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We construct exact solutions of BPS pion domain walls in the four-dimensionalN ¼ 1 supersymmetric
SUðNÞ chiral Lagrangian with pion masses introduced via linear and quadratic superpotentials. The model
admits N discrete vacua in the center of SUðNÞ for the linear superpotential. In addition to the latter, new
vacua appear for the quadratic superpotential. We find that the domain wall solutions of pions (Nambu-
Goldstone bosons) that interpolate between a pair of (pion) vacua preserve half of supersymmetry. Contrary
to our expectations, we have not been able to find domain walls involving the quasi-Nambu-Goldstone
bosons present in the theory, which in turn has the consequence that not all vacua of the theory are
connected by a BPS domain wall solution.
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I. INTRODUCTION

Domain walls that separate two vacua are topological
defects appearing in various subjects of physics from con-
densed matter physics to field theory, high energy physics
[1], QCD [2], and cosmology [3]. In supersymmetric
theories, Bogomol’nyi-Prasad-Sommerfield (BPS) domain
walls are the most stable configurations, studied extensively
in the literature, such as supergravity [4] and N ¼ 1 super-
symmetric QCD [5]. They preserve half of supersymmetry
(therefore called 1=2 BPS states) and their tension is given
by the central charge in 1þ 1 dimensions [6]. In 3þ 1
dimensions the tension of the 1=2 BPS domain walls
coincides instead with a tensorial charge present only in
theories with broken translational invariance [5]. Domain
walls were also studied in theories with extended supersym-
metry such as N ¼ 2 supersymmetric hyper-Kähler sigma
models [7] andN ¼ 2 supersymmetric Abelian [8] and non-
Abelian [9] gauge theories. If multiple domain walls with
different angles join at a junction, the total configuration is a
1=4BPS state preserving a quarter of supersymmetry both in
N ¼ 1 [10,11] and N ¼ 2 [12] supersymmetric gauge
theories. See Refs. [13–15] for reviews.
In this paper, we study BPS pion domain walls in the

N ¼ 1 supersymmetric chiral Lagrangian with pion mass
terms. The model appears as the low-energy effective
theory of supersymmetric QCD in supersymmetric vacua
with broken chiral symmetry. The SUðNÞ chiral
Lagrangian with the simplest pion mass term admits N
symmetric discrete vacua in the center elements of SUðNÞ.
We construct exact solutions of BPS SUð2KÞ pion domain

walls interpolating between the pion vacua present in
the theory and find that these domain walls carry
SUð2KÞ=½SUðKÞ × SUðKÞ ×Uð1Þ� orientational moduli
as well as translational moduli. These domain walls are
special solutions interpolating only 2 of 2K vacua. We have
not been able to find any domain wall solutions connecting
any of the other 2K − 2 vacua. We construct the low-energy
effective field theory on the domain wall for theN ¼ 2 case
and obtain the CP1 model. This case is similar to the
moduli space found for vortices in Uð2Þ gauge theories
[16]. The SUð2Þ case (N ¼ 2) reduces to a domain wall in
the Oð4Þ model admitting two discrete vacua [17,18], in
which the CP1 moduli of the domain wall were already
found. In contrast to pion domain walls in nonsupersym-
metric theories [2,19] that are topologically and dynami-
cally unstable, pion domain walls found in this paper
saturate the BPS bound and are therefore stable classically
and quantum mechanically (even non-perturbatively).
In supersymmetric theories, a global symmetry G is

extended to its complex extension GC since the potential is
constructed from a superpotential which is holomorphic in
the chiral superfields. Consequently, spontaneously broken
global symmetry in supersymmetric vacua results in addi-
tional massless bosons, called quasi-Nambu-Goldstone
(NG) bosons [20,21] in addition to the usual NG bosons.
These massless bosons together with their fermionic super-
partners, called quasi-NG fermions [22], constitute chiral
multiplets. The NG and quasi-NG bosons must parametrize
a Kähler manifold as required from supersymmetric non-
linear sigma models [23]. The general framework to
construct low-energy effective theories was provided in
Refs. [24]. In the case of chiral symmetry breaking
SUðNÞL × SUðNÞR → SUðNÞLþR, there must appear the
same number of quasi-NG bosons as the number of NG
bosons (pions) and the target space is SUðNÞC ≃ SLðN;CÞ
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[25]. The most general Kähler potential is an arbitrary
function of G-invariants, corresponding to the deformation
of directions of quasi-NG bosons, which cannot be fixed by
G [25–28]. Manifestly supersymmetric higher-derivative
corrections have recently been constructed, including the
example of chiral symmetry breaking [29]. A supersym-
metric Skyrme term has been constructed recently [30] but
the usual kinetic term canceled out as in the case of baby
(lower dimensional) Skyrmions [31]. In this paper, we
study—for chiral symmetry breaking—supersymmetric
pion mass terms preserving the vector symmetry
H ¼ SUðNÞLþR. In the case of the simplest superpotential,
the potential admits N symmetric discrete vacua for the
SUðNÞ case. We construct BPS pion domain walls inter-
polating between the pion vacua of the theory. These vacua
for which we are able to find domain wall solutions are
antipodal points on the target space. However, as we
mentioned, not all the supersymmetric vacua are connected
by domain walls; vacua with an imaginary part require
quasi-NG bosons to be turned on. For this type of domain
wall—although we have found the BPS equations—we
have not been able to find a domain wall solution, neither
analytically nor numerically. Using an appropriate Ansatz,
we have reduced the BPS matrix equation to a complex
scalar equation which describes one NG mode and one
quasi-NG mode, for which we can show that no solutions
exist. Although we do not yet have a solid proof of absence
of the remaining domain wall, our results provide some
evidence.
As a similar model, the (nonsupersymmetric) UðNÞ

chiral Lagrangian with the pion mass term admits a non-
Abelian sine-Gordon soliton that carries CPN−1 moduli
[32]. The low-energy effective theory on said domain wall
is given by the CPN−1 model [33]. Such a UðNÞ chiral
Lagrangian appears e.g. in the Josephson junction of two
non-Abelian superconductors, in which a non-Abelian
sine-Gordon soliton describes a non-Abelian vortex
(color-magnetic flux tube) from the bulk point of view
[34], that is a non-Abelian extension of Josephson vortices
in field theory [35]. For the non-Abelian sine-Gordon
soliton in the UðNÞ chiral Lagrangian, one has to consider
the group UðNÞ instead of SUðNÞ. We do not need a Uð1Þ
part and consider instead the simple group SUðNÞ.
Consequently, our configurations separate into two differ-
ent vacua so they are domain walls, but two spatial
infinities of a sine-Gordon soliton are in the same vacuum.
We also show that there is no BPS domain wall interpolat-
ing the same vacuum in our model. Only two physically
distinct vacua can be connected by a BPS pion domain
wall. As a consequence, we find no domain wall solutions
for the SUð2K þ 1Þ case.
This paper is organized as follows. In Sec. II, we give a

brief review of the supersymmetric nonlinear sigma model
and chiral symmetry breaking in supersymmetric theories,
and discuss supersymmetric pion mass terms. In Sec. III,

we construct non-Abelian BPS domain walls. In Sec. IV,
we construct the effective theory on the domain wall which
is the CP1 model. Section V is devoted to a summary as
well as discussions. We use the notation of the textbook of
Wess and Bagger [36].

II. SUPERSYMMETRIC CHIRAL LAGRANGIAN

Subsections II A and II B are devoted to a review of
supersymmetric nonlinear sigma models and chiral sym-
metry breaking in supersymmetric theories, respectively,
while the supersymmetric mass term in Subsection II C has
not been discussed in the literature.

A. Supersymmetric nonlinear sigma models

In four-dimensionalN ¼ 1 supersymmetric theories, we
have N chiral superfields Φi, (i ¼ 1;…; N) whose compo-
nent expansion in the chiral basis, ym ¼ xm þ iθσmθ, is
given by

Φiðy; θÞ ¼ φiðyÞ þ θψ iðyÞ þ θ2FiðyÞ; ð2:1Þ

where φi is a complex scalar field, ψ i is a Weyl fermion and
Fi is a complex auxiliary field. The supersymmetric
Lagrangian is described by a Kähler potential KðΦ;Φ†Þ
as well as a superpotential WðΦÞ, where the first is a
function of the superfields, Φi, and the latter is a hol-
omorphic function

L ¼
Z

d4θKðΦ;Φ†Þ þ
�Z

d2θWðΦÞ þ c:c:

�

¼ −gi ȷðφ;φÞ∂mφ
i∂mφ ȷ þ gi ȷðφ;φÞFiF� ȷ

þ Fi ∂W
∂φi þ F� ȷ ∂W�

∂φ ȷ þ ðfermion termsÞ; ð2:2Þ

where gi ȷ ≡ ∂
∂φi

∂
∂φ ȷ Kðφ;φÞ is the Kähler metric. The

potential V can be written in terms of the superpotential as

V ¼ gi ȷFiF� ȷ ¼ gi ȷ
∂W
∂φi

∂W�

∂φ ȷ ; ð2:3Þ

while the auxiliary field is solved by

Fi ¼ −gi ȷ
∂W�

∂φ ȷ : ð2:4Þ

Here gi ȷ is the inverse of the Kähler metric gi ȷ.
The G-invariance of the Kähler potential implies that the
following transformation

KðΦ;Φ†Þ→g KðΦ0;Φ0†Þ ¼ KðΦ;Φ†Þ þ FðΦ; gÞ þ F�ðΦ†; gÞ;
ð2:5Þ
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is preserved; i.e. the transformation with F (F�) being a
(n anti-)holomorphic function of Φ (Φ†) which are deter-
mined by a group element g ∈ G. This transformation is
called a Kähler transformation and the latter two terms in the
above equation vanish under the superspace integral

R
d4θ.

B. Supersymmetric chiral Lagrangian

Let us now consider chiral symmetry breaking of the
form

G ¼ SUðNÞL × SUðNÞR → H ¼ SUðNÞLþR: ð2:6Þ
The NG modes corresponding to the above symmetry
breaking span the following coset space

G=H ¼ SUðNÞL × SUðNÞR
SUðNÞLþR

≃ SUðNÞ: ð2:7Þ

We denote the generators of the coset by TA ∈ suðNÞ,
which take value in the SUðNÞ algebra. It was shown in
Ref. [21] that when the vacuum expectation value (VEV)
giving rise to the symmetry breaking belongs to a real
representation of SUðNÞ, then the number of quasi-NG
boson is exactly the same as the number of NG bosons; this
is also called a maximal realization.
Chiral symmetry breaking belongs to said class and the

total target space is given by

GC=HC ≃ SUðNÞC ≃ SLðN;CÞ≃ T�SUðNÞ: ð2:8Þ
The NG supermultiplet is expressed as the following coset
representative

M ¼ expðiΦiTAδ
A
i Þ ∈ GC=HC; ð2:9Þ

where the NG superfields take the form

Φiðy; θÞ ¼ πiðyÞ þ iσiðyÞ þ θψ iðyÞ þ θθFiðyÞ; ð2:10Þ
with πi being NG bosons, σi quasi-NG bosons—both of
which are real fields—and finally ψ i quasi-NG fermions.
The NG supermultiplets obey the following nonlinear
transformation law

M → M0 ¼ gLMg†R; ðgL; gRÞ ∈ SUðNÞL × SUðNÞR:
ð2:11Þ

In the vacuum M ¼ 1N , the unbroken symmetry H ¼
SUðNÞLþR defined by gL ¼ gR remains.1 From the follow-
ing transformation

MM† → gLMM†g†L; ð2:12Þ

the simplest Kähler potential, that is invariant under the
SUðNÞL × SUðNÞR symmetry, is just

K0 ¼ f2πtrðMM†Þ; ð2:13Þ

where fπ is a constant. The bosonic part of the Lagrangian—
corresponding to the above Kähler potential—to leading
order in the derivative expansion is

L0 ¼ −f2πtrð∂mM∂mM†Þ; ð2:14Þ

where M is the lowest component of the NG superfield
given in Eq. (2.9).
From the left-invariant Maurer-Cartan one-form iM−1 ∂M

∂φi

we define the holomorphic vielbein EA
i ðφÞ and their

conjugates as

iM−1 ∂M
∂φi ¼ EA

i ðφÞTA; −i
∂M†

∂φɩ
M−1† ¼ E�A

ɩ ðφÞTA:

ð2:15Þ

Their pull-backs to space-time give

iM−1∂mM ¼ EA
i ðφÞTA∂mφ

i;

−ið∂mM†ÞM−1† ¼ E�A
ɩ ðφÞTA∂mφ

ɩ: ð2:16Þ

By using the vielbein, the Lagrangian for the bosonic fields
can be rewritten as

L0 ¼ −f2πtrðMTATBM
†ÞEA

i ðφÞE�B
ȷ ðφÞ∂mφ

i∂mφ ȷ

¼ −GABE
A
i ðφÞE�B

j ðφÞ∂mφ
i∂mφ ȷ

¼ −gi ȷðφ;φÞ∂mφ
i∂mφ ȷ; ð2:17Þ

with the Kähler metric gi ȷ and the metricGAB on the tangent
space, defined by

gi ȷðφ;φÞ ¼ f2πtrðMTATBM
†ÞEA

i ðφÞE�B
ȷ ðφÞ

¼ GABE
A
i ðφÞE�B

ȷ ðφÞ; ð2:18Þ

GAB ¼ f2πtrðMTATBM
†Þ; ð2:19Þ

respectively.
The Kähler potential in Eq. (2.13) is the simplest one,

while the most general Kähler potential can be written as
[25,28]

K ¼ fðtrðMM†Þ; tr½ðMM†Þ2�;…; tr½ðMM†ÞN−1�Þ; ð2:20Þ

with an arbitrary function of N − 1 arguments.

1For chiral symmetry breaking in supersymmetric vacua, the
unbroken group H ¼ SUðNÞLþR is not unique, and is further
broken to a subgroup when some quasi-NG bosons get VEVs
[25], where some of the quasi-NG bosons change to NG bosons
[25,28].
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If we set all quasi-NG bosons to zero [25,26]

U ¼ Mjσi¼0 ∈ SUðNÞ; ð2:21Þ

we get the SUðNÞ chiral Lagrangian

L ¼ −f2πtrð∂mU∂mU†Þ ¼ f2πtrðU†∂mUÞ2; ð2:22Þ

where the decay constant fπ is determined from the
function f. Here, we have used that

GABjσ¼0 ¼ f2πδAB; EA
i jσj¼0 ¼ eAi ðπÞ: ð2:23Þ

with the normalization of generators tr½TATB� ¼ δAB and
the vielbein eAi ðπÞ for SUðNÞ.

C. Supersymmetric mass term

The pion mass term in the chiral Lagrangian breaks the
G ¼ SUðNÞL × SUðNÞR symmetry explicitly. It is often
considered that explicit breaking terms do not break the
vector symmetry SUðNÞLþR. Here we consider such mass
terms preserving the vector symmetry SUðNÞLþR. The
superpotential invariant under SUðNÞLþR is

W ¼ gðtrðMÞ; trðM2Þ;…; trðMN−1ÞÞ; ð2:24Þ

with an arbitrary function g of N − 1 arguments.
In this paper, we consider only functions of the trace M,

for simplicity:

W ¼ wðtrMÞ; ð2:25Þ

with an arbitrary function w. The auxiliary fields are
solved as

Fi ¼ −gi ȷ
∂W�

∂φ ȷ ¼ −iw0ðtrM†ÞtrðM†TAÞgi ȷE�A
ȷ ðφÞ; ð2:26Þ

where the prime denotes differentiation with respect to the
argument, and so the potential term can be written as

V ¼ gi ȷFiF� ȷ ¼ jw0ðtrMÞj2trðM†TBÞtrðMTAÞGAB: ð2:27Þ

Here GAB is the inverse of the metric GAB on the tangent
space. The supersymmetric vacua are given by

F ¼ 0⇔w0ðtrMÞtrðMTAÞ ¼ 0: ð2:28Þ

In the next two subsections we will consider the two
simplest possibilities for a chiral symmetry breaking mass
term, conserving the vector symmetry SUðNÞLþR.

1. Linear superpotential

The simplest superpotential

W ¼ wðtrMÞ ¼ m
N
trM; ð2:29Þ

with mass m ∈ R, admits N symmetric supersymmetric
vacua, given by2

M ¼ ωk1N; k ¼ 0; 1; 2;…; N − 1;

ω≡ expð2πi=NÞ; ð2:30Þ

namely the center elements of SLðN;CÞ.
Let us point out a crucial fact about the restriction to the

NG subspace: M ¼ Mjσi¼0 ¼ U ∈ SUðNÞ. In this sub-
space, we can write

tr½U� ¼ tr½exp fiθATAg� ∈ R; ð2:31Þ

if and only if θA ∈ R are real parameters. Since for the NG
restriction θA are indeed real parameters, the above
expression holds.3 Therefore, in this subspace only the
vacua

U ¼ 1N; U ¼ −1N; ð2:32Þ

can be reached for even N and only the vacuum

U ¼ 1N; ð2:33Þ

is possible for odd N. In order to reach the general
ωk ≠ �1N vacua, we need to turn on the quasi-NG
directions.
We note that for theN ¼ 2 case, the NG boson part of the

Lagrangian with the superpotential (2.29) reduces to the
well-known Oð4Þ model:

L ¼ −f2π∂mm · ∂mm; ð2:34Þ

with m ¼ ðm1;…; m4Þ with the constraint m2 ¼ 1 and the
potential [17,18],

V ¼ m2

2f2π
ðm2

1 þm2
2 þm2

3Þ ¼
m2

2f2π
ð1 −m2

4Þ; ð2:35Þ

admitting two vacua m4 ¼ �1.

2A phase for the mass will just rotate all the supersymmetric
vacua, so we can set the phase to zero without loss of generality.

3To realize that the expression holds, it is enough to realize that
an i can only come from the product of an odd number of
generators which is traceless and therefore does not contribute to
the trace. All even powers of the generators have no i and thus the
trace is a real quantity.
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2. Quadratic superpotential

We will also consider the next-simplest potential, i.e. a
quadratic potential of the form

W ¼ wðtrMÞ ¼ m
2N2

ðtrMÞ2; ð2:36Þ

such that the vacuum equation now reads

trðMÞtrðMTAÞ ¼ 0; ð2:37Þ

which has both the old type of vacua

M ¼ ωk1N; ω ¼ exp
2πi
N

; ð2:38Þ

as well as new vacua

trM ¼ 0: ð2:39Þ

These new vacua are sections of SLðN;CÞ and probably
connected spaces, but not connected to the old type
of vacua.
The SUð2Þ case of N ¼ 2, i.e. the NG subspace of the

model, now reduces to the Oð4Þ model with the following
potential

V ¼ m2

2f2π
m2

4ð1 −m2
4Þ; ð2:40Þ

admitting three vacua:m4 ¼ �1 andm4 ¼ 0. Notice that the
vacuam4 ¼ �1 are pointlike on the space of vacua, whereas
the vacuumm4 ¼ 0 is the manifold S2:m2

1 þm2
2 þm2

3 ¼ 1.
The latter can be interpreted as vacuum moduli.
The m4 ¼ 0 vacuum breaks the global SUð2Þ symmetry

to Uð1Þ.

III. BPS PION DOMAIN WALLS

A. BPS equation and Bogomol’nyi bound
for domain walls

BPS equations are obtained by the condition that the
supersymmetry transformation of fermions vanish. The
transformation law of the fermions in the chiral multiplet
is given by

δψ i ¼ i
ffiffiffi
2

p
σmξ∂mφ

i þ
ffiffiffi
2

p
ξFi; ð3:1Þ

where ξ and ξ are transformation parameters. Assuming
that the fields φi depend only on the x1-direction and
imposing the half-BPS condition iσ1ξ ¼ ξ, we obtain the
following BPS equation for domain walls:

∂1φ
i þ Fi ¼ 0: ð3:2Þ

From Eq. (2.26), the above equation reads

∂1φ
i ¼ iw0ðtrM†ÞtrðM†TAÞgi ȷE�A

ȷ : ð3:3Þ

By multiplying by EB
i TB on the both sides, we obtain the

invariant form of the BPS equation

iM−1∂1M ¼ iw0ðtrM†ÞtrðM†TBÞTAGAB: ð3:4Þ

If we restrict to the NG-boson subspace,M ¼ Mjσi¼0 ¼ U,
we get

iU†∂1U ¼ i
f2π

w0ðtrU†ÞtrðU†TAÞTA: ð3:5Þ

The BPS equation (3.4) can also be obtained from the
Bogomol’nyi bound. The Lagrangian can be written as

L ¼ −GABE
A
i ðφÞE�B

ȷ ðφÞ∂1φ
i∂1φ ȷ

−GABjw0ðtrMÞj2trðMTAÞtrðM†TBÞ; ð3:6Þ

yielding the energy for domain walls

E ¼
Z

dx1ðGABE
A
i ðφÞE�B

ȷ ðφÞ∂1φ
i∂1φ ȷ

þ GABjw0ðtrMÞj2trðMTAÞtrðM†TBÞÞ

¼
Z

dx1GAB½EA
i ðφÞ∂1φ

i − iGACw0ðtrM†ÞtrðM†TCÞ�

× ½E�B
ȷ ðφÞ∂1φ

ȷ þ iGDBw0ðtrMÞtrðMTDÞ� þ T; ð3:7Þ

where the domain wall topological charge is defined by

T ≡
Z

dx1ð−iEA
i ðφÞ∂1φ

iw0ðtrMÞtrðMTAÞ

þ iE�B
ȷ ðφÞ∂1φ

ȷw0ðtrM†ÞtrðM†TBÞÞ

¼
Z

dx1ðw0ðtrMÞtrð∂1MÞ þ w0ðtrM†Þtrð∂1M†ÞÞ

¼ j½2ℜðWÞ�x¼þ∞
x¼−∞ j: ð3:8Þ

If we now consider the restriction to the NG subspace (i.e.
setting σi ¼ 0), then we get the energy for the NG domain
walls

E ¼
Z

dx1½f2πtrðiU†∂1UÞ2 þ f−2π jw0ðtrUÞj2

× trðUTAÞtrðU†TAÞ�

¼
Z

dx1tr½ðfπU†∂1U − f−1π w0ðtrUÞtrðUTAÞTAÞ

× ðfπ∂1U†U − f−1π w0ðtrU†ÞtrðU†TBÞTBÞ� þ T; ð3:9Þ
in turn reproducing the BPS equation for the NG subspace
(3.5) and the domain wall topological charge T is now
given by
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T ¼
Z

dx1ðw0ðtrUÞtrð∂1UÞ þ w0ðtrU†Þtrð∂1U†ÞÞ

¼ j½2ℜðWÞ�x¼þ∞
x¼−∞ j: ð3:10Þ

The energy E is most severely bounded from below by jTj.
The bound is saturated when the quantity in the parentheses
in Eq. (3.9) vanishes. This condition is nothing but the BPS
equation (3.5).

B. Linear superpotential

In this subsection we consider the simplest superpoten-
tial, namely the linear one of Eq. (2.29). In this case, the
BPS equation reads

iM−1∂1M ¼ im
N

trðM†TBÞTAGAB: ð3:11Þ

Restricting to the NG-boson subspace, M ¼ Mjσi¼0 ¼ U,
we get

iU†∂1U ¼ im
Nf2π

trðU†TAÞTA; ð3:12Þ

where we have used the expression of the inverse metric on
the tangent space: GAB ¼ f−2π δAB.
With this superpotential, we can calculate the tension of

the domain wall using Eq. (3.8), which for the vacua (2.30)
gives

Tk ¼ 2mjℜðωkÞ − 1j ¼ 4msin2
πk
N

; k ∈ Z; ð3:13Þ

where we have assumed that the domain wall starts from
the vacuum M ¼ 1N and goes to the vacuum M ¼ ωk1N .
The fundamental domain wall, i.e. interpolating between
two nearest vacua, thus has the tension

T1 ¼ 2mjℜðωÞ − 1j ¼ 4msin2
π

N
: ð3:14Þ

A domain wall with the maximum tension is given by

k
N ¼ 1

2
for even N;

k
N�1

¼ 1
2

for odd N:
ð3:15Þ

If we now restrict to the NG subspace,M ¼ Mjσi¼0 ¼ U,
then only real vacua exists and thus the single domain wall
exists only for even N and interpolates between U ¼ 1N
and U ¼ −1N , giving the domain wall tension

T ¼ 4msin2
π

2
¼ 4m: ð3:16Þ

A double domain wall for even N or a single domain wall
for odd N would wind 2π and thus have a vanishing
tension. Since the superpotential is not double valued, these

solutions do not exist. Alternatively, we can think of two
domain walls in the NG subspace for even N as a domain
wall and an anti-domain wall, which thus have zero overall
topological charge. They may exist locally if well sepa-
rated, but they are likely to decay to the vacuum, i.e. to the
trivial topological sector.

1. SUð2Þ solution
We will begin with the simplest possible solution, which

is in the NG subspace and for N ¼ 2; namely the SUð2Þ
case. The linear superpotential (2.29) gives rise to two
discrete vacuaU ¼ �12. The general element of SUð2Þ can
be written as

U ¼ exp

�
i
θ

2
n · σ

�
¼ cos

θ

2
12 þ in · σ sin

θ

2
; ð3:17Þ

with a unit vector n ¼ ðn1; n2; n3Þ, (n2 ¼ 1) and the Pauli
matrices σA. We construct a domain wall interpolating
between U ¼ 12, (θ ¼ 0) at x → þ∞ and U ¼ −12,
(θ ¼ 2π) at x → −∞. By using an SUð2Þ transformation,
Eq. (3.17) can be diagonalized without loss of generality to
n ¼ ð0; 0; 1Þ, yielding:

U0 ¼ diagðeiθ=2; e−iθ=2Þ: ð3:18Þ

Then, the BPS equation (3.12) reduces to

∂1θ ¼ −
m
f2π

sin
θ

2
; ð3:19Þ

which is the BPS equation for the sine-Gordon soliton.
A single soliton solution is

θðx1Þ ¼ 4 arctan exp

�
−

m
2f2π

ðx1 − XÞ
�
; ð3:20Þ

with the constant X ∈ R corresponding to the position of
the soliton. We thus find that the most general single soliton
solution is Eq. (3.17) with Eq. (3.20). The general solution
therefore has the moduli

S2 ≃ SOð3Þ
SOð2Þ≃ CP1 ≃ SUð2Þ

Uð1Þ ; ð3:21Þ

characterized by n. The tension for this domain wall
is T ¼ 4m.

2. SUð2KÞ solutions
In this section we consider the NG subspace for even

N ¼ 2K, with K ∈ Z. We now choose an Ansatz for the
element U for a single domain wall as
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U0 ¼ diag

�
exp

�
iθ
2

�
;…; exp

�
iθ
2

�
;

exp

�
−
iθ
2

�
;…; exp

�
−
iθ
2

��
¼ expðiθT0Þ; ð3:22Þ

T0 ≡ diag

�
1

2
;…;

1

2
;−

1

2
;…;−

1

2

�
: ð3:23Þ

The boundary conditions of θ for the domain wall are:
θ ¼ 0, (U ¼ 12K) at x → þ∞ and θ ¼ 2π, (U ¼ −12K)
at x → −∞.
The BPS equation (3.12) can now readily be

calculated as

i∂1θT0¼
m

2Kf2π
tr½U†

0TA�TA

¼ m
2Kf2π

X2K
k¼Kþ1

1

kðk−1Þ
× ½Ke−

iθ
2 þðk−1−KÞeiθ

2 −ðk−1Þeiθ
2 �

×diag

�
1;…;1|fflfflffl{zfflfflffl}

k−1

;1−k;0;…;0|fflfflffl{zfflfflffl}
2K−k

�

¼−
im
f2π

sin
θ

2

X2K
k¼Kþ1

1

kðk−1Þdiag
�
1;…;1|fflfflffl{zfflfflffl}

k−1

;1−k;0;…;0|fflfflffl{zfflfflffl}
2K−k

�

¼−
im
Kf2π

T0sin
θ

2
: ð3:24Þ

The solutions are thus given by Eq. (3.20) with m → m=K.
Since there are only two real vacua, this is the general

single domain wall in the restricted NG subspace.
The tension is again 4m.
The solution has the moduli

SUð2KÞ
SUðKÞ × SUðKÞ ×Uð1Þ ; ð3:25Þ

in addition to the translational modulus.

3. SUð2Þ double domain wall case

In this section we consider the NG subspace for the
N ¼ 2 case, with a double domain wall, interpolating from
12 back to 12. We now choose an Ansatz for the element U
for a single domain wall as

U0 ¼ diagðexp ðiθÞ; exp ð−iθÞÞ ¼ expðiθT0Þ; ð3:26Þ

T0 ≡ diagð1;−1Þ: ð3:27Þ

The boundary conditions of θ for the domain wall are:
θ ¼ 0, (U ¼ 12) at x → þ∞ and θ ¼ 2π, (U ¼ 12)
at x → −∞.

The BPS equation (3.12) now reads

∂1θ ¼ −
m
2f2π

sin θ: ð3:28Þ

θ can interpolate from π to 0, which is the normal domain
wall solution of Sec. III B 1 or from π to 2π, which is
simply the anti-domain wall solution (mod 2π). Due to the
fact that the right-hand side of Eq. (3.28) is negative
(positive) semidefinite for θ in the range ½0; π� (½π; 2π�),
no BPS pion domain wall solution (i.e. NG boson domain
wall) can interpolate between 2π and 0.
This result extends trivially to SUð2KÞ and since

SUð2K þ 1Þ only has the single vacuum of the double
domain wall, also no BPS solutions exist for odd
N ¼ 2K þ 1.

4. SLð3;CÞ case
We now attempt to relax the restriction to the NG

subspace, which is a necessity if we are to consider the
domain wall between the general vacua M ¼ 1N and
M ¼ ω1N . We will start by considering SLð3;CÞ. We first
diagonalize an SLð3;CÞ element M as

M0 ¼ diag

�
exp

�
iθ
3

�
; exp

�
iθ
3

�
;

exp

�
−
i2θ
3

��
¼ expðiθT0Þ; ð3:29Þ

T0 ≡ diag

�
1

3
;
1

3
;−

2

3

�
: ð3:30Þ

We consider the boundary conditions of θ for a domain
wall: θ ¼ 0, (M ¼ 13) at x → þ∞ and θ ¼ 2π, (M ¼ ω13)
at x → −∞.
Now the situation is a little more complicated because

when we are not restricting to the NG subspace, we need
also to take into account the metric on the tangent space
GAB. The BPS equation (3.4) now reads

i∂1θ ¼ me
i2θ
3 ð1 − eiθÞ

f2πðeiθ þ 2eiθÞ
; ð3:31Þ

where we have used the inverse metric on the tangent space

G11 ¼ G22 ¼ G33 ¼ 1

f2π
e2ℑðθÞ=3; ð3:32Þ

G44 ¼ G55 ¼ G66 ¼ G77 ¼ 1

2f2π
e−4ℑðθÞ=3 þ 1

2f2π
e2ℑðθÞ=3;

ð3:33Þ

G45 ¼ −G54 ¼ G67 ¼ −G76

¼ −i
1

2f2π
e−4ℑðθÞ=3 þ i

1

2f2π
e2ℑðθÞ=3; ð3:34Þ
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G88 ¼ 3ei2θ=3þiθ=3

f2πðeiθ þ 2eiθÞ
; ð3:35Þ

and the generators are TA ¼ 1ffiffi
2

p λA, where λA are the

Gell-Mann matrices.
Let us decompose Eq. (3.31) into real and imaginary

parts

∂1a ¼ −
meb=3ðsin a

3
þ eb sin 2a

3
Þ

f2πð1þ 2e2bÞ ; ð3:36Þ

∂1b ¼ −
meb=3ðcos a

3
− eb cos 2a

3
Þ

f2πð1þ 2e2bÞ ; ð3:37Þ

where we have defined the complex function θ ¼ aþ ib, in
terms of two real-valued functions. Notice that the only
fixed points (vacua) of this system is a ¼ 2πn and b ¼ 0
with n ∈ Z. If we consider the imaginary function, b, then
around the vacuum a ¼ 2π, the asymptotic behavior of b
when large and negative is

b ∼ −3 log
mx
f2π

þ const; ð3:38Þ

whereas if b is large and positive, it goes as

b ∼
3

2
log

mx
f2π

þ const ð3:39Þ

Neither of these behaviors allow for b to return to the
vacuum b ¼ 0. This means that the system exhibits an
instability such that when jbj is larger than some critical
value, it cannot return to the vacuum even if a≃ 2π. This,
however, does not prove the absence of solutions to the
Eq. (3.31). Wewill leave this task to future studies. We have
nevertheless been seeking for numerical solutions without
finding any.

5. SLðN;CÞ case
Here we generalize the previous section to SLðN;CÞ.

We first diagonalize an SLðN;CÞ element M as

M0 ¼ diag

�
exp

�
i
θ

N

�
;…; exp

�
i
θ

N

�
;

exp
�
−iθ

N − 1

N

��
¼ expðiθT0Þ; ð3:40Þ

T0 ≡ diag

�
1

N
;…;

1

N
;−

N − 1

N

�
: ð3:41Þ

We consider the boundary conditions of θ for a domain
wall: θ ¼ 0, (M ¼ 1N) at x → −∞ and θ ¼ 2π, (M ¼ ω1N)
at x → þ∞.
Substituting this form into the BPS equation (3.4), we get

i∂1θ ¼ me
iðN−1Þθ

N ð1 − eiθÞ
f2πðeiθ þ ðN − 1ÞeiθÞ

: ð3:42Þ

Since, as we have seen in the previous section, it is
difficult at best to find solutions in the generic case where
the quasi-NG bosons are turned on, we will first attempt a
simplification. We want to take the large N limit of the
above equation. Let us define

~m≡ m
Nf2π

: ð3:43Þ

In the large N limit, Eq. (3.42) reduces to

i∂1θ ¼ ~meiθðe−iθ − 1Þ: ð3:44Þ

The vacua are clearly θ ¼ 2πn, with n ∈ Z. A domain wall
solution would thus go from 0 to 2π. Let us again
decompose the equation into real functions

∂1a ¼ − ~me−b sin a; ð3:45Þ

∂1b ¼ ~me−2bðeb cos a − 1Þ; ð3:46Þ

where θ ¼ aþ ib. Expanding Eq. (3.46) in small a
yields

∂1b ¼ ~me−2b
�
eb
�
1 −

1

2
a2 þOða4Þ

�
− 1

�
; ð3:47Þ

which for b ¼ 0 and a small but positive will drive b
negative. It is easy to see from the right-hand side of (3.46)
that once b is negative, it will always decrease and hence
become more and more negative. Since all the vacua has
b ¼ 0, no solution exists to this equation.
Sincewe have used a particular—albeit well motivated—

Ansatz for the domain wall field M and we have taken the
large N limit, this is not a general proof of nonexistence.
Finally, let us consider the finite N case. Decomposing

Eq. (3.42) into real functions, we get

∂1a ¼ −
m
f2π

e
b
Nðsin a

N þ eb sin ðN−1Þa
N Þ

1þ ðN − 1Þe2b ; ð3:48Þ

∂1b ¼ −
m
f2π

e
b
Nðcos a

N − eb cos ðN−1Þa
N Þ

1þ ðN − 1Þe2b ; ð3:49Þ

where θ ¼ aþ ib. Expanding Eq. (3.49) in small a
yields
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∂1b ¼ −
m
f2π

e
b
N

�
1 −

a2

2N2
− eb

�
1 −

ðN − 1Þ2a2
2N2

þOða4Þ
�

þOða4Þ
�
: ð3:50Þ

Since the SUð2Þ case is already solved, we will consider
onlyN > 2, in which case the second cosine dominates and
hence for b ¼ 0 and small a again drives b negative. If b
attains a negative value and it has to return to zero for when
a goes to 2π, then a positive value of the right-hand side of
Eq. (3.49) is a necessity. The larger negative values b takes
on, the harder it is for the function to be positive; therefore
we will consider b ¼ 0 as the most conservative choice for
a negative value of b. If the function cannot attain positive
values for b ¼ 0, then even less so for b < 0. It is thus
enough to realize that

− cos
a
N
þ cos

ðN − 1Þa
N

≤ 0; for N ≥ 4: ð3:51Þ

Hence, no solution exists for N ≥ 4. This is of course
consistent with the large N limit considered above. The
only possibility is N ¼ 3 for which we do not have a proof
at present. Numerically, however, we have not been able to
find a solution to the BPS equation.
Of course the proof of nonexistence is limited to the use

of our Ansatz. We leave a general proof for future work.

C. Quadratic potential

In this section we turn to the case of the quadratic
potential (2.36), hence the BPS equation reads

iM−1∂1M ¼ im
N2

trðM†ÞtrðM†TBÞTAGAB: ð3:52Þ

Restricting again to the NG-boson subspace, M ¼
Mjσi¼0 ¼ U, we have

iU†∂1U ¼ im
N2f2π

trðU†ÞtrðU†TAÞTA: ð3:53Þ

With this superpotential, we can also calculate the
domain wall tension using Eq. (3.8), which for a domain
wall between M ¼ 1N and the new vacuum yields

T ¼ m
N2

jℜððtr1NÞ2Þj ¼ m; ð3:54Þ

while for a domain wall between the vacuum M ¼ ωk1N
and the new vacuum, we have

T ¼ m
N2

jℜððωktr1NÞ2Þj ¼ m cos
4πk
N

: ð3:55Þ

If we restrict to the NG subspace, M ¼ Mjσi¼0 ¼ U, only
real vacua exist and so the tension is always given
by Eq. (3.54).

1. SUð2Þ solution
Let us consider N ¼ 2 as a warm up. The old vacua have

ω ¼ eiπ and so are given by

M1 ¼ 12; M2 ¼ −12; ð3:56Þ

whereas the new vacuum is given by

trM ¼ 0; ð3:57Þ

which we can flesh out as

M3 ¼
�
a b

c −a

�
; ð3:58Þ

whose determinant is

−a2 − bc ¼ 1; ð3:59Þ

yielding

M3 ¼
�
a − 1þa2

c

c −a

�
: ð3:60Þ

The simplest possibility is a ¼ 0 and c ¼ 1, i.e.,

M3 ¼ −iτ2: ð3:61Þ

The complication of the N ¼ 2 case is that there is no new
diagonal vacuum. We will now consider an Ansatz that will
interpolate between one of the old vacua and the new
vacuum, namely from M1 to M3:

U ¼ 12 cos θ − iτ2 sin θ: ð3:62Þ

Since both vacua are in the subspace spanned by the NG
bosons, it is consistent to restrict to the NG submanifold, if
a solution exists. The boundary conditions are θ ¼ 0

(U ¼ 12) at x → þ∞ and θ ¼ π=2 (U ¼ −iτ2) at
x → −∞. Notice that due to the two vacua not being
proportional to the identity matrix (12), the global SUð2Þ
symmetry is broken to Uð1Þ by the vacuum. Plugging the
above Ansatz into Eq. (3.5) we get

τ2∂1θ ¼ −τ2
m
4f2π

sin 2θ; ð3:63Þ

which has the solution

θðx1Þ ¼ arctan exp

�
−

m
2f2π

ðx1 − XÞ
�
; ð3:64Þ

where X is again a position modulus.
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The Uð1Þ symmetry possessed by the vacuum is unbro-
ken by the domain wall solution. Consequently, the domain
wall has no orientational moduli.

2. SUð2KÞ solutions
We can straightforwardly extend the SUð2Þ solution to

SUð2KÞ, by embedding K blocks of the SUð2Þ Ansatz
(3.62) in U0 as

U0 ¼

0
BB@

12 cosθ1 − iτ2 sinθ1

. .
.

12 cosθK − iτ2 sinθK

1
CCA;

ð3:65Þ

which interpolates between the vacuum U ¼ 12K and

U ¼

0
BBBBBBBB@

0 −1
1 0

. .
.

0 −1
1 0

1
CCCCCCCCA
: ð3:66Þ

It is straightforward to show that the BPS equation is
exactly the same as (3.63) in each K block along the
diagonal. The solution is therefore Eq. (3.64),

θiðx1Þ ¼ arctan exp

�
−

m
2f2π

ðx1 − XiÞ
�
; ð3:67Þ

with i ¼ 1;…; K and the moduli space is now given by

SUðKÞ
Uð1ÞK−1 ; ð3:68Þ

for generic position moduli X1 ≠ X2 ≠ � � � ≠ XK . If how-
ever X1 ¼ X2 ¼ � � � ¼ XK then no orientational (NG)
moduli exist for this solution.

IV. LOW-ENERGY EFFECTIVE THEORY ON
THE DOMAIN WALL

In this section, we construct the low-energy effective
theory on the SUð2Þ domain wall for the linear super-
potential (2.29) by using the moduli (or Manton’s) approxi-
mation [37]. The most general solution is obtained by
performing the SUð2ÞLþR transformation in Eq. (3.18) and
is given by

U ¼ VU0V† ¼ expðiθVT0V†Þ; V ∈ SUð2Þ: ð4:1Þ

Now we define the complex 2-vector ϕ by the following
relation

VT0V† ¼ ϕϕ† −
1

2
12: ð4:2Þ

The vector ϕ satisfies the constraint ϕ†ϕ ¼ 1. Using this
vector, the general solution is rewritten as

U ¼ exp

�
iθ

�
ϕϕ† −

1

2
12

��

¼ ½12 þ ðeiθ − 1Þϕϕ†� expð−iθ=2Þ: ð4:3Þ

The vector ϕ parametrizes CP1 and the moduli of the
solution are given by X and ϕ.
We first promote the moduli X and ϕ in the solution to

fields XðxαÞ and ϕðxαÞ depending on the coordinates xα of
the domain wall world-volume, substitute it into the
original Lagrangian, and then perform an integration over
the codimension.
The differentiation of U with respect to the world-

volume coordinates xα can be calculated as

∂αU ¼
�
−
i
2
ð12 þ ðeiθ − 1Þϕϕ†Þ∂αθ þ i∂αθeiθϕϕ†

þ ðeiθ − 1Þð∂αϕϕ
† þ ϕ∂αϕ

†Þ
�
expð−iθ=2Þ: ð4:4Þ

By using the relations

∂αeiθðx
1;XðxαÞÞ ¼ i∂αX

∂θ
∂X eiθ ¼ −i∂αX∂1θeiθ; ð4:5Þ

2j1 − eiθj2 ¼ 2ð2 − eiθ − e−iθÞ ¼ 8sin2
θ

2
; ð4:6Þ

we obtain

trð∂αU∂αU†Þ ¼ 1

2
ð∂1θÞ2ð∂αXÞ2

þ 8sin2
θ

2
½∂αϕ†∂αϕþ ðϕ†∂αϕÞ2�: ð4:7Þ

By noting the formulas

Z
dx1sin2

θ

2
¼ 2

m
;

Z
dx1ð∂1θÞ2 ¼

Z
dx1

�
m
f2π

sin
θ

2

�
2

¼ 2m
f4π

; ð4:8Þ

where we have used the BPS equation (3.19) in the second
relation, the integration of Eq. (4.7) over the codimensional
coordinate x yields the final form of the effective
Lagrangian on the wall:
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Leff ¼ −
m
f2π

∂αX∂αX

−
16f2π
m

½∂αϕ
†∂αϕþ ðϕ†∂αϕÞðϕ†∂αϕÞ� − m

f2π
;

ð4:9Þ
where the last term is the tension of the domain wall. The
first term describes the translational zero modes while the
second term represents the orientational zero modes, which
is described by the CP1 model.

V. SUMMARY AND DISCUSSION

We have studied the BPS domain walls in the N ¼ 1
supersymmetric chiral Lagrangian with SUðNÞLþR invari-
ant pion mass terms. The bosonic components of the model
consist of both NG and quasi-NG bosons. We have
constructed exact solutions of BPS pion domain walls
for the case of a linear and a quadratic superpotential. In all
cases we have considered the simplest Kähler potential; the
difference with the most general Kähler potential of the
chiral invariant amounts simply to a change in the Kähler
modulus (pion decay constant). All the domain wall
solutions are topologically stable. We have, however, found
not all vacua are connected by domain walls of BPS type.
In particular, we have only been able to find BPS domain
wall solutions connecting pion vacua, i.e. vacua with no
imaginary part. These domain wall solutions, in turn, are
described only by the NG-boson subspace and not by the
quasi-NG bosons, which are left turned off in the solutions.
For a well-motivated Ansatz, we have found the complex
BPS equation not restricted to the NG submanifold. We
have, however, proved that this BPS equation has no
solutions for N ≥ 4. The N ¼ 2 case has only real vacua
and the analytic domain wall solution is simply the sine-
Gordon solution. We have not been able to find analytical
or numerical solutions to the BPS equation for N ¼ 3,
although we do not at present have a proof of nonexistence.
The understanding of the absence of domain walls between
all the vacua with an imaginary part still needs some
progress. This may in turn teach us about the dynamics of
the quasi-NG bosons in nonperturbative solutions. We
leave this interesting open issue for future studies.
TheBPSbound gives a tensionwhich is the absolute value

of the real part of the difference between the superpotential
evaluated at two given vacua. The fact that the tension is the
real part of this difference, means that if the vacua are purely
imaginary (for instance M ¼ i and M ¼ −i), then the BPS
bound gives a vanishing tension. Since, physically, no
domain wall can interpolate two such vacua with vanishing
tension, they are necessarily not saturating the bound and
thus are non-BPS.Whether non-BPS solutions exist or not is
beyond the scope of this paper, although it is an interesting
problem which we leave for future work.
Non-Abelian vortices in Uð2Þ gauge theories also carry

CP1 moduli [16] and the UðNÞ gauge group was

generalized to an arbitrary gauge group [38] such as
SOðNÞ andUSpð2NÞ [39]. Our model itself could straight-
forwardly be extended to a chiral Lagrangian of an arbitrary
group G, but one nontrivial question is which coset space
G=H is realized on the domain wall. We have already
observed a more complicated structure of the domain walls
in our model than simply the CPN−1 model; further cosets
appear already in the SUðNÞ case.
Our model should admit a domain wall junction as a 1=4

BPS state [10]. In particular, the simplest superpotential
with N vacua is expected to admit a ZN symmetric domain
wall junction as in Ref. [11]. However, since we already
have observed that not all the vacua are connected in our
model, the domain wall junctions may be either absent or
modified compared to the usual case.
The effective theory of a non-Abelian vortex in UðNÞ

gauge theory is the CPN−1 model, and lump solutions on it
correspond to Yang-Mills instantons in the bulk [40]. The
total configuration of lumps inside a vortex is a 1=4BPS state.
In the same way, lump solutions in our domain wall, which
will correspond to Skyrmions in the bulk as the case of a non-
Abelian sine-Gordon soliton [33], may be 1=4 BPS states.
Recently, a supersymmetric Skyrme term has been

constructed in Ref. [30] in which it has been found that
the usual kinetic term cancels out. In this case, the
introduction of a superpotential can be done only pertur-
batively [31]. Construction of such a model and its BPS
domain wall solutions—that may be of compacton type—
remain as a future problem.
The chiral Lagrangian can be realized on a non-Abelian

domain wall inN ¼ 2 supersymmetric UðNÞ gauge theory
with two N × N complex scalar fields (hypermultiplets)
[41,42]. If we find a suitable mass deformation preserving
(part of) the supersymmetry in the original bulk action that
induces the superpotential W ¼ m

N trðMÞ on the wall, then
our solution may describe a wall inside a wall as a 1=4 BPS
state. The non-Abelian domain wall in Refs. [41,42]
describes a non-Abelian Josephson junction in the presence
of a Josephson term in the bulk that breaks supersymmetry,
and a sine-Gordon soliton on the wall that describes a non-
Abelian vortex absorbed into the junction [34]. A super-
symmetry-preserving mass deformation, if it exists, would
describe a supersymmetric Josephson junction and would
give a BPS non-Abelian vortex absorbed into the junction,
that is, a BPS non-Abelian Josephson vortex.
Finally, in (non-supersymmetric) QCD, topological sol-

itons in chiral symmetry breaking were studied, see, e.g.
Refs. [2,43]. Our BPS configurations may have implica-
tions for these more realistic cases as well.
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