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We present a one-parameter family of exact solutions to Einstein’s equations that may be used to study
the nature of the Green-Wald backreaction framework. Our explicit example is a family of Einstein-Rosen
waves coupled to a massless scalar field. This solution may be reinterpreted as a generalized three-torus
polarized Gowdy cosmology with scalar and gravitational waves. We use it to illustrate essential properties
of the Green-Wald approach. Among other things we show that within our model the Green-Wald
framework uniquely determines backreaction for finite-size inhomogeneities on a predefined background.
The results agree with those calculated in the Charach-Malin approach. In the vacuum limit, the Green-
Wald, the Charach-Malin and the Isaacson methods imply identical backreaction, as expected.
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I. INTRODUCTION

In the Green-Wald framework [1] backreaction is rep-
resented by the effective energy-momentum tensor. It
describes the leading-order effects of small-scale inhomo-
geneities on the global structure of spacetime. The main
result of Ref. [1] states that this effective energy-
momentum tensor satisfies the weak energy condition
and is traceless. Thus, the significant backreaction effect
of small-scale inhomogeneities can be produced only by
high-frequency gravitational waves and not by matter
inhomogeneities. This result holds for all spacetimes
satisfying the mathematical assumptions of Green and
Wald [1] and, if applied to cosmology, implies that back-
reaction cannot mimic the cosmological constant. The
fundamental question is whether the Green-Wald frame-
work captures the effect of inhomogeneities properly and
whether it may be applied to our Universe. Recently, this
problem was the subject of a discussion [2–5].
The most straightforward approach to clarify the issue

described above is to search for exact spacetimes to which
the Green-Wald framework may be applied and for which it
leads to nontrivial backreaction effects. The study of such
an example is the main aim of our paper.
The theorems of Green and Wald [1] are based on

mathematical assumptions that are not intuitive. The main
assumption is the existence of a one-parameter family of
solutions to Einstein’s equations, gabðλÞ, λ > 0, that
approaches the effective (background) spacetime in a
special way as λ → 0. It is not necessary to know this
family in an exact form to predict the properties of the
backreaction effect. However, one should provide examples
of such families to explore the class of solutions to which
the Green-Wald framework applies. Moreover, since there
exist other similar frameworks, one may use these exam-
ples of one-parameter families of exact solutions to check

the consistency of different methods. In this paper, we
compare the Green-Wald framework to the Charach-Malin
approach [6] and, in the vacuum limit, to the Isaacson
method [7,8]. Although these methods do not differ much
when it comes to practical calculations, they are based on
different mathematical assumptions. The Charach-Malin
and Isaacson methods do not involve “taking limits” and
thus there are no doubts that they describe backreaction for
finite-size inhomogeneities.1 The essential advantage of the
Green-Wald formalism over other similar approaches is
the fact that it allows one to prove general theorems about
the properties of backreaction. These theorems do not have
their counterparts in other approaches. Therefore, it is
interesting to study relations between the different frame-
works. The exact solution presented in this paper provides
such an opportunity.
Some time ago we2 presented a one-parameter family of

exact solutions to Einstein’s equations that was used to test
the Green-Wald backreaction framework [9]. This was the
first nonvacuum example of a family of exact solutions that
satisfies the Green-Wald assumptions. The simplicity of
this family makes it an interesting testbed for this formal-
ism. On the other hand, the energy-momentum tensor in
Ref. [9] is uniformly convergent as λ → 0, so its weak
limit3 coincides with the ordinary limit—such matter
inhomogeneities do not model the inhomogeneities in
our Universe sufficiently well.4 Therefore, it would be
instructive to find a nonvacuum example such that the weak

1This aspect of the Green-Wald method has been recently
analyzed in Ref. [5].

2In collaboration with Krzysztof Głód and Alicja Konieczny.
3For a definition of a weak limit see Ref. [1].
4This was pointed out by Stephen Green and Robert Wald and

suggested in the summary of the paper coauthored by us [9].
Recently similar remarks were presented in Ref. [2].
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limit of the energy-momentum tensor is nontrivial and the
density contrast of the matter is high. We provide such
an example in this paper. In our example, the energy-
momentum tensor and the Ricci scalar are not uniformly
convergent as λ → 0. The density contrast of matter does
not vanish and remains bounded, but the frequency of the
density fluctuations blows up as the background spacetime
is approached. We show that in our model this kind of
inhomogeneities in the distribution of a massless scalar
field do not contribute in the leading order to the back-
reaction effect in accord with what was proved in a general
setting in Ref. [1]. The bounded nonvanishing amplitude,
high-frequency matter inhomogeneities studied in our
article provide an example of an intermediate behavior
between decreasing amplitude, high-frequency matter
inhomogeneities studied in Ref. [9] and unbounded ampli-
tude, high-frequency matter inhomogeneities,5 an example
of which has yet to be found.
There already exist four articles in which Green and

Wald presented their method [1,5,10,11] and we refer the
reader to those papers for mathematical details. However,
we think that it could be instructive to review their
framework from a different perspective.

II. AVERAGING AND THE
GREEN-WALD FRAMEWORK

In this section we briefly review the Green-Wald
framework. We restrict ourselves to the “leading-order
analysis.” We keep the mathematical material to a mini-
mum; however, for the sake of clarity it seems necessary to
introduce some definitions. For brevity, sometimes the
surnames Green and Wald will be abbreviated as GW.
Let M be a Lorentzian manifold and LðMÞ a set of (at

least) C2 Lorentzian metrics on M. Following Green and
Wald, one may introduce6 the notion of metrics with small-
scale inhomogeneities. We denote this subset of LðMÞ by
LinhðMÞ. Hence Leff ≔ LðMÞnLinhðMÞ corresponds to all
metrics without small-scale inhomogeneities. Any element
of this set, if not indicated otherwise, will be denoted with
gð0Þ and called an effective metric. By gλ ⊂ LinhðMÞ we
define a one-parameter family of metrics, such that gð0Þ ¼
limλ→0þgλ ∈ LeffðMÞ (uniform convergence).
It is usually assumed that the backreaction problem will

be solved if an appropriate averaging procedure is found.
This procedure—let us denote it by A∶LinhðMÞ →
LeffðMÞ—if applied to an inhomogeneous metric g,
should give an averaged effective metric gð0Þ, and thus
AðgÞ ¼ gð0Þ. Then, it is natural to expect that a well-defined

A will satisfy some basic properties: it should be covariant
and unique.
Unfortunately, it seems that this kind of approach is not

the best way to proceed in most physically interesting
situations. For example, finding a correctA is not sufficient
to solve the cosmological backreaction problem: one still
needs “the true metric of the Universe”7—let us denote this
hypothetical metric as gU ∈ LinhðMÞ8—to average it to find
the effective metric. It is usually expected that
AðgUÞ ¼ gRW, where gRW ∈ LeffðMÞ stands for the
Robertson-Walker metric. However, if we had known
gU, then most important problems would be solved and
one would need the effective metric gRW only to simplify
calculations. On the other hand, although knowingA alone
does not solve the problem, it could be helpful. One might
apply A to some toy models, study how small-scale
inhomogeneities alter the averaged effective metric and
try to generalize the results to a cosmological context.
The Green-Wald framework that we are going to study in

this paper was not devised to work in the way described
above. This approach is a generalized perturbation theory
and as in every perturbative approach, i.e. the Isaacson
high-frequency limit [7,8], full covariance is lost. Since it
could be not clear what a perturbative approachmay mean
in the context of backreaction, we clarify this issue below.
First, as in every perturbative approach, the effective

spacetime must be assumed a priori. This is not a
disadvantage of the framework, because the theorems of
Green andWald [1] hold for any background spacetime and
arbitrary “perturbations” satisfying their mathematical
assumptions. Thus, the properties of backreaction in this
framework are known in general and a particular form of
the background metric was not needed in the proofs. The
GWmethod is in some sense an inverse approach to the one
presented at the beginning of this section. If A is an
arbitrary averaging procedure such that AðgÞ ¼ gð0Þ, then
A−1ðgð0ÞÞ ⊂ LðMÞ corresponds to the whole class of
possibly inhomogeneous metrics that may be effectively
represented by gð0Þ. Similarly, in the GW approach
A−1

GWðgð0ÞÞ corresponds to a set of one-parameter solutions
to Einstein’s equations gλ such that limλ→0þgλ ¼ gð0Þ (uni-
form convergence) and that satisfy the remaining assump-
tions of Green and Wald [(iii) and (iv) in Ref. [1]].
[Hereafter, the Green-Wald assumptions (i)-(iv) will be
termed for brevity the GW assumptions]. Thus, the GW
assumptions provide a precise definition of A−1

GWðgð0ÞÞ
which corresponds to a “cloud” of possibly inhomogeneous
metrics that are in a weak9 sense not far from some effective

5This classification of inhomogeneities is based on the
behavior of the amplitude and frequency of fluctuations of matter
density as the background spacetime is approached along the one-
parameter family of solutions.

6For example, as presented in the introduction in Ref. [5].

7Or, maybe better, “the metric that encapsulates all essential
properties of the true metric of the Universe.”

8We assume here thatM corresponds to a manifold which may
be used to construct a model of the Universe.

9The precise meaning of this word follows from the GW
assumptions [1].
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background gð0Þ. In the GW framework essential informa-
tion about inhomogeneities is encoded in first and
second derivatives of metrics in A−1

GWðgð0ÞÞ. This idea is
best known from the Isaacson approach.10

How is backreaction defined in this kind of perturbative
frameworks? The metrics inA−1

GWðgð0ÞÞ and the correspond-
ing energy-momentum tensors satisfy Einstein’s equations.
We would like to represent these inhomogeneous metrics
by an effective metric gð0Þ and a smoothed energy-momen-
tum tensor Tð0Þ.11 However, there is no reason why both
quantities should satisfy Einstein’s equations. We still may
pretend that they do if we add an additional term, so
Gðgð0ÞÞ ¼ 8πðTð0Þ þ tð0ÞÞ. This term tð0Þ is called the
effective energy-momentum tensor. It represents the effect
of inhomogeneities on the background spacetime. So, as it
possibly happens in cosmology, if one would naively
construct a cosmological model with gð0Þ, then one would
discover that the corresponding energy-momentum tensor
contains a strange contribution tð0Þ. This problem is known
as “a fitting problem” [14]. One assumes a priori that
Einstein’s equations hold for the effective metric gð0Þ,12 and
then asks whether the corresponding energy-momentum
tensor contains some unexpected corrections in the form of
tð0Þ. We point out that this kind of inverse approach is
usually adopted in modern cosmology, where philosophical
prejudices supported by astronomical data were used to
construct the standard cosmological model. With the new
observations the “best fit” model is being improved, but
one roughly knows the effective cosmological spacetime.
The question is whether the parameters that define it have
been interpreted correctly. In particular, is the energy-
matter content what it seems or is a part of it an artifact
of averaging?
We have mentioned at the beginning of this section that

one should not see AGW as a straightforward averaging
procedure. Indeed, if AGW is applied in this way, it acts on
one-parameter families of metrics gλ which satisfy the GW
assumptions, but its action is trivial: AGW ¼ limλ→0þ . It
seems to be more appropriate to define the GW framework
as a map T ∶gλ → tð0Þ, where gλ satisfies the GW assump-
tions, and thus already encodes information about the
effective metric gð0Þ ¼ limλ→0þgλ. This allows one to prove
some general theorems about relations between inhomo-
geneous metrics A−1

GWðgð0ÞÞ and the energy content of the
effective spacetime with the averaged metric gð0Þ which

represents all these inhomogeneous metrics [1]. Since there
was no need to assume a particular form of the effective
metric gð0Þ, Green and Wald’s results tell us about proper-
ties of backreaction in general. Using notation introduced
above the main result of Green and Wald [1] may be
formulated as follows.
Theorem (by Green and Wald [1], 2011) Let gλ be a

one-parameter family of solutions to Einstein’s equations
satisfying the GW assumptions. The effective energy-
momentum tensor tð0Þ ≔ T ðgλÞ satisfies the weak energy
condition and is traceless.
This theorem implies that only gravitational radiation

may contribute in the leading order to the backreaction
effect, and thus in cosmology small-scale inhomogeneities
cannot mimic a cosmological constant. This theorem also
shows the advantage of the Green-Wald approach over the
Isaacson-like nonvacuum extension of the high-frequency
limit [6,15] and justifies the need to introduce one-
parameter families of metrics gλ. In the original Isaacson
approach (vacuum spacetimes) positivity of the effective
energy density was shown only under an additional ansatz
[8]. The reason for that is a limited control over the
coordinate dependence. Thus, the GW approach is not
only a mathematically rigorous extension of the Isaacson
approach, but there is a qualitative difference: within the
GW framework one may study the nature of backreaction
itself (not only backreaction in particular models). On the
other hand, this kind of approach also has some disadvan-
tages. Imagine that we know gU and we expect that it may
be effectively represented by a gRW metric. It would not be
easy to estimate the size (not nature, but size) of the
backreaction effect within the GW approach.13 One would
need to use observational data to determine the appropriate
member of a gRW class and find a family of exact gλ metrics
such that g1 ¼ gU, limλ→0gλ ¼ gRW.

14 In addition to that,
there may exist in principle many such families15 gλ so in
such a case, for a given gRW and gU, the effective energy-
momentum tensor tð0Þ would not be uniquely specified.16

Thus, the power of the GW approach comes from the
rigorous identification of a “cloud” of inhomogeneous
metrics that are in some sense not far from the effective
metric. This makes the general studies of the nature of
backreaction possible. The price for this identification has
the form of the GW assumptions about the existence of

10The Isaacson approach was originally applicable only to
vacuum spacetimes. It was reformulated in a mathematically
rigorous way by Burnett [12]. The Green-Wald framework [1]
generalizes the Burnett result to nonvacuum spacetimes. Non-
vacuum direct generalizations of the Isaacson formalism are also
possible [13].

11Green and Wald provided a procedure to determine Tð0Þ.
12In cosmology, this choice is based on a best fit to observa-

tional data.

13Since gravitational waves have been detected [16], it is of
great importance to estimate their cosmological backreaction
effect. Although we have good reasons to assume that it is
negligible, one may still insist on calculating its precise magni-
tude and this aim is hard to achieve within the GW framework
alone.

14The parameter λ may always be rescaled to obtain gU for
λ ¼ 1.

15This is called a “path dependence” in Ref. [2].
16We study this issue for a particular one-parameter family gλ

in Sec. VI B.
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appropriate one-parameter families which limits the ability
of the framework to provide quantitative predictions.
We are not aware of any other solution of this identification
problem which would give easy and precise control
over coordinate dependence.17

Finally, we return to the fundamental question of
whether the Green-Wald framework applies to our
Universe. It seems not to be easy to identify elements of
A−1

GWðgRWÞ and it is not obvious if the “true metric of the
Universe” gU belongs to this class.18 The most straightfor-
ward approach that may clarify this issue is to look for any
exact families of metrics which belong to A−1

GWðgð0ÞÞ for
some effective metric gð0Þ, which is not necessarily of
physical interest. A priori there is no reason for the GW
assumptions to be very restrictive19; however, there are
several logical possibilities to explore.20 Any of the
conditions described below would invalidate the GW
framework as a proper tool to describe the backreaction
effect of matter inhomogeneities:
(1) A−1

GWðgð0ÞÞ ¼ ∅ for any gð0Þ.
It follows from examples presented in

Refs. [9,10,12] that this is not the case.
(2) A−1

GWðgð0ÞÞ contains only vacuum metrics for any
gð0Þ.
This possibility was excluded by the example

presented in Ref. [9].
(3) A−1

GWðgð0ÞÞ contains only metrics with trivial matter
inhomogeneities and gravitational waves on the gð0Þ
background.
Such a possibility would naturally explain why

the effective energy-momentum tensor is traceless.
The example presented in this paper excludes this
scenario.

(4) gU ∈ A−1
GWðgRWÞ and ∃gλ satisfies the GW assump-

tions such that g1 ¼ gU, limλ→0gλ ¼ gRW for the
observational best-fit gRW, but T ðgλÞ does not give
the correct tð0Þ.

The possibilities 1 and 2 seem unnatural and they have
already been excluded. The aim of this paper is to exclude
the possibility 3. In this article we present a one-parameter
family of solutions to Einstein’s equations gλ which

satisfies the GW assumptions and which has nontrivial
matter inhomogeneities. By the “nontrivial matter inho-
mogeneities” we understand inhomogeneities which are
represented by the energy-momentum tensor which is not
uniformly convergent in the limit λ → 0.

III. EINSTEIN-ROSEN WAVES
AND A MASSLESS MINIMALLY

COUPLED SCALAR FIELD

The cylindrically symmetric metric with two hypersur-
face orthogonal Killing fields ∂ ~z, ∂ϕ may be written in the
form

g ¼ e2ðγ−ψÞð−dt2 þ dρ2Þ þ ρ2e−2ψdφ2 þ e2ψd~z2; ð1Þ

where ρ > 0, −∞ < t; ~z < ∞, 0 ≤ φ < 2π and the metric
functions ψ and γ depend on t and ρ only. Some nontrivial
vacuum spacetimes with the metric (1) were discovered by
Beck [19], but they are better known as Einstein-Rosen
waves [20,21]. In this paper, we will investigate nonvacuum
generalization of these solutions—a massless minimally
coupled scalar field ~ϕðt; ρÞ will be added.
There is an almost direct correspondence between

generalized Einstein-Rosen waves and generalized
Gowdy cosmologies. A subset of solutions studied in this
paper may be reinterpreted as polarized three-torus Gowdy
models. Thus, the example that we provide may be seen as
a nonvacuum generalization of the Gowdy solution pre-
sented by Green and Wald in Ref. [10] and a special case of
the polarized Gowdy cosmologies investigated by Charach
and Malin [6]. Since Charach and Malin proposed their
own approach to study the high-frequency limit of their
solutions [6], we find it instructive to compare our results.
This is done in Sec. VI.
The energy-momentum tensor of a massless scalar field

has the form

Tab ¼ ∂a
~ϕ∂b

~ϕ −
1

2
gab∂c

~ϕ∂c ~ϕ:

It is convenient to rescale the scalar field ~ϕ, so from now on
we will use ϕ, where ~ϕ ¼ 1

2
ffiffi
π

p ϕ. Einstein’s equations

reduce to21

ψ 00 þ 1

ρ
ψ 0 − ψ̈ ¼ 0; ð2Þ

γ0 ¼ ρð _ϕ2 þ ϕ02 þ _ψ2 þ ψ 02Þ; ð3Þ

_γ ¼ 2ρð _ϕϕ0 þ _ψψ 0Þ: ð4Þ

17In the GW approach any one-parameter family of diffeo-
morphisms Ψλ is allowed as a coordinate transformation
provided that Ψ0 ¼ id (or more generally: any Ψ0 that modifies
the limit limλ→0gλ trivially is allowed).

18One may construct toy models that in some sense exhibit the
backreaction effects, but cannot be studied directly within the
GW framework [17,18].

19What is really restrictive is the fact that we are looking for
solutions that are exact and, in addition, have a concise
mathematical form.

20Since tð0Þ is traceless one should check if any solutions with
nontrivial matter inhomogeneities may belong to A−1

GWðgð0ÞÞ.
Otherwise, tð0Þ being traceless would be an artifact of assump-
tions that are too restrictive.

21In the following, dots and primes denote derivatives with
respect to t and ρ, respectively.
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The scalar field ϕ satisfies

ϕ00 þ 1

ρ
ϕ0 − ϕ̈ ¼ 0 ð5Þ

which corresponds to ∇a∇aϕ ¼ 0 and follows from the
contracted Bianchi identities. The equations (2) and (5) are
linear and identical to the equations for a polarized
cylindrical wave propagating with the speed of light in
Euclidean space. These equations are decoupled and may
be solved separately. Once solutions to the equations (2)
and (5) are known, the remaining metric function γ may be
found via the equations (3) and (4) using quadratures.
Moreover, the form of Eqs. (3) and (4) implies that every
smooth pair of functions ψ , ϕ give rise to a smooth metric
(1). The Minkowski spacetime corresponds to ψ and ϕ
being constant. Decoupling of the dynamical equations for
ψ and ϕ implies that every solution of the vacuum
equations (ϕ ¼ 0) may be trivially extended to contain a
nontrivial scalar field. [For a given ψ , it is sufficient to take
any ϕ satisfying Eq. (5) and calculate the new function γ via
quadratures].
In the succeeding section wewill need the energy density

of the scalar field ϵ as measured by the observers comoving
with the coordinate system (with the four-velocity
u ¼ eψ−γ∂t)

ϵ ¼ Tabuaub ¼
1

8π
e2ðψ−γÞð _ϕ2 þ ϕ02Þ; ð6Þ

and the Ricci scalar R, which, with the help of the
equations (2) and (5), may be written in the form

R ¼ 2e2ðψ−γÞðϕ02 − _ϕ2Þ: ð7Þ

In general, spacetimes considered in this section may
contain gravitational radiation. The analysis of backreac-
tion of high-frequency gravitational waves in these space-
times was presented by Podolský and Svítek [13].

IV. ONE-PARAMETER FAMILY OF SOLUTIONS

Our construction of a one-parameter family of metrics
satisfying the assumptions of the Green-Wald framework is
based on the solution described in the previous section.
Namely, we choose the following particular solutions of the
equations (5) and (2), respectively22:

ϕλðt; ρÞ ¼ α
ffiffiffi
λ

p
Fλðt; ρÞ;

ψλðt; ρÞ ¼ β
ffiffiffi
λ

p
Fλðt; ρÞ; ð8Þ

where Fλðt; ρÞ ¼ J0ðρλÞ sinðtλÞ and λ > 0 is a parameter. J0 is
the Bessel function of the first kind and zero order. The

constants α, β are real and independent of λ. Integrating the
equations (3) and (4) and setting the additive integration
constant to zero we obtain

γλðt; ρÞ ¼
ðα2 þ β2Þ

2λ
ρ2
�
J20

�
ρ

λ

�
þ J21

�
ρ

λ

�

− 2
λ

ρ
J0

�
ρ

λ

�
J1

�
ρ

λ

�
sin2

�
t
λ

��
: ð9Þ

Our one-parameter family of solutions to Einstein’s equa-
tions, denoted gabðλÞ (where λ > 0 is the parameter), has
the form (1) with the metric functions ψ , γ and the scalar
field given by Eqs. (8) and (9).
For ρ=λ ≫ 1 the asymptotic behavior of the Bessel

functions is given by

Jn

�
ρ

λ

�
¼

ffiffiffiffiffiffi
2

π

λ

ρ

s �
cos

�
ρ=λ −

π

2
n −

π

4

�
þO

�
λ

ρ

��
: ð10Þ

Therefore, in the limit λ → 0, we have

ψλ → 0; γλ → ðα2 þ β2Þρ=π; ϕλ → 0: ð11Þ

The background metric gð0Þab ≔ limλ→0gabðλÞ is curved and
has the form

gð0Þ ¼ e2ðα2þβ2Þρ=πð−dt2 þ dρ2Þ þ ρ2dφ2 þ d~z2: ð12Þ

The functions (11) do not satisfy the equation (3), and
hence the metric gð0Þ does not belong to the class of
solutions described in Sec. III.
Let Aλðt; ρÞ ¼ J0ðρλÞ cosðtλÞ and Bλðt; ρÞ ¼ J1ðρλÞ sinðtλÞ.

Then for λ > 0 the nonzero components of the energy-
momentum tensor of the scalar field ϕλ take the form

TttðλÞ ¼ TρρðλÞ ¼
α2

8πλ
ðA2

λ þ B2
λÞ;

TtρðλÞ ¼ TρtðλÞ ¼ −
α2

4πλ
AλBλ;

TφφðλÞ ¼
α2

8πλ
e−2γλρ2ðA2

λ − B2
λÞ;

T ~z ~zðλÞ ¼ TφφðλÞρ−2e4β
ffiffi
λ

p
Fλ : ð13Þ

The energy density of the scalar field measured by a
comoving observer (6) is

ϵðλÞ ¼ 1

8π

α2

λ
e2ðβ

ffiffi
λ

p
Fλ−γλÞðA2

λ þ B2
λÞ: ð14Þ

The Ricci scalar (7) equals
22One may consider a more general class of solutions, but we

would like to make our example as simple as possible.
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RðλÞ ¼ 2
α2

λ
e2ðβ

ffiffi
λ

p
Fλ−γλÞðB2

λ − A2
λÞ: ð15Þ

Since the Bessel functions are regular at zero, it follows
that the energy density and the Ricci scalar remain bounded
as ρ → 0 for any solution with nonzero λ.
In the formulas (13), (14), and (15) the auxiliary

functions Aλ, Bλ may be approximated for a small value
of λ (ρ=λ ≫ 1) with the help of Eq. (10) by

Aλðt; ρÞ ≈
ffiffiffiffiffiffi
2

π

λ

ρ

s
cos

�
ρ

λ
−
π

4

�
cos

�
t
λ

�
; ð16Þ

Bλðt; ρÞ ≈
ffiffiffiffiffiffi
2

π

λ

ρ

s
sin

�
ρ

λ
−
π

4

�
sin

�
t
λ

�
: ð17Þ

In this approximation, the singular factor 1=λ in Tab, ϵ, R
cancels and these quantities exhibit rapid oscillatory
behavior with a finite amplitude of oscillations23—the case
which we refer to as bounded nonvanishing amplitude,
high-frequency inhomogeneities.

V. INHOMOGENEITY EFFECT

The equation satisfied by the background metric has the
form [1]

Gabðgð0ÞÞ ¼ 8πTð0Þ
ab þ 8πtð0Þab ; ð18Þ

where Tð0Þ
ab is so-called the weak limit24 of TabðλÞ

Tð0Þ
ab ¼ w- lim

λ→0
TabðλÞ:

The new term on the right-hand side, denoted as tð0Þab , is
called the effective energy-momentum tensor and it
encodes the backreaction effect of inhomogeneities.
This tensor represents the additional terms that arise in
the averaging process of Einstein’s equations, so that these
equations may still hold for λ ¼ 0 with the modified energy
content. A straightforward way to determine the effective

energy-momentum tensor tð0Þab is to calculate tð0Þab ¼
1
8πGabðgð0ÞÞ − Tð0Þ

ab .
It follows from Eqs. (13), (16), and (17) that TabðλÞ is not

uniformly convergent as λ → 0. This is an essential novel
property in comparison to the example published in
Ref. [9]. In the weak limit the nonzero components of
the scalar field energy-momentum tensor are

Tð0Þ
tt ¼ Tð0Þ

ρρ ¼ α2

8π2ρ
;

so in the investigated model a fast-varying scalar field may
be approximated by an anisotropic null fluid. Since the
nonzero components of Gabðgð0ÞÞ are

Gttðgð0ÞÞ ¼ Gρρðgð0ÞÞ ¼
α2 þ β2

πρ
;

then the nonzero components of the effective energy-
momentum tensor are

tð0Þtt ¼ tð0Þρρ ¼ β2

8π2ρ
: ð19Þ

The effective energy-momentum tensor above is traceless
and satisfies the weak energy condition, as predicted by
theorems in Ref. [1]. It also has the form of an anisotropic
null fluid25 and depends on β, but does not depend on α (the
parameter α controls the magnitude of the scalar field).
Hence, inhomogeneities of the scalar field do not contribute
in the leading order to the backreaction effect.
The Green-Wald framework requires the existence of a

smooth tensor field26

μabcdef ≔ w- lim
λ→

½∇ahcdðλÞ∇bhefðλÞ�;

where habðλÞ ≔ gabðλÞ − gð0Þab . The effective energy-
momentum tensor may be written in terms of μabcdef

8πtð0Þab ¼ 1

8
ð−μccdede − μcc

d
d
e
e þ 2μcdc

e
deÞgð0Þab þ 1

2
μcdacbd

−
1

2
μcca

d
bd þ

1

4
μab

cd
cd −

1

2
μcðabÞcdd þ

3

4
μccab

d
d

−
1

2
μcdabcd: ð20Þ

Although we have already calculated tð0Þab from Eq. (18),
it is instructive to determine μabcdef and check the con-
sistency of the GW framework. A lengthy calculation
performed with the help of MATHEMATICA

27 yields

23The frequency of oscillations blows up as λ → 0, but the
amplitude of oscillations is bounded and nonvanishing in this
limit.

24We use the symbol w-lim to denote the weak limit.

25Similarly an energy-momentum tensor containing terms of
the form of an anisotropic fluid appears in another approach to
averaging [22].

26The derivative operator∇a is associated with the background
metric gð0Þab .27Some calculations were carried out with the XACT package
for MATHEMATICA [23].
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μtttttt ¼ μttρρρρ ¼ −μttttρρ ¼ μρρtttt ¼ μρρρρρρ ¼ −μρρttρρ

¼
�
2

π
β2ρ−1 þ 1

π2
ðα2 þ β2Þ2

�
e4ðα2þβ2Þρ=π;

μttφφφφ ¼ μρρφφφφ ¼
2

π
β2ρ3;

μtt~z ~z ~z ~z ¼ μρρ~z ~z ~z ~z ¼
2

π
β2ρ−1;

μttρρφφ ¼ −μttttφφ ¼ μρρρρφφ ¼ −μρρttφφ ¼
2

π
β2ρe2ðα2þβ2Þρ=π;

μttρρ~z ~z ¼ −μtttt~z ~z ¼ μρρρρ~z ~z ¼ −μρρtt~z ~z

¼ −
2

π
β2ρ−1e2ðα2þβ2Þρ=π;

μttφφ~z ~z ¼ μρρφφ~z ~z ¼ −
2

π
β2ρ:

All other components follow from symmetries [1]

μabcdef ¼ μðabÞðcdÞðefÞ ¼ μabefcd

or are equal zero. We substitute this tensor into Eq. (20) and

calculate components of tð0Þab . They coincide with Eq. (19) in
accord with the general calculations in Ref. [1].

VI. GENERALIZED THREE-TORUS
GOWDY COSMOLOGIES

The solutions studied in this paper may be reinterpreted
as generalized Gowdy cosmologies. The main aim of this
section is to compare our results to the high-frequency limit
presented in Ref. [6].
Charach and Malin found a general solution which

represents polarized Gowdy cosmologies with three-torus
topology that are minimally coupled to a massless scalar
field [6]. Using their notation the metric may be put into the
following form:

ĝ ¼ L2½efð−dξ2 þ dz2Þ þ ξepdx2 þ ξe−pdy2�; ð21Þ

where L is a constant (for simplicity we assume from
now on that L ¼ 1), 0 ≤ z < 2π, ξ > 0, 0 ≤ x < 2π, and
0 ≤ y < 2π. The metric functions f, p and the scalar field28

φ depend only on z, ξ; periodicity in z is assumed. The
following formal complex substitution of variables and
redefinition of metric functions brings the metric (1) into
the form (21):

ðt; ρ;φ; ~zÞ → ðiz; iξ; iy; xÞ;

ψðt; ρÞ → 1

2
ðpðz; ξÞ þ ln ξÞ;

γðt; ρÞ → 1

2
ðfðz; ξÞ þ pðz; ξÞ þ ln ξÞ;

ϕðt; ρÞ → 2
ffiffiffi
π

p
φðz; ξÞ: ð22Þ

The variables z and ξ are assumed to be real, and thus one
generates a new solution to Einstein’s equations from the
old one by a complex substitution. We note that the original
metric (1) was not periodic in t, but the metric (21) is
assumed to be periodic in z with the period 2π. In addition,
it is assumed that x is a periodic variable, but ~z was not
periodic for Einstein-Rosen waves. The original range of
coordinates t, ~z has changed. In three-torus Gowdy
models they correspond to z and x, respectively, and are
periodic with the period 2π. This implies that the cosmo-
logical solutions must be periodic in z, so the functions
ψðt; ρÞ, γðt; ρÞ, ϕðt; ρÞ are substituted by periodic
functions pðz;ξÞ¼pðzþ2πk1;ξÞ, fðz;ξÞ¼fðzþ2πk2;ξÞ,
φðz; ξÞ ¼ φðzþ 2πk3; ξÞ, where ki are arbitrary integers.
We also note that time and space coordinates are
swapped: ρ was a spatial coordinate, but ξ is a time
coordinate and t was a time coordinate, but z is a spatial
coordinate.
The solutions (8) and (9) studied in this paper are related

to a general solution discovered by Charach and Malin [6].
Since Charach and Malin assumed periodicity in z (three-
torus cosmologies), and we did not assume a periodicity in
t, this correspondence is not one to one. Let j be a fixed
large integer j ≫ 1 and choose λ ¼ 1=j. (In some calcu-
lations λ will be treated as a discrete parameter that
approaches zero as j → þ∞). In order to see the corre-
spondence, one should substitute (no summation over j
below)

α0 ¼ −1; An ¼ δjn2β=
ffiffi
j

p
;

Cn ¼
1

2
ffiffiffi
π

p δjnα=
ffiffi
j

p
; zn ¼

π

2j
δjn ð23Þ

into solutions (16), (17), (18), and (19) in Ref. [6],
set j ¼ 1=λ and put all the remaining constants to zero.
Finally, the inverse transformation to Eq. (22) gives Eqs. (8)
and (9) from Eqs. (16), (17), (18), and (19) in Ref. [6].
[Note that the formula for the function fS was not described
properly in Ref. [6]. In order to obtain it from their
equation (19), it is necessary to replace α0 by β0, multiply
all terms by a factor 16π and replace An by Cn and Bn
by Dn].
Using the procedure above we find that our solution

after the substitution (22) corresponds to the metric (21)
with

28The letter φ denotes the angular variable in our original
metric (1) (not a scalar field), but we prefer to keep the original
notation as in Ref. [6]. Hopefully, this will not lead to confusion.
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p ¼ − ln ξþ 2β
ffiffiffi
λ

p
J0

�
ξ

λ

�
sin

�
z
λ

�
;

φ ¼ 1

2
ffiffiffi
π

p α
ffiffiffi
λ

p
J0

�
ξ

λ

�
sin

�
z
λ

�
;

f ¼ α2 þ β2

λ
ξ2
�
J20

�
ξ

λ

�
þ J21

�
ξ

λ

�

− 2
λ

ξ
J0

�
ξ

λ

�
J1

�
ξ

λ

�
sin2

�
z
λ

��

− 2β
ffiffiffi
λ

p
J0

�
ξ

λ

�
sin

�
z
λ

�
; ð24Þ

where φ denotes the scalar field.

A. The high-frequency limit

It is instructive to calculate the high-frequency limit of
our solution using the Charach-Malin procedure and
compare it to the high-frequency limit in the Green-
Wald approach.
Using Eq. (10) for ξ=λ ≫ 1 we obtain to leading order in

λ=ξ

p ≈ − ln ξþ 2
ffiffiffi
2

pffiffiffi
π

p βλffiffiffi
ξ

p cos

�
ξ

λ
−
π

4

�
sin

�
z
λ

�
;

φ ≈
1ffiffiffi
2

p
π

αλffiffiffi
ξ

p cos

�
ξ

λ
−
π

4

�
sin

�
z
λ

�
;

f ≈
2

π
ðα2 þ β2Þξ; ð25Þ

in accord with the formulas (34), (35), and (36) in Ref. [6]
(with our choice of constants). Following Charach and
Malin we decompose the metric (21) into the “background”
η and “wave” part h as ĝ ≈ ηþ h, where

η ¼ e2ðα2þβ2Þξ=πð−dξ2 þ dz2Þ þ dx2 þ ξ2dy2;

h ¼ p̄ðdx2 − ξ2dy2Þ;
p̄ ¼ pþ ln ξ: ð26Þ

We assumed that p̄ is small. After appropriate redefinition
of variables and functions Charach andMalin’s background
metric η corresponds to the Green-Wald background metric
gð0Þ given by Eq. (12).
In order to show that the background geometry is created

partly by the gravitational waves and partly by the scalar
field Charach and Malin calculated the energy-momentum
tensor of the background metric η and decomposed it into
the traceless part Tð1Þ and nontraceless part Tð2Þ; hence
T̂ ¼ Tð1Þ þ Tð2Þ ¼ 1

8πGðηÞ. For our solution we find

T̂ ¼ Tð1Þ ¼ α2 þ β2

8π2ξ
ðdξ2 þ dz2Þ; Tð2Þ ¼ 0; ð27Þ

where the nontraceless part Tð2Þ vanishes because of our
choice β0 ¼ 0 (β0 is one of the constants in the full
Charach-Malin solution). The traceless part Tð1Þ is further
decomposed29 into the gravitational waves part TGW and
the scalar radiation part TSW

Tð1Þ ¼ TGW þ TSW; TGW ¼ β2

8π2ξ
ðdξ2 þ dz2Þ;

TSW ¼ α2

8π2ξ
ðdξ2 þ dz2Þ:

Let kμ be a null vector defined by its covariant components
as

k ¼ 1ffiffiffiffiffi
πξ

p ðdξþ dxÞ:

Then, 8πTGW
μν ¼ β2kμkν and 8πTSW

μν ¼ α2kμkν. Thus,
Charach and Malin interpreted both of those terms in
the traceless part of the energy-momentum tensor as a null
fluid representation of collisionless flows of “gravitons”
and scalar massless particles. This is one of the main results
in their paper [6]. To sum up, we started with an
inhomogeneous cosmological model with small-scale mat-
ter and “gravitational field” inhomogeneities and showed
how to represent this model by an effective spatially
homogeneous (but anisotropic) spacetime filled with colli-
sionless flows of massless scalar particles and “gravitons.”
Up to this point calculations in the Charach-Malin

framework were almost identical to those in the Green-
Wald approach, so it is a good moment to summarize the
differences. First, Charach and Malin split the metric into η
and h using their intuition and the interpretation of the
metric η. In fact, this is done via “inspection” of the line
element. In the coordinate system that they have chosen,
the form of the line element has a natural split into the
“background” and the “wave” part. This gauge-dependent
intuition is strongly supported by a nice physical inter-
pretation of T̂ ¼ 1

8πGðηÞ; a priori there is no reason why T̂
calculated in such a way should correspond to any
physically reasonable form of the energy-momentum
tensor. In the Green-Wald approach gð0Þ is calculated as
the limit λ → 0 of the one-parameter family of metrics gðλÞ.
Similarly to the Charach-Malin approach, we must define
in advance our background metric. Both backgrounds
coincide because the coefficients An and Cn that we have
chosen approach zero in an appropriate way in the limit
λ → 0. We are interested in the backreaction effect of finite-
size inhomogeneities (for a finite 0 < λ0 ≪ 1) and
up to this point there would be nothing “ultra-local”
in our calculations if we had conducted them in the

29This decomposition is based on the interpretation of con-
stants, e.g. for our solution α controls the amplitude of the scalar
field φ.
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Green-Wald framework. The result would not depend so far
on the choice of a one-parameter family of metrics along
which the limit λ ¼ 0 is achieved, provided that those
families coincide for λ → 0 and λ ¼ λ0.

30

In their paper, Charach and Malin did not put any
restrictions on the choice of the coefficients An, Bn, Cn,
Dn. It is rather obvious that they must be in some sense
small: the wave part h must be a small correction to the
background η (e.g., p̄ is explicitly assumed to be small).
Otherwise their result and its interpretation is not valid. In
the Green-Wald approach this assumption is incorporated
into the framework. The introduction of λ-dependent family
of metrics allows us to define the split of the metric into the
background gð0Þ and the “perturbation” h in a gauge-
independent manner (provided that transformations of
coordinates do not alter the limit λ → 0).
In addition to the reasoning outlined above, Charach and

Malin suggested an alternative procedure to show the null
fluid type high-frequency behavior of the scalar field
source. We may average the energy-momentum tensor.
Namely, we take the energy-momentum tensor (13) and
apply the transformation (22). Next, we use asymptotic
formulas for Bessel functions for ξ=λ ≫ 1. Averaging
over the phase the nontrivial components of the energy-
momentum tensor give

hTξξi ¼ hTzzi ¼
α2

8π2ξ

�
1þ 1

8

λ2

ξ2
þ � � �

�
;

hTxxi ¼
1

ξ2
hTyyi ¼

α2

64π3
e−2ðα2þβ2Þξ=π

�
2π

ξ
þ α2 þ β2

�
λ2

ξ2

þ � � �
In the leading order we have

hTξξi ¼ hTzzi ¼
α2

8π2ξ
;

htrðTÞi ¼ hTx
xi ¼ hTy

yi ¼ 0; ð28Þ
with the remaining components equal to zero and in
accord with Charach and Malin’s asymptotic averages:
the equations (62), (63), and (64) in Ref. [6]. Of course, this
is the averaging of components of a tensor, so it is not a
covariant procedure. The result is invariant against a
restricted class of coordinate transformation, but this class
has not been specified in Ref. [6]. In order to overcome this
kind of difficulties, Green and Wald averaged the energy-
momentum tensor differently, namely, they took a weak
limit of T (we denote it as Tð0Þ ¼ w- limλ→0T). Thus, in
their calculation one “goes with λ to zero” along a
decreasing sequence of small numbers 1=m, where

m ¼ j; jþ 1;…;þ∞. Such a procedure is needed only
to average the energy-momentum tensor T in a more gauge
controlled way than in the Charach-Malin approach which
has been demonstrated above. In the case under inves-
tigation the Green-Wald weak limit coincides with Eq. (28),
and hence in the leading order hTi ¼ Tð0Þ.
Charach and Malin did not discuss backreaction in their

model; however, it seems reasonable to follow the Green-
Wald approach and define backreaction in the Charach-
Malin approach by the effective energy-momentum tensor
t̂ ¼ T̂ − hTi. Thus, in the Green-Wald and Charach-Malin
approaches the backreaction effect for the particular choice
of solution studied in this paper is identical. It is given by
the effective energy-momentum tensor which is traceless
and corresponds to gravitational radiation

t̂ ¼ β2

8π2ξ
ðdξ2 þ dz2Þ ¼ tð0Þ; ð29Þ

where tð0Þ denotes the effective energy-momentum tensor
in the GW approach.

B. Uniqueness of the effective
energy-momentum tensor

An interesting question arises: had we chosen Aj, Cj
differently, would the GW framework lead to a different
effective energy-momentum tensor (29)? Let us assume for
a moment that gð0Þ ¼ η and gðλ0Þ ¼ ĝ for some large
natural number j ¼ 1=λ0. Physical inhomogeneities are
always of finite size, so it seems that both conditions should
define backreaction in the model uniquely. However, there
may exist many one-parameter families gðλÞ that satisfy
these conditions. The Green-Wald framework provides a
mapping T ∶gλ → tð0Þ as described in the Introduction, and
thus backreaction for different one-parameter families may
differ. In Ref. [2] this was called a “path dependence.” We
show below that in the model under investigation the results
are “path independent.”
Let us consider modified solutions that differ from

Eq. (23) in the choice

An¼δjn2β=
ffiffiffiffiffiffiffiffi
jκ=σ

q
; Cn¼

1

2
ffiffiffi
π

p δjnα=
ffiffiffiffiffiffiffi
jι=σ

q
; j¼ 1

λσ
: ð30Þ

It follows from the definitions above that Aj ∼ λκ=2 and
Cj ∼ λι=2. Of course, other choices are also possible, but we
would like to have gð0Þ ¼ η, gðλ0Þ ¼ ĝ and since j is
assumed to be large, we are interested in the asymptotic
behavior of Aj and Cj; thus Eq. (30) seems to be a
reasonable parametrization.31 The solutions depend now

30Using terminology introduced in Ref. [2], there is no path
dependence so far. In Sec. VI B we will show that the final results
are also path independent.

31In fact, the analysis presented in this section covers a wide
class of λ-dependent families of solutions gðλÞ for which the
leading terms of some general functions AnðλÞ, CnðλÞ, jðλÞ for
small λ have the form (30).
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on three more constants κ, ι and σ. The constant σ must be
positive because otherwise λ → 0 would not correspond to
the high-frequency limit. The leading term in the formula
for f has the form

f ≈
2

π
ðα2λι−σ þ β2λκ−σÞξ: ð31Þ

In order to recover the background η in the limit λ → 0 we
must have ι − σ ¼ κ − σ ¼ 0; thus ι ¼ κ ¼ σ and there is
only one independent parameter σ. However T̂, Tð0Þ ¼
w- limλ→0T and the leading terms in hTi do not depend on
σ.32 Thus, without loss of generality we may set σ ¼ 1 to
recover solutions studied in this paper. To sum up, although
there may exist many one-parameter families gλ with the
property gð0Þ ¼ η, gðλ0Þ ¼ ĝ the Green-Wald framework in
the model under investigation provides a unique procedure
to calculate backreaction effects. The condition η ¼ gð0Þ ≔
limλ→0gλ fixes uniquely the asymptotics in λ of gλ
which determines the effective energy-momentum tensor
tð0Þ ¼ T̂ − Tð0Þ.33

C. More general solutions

The crucial difference between the Charach-Malin
and the Green-Wald approaches is illustrated by the
following fact. In both approaches the effective energy-
momentum tensor is traceless. In the Charach-Malin
approach this is rather an “interesting result of calculations”
that were conducted for a particular solution to Einstein’s
equations. In the Green-Wald approach this is a conse-
quence of their theorems (as explained in the Introduction),
and thus a fundamental property of all effective energy-
momentum tensors that may be calculated within their
framework.
In order to illustrate this property one may consider more

general solutions than those studied in this paper, namely,
we may take the Charach-Malin solution [6] with the
constant β0 ≠ 0 and the remaining constants corresponding
to those studied in this paper. This solution contains a
spatially homogeneous component of the scalar field and it
is similar in some sense to the Belinskii-Khalatnikov
solution. The equation (46) in Ref. [6] implies that for
β0 ≠ 0 the energy-momentum tensor T̂ is not traceless
½trðT̂Þ ¼ β20ξ

−2e−f� and one may try to use this fact to
construct a counterexample to the Green and Wald theo-
rems. The equation (64) in Ref. [6] shows that for ξ ≫ 1 the
average energy-momentum tensor hTi is traceless up to the
order ξ−1. This is consistent with the fact that the trace of
the effective energy-momentum tensor t̂ ¼ T̂ − hTi should

vanish in the highest order (terms ξ−1) and remains in
agreement with the Green and Wald theorems provided that
we choose β0 ∼ λ. If β0 will not be proportional to λ, then
the trace of T̂ may contribute to the trace of the effective
energy-momentum tensor t̂. Thus, the Green and Wald
theorems imply that there should appear a nonzero trace in
the leading order of hTi to cancel the trace of T̂ and make t̂
traceless. Our analogy between the Green-Wald and
Charach-Malin approaches suggests that also Tð0Þ cannot
be traceless. Indeed, calculations show that in the leading
order trðT̂Þ ¼ trðhTiÞ ¼ trðTð0ÞÞ as predicted by Green and
Wald and trðt̂Þ ¼ trðtð0ÞÞ ¼ 0 also for β0 ≠ 0 in agreement
with their theorems.

D. Vacuum limit: The Isaacson approach

The solution (24) corresponds for α ¼ 0 to vacuum
three-torus polarized Gowdy cosmologies.34 These cosmol-
ogies were already studied in a different coordinate system
in the context of the GW framework in Ref. [10]. The
results presented there are consistent with ours, but the
direct comparison is obscured by nontrivial coordinate
transformation (the tensor μabcdef was not explicitly given
in Ref. [10]). The vacuum case α ¼ 0 may be investigated
within the Isaacson approach [7,8].
We find it instructive to apply the Isaacson framework to

the solutions studied in this paper. It follows from Eqs. (25)
and (26) that our metric (21) may be written in the Isaacson
form ~g ¼ ηþ λ ~h, where ~h ¼ h=λ. We have ~hab ¼ Oðλ0Þ,
∇a

~hbc ¼ Oðλ−1Þ and ∇a∇bhcd ¼ Oðλ−2Þ, where ∇a is a
covariant derivative associated with η. In the Isaacson
approach the Ricci tensor is calculated in terms of ~h and
its derivatives. This expression is expanded in orders of λ

Rab½~gðλÞ� ¼ Rð0Þ
ab ðλÞ þ λRð1Þ

ab ðλÞ þ λ2Rð2Þ
ab ðλÞ þOðλÞ:

We have λRð1Þ
ab ðλÞ ¼ Oðλ−1Þ and the remaining two terms

Rð0Þ
ab ðλÞ, λ2Rð2Þ

ab ðλÞ are of the same orderOðλ0Þ. The vacuum
Einstein’s equations Rab½~gðλÞ� ¼ 0 imply that Rð1Þ

ab ðλÞ ¼ 0

and Rð0Þ
ab ðλÞ þ λ2Rð2Þ

ab ðλÞ ¼ 0; thus the average of the Rð2Þ
ab

may play the role of the effective energy-momentum tensor

for the background metric [Rð0Þ
ab ðλÞ ¼ RabðηÞ]. Therefore,

following Isaacson [8] and Brill and Hartle [24] (see also

Ref. [12]) we define ~tab ¼ − λ2

8π hRð2Þ
ab ðλÞi. In order to

calculate it one may use Eq. (2.8) in Ref. [7], but it is
more convenient for us to expand the final expression for

RabðλÞ in powers of λ, and identify Rð0Þ
ab ðλÞ as RabðηÞ; the

remaining terms in the order Oðλ0Þ will give us − 1
8π
~t. We32Although Aj, Cj and j depend on σ this dependency cancels

in appropriate asymptotic expressions for T̂, hTi, Tð0Þ by the same
mechanism as in the limit η ≔ limλ→0gλ, where the λ approaches
zero along a discrete sequence of values.

33Since η ¼ gð0Þ, then T̂ ¼ 1
8πGðgð0ÞÞ.

34The full metric ĝ, which is given by Eq. (21), is a vacuum
solution, but the background metric η is nonvacuum. Also ηþ h
does not satisfy the vacuum Einstein’s equations exactly.
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find ~t ¼ t̂ ¼ tð0Þ in accord with Eq. (29). Therefore, all
three frameworks (by Isaacson, by Charach and Malin, and
by Green and Wald) predict the same backreaction in the
vacuum limit.

VII. SUMMARY

The one-parameter family of exact nonvacuum
solutions to Einstein’s equations presented in this article
satisfies all assumptions of the Green-Wald framework [1].
The other three examples of such families presented in the
literature so far were restricted to vacuum [10,12] or to stiff-
fluid spacetimes [9]. In the cosmological context, the most
interesting are nonvacuum families. The novel important
property of the example presented in this article (in
comparison to the nonvacuum example presented in
Ref. [9]) is the nontrivial behavior of the energy-
momentum tensor. The matter density exhibits bounded
nonvanishing amplitude, high-frequency oscillations. Our
calculations confirm the mathematical consistency of the
Green-Wald approach. We showed that within the model
studied it predicts the backreaction effects uniquely for a

finite size of inhomogeneities. We used the family of exact
solutions in question to compare the Green-Wald frame-
work to the Charach-Malin approach, and in the vacuum
limit to the Isaacson method. Although these methods use
slightly different mathematical formalisms, all of them
agree in their range of applications.
A task for the future is to find an example of a one-

parameter family of solutions to Einstein’s equations35 for
which the amplitude of fluctuations of matter density
becomes unbounded as the background spacetime is
approached.
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