl; mÞMðl0; m0Þ

× ðl0m − lm0ÞYlþl0−1;mþm0

þ
X
n¼1

g2nðl;l0ÞClþl0−1−2n;mþm0
l;m;l0;m0

× Ylþl0−1−2n;mþm0 ; ð30Þ

where the structure constantsC are given in the fourth paper
in Ref. [26] and M and g2n are normalization factors. This
algebra is isomorphic to the classical area-preserving w∞
algebra.
Writing the gauge fields of the SUðN → ∞Þ gauge

theory using the matrices TðNÞ
l;m as a basis, obeying (29),

we see that this area-preserving diffeomorphism symmetry
preserves the horizon area in this example of an infinitely
colored gauge black hole, upon identification of the internal
sphere S2 with the horizon sphere of the spherically
symmetric SUð∞Þ black hole. In this case, the entropy
of the black hole can be preserved classically by the w∞
symmetry and its associated infinite set of W hair.
Viewing this SUð∞Þ gauge model as a low-energy limit

of some string-theory black hole indicates, according to our
world-sheet RG interpretation of the target time, that the
classical conservation of the horizon area reflects the
conformal invariance of the correspondingworld-sheet field
theory, which guarantees that the right-hand side of (17)
vanishes because the βi functions of relevant combinations
of the couplings gi are zero. Here, the set fgig comprises
the graviton Gμν and the SUð∞Þ gauge field modes:
Aa
μ; a ¼ 1…∞. In Ref. [25], the AdS regulator of the

6The geometry of SU(N) gauge theories with finite N is
noncommutative [34], commutativity appearing only in the limit
N → ∞.
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SUð∞Þ model was given physical significance in guaran-
teeing the vanishing of these β functions, upon mixing the
graviton with the gauge-field contributions, analogously to
our previous stringy black-hole case, where higher-spin
states mix with the massless string matter contributions to
ensure conformal invariance on the world sheet.
Proceeding further by describing the horizon of the four-

dimensional black hole as a 2-brane [25], one can treat the
recoil when an open string, representing a matter state,
meets the horizon surface. When one of the ends of the
open string attaches to the horizon, the latter recoils so as to
conserve momentum. This horizon recoil causes it to
fluctuate in a way characterized by a logarithmic conformal
field theory on the world sheet [43,44] that describes the
transfer of information [45]. Such a recoiling black-hole
horizon may be represented as a “thick” stack of N → ∞
concentric D-branes. In the case of a macroscopic black
hole, the horizon of which is large compared to the
wavelength of the infalling matter, these concentric branes
may be regarded approximately as a stack of parallel
and flat N → ∞-branes, which are equivalent to an
SUðN → ∞Þ gauge theory [46]. This can be seen intui-
tively by considering the different ways [N2 − 1 in the case
of an SU(N) gauge theory] in which an open string can be
attached to a stack of N D-branes. Therefore, when matter
reaches the thick brane model of the black-hole horizon, the
recoil is described by excitations that carry the SUð∞Þ
charges. These correspond to the infinite W hair of the
black hole and the classical horizon area-preserving w∞
symmetry discussed above. In this example, the SUð∞Þ
symmetry plays a role as a coherence-preserving symmetry
of the scattering matrix involving the SUð∞Þ black hole.
However, the presence of classical infinite-dimensional

horizon-preserving symmetries is more generic than the
above example and is in fact associated with the observa-
tion of Ref. [28] that the entire spectrum of Hawking
radiation of black holes (either Schwarzschild as we
consider here or rotating Kerr type) may be represented
in terms of higher-spin currents of the associated conformal
field theory near the horizon surface. We proceed to discuss
this case next and then place it in the context of our string
theory considerations.

III. HAWKING RADIATION FROM GENERIC
SCHWARZSCHILD BLACK HOLES

AND W1þ∞ ALGEBRAS

In order to discuss explicitly the connection of Hawking
radiation to our W1þ∞ symmetries, we first review briefly
some interesting results [28,29] connecting Hawking radi-
ation in rather generic, nonstringy, spherically symmetric
black holes to a W1þ∞ algebra realized by higher-spin
states associated with the moments of the Hawking
radiation. TheseW1þ∞ currents are sourced by background
fields of these higher-spin states, which can be identified
with the discrete gauge states in our stringy approach.

The effective two-dimensional conformal field theory
representation [47] of the dynamics of matter fields in the
near-horizon geometry of a spherically symmetric black
hole [10] is crucial for the connection of Hawking radiation
to W∞ algebras. It is known that the outgoing Hawking
quanta radiated from the horizon of a spherically symmetric
black hole break general covariance. As shown in Ref. [47],
this symmetry is restored through the cancellation of the
corresponding gravitational anomalies in the quantum-
gravity path integral for a (1þ 1)-dimensional black body
at the Hawking temperature of a black hole [2]. One can
represent the effective two-dimensional field theory of the
Hawking radiation at the black-hole horizon as a two-
dimensional field theorywith an infinity of two-dimensional
conformal quantum fields obeying a thermal spectrum, with
the left movers corresponding to infalling matter and the
right movers to outgoing matter.
We restrict ourselves here to Schwarzschild black

holes, which emit Hawking radiation with a Planck dis-
tribution

N�ðωÞ ¼ 1

eβω � 1
; ð31Þ

where ω is the frequency (energy) of the radiated quantum,
β is the inverse of the Hawking temperature [2], and þð-Þ
for fermions (bosons). The full spectrum of the radiation is
encoded in the infinite set of moments of the Hawking
radiation spectrum [29],

Fþ
2n ¼

Z
∞

0

dω
2π

ωn−1NþðωÞ ¼ ð1 − 21−2nÞ B2n

8πn
κ2n; ð32Þ

or

F−
2n ¼

Z
∞

0

dω
2π

ωn−1N−ðωÞ ¼ B2n

8πn
κ2n; ð33Þ

where the B2n are the Bernoulli numbers and κ ¼ 2π=β is
the surface gravity of the black hole. For example, the
energy flux is given by the second moment of N�ðωÞ,
F2ðωÞ ¼

R
∞
0

dω
2π ωN

�ðωÞ.
It was proposed in Ref. [29] that, generalizing the

connection of the energy flux of the black hole to a spin-2
current with matrix element F2ðωÞ, the higher moments
F2n, n > 1 could be identified as matrix elements of phe-
nomenological higher-spin currents that could be regarded as
generalizations of the energy-momentum tensor.
These higher-spin currents can be expressed [29] as

(appropriately normal-ordered) products of two-dimensional
boson and fermion fields and their space-time derivatives. In
terms of the light-cone variables

u¼ tþ r⋆; v¼ t− r⋆; r⋆∶
∂r⋆
∂r ¼ fðrÞ−1; ð34Þ
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where r⋆ is the so-called tortoise coordinate, a metric
of the form, ds2 ¼ fðrÞdt2 − 1

fðrÞ dr
2, which may be used

to represent the effective two-dimensional space-time
in the near-horizon geometry of the spherically sym-
metric black hole, becomes that of a conformally flat
space-time:

ds2 ¼ e2φðt;r⋆Þðdt2 − dðr⋆Þ2Þ ¼ e2φðu;vÞdudv;

e2φðu;vÞ ¼ fðrÞ: ð35Þ

Outgoing scalar radiation is then described by holo-
morphic (v-independent) currents of the form [29]

Outgoing radiation scalar currents∶JBuu…u

¼ linear combinations of∶ð−1Þnþm∂m
u ϕ∂2n−m

u ϕ∶;
ð36Þ

and for fermions ψðuÞ, one has

Outgoing radiation fermion currents∶JFuu…u

¼ linear combinations of∶ψ̄∂n
uψ∶; ð37Þ

where ∶ � � � ∶ denotes the appropriate normal ordering,
as defined in Ref. [29].
When representing the higher moments of the

Hawking radiation in terms of conformal fields on the
horizon, there are ambiguities in the relative coefficients
of the various terms appearing in the holomorphic
currents (36) and (37), and the currents are not normal-
izable in general. These issues were resolved in Ref. [28]
by requiring that the coefficients be fixed by a symmetry
principle, specifically by postulating that there is a W∞
algebra on the horizon of the black hole, generalizing the
Virasoro algebra.7

In the case of flat two-dimensional space-times,
upon Euclideanization and replacing the coordinates u, v
by the complex variables z, z̄, respectively, the bosonic
w∞ currents with conformal spin s can be written as
follows [28],8

jðsÞBz…z ¼ qs−2
2s−3s!

ð2s− 3Þ!!
Xs−1
k¼1

ð−1Þk
�

1

s− 1

�
s− 1

k

��
s− 1

s− k

��

∶∂k
zϕðzÞ∂s−k

z ϕ̄ðzÞ∶; ð38Þ
where q is a complex deformation parameter [26]. The
holomorphic free fields ϕðzÞ are assumed to have the

following nonvanishing two-point function hϕðzÞϕ̄ðz0Þi ¼
− lnðz − z0Þ. The spin s ¼ 2 current is independent of the
deformation parameterq, as expected because this current can
be unambiguously identified with the holomorphic stress
tensor

jð2Þuu ¼ −2πThol
uu ;

but the higher-spin currents depend on parameter q. It
can be fixed [28] by demanding that the currents (38),
when covariantized as appropriate in the curved space-
time of the spherical symmetric black hole, reproduce
the higher moments of the Hawking flux, leading to
q ¼ −i=4 [28].
The work of Ref. [28] also discussed appropriately

normalized higher-spin currents for the fermion fields,
working in a Kerr metric with Kerr parameter a ≠ 0,
corresponding to a nontrivial angular momentum of the
rotating black hole. In this case, the corresponding
gravitational covariant derivative for Dirac fermions in
the effective two-dimensional space-time (35) has an
extra gauge U(1) potential, proportional to the parameter
a. The fermionic currents then satisfy a W1þ∞ algebra, as
a result of the inclusion of the conformal spin-1, U(1)
gauge vector current in the construction [28]. One may
take the limit a → 0 to consider the Schwarzschild black-
hole case, and although the background gauge potential
in such a case vanishes, nevertheless the corresponding
current is nonzero, which implies that the U(1) spin-1
current has to be included in the construction in the case
of fermion matter. For completeness, we note that in a
Euclideanized flat space-time with coordinates z, z̄ these
currents are given by [26]

jðsÞFz…z ¼ qs−2
2s−3s!

ð2s − 3Þ!!
Xs−1
k¼1

ð−1Þk 1
s

�
s − 1

s − k

�
2

∶∂s−k
z Ψ†ðzÞ∂k−1

z Ψ̄ðzÞ∶; ð39Þ

where ΨðzÞ denotes the two-dimensional conformal
fermion field and ∶ � � � ∶ again denotes the appropriate
normal ordering.
The fact that the currents jðsÞ are quadratic in the fields is

an important feature that we explore in the next section,
when we discuss the gauging of the W algebra and its role
in providing a mechanism for the classical conservation of
the horizon area of a black hole. This feature is carried over
in the covariantized currents, which are at most linear
functions of the currents jðsÞ and their gravitationally
covariant derivatives ∇jðsÞ, as can be explicitly seen by
the expressions of the first few of them, that we list below
for concreteness [28]. The bosonic currents with conformal
spin ≤ 6 are [28]

7Their higher-derivative holomorphic structure, ∂n
zχ (χ ¼ ϕ,

ψ) [26], led one to expect that the currents could realize such an
infinite-dimensional algebra.

8From now on, we use complex scalar fields to represent the
Hawking spectrum, so as to make a direct correspondence with
the W1þ∞-algebra formalism.
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Jð2ÞBuu ¼ jð2ÞBuu −
ℏ
6
T;

Jð3ÞBuuu ¼ jð3ÞBuuu ;

Jð4ÞBuuuu ¼ jð4ÞBuuuu þ ℏ
30

T2 þ 2

5
TJð2ÞBuu ;

Jð5ÞBuuuuu ¼ jð5ÞBuuuuu þ 10

7
TJð3ÞBuuu ;

Jð6ÞBuuuuuu ¼
�
−
2ℏ
63

T3 þ 5ℏ
504

ð∂uTÞ2 −
ℏ
126

T∂2
uT −

2

3
T2Jð2ÞBuu −

1

21
T∇2

uJ
ð2ÞB
uu −

1

21
ð∂2

uTÞJð2ÞBuu þ 5

42
ð∂uTÞ∇uJ

ð2ÞB
uu

−
5

21
ΓT∇uJ

ð2ÞB
uu −

5

21
Γ2TJð2ÞBuu þ 5

21
Γð∂uTÞJð2ÞBuu

�
−

5

24
TJð4ÞBuuuu þ jð6ÞBuuuuuu; ð40Þ

where

Γ ¼ ∂uφ; T ¼ ∂2
uφ −

1

2
ð∂uφÞ2 ¼ ∂2

uφ −
1

2
Γ2; ð41Þ

where φðu; vÞ was defined in (35) and is associated with the effective two-dimensional curved metric near the horizon
written in a conformally flat form.
The corresponding fermionic currents with spin ≤ 5 are

Jð1ÞFu ¼ jð1ÞFu þ iℏ
2q

Au;

Jð2ÞFuu ¼
�
−
T
12

�
ℏ− 2AuJ

ð1ÞF
u þ jð2ÞFuu ;

Jð3ÞFuuu ¼ −4Jð1ÞFu A2
u − 4Jð2ÞFuu Au þ

�
8A3

u

3
−
AuT
3

�
ℏþ TJð1ÞFu

6
þ jð3ÞFuuu ;

Jð4ÞFuuuu ¼þℏ

�
4A4

u −
7TA2

u

5
−
2

5
ð∇2

uAuÞAu þ
7T2

240
þ 3

5
ð∇uAuÞ2

�
− 8Jð1ÞFu A3

u − 12Jð2ÞFuu A2
u

þ
�
1

5
∇2

uJ
ð1ÞF
u þ 7TJð1ÞFu

5
− 6Jð3ÞFuuu

�
Au −

3

5
ð∇uAuÞð∇uJ

ð1ÞF
u Þ þ 1

5
ð∇2

uAuÞJð1ÞFu þ 7TJð2ÞFuu

10
þ jð4ÞFuuuu;

Jð5ÞFuuuuu ¼ ℏ

�
32A5

u

5
−
104TA3

u

21
−
16

7
ð∇2

uAuÞA2
u þ

27T2Au

70
þ 24

7
ð∇uAuÞ2Au þ

1

35
ð∇2

uTÞAu −
1

7
ð∇uAuÞð∇uTÞ þ

2

21
Tð∇2

uAuÞ
�

− 16Jð1ÞFu A4
u − 32Jð2Þuu A3

u þ
8

7
ð∇2

uJ
ð1Þ
u ÞA2

u þ
52

7
TJð1ÞFu A2

u − 24Jð3ÞuuuA2
u −

24

7
ð∇uAuÞð∇uJ

ð1ÞF
u ÞAu þ

12

35
ð∇2

uJ
ð2Þ
uu ÞAu

þ 16

7
ð∇2

uAuÞJð1ÞFu Au þ
52

7
TJð2ÞFuu Au − 8Jð4ÞuuuuAu þ

1

14
ð∇uTÞð∇uJ

ð1ÞF
u Þ− 12

7
ð∇uAuÞð∇uJ

ð2ÞF
uu Þ

−
1

21
Tð∇2

uJ
ð1ÞF
u Þ− 27T2Jð1ÞFu

140
−
12

7
ð∇uAuÞ2Jð1ÞFu −

1

70
ð∇2

uTÞJð1ÞFu þ 8

7
ð∇2

uAuÞJð2ÞFuu þ 13TJð3ÞFuuu

7
þ jð5ÞFuuuuu; ð42Þ

where Au is a component of the background gauge potential that characterizes the motion of fermionic matter in the
Kerr black hole, which is proportional to the angular momentum quantum number a. We note that the presence of ℏ
in the above formulas is necessary for dimensional reasons and that the propagator of the fermionic field is given
by hΨ†ðzÞΨðwÞi ¼ ℏðz − wÞ−1.
In the limit of the Schwarzschild black hole of interest to us here, the gauge field a → 0, and so Au → 0. Thus, the

fermionic current expressions become
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Jð1ÞFu ¼ jð1ÞFu ;

Jð2ÞFuu ¼
�
−
T
12

�
ℏþ jð2ÞFuu ;

Jð3ÞFuuu ¼ TJð1ÞFu

6
þ jð3ÞFuuu ;

Jð4ÞFuuuu ¼þℏ
7T2

240
þ 7TJð2ÞFuu

10
þ jð4ÞFuuuu;

Jð5ÞFuuuuu ¼ 1

14
ð∇uTÞð∇uJ

ð1ÞF
u Þ− 1

21
Tð∇2

uJ
ð1ÞF
u Þ

−
27T2Jð1ÞFu

140
−

1

70
ð∇2

uTÞJð1ÞFu þ 13TJð3ÞFuuu

7
þ jð5ÞFuuuuu:

ð43Þ
We now remark that, as shown in Ref. [28], the covarian-
tized versions of the currents (38), (39) with spins higher
than 2 are free of, or at most have trivial, conformal, or
diffeomorphism anomalies. This is consistent with the fact
that the higher moments of the Hawking radiation are
expected to describe a gravitational anomaly-free theory,
since only the spin-2 current (stress tensor) of the theory
has diffeomorphism or conformal anomalies, and it is the
requirement of their cancellation that requires the appear-
ance of the Hawking radiation spectrum [47]. If these
currents had conformal anomalies, then they would corre-
spond to new (nongauge) quantum numbers for black
holes, which would violate the no-hair theorem.
The covariant higher-spin-s currents JðsÞB;Fμ1μ2…μn are

sourced by appropriate background fields BðsÞB;F
μ1μ2…μn ,

JðsÞB;Fμ1…μn ¼
1ffiffiffi
g

p δ

δBðsÞB;Fμ1…μn
S; ð44Þ

where S is the two-dimensional effective action of the
Hawking radiation in the near-horizon geometry of the
spherically symmetric black hole. The relevant interactions
in this effective geometry are then given simply by

Sint¼
Z
near horizon2Dspace-time

d2x
ffiffiffi
g

p X
s

X
α¼B;F

BðsÞαμ1…μnJðsÞαμ1…μn ;

ð45Þ
with x denoting two-dimensional space-time coordinates
(e.g., in one frame x ¼ fu; vg). The background fields
BðsÞαμ1…μn may be taken to vanish at asymptotic spatial
infinity, far away from the horizon. Due to the quadratic
nature of the current, after appropriate partial integrations,
the action (45) can be written schematically in the form

Sint ¼
Z
near horizon 2Dspace-time

d2x
ffiffiffi
g

p �
VðxÞ

þ
X
s

X
α¼B;F

χ†αðxÞF ðsÞαð∂μÞχαðxÞ
�
; ð46Þ

where χα is a scalar [ϕðu; vÞ for α ¼ B] or fermionic
[ψðu; vÞ for α ¼ F] field and the F ð∂μÞ are appropriate
functions containing multiple derivatives ∂μ, μ ¼ u, v with
respect to the two-dimensional horizon space-time. The
quantity V½φðxÞ�, which is a χ-independent function of the
scalar field φðxÞ and its derivatives, plays the role of a
vacuum energy term in the two-dimensional horizon
effective field theory. It arises from the χ-independent
terms of the covariant currents (40), (43), which are
generically functions of Γ and T (i.e., of ∂uφ, ∂2

uφ) and
their covariant derivatives.
In the spin-2 case, the corresponding spin-2 current

(the stress tensor) couples to the graviton field,R
d2x

ffiffiffi
g

p
Tμνgμν, which is characterized by diffeomorphism

invariance δgμν ¼ ∂ðμξνÞ for an infinitesimal diffeomor-
phism ξμ → xμ þ ξμ, provided the stress tensor is con-
served.9 Generalizing this, the higher-spin currents, which
are free from conformal and diffeomorphism anomalies
[28], are conserved exactly, and their conservation is
associated with an infinity of Abelian gauge symmetries
of the form

BðsÞ
μ1…μn → BðsÞ

μ1…μn þ ∂ðμ1Ξμ2…μnÞ; ð47Þ
where the ð…Þ among indices indicates appropriate sym-
metrization. The presence of this infinite set of gauge
symmetries is consistent with the no-hair theorem, as the
spatial integrals of the currents correspond to conserved
charges.
The existence of a W∞ symmetry of matter in the near-

horizon geometry, larger than the Virasoro algebra, results
in the complete integrability of the matter system and is
analogous to the cases of matter in the near-horizon
geometries of black-hole structures in the context of string
theory [9,10]. TheseW∞ algebras are phase-space-preserving
algebras, like theW∞ algebras discussed in the stringy cases
earlier. To see this, one may rewrite the (traceless) energy-
momentum tensor of the two-dimensional effective theory
using a point-splitting method [28], as follows (we consider
scalar fields ϕ for concreteness):

Tμν¼ limy→0∂μϕðx−yÞ∂νϕðxþyÞ−gμνðstress-tensor traceÞ

¼
X
i¼0

X
j¼0

ð−1Þi
i!j!

∶yμ1…yμiyν1…yνj∂μ∂μ1…∂μiϕðxÞ

×∂ν∂ν1…∂νjϕðxÞ∶: ð48Þ

This expression can be covariantized by replacing the
partial derivatives by covariant derivatives, making the
right-hand side of (48) a complicated expression in terms
of products of the higher-spin currents discussed above with

9In the black-hole case, as we have discussed above, the
diffeomorphism invariance is broken by the outgoing flux, but the
form of the transformation is included in (47).
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the y-dependent factors (48), that correspond to higher-level

background tensors BðsÞ
μ1…μin that source the higher-spin

currents. For our purposes, the most important feature of
(48) is the fact that the right-hand side depends not only on
the coordinate xμ but also on the coordinate yμ ¼ dxμ of the
cotangent bundle, and thus on a symplectic phase-space
manifold, showing that the corresponding W1þ∞ algebra
generated by the higher-spin currents of the Hawking
radiation spectrum is indeed a phase-space algebra.

IV. FIELD THEORY OF HAWKING RADIATION
AND HORIZON-AREA-PRESERVING

CLASSICAL SYMMETRIES

In this section, we demonstrate that one may associateW
symmetry with classical horizon-area-preserving diffeo-
morphisms, following the discussion of Ref. [25] for the
SUð∞Þ-colored black-hole case. To this end, we first
consider the completely integrable field theory system of
bosonic (scalar) field currents (38) in a flat space-time and
then generalize it to the curved space-time case (40).
We consider a holomorphic, i.e., one-dimensional,

Euclideanized scalar field theory given by the appropriate
flat space-time limit of (45), which involves only the
bosonic higher-spin currents jðsÞμ1…μn that are quadratic in
the fields ϕðzÞ,

Sint ¼
Z
near-horizon 2Dspace-time

dz
X
s

BBðsÞz…zjBðsÞz…z; ð49Þ

and we take BBðsÞz…z to be asymptotically constant. Note
that these background fields are not functions of the ϕðzÞ
fields but may be functions of the holomorphic coordinate
z. Introducing the Fourier transforms of the fields

ϕðzÞ ¼
Z

dp eipz ~ϕðpÞ ð50Þ

and defining

Upz ≡ ~ϕðpÞeipz ≠ Uzp; ð51Þ

we observe that the quantity

Z
∞

−∞
dz

Z
∞

−∞
dpUpz ¼ 2π ~ϕð0Þ ð52Þ

is proportional to U0z. Thus, if we view the indices p, z as
spanning a set of discrete values: 0; 1;…N − 1 with N →
∞ (the set becoming continuous in the limit only), we
observe that, on account of the constraint (52), the (com-
plex) field variables Upz have only N2 − 1 independent
degrees of freedom, as N → ∞. If we label these degrees of
freedom as

Upz → fα; α ¼ 1;…N2 − 1; ð53Þ

the interacting action (49) becomes

Snear horizon scalars ¼
X
α;β

fαCαβfβ; α; β ¼ 1;…N2 − 1;

ð54Þ

and the (matrix) coefficients Cαβ contain terms zmpn, with
m, n positive integers, where (in operator form) p ¼ −∂z.
There is a local (gauge) symmetry characterizing the

action (54) since, in the spirit of Ref. [27], one may redefine
the field variables by unitary matrices Vβ

α,

fα → Vα
βfβ; ð55Þ

and integrate over V in a path integral. The original action
(54) may then be viewed as a “gauge fixed” version of the
theory, where V is fixed in an appropriate form.
The “time” in this Euclideanized near-horizon geometry

is not the target time included in the light-cone variable z,
but it is the Liouville RG time (14), which characterizes the
evolution of the scalar modes ϕðzÞ. From a stringy black-
hole viewpoint, the latter correspond to propagating modes,
and as such they correspond to nonmarginal deformations
in a σ-model that describes string propagation in the
neighborhood of the black hole [6,10,11]. This Liouville
time t leads to a one-dimensional adjoint Higgs model for
the Hawking-radiation scalar matter, as a consequence of
the Lagrangian (16), namely

SH ¼
Z

dt tr

�
1

2
ð∂0M̂ðtÞ − ½Â0; M̂�ðtÞÞð∂0M̂ðtÞ

− ½Â0; M̂�ðtÞÞ − vðM̂Þ
�
; ð56Þ

where the index 0 denotes the time variable, the trace is over
group indices, and the matrix-valued field MðtÞ ¼ fαTα,
with α ¼ 1;…N2 − 1, and the ðN2 − 1Þ × ðN2 − 1Þ matri-
ces Tα form an adjoint representation of the SUðN → ∞Þ
gauge group. The properties of such a theory connectedwith
the W∞ gauge symmetries are discussed in the Appendix,
following the analysis of Ref. [27]. The fact thatwe are using
an adjoint matrix representation of the SUð∞Þ algebra is
important, because—rigorously speaking [48]—it is the
large-N limit of the ðN2 − 1Þ × ðN2 − 1Þ matrix generators
in the adjoint representation of the SU(N) gauge group that
become those of the Poisson algebra in the classical limit. In
contrast, the N × N matrices in the fundamental represen-
tation of SU(N) diverge and are not well defined in theN →
∞ limit. The gauge potential Â0 is identified appropriately
with the square root of the central charge deficit of theworld-
sheet theory QðtÞ, according to the discussion leading to
(16). The potential in our case contains at most quadratic
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terms in the adjoint Higgs field M̂, given the form of the
action (54).
The area-preserving nature of the associated classical w∞

symmetries is seen by viewing the action (56) as a gauge
theory over an extended (2þ 1)-dimensional space-time,
where the internal space is viewed as a stereographic
projection of a spherical surface (z, z̄) representing the
black-hole horizon of a macroscopic (semiclassical) black
hole. In such a large-area black hole, the horizon can be
approximated by an almost flat surface, and hence the
approach [27] of constructing W∞ gauge theories and their
classical limit outlined in the Appendix applies. The
corresponding adjoint Higgs action is given by (A9) with
d ¼ 1, and the local limit (A15) yields an invariance of the
corresponding limiting action (A16) under the horizon-
area-preserving diffeomorphisms (A17).
We turn next to the fermionic currents in the near-

horizon geometry, which (like the bosons) can also be
represented as a one-dimensional quantum-mechanical
system, by labelling the holomorphic fermions as

Ψðz; tÞ ¼ ψ zðtÞ; ð57Þ
with t denoting the Liouville RG time. As in the bosonic
case, we view the (continuous) suffix z as an internal
fermion index, a limiting case of a discrete index:
~z ¼ 1;…N, N → ∞. In this case, any integration over z
becomes a sum over internal fermion indices:

R
dz
P

~z.
Likewise, any determinant of the two-dimensional black-
hole metric and other functions of the original holomorphic
variables z become functions of the (discretized) ~z.
Using this representation and including the RG time

dependence of the fermion fields, the fermionic conformal
field theory near the black-hole horizon, with interaction
terms (45), becomes a quantum-mechanical theory (field
theory in d ¼ 1 space-time dimension) of the fermions
ψ zðtÞ (57) of the generic form,

Sψ ¼
Z

dt
X
~z

ψ†
~zðtÞ

�
i
d
dt

þ hð1Þ½∂ ~z�
�
ψ ~z; ð58Þ

where the structure hð1Þ½∂z� represents the complicated
operators in the interaction terms (45) after appropriate
partial integration. [We assume that the background source
fields Bμ1…μn are static, and the upper index (1) in hð1Þ

indicates that it pertains to fermion bilinear terms only.] The
gauge nature of the theory can be seen by observing that
such constructions hide an infinite-dimensional gauge
theory [27,37] (a gauged w∞ algebra). of the fermion
transformations

ψ ~z → U ~z0
~z ψ ~z0 ; ð59Þ

where U ~z0
~z is an N × N unitary matrix, in the fundamental

representation of the SUðN → ∞Þ group, as opposed to the
adjoint representation in the bosonic case.

The proper gauging procedure for the associated W∞
algebra pertaining to the fermion case is also presented in
the Appendix, where the fermion action (58) is represented
as a (1þ 2)-dimensional action over the extended (horizon)
surface z, z̄. However, because the fermions are in the
fundamental representation, the appropriate Poisson large-
N limit cannot be defined [48]. Indeed, according to
the discussion in the Appendix, upon taking the local limit
l → 0 in (A15), by means of which one defines a classical
contraction w∞ of the quantum W∞ algebra, one obtains a
trivial fermion action Sψ → 0, as l → 0. Thus, the area-
preserving nature of the classical w∞ symmetries that
characterize the black-hole horizon is realized nontrivially
via the bosonic Hawking radiation fields.
The above results have been obtained in the flat space-

time limit. Nevertheless, covariantizing the flat-space
current theory and going to a curved space-time metric
using (40) does not change qualitatively the above features
of the flat space-time theory, as can readily be seen from the
form of the covariant effective action (46). In a phase-space
representation, the function F ðαÞð∂μÞ will still play the role
of a Hamiltonian operator as in (54) and (58), and the only
remnant of the curved metric would be the vacuum energy
term

R
d2x

ffiffiffiffiffiffi−gp
V½φ�, which is invariant under the gaugeW

symmetries, being field ϕ, ψ independent.10

The area-preserving classical w∞ symmetries are con-
sistent with the view of the horizon area of a classical black
hole as a conserved Noether charge [35]. On the other hand,
at a quantum level, the W∞ quantum symmetries, although
they are phase-space area-preserving symmetries for matter
in the near-horizon geometry that maintain the complete
integrability of the matter system (and hence preserve
quantum coherence [10]), do not preserve the horizon
area. This feature is in agreement with the shrinking of the
latter quantity with increasing time, due to the Hawking
evaporation process.

V. CONCLUSIONS AND OUTLOOK

We conclude by reiterating the main points underlying
the microscopic mechanism for maintaining quantum
coherence and retaining information in an evaporating
spherically symmetric stringy black hole. The correspond-
ing effective theory is a two-dimensional string theory, with
a singularity structure of which the dynamics is described
by an integrable physical system characterized by an
infinity of mutually commuting W1þ∞ conserved charges,
carried by nonpropagating delocalized discrete gauge
states, corresponding to an infinity of higher-spin states.
These discrete states have zero norm and discrete momenta,
which, however, take on the same values as those

10The metric field φðu; vÞ, corresponding to the conformal
factor of the near-horizon metric in the particular conformal-
frame representation (35) of the two-dimensional horizon geom-
etry, does not transform under the gauge symmetries in question.
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corresponding to the infinity of physical (positive norm)
propagating string states of the effective two-dimensional
string. The two-dimensional substructure is essential to this
argument and can always be embedded in four dimensions
by considering near-horizon geometries of the form
SUð1; 1Þ=Uð1Þ ×Hð2Þ, where Hð2Þ a two-dimensional
compact or noncompact manifold.
In this picture, the infall of matter into the black-hole

horizon and the Hawking radiation process are viewed as
“particle interactions” in the following sense. Consider first
the case of matter falling into this black hole, specifically
massless matter (represented as a tachyon propagating
mode in the above effective-two-dimensional string theory
context), which starts from spatial infinity. Initially, world-
sheet conformal invariance of this tachyon background is
guaranteed without mixing with the higher-spin states.
However, upon reaching the horizon, discrete delocalized
string modes of higher spin are excited, in order to dress the
tachyon background and make it conformal on the world
sheet. In this sense, given that the W∞ charges are
conserved, the backreaction of the black hole leads to an
excited state, so that the whole process can be represented
as (stringy black hole) þ (massless matter) ⇒ (stringy
black hole)⋆, where the star denotes an excited state and a
rearrangement of theW∞ charges. The black hole is viewed
as a string state in the background of discrete gauge states
and other topological states in this picture, as per our
description above and in the previous literature.
The Hawking evaporation process can be thought of

similarly as successive steps of the time-reversed process.
This is reminiscent of the arguments of Ref. [31] for
viewing black holes as particles and their Hawking radi-
ation as consisting of successive “two-body” decays, in
accordance with the sparsity of the Hawking radiation at
infinity. However, our picture is very different in essence,
as the black holes are stringy states characterized by an
infinity of charges, thus integrable systems. The emitted
massless matter reaches spatial infinity “decoupled” (in the
sense that its world-sheet β-function vanishes) from the
topological states, but the latter (due to conservation of
the W∞ charges) are omnipresent as a nonthermal discrete
environment, carrying information. In string theory, the
thermal Hawking radiation spectrum is only “part of” the
whole picture, associated with propagating modes, whereas
the discrete states provide a specific “Ariadne’s thread” for
external measurements capable [12] of reconstructing the
information “mislaid” within the black-hole labyrinth.
Comparing finally with the supertranslation approach

[13,14,17], we recall that the latter also lead to an infinity of
conserved charges on the two-dimensional horizon, which
correspond to currents excited during the interaction of
infalling matter. This can be seen straightforwardly in the
representation of the black-hole horizon as a recoiling
D-brane [25]. However, the supertranslation charges are
not responsible for balancing the information books, for the

reasons stated above. This role is played by theW∞-charge-
carrying topological discrete states, as can be seen in the
simple example of the two-dimensional black hole [4],
where these states are responsible for retaining information
even in the absence of an horizon, which is only a spatial
point in two dimensions.
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APPENDIX: W∞ SYMMETRIES IN d
SPACE-TIME DIMENSIONS AS

d þ 2-DIMENSIONAL GAUGE SYMMETRIES

We discuss in this Appendix the connection between the
Hawking radiation fields on the horizon of the spherically
symmetric black hole with classical SUð∞Þ area-preserving
gauge symmetries.
We consider the construction [27] of quantum W∞ (and

classical w∞) gauge theories in (dþ 2) dimensions, where
d is the dimension of the space-time where the algebras
live: d ¼ 2 in the black-hole case of interest to us. TheW∞
quantum algebra may be defined as the algebra of com-
mutators of Hermitian operators ξða; a†Þ, where a, a† are
harmonic-oscillator annihilation and creation operators.
The operators ξða; a†Þ may be parametrized using coherent
states on a Euclidean space [27], spanned by complex
coordinates z, z̄, which can be identified with the coor-
dinates of a stereographic projection of the horizon sphere
S2 [25],

∶ξðâ; â†Þ∶ ¼
Z

d2z e−jzj2 jziξðz; z̄Þhzj;

where jzi¼ eâ
†zj0i, hzj ¼ h0jeâ z̄, hz0jzi ¼ ez̄

0z, âjzi ¼ zjzi,
hzjâ† ¼ hzjz̄, we use the normalization conditionR
d2z e−jzj2 jzihz̄j ¼ 1 with d2z≡ 1

πRezImz, and ∶ξðâ; â†Þ∶
is a(n anti-)normal-ordered operator, in which the annihi-
lation operators are always placed to the left of the creation
operators.
One may regard [27] the coordinates z, z̄ as a group-

theoretical (“color”) space and introduce a gauge potential
Aμðx; â; â†Þ, where μ ¼ 1;…d is a d-dimensonal space-
time fxg index:

ÂμðxÞ≡ Aμðx; â; â†Þ ¼
Z

d2z ejzj2 jziAμðx; z; z̄Þhzj:

ðA1Þ
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One may then introduce an infinite-dimensional set of
infinitesimal W∞ gauge transformations,

δÂμðxÞ ¼ ∂μξ̂ðxÞ þ i½ξ̂ðxÞ; ÂμðxÞ�;
δAμðx; z; z̄Þ ¼ ∂μξðx; z; z̄Þ − ffξ; AμggMoyalðx; z; z̄Þ; ðA2Þ

where the symbol ff:; :ggMoyal denotes a Moyal bracket,
defined by

ffξ1; ξ2ggMoyalðz; z̄Þ≡ i
X∞
n¼1

ð−1Þn
n

ð∂n
zξ1ðz; z̄Þ∂n

z̄ξ2ðz; z̄Þ

− ∂n
z̄ξ1ðz; z̄Þ∂n

zξ2ðz; z̄ÞÞ: ðA3Þ

The generators ofW∞, ρ½ξ�, are linear functionals of ξðz; z̄Þ
in this construction, satisfying

½ρ½ξ1�; ρ½ξ2�� ¼ iρ½ffξ1; ξ2ggMoyal� ðA4Þ

at the quantum level [27]. The classical area-preserving w∞
Lie algebra, as obtained from W∞ by the appropriate
contraction discussed in Ref. [27], is then

½ρ½ξ1�; ρ½ξ2�� ¼ iρ½fξ1; ξ2gPoisson�; ðA5Þ
where f:; :gPoisson denotes the (classical) Poisson bracket.
We observe that, in this representation, the W∞ gauge

fields Aμðx; z; z̄Þ are defined with coordinates in a dþ 2-
dimensional space-time fx; z; z̄g with a two-dimensional
internal color space spanned by the fz; z̄g coordinates. We
consider the following Yang-Mills-type action S, which is
invariant under the W∞ gauge transformations (A2),

S ¼ −
1

4g2

Z
ddx

1

4
TrðF̂ μνF̂

μνÞ∶

F̂ μν ¼ ∂μÂνðxÞ − ∂νÂμðxÞ − i½Âμ; Âν�; ðA6Þ
where g is a coupling constant. This can be rewritten using
the coherent-state representation as [27]

S ¼ −
1

4g2

Z
ddx d2z

X∞
n¼0

ð−1Þn
n

∂n
zF μνðx; z; z̄Þ∂n

z̄F
μνðx; z; z̄Þ∶

F μν ¼ ∂μAνðx; z; z̄Þ − ∂νAμðx; z; z̄Þ þ ffAμ; AνggMoyalðx; z; z̄Þ: ðA7Þ

We note that the action is nonlocal in terms of the z, z̄ variables. Indeed, as stressed in Ref. [27], it is this nonlocal nature of
the action that differentiates the quantumW∞ from the classical w∞ symmetry, as concerns the association with the SUð∞Þ
gauge theory. It is the W∞ that can be viewed as the N → ∞ limit of SU(N), not the classical w∞.
Next, we consider a scalar field in an adjoint representation, which we call a Higgs field:

M̂ðxÞ≡Mðx; â; â†Þ ¼
Z

d2ze−jzj2 jziMðx; z; z̄Þhzj: ðA8Þ

The Yang-Mills-Higgs action is then given by

SH¼
Z

ddxtr

�
1

2
ð∂μM̂ðxÞ− ½Âμ;M̂�ðxÞÞð∂μM̂ðxÞ− ½Âμ;M̂�ðxÞÞ−vðM̂Þ

�

¼
Z

ddx

�Z
d2z

1

2

X∞
m¼0

ð−Þm
m!

∂m
z ð∂μMðx;z;z̄Þ−ffAμ;Mggðx;z;z̄ÞÞ×∂m

z̄ ð∂μMðx;z; z̄Þ−ffAμ;Mggðx;z;z̄ÞÞ
�
− trvðM̂Þ;

vðM̂Þ¼
X
n

gnM̂
n; dimðgnÞ¼d

�
n
2
−1

�
−n: ðA9Þ

We require that the fields and their z; z̄ derivatives should fall to zero at z ¼ ∞. It is easy to check that this action is invariant
under the W∞ gauge transformation (A2) and

δMðx; z; z̄Þ ¼ ffξ;Mggðx; z; z̄Þ; δM̂ðxÞ ¼ −i½ξ̂ðxÞ; M̂ðxÞ�: ðA10Þ

Notice that here again the interactions are nonlocal in the internal (z; z̄) space.
As a last example of aW∞ gauge theory, let us introduce a fermion field in a fundamental representation ofW∞, namely a

field that transforms as a bra or ket vector in the Hilbert space of a harmonic oscillator:

jψðxÞi ¼
Z

jzid2ze−jzj2hzjψðxÞi≡
Z

jzid2ze−jzj2ψðx; z̄Þ: ðA11Þ
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We can write the action as

SF ¼
Z

dnxhψðxÞjγμði∂μ − ÂμðxÞÞjψðxÞi

¼
ZZ

dnxd2ze−jzj2 ψ̄ðx; zÞγμði∂μ −Aμðx; z; z̄ÞÞψðx; z̄Þ;

ðA12Þ

which is invariant under the W∞ gauge transformation and

δjψðxÞi ¼ −iξ̂ðxÞjψðxÞi;
δψðx; z̄Þ ¼ −i‡ξð∂ z̄; z̄Þ‡ψðx; z̄Þ; ðA13Þ

where ‡…‡ indicates that the derivatives are placed on the
left of z̄.
To consider the classical limit of the gauge algebra, as

appropriate for the horizon-area-preserving symmetry of

the classical black hole, where the horizon area is viewed
as a Noether charge [35], one defines the variables σi,
i ¼ x, y,

z ¼ 1ffiffiffi
2

p
l
ðσx þ iσyÞ; z̄ ¼ 1ffiffiffi

2
p

l
ðσx − iσyÞ; ðA14Þ

and takes the limit of the length l → 0. As is well known
[27], this limiting procedure will yield the contracted
classical area-preserving [in the internal (z, z̄) space] w∞
symmetry from the quantum W∞ symmetry. For fields in
the adjoint representation of the SUðNÞ group, such as
the gauge field Aμ and the adjoint Higgs M field, this
procedure is straightforward. To see this, we first pass
from the z, z̄ variables to the σi, i ¼ x, y variables in the
effective actions above and then consider the limit l → 0,
while performing the simultaneous rescaling of the
various fields:

Aμðx; z; z̄Þ ¼ l−2Aμðx; σx; σyÞ; Mðx; z; z̄Þ ¼
ffiffiffiffiffiffi
2π

p
l−2Mðx; σx; σyÞ;

g2 ¼ ~g2l−6; gn ¼ ~g
ffiffiffiffiffiffi
2π

p
l2−n: ðA15Þ

The actions (A6) and (A9) then become

SYM ¼ −
1

4~g2

Z
ddxd2~σFμνðx; ~σÞFμνðx; ~σÞ∶

Fμνðx; ~σÞ ¼ ∂μAνðx; ~σÞ − ∂νAμðx; ~σÞ þ ϵij∂iAμðx; ~σÞ∂jAνðx; ~σÞ;

SH ¼
Z

ddxd2~σ

�
1

2
ð∂μMðx; ~σÞ − ϵij∂iAμðx; ~σÞ∂jMðx; ~σÞÞ × ð∂μMðx; ~σÞ − ϵij∂iAμðx; ~σÞ∂jMðx; ~σÞÞ − ~vðMÞ

�
∶

~vðMÞ ¼
X
n

~gnMnðx; ~σÞ: ðA16Þ

Here again, we require that the fields vanish at ~σ ¼ ∞.
Setting ξðx; z; z̄Þ ¼ l−2ξðx; ~σÞ, we find the w∞ gauge

transformations:

δAμðx; ~σÞ ¼ ∂μξðx; ~σÞ − ϵij∂iξðx; ~σÞ∂jAμðx; ~σÞ;
δMðx; ~σÞ ¼ ϵij∂iξðx; ~σÞ∂jMðx; ~σÞ: ðA17Þ

One can check that the actions (A16) are indeed invariant
under the (classical) w∞ gauge transformation (A17). The
reader should notice that the second equation of (A17) can
be written as

δMðx; ~σÞ ¼ Mðx; ~σ þ δ~σðx; ~σÞÞ −Mðx; ~σÞ;
δσiðx; ~σÞ ¼ −ϵij∂jξðx; ~σÞ; ðA18Þ

which is a local area-preserving coordinate transformation
in the internal two-dimensional space.
It is important to stress that the damping factor e−jzj2

cancels out in Lagrangians for the fields in the adjoint
representation such asAμ andM, due to the property of the
trace in the coherent-state representation. This allows the
limit l → 0 in the change of variables (A15) to be well
behaved, yielding nontrivial actions (A16) in that limit.
This is a feature of fields in the adjoint representation of

SUð∞Þ. The same cannot be said for the fermion fields in
(A12), which belong to the fundamental representation of
SUð∞Þ. For the latter action, there are no damping e−jzj2

factors in the dþ 2 extended space-time, which implies
that, formally, the fermion action vanishes in the classical
l → 0 limit (A15), SF → 0.
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