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We use the Legendre-invariant formalism of geometrothermodynamics to investigate the geometric
properties of the equilibrium space of a spherically symmetric phantom black hole with electric charge and
dilaton. We find that at certain points of the equilibrium space the thermodynamic curvature is
characterized by the presence of singularities that are interpreted as phase transitions. We also investigate
the phase transition structure by using the standard approach of black hole thermodynamics based upon the
analysis of the heat capacity and response functions. We show compatibility between the two approaches.
In addition, a new type of phase transition is found, which is due to the presence of phantom energy and
corresponds to a transition between black hole states with different stability properties.
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I. INTRODUCTION

Black hole thermodynamics has been the subject of
intensive investigation since its formulation about 40 years
ago [1–4]. The reason is that it is considered as an
indication of the quantum nature of the black hole interior.
Although many attempts have been made to find a
statistical formulation of black hole thermodynamics, no
definite statistical model is known today [5]. Indeed, this
issue is closely related to the quantization of gravity, one of
the major problems of modern theoretical physics. In an
ordinary system, thermodynamic properties are the macro-
scopic limit of some microscopic model, usually specified
through the partition function. For instance, temperature is
interpreted as a measure of the average energy of micro-
scopic constituents, and entropy counts the number of
microscopic states. The natural question arises as to
whether the same is true for black holes. The answer to
this question might shed some light on the problem of
quantum gravity, because the Bekenstein-Hawking entropy
for black holes contains the (quantum) Planck constant and
the (gravitational) Newton constant. This makes black hole
thermodynamics an interesting subject of investigation.
To investigate the thermodynamic properties of black

holes, one usually starts from the fundamental equation
S ¼ A=4 that relates entropy S with the horizon area A.
From a thermodynamic point of view, both variables are
extensive, and therefore the fundamental equation should

be a homogeneous function of some degree [4]. The first
law of black hole thermodynamics permits us to compute
all the corresponding intensive variables and to perform the
analysis of the temperature behavior, stability, phase
transitions, etc. This approach can be considered physical
in the sense that it is based upon the assumption of the
validity of the laws of classical thermodynamics.
On the other hand, the properties of a thermodynamic

system can also be investigated by using the formalism of
thermodynamic geometry, which consists in equipping the
space of equilibrium states with a Riemannian geometric
structure. This idea was first implemented in statistical
physics and thermodynamics by Rao [6], in 1945, by
introducing a metric of which the components in local
coordinates coincide with Fisher’s information matrix.
Rao’s method has been applied and generalized by a
number of authors (see, e.g., Ref. [7] for a review).
Moreover, Riemannian geometry in the space of equilib-
rium states was introduced by Weinhold [8] and Ruppeiner
[9,10], who defined metric structures as the Hessian of the
internal energy and (negative of) the entropy, respectively.
Both metrics have been used intensively to study the
geometry of the thermodynamics of ordinary systems
and black holes (see, for instance, Ref. [11] for a review).
Recently, an alternative mathematical approach called

geometrothermodynamics (GTD) was proposed in
Ref. [12]. It is based upon the assumption that all the
geometric objects that enter the formalism should be
invariant with respect to Legendre transformations, which
in classical thermodynamics corresponds to the well-known
fact that the properties of a system do not depend on the
choice of thermodynamic potential [13]. GTD uses the
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geometric properties of the equilibrium space to describe
the thermodynamic properties of the corresponding system.
For instance, since the equilibrium space is endowed with a
Riemannian metric, the Riemann curvature tensor is inter-
preted as a measure of thermodynamic interaction, and the
curvature singularities correspond to phase transitions.
GTD has been shown to be true in a large number of
black hole configurations [14]. However, in the case of
phantom black holes [15,16], it seems to lead to contra-
dictions. Indeed, Rodrigues and Oporto recently investi-
gated in the framework of GTD a class of spherically
symmetric black holes with phantom charge and dilaton
and found that curvature singularities exist in the equilib-
rium space which do not correspond to divergencies of the
heat capacity; i.e., they cannot be identified as phase
transitions [16]. Of course, one could argue that phantom
black holes show a pathological behavior due to fact that
they are characterized by negative energy densities and,
therefore, the formalism of GTD leads to inconsistencies in
the case of pathological configurations. Nevertheless, the
point is that black hole thermodynamics can handle even
such pathological situations and does not lead to incon-
sistencies, although the thermodynamic behavior is not
quite physical. So, in principle, one should demand that
GTD should also be able to handle such pathological
configurations.
On the other hand, there is also a physical argument in

favor of the existence of phantom fields in nature. The
recently observed acceleration of our Universe suggests the
existence of an exotic fluid with negative pressure that is
the source of the repulsive gravitational force necessary to
generate acceleration. However, repulsive gravity can also
be generated by fields with negative energy density. In fact,
observational data [17,18] suggest that a phantom field
could also explain the acceleration of our Universe.
The purpose of the present work is to show that GTD is

able to correctly describe the thermodynamics of the
phantom dilatonic black holes presented in Ref. [16]. In
fact, we will show that the curvature of the equilibrium
space predicts the existence of three types of phase
transitions. The first one corresponds to a divergence of
the heat capacity of the black hole. The second one
corresponds to the divergence of a particular response
function, and therefore it is corroborated by classical black
hole thermodynamics. The third one occurs when the
capacity and all the response functions vanish, indicating
a drastic change between states with different stability
properties. We argue that the appearance of this third type
of singularity is due to the exotic nature of the matter that
generates the black hole.
This work is organized as follows. In Sec. II, we present

the explicit form of the black hole and discuss its
fundamental equation and the main thermodynamic proper-
ties. Then, in Sec. III, we derive the Legendre -invariant
metric for the equilibrium space and compute the

corresponding thermodynamic curvature to find the phase
transition structure of this class of phantom black holes. We
show that our results predict phase transitions that can be
corroborated by the behavior of the heat capacity and
response functions of the black hole, according to classical
black hole thermodynamics. In Sec. IV, we discuss our
results. Throughout this paper. we use geometric units
with G ¼ c ¼ ℏ ¼ kB ¼ 1.

II. PHANTOM DILATONIC BLACK HOLES

The Einstein-Maxwell Lagrangian density with a dilaton
field can be expressed as (we follow here the notations and
conventions of Ref. [16]; see also Refs. [19,20])

L ¼ R − 2η1gμνφ;μφ;ν þ η2e2λφFμνFμν; ð1Þ

where R is the scalar curvature, Fμν is the Faraday tensor of
the electromagnetic field, and φ represents the dilaton field.
The nonminimal coupling between the electromagnetic
and dilatonic fields is represented by the real constant λ.
The two parameters η1 and η2 can be so chosen that they
determine the nature of the corresponding fields. So,
η2 ¼ þ1 represents the classical Maxwell field, whereas
η2 ¼ −1 indicates that the contribution of the electromag-
netic energy to the action is negative, which is the reason
why it is called phantom. Moreover, for η1 ¼ −1, the
dilatonic field is phantom, and for η1 ¼ þ1, it represents
the classical dilaton. The constant λ determines the special
theories contained in Eq. (1). For λ ¼ ffiffiffi

3
p

, the Lagrangian
(1) leads to the Kaluza-Klein field equations obtained from
the dimensional reduction of the five-dimensional Einstein
vacuum equations. For λ ¼ 1, the Lagrangian coincides
with the low-energy limit of string theory with vanishing
dilaton potential. Finally, in the extreme limit λ ¼ 0, Eq. (1)
reduces to the Einstein-Maxwell theory minimally coupled
to the scalar field. The structure of the field equations and
some particular classes of solutions have been investigated
in Ref. [21].
For the theory following from the action (1), a particular

spherically symmetric solution was derived in Ref. [22]
which is represented by the line element

ds2 ¼ f1ðrÞdt2 −
dr2

f1ðrÞ
− r2f2ðrÞðdθ2 þ sin2θdϕ2Þ ð2Þ

and by the electric and dilatonic fields

F ¼ 1

2
Fμνdxμ ∧ dxν ¼ q

r2
dt ∧ dr; e−2λφ ¼ f2ðrÞ; ð3Þ

where

f1ðrÞ ¼
�
1 −

rþ
r

��
1 −

r−
r

�
γ

; ð4Þ
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f2ðrÞ ¼
�
1 −

r−
r

�
1−γ

: ð5Þ

The constant γ is defined as

γ ¼ 1− η1λ
2

1þ η1λ
2
¼ λ−
λþ

∈
� ð−1;1Þ for η1 ¼ 1

ð−∞;−1Þ ∪ ð1;þ∞Þ for η1 ¼ −1:
ð6Þ

Moreover, the constants r� are given in terms of the mass
M and charge q as

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

2η2γq2

1þ γ

s
; ð7Þ

r− ¼ 1

γ

�
M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

2η2γq2

1þ γ

s �
ð8Þ

and are subject to the conditions

0 < r− < rþ for η2λþ > 0; ð9Þ

r− < 0 < rþ for η2λþ < 0: ð10Þ

This is a black hole solution with an inner horizon located
at r ¼ r− and an outer event horizon at r ¼ rþ.
The fundamental thermodynamic equation, S ¼ A=4 ¼

ð1=4Þ R ffiffiffiffiffiffiffiffiffiffiffiffiffigθθgϕϕ
p dθdϕ, can be calculated explicitly by

using the line element (2),

S ¼ πr1þγ
þ ðrþ − r−Þ1−γ: ð11Þ

Notice that the entropy is given in units of length2, as
expected in geometric units. The entropy must satisfy the
first law of black hole thermodynamics [16]

dS ¼ 1

T
dM − η2

A0

T
dq; ð12Þ

where T is the temperature and A0 is the electric potential at
the horizon. Then, a straightforward computation shows
that

T ¼ ðrþ − r−Þγ
4πr1þγ

þ
; A0 ¼

q
rþ

: ð13Þ

Notice that rþ and r− are first-degree homogeneous
functions of the extensive variables M and q. This implies
that the entropy (11) is a second-degree homogeneous
function. The mass variable M cannot be found explicitly
from Eq. (11) in terms of S and q because that function is
not invertible. However, it can be expressed in terms of the
horizons radii as

M ¼ 1

2
ðrþ þ γr−Þ: ð14Þ

We see that all thermodynamic variables are well-behaved
functions of rþ and r−. This means that in terms ofM and q
the entropy and temperature do not present any peculiar
behavior as long as the radii r� are well-behaved functions
ofM and q. However, the particular case for which rþ ¼ r−
leads to the vanishing of the temperature, horizon area, and
entropy, indicating that the fundamental equation is not
well-defined at that point. Moreover, for rþ ¼ r−, the mass
of the black hole could also be negative for certain values of
the parameter γ. Hence, we limit ourselves to the inves-
tigation of the case

rþ > r−: ð15Þ

For the outer horizon radius to be well defined, we also
suppose that rþ > 0.

III. GEOMETROTHERMODYNAMIC PHASE
TRANSITION STRUCTURE

One if the most important properties of a black hole is its
phase transition structure. Because of the lack of a complete
microscopic model, it is still not possible to describe the
physical changes that occur during a phase transition.
Nevertheless, from a thermodynamic point of view, phase
transitions indicate that the equilibrium properties of the
system are no longer valid, and instead, we should use a
different approach (maybe nonequilibrium thermodynam-
ics) to investigate the physical processes that accompany a
phase transition. In the context of GTD, a phase transition
should also indicate that the equilibrium description breaks
down. We expect therefore that in GTD a phase transition
should correspond to a curvature singularity of the equi-
librium space. In this section, we will investigate this
question in the case of the phantom dilatonic black holes
presented in the previous section.

A. Formalism of geometrothermodynamics

Let us recall that one of the objectives of GTD is to
construct a formalism that is invariant with respect to
Legendre transformations. This is an important condition
because classical thermodynamics does not depend on the
choice of the thermodynamic potential, and different
potentials are related by means of Legendre transforma-
tions. A more detailed explanation of Legendre trans-
formations and Legendre invariance is given in
Appendix A. In our first attempt to construct such a
formalism [12], we first noticed that Hessian metrics,
which have been used as the basis of thermodynamic
geometry, are not Legendre invariant. This means that the
geometric properties of the equilibrium space can change as
the thermodynamic potential is changed. Then, we proved
that the simplest way to make a Hessian metric Legendre
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invariant is to “multiply” it by the corresponding thermo-
dynamic potential [12,23]. In fact, we now know that this is
the only way to reach Legendre invariance, if we limit
ourselves to total Legendre transformations and impose the
additional physical condition that the curvature tensor
should vanish if thermodynamic interaction is lacking
[24] (see Appendix B). Then, we noticed that it is necessary
to choose a pseudo-Euclidean signature of the Legendre -
invariant metric to correctly describe black hole thermo-
dynamics [25]. This is the situation so far. Now, the
question is how to multiply by a potential the metric of
the equilibrium space in a Legendre-invariant way. It turns
out that, to handle Legendre transformations as coordinate
transformations in differential geometry, it is necessary to
introduce an auxiliary space called phase space.
To be more explicit, let us consider a contact Riemannian

manifold ðT ;Θ; GÞ, where T is a ð2nþ 1Þ-dimensional
manifold; Θ is a contact form, i.e., it satisfies the condition
Θ ∧ ðdΘÞn ≠ 0; and G is a Riemannian metric. If we
choose the set ZA ¼ fΦ; Ea; Iag with A ¼ 0; 1;…; 2n and
a ¼ 1;…; n, according to Darboux theorem, the canonical
representation of the contact form is Θ ¼ dΦ − δabIadEb,
and a Legendre transformation can be represented as the
coordinate transformation [26]

fZAg → f ~ZAg ¼ f ~Φ; ~Ea; ~Iag; ð16Þ

Φ ¼ ~Φ − δkl ~E
k~Il; Ei ¼ −~Ii; Ej ¼ ~Ej;

Ii ¼ ~Ei; Ij ¼ ~Ij; ð17Þ

where i ∪ j is any disjoint decomposition of the set of
indices f1;…; ng, and k; l ¼ 1;…; i. In particular, for
i ¼ ∅, we obtain the identity transformation. Moreover,
for i ¼ f1;…; ng, Eq. (17) defines a total Legendre trans-
formation, i.e.,

Φ ¼ ~Φ − δab ~E
a~Ib; Ea ¼ −~Ia; Ia ¼ ~Ea: ð18Þ

We define the thermodynamic phase space as a
Legendre-invariant contact Riemannian manifold. It is easy
to see that the contact form Θ is invariant with respect to
Legendre transformations. As for the metric, the situation is
more complicated. In fact, the set of Legendre trans-
formations does not form a group, and hence it is not
possible to use the standard methods of differential geom-
etry to generate the most general Legendre-invariant metric.
Nevertheless, in the case of total Legendre transformations,
it is possible to identify a quite general metric in the form
[27,28]1

GI=II ¼ Θ2 þ ðξabIaEbÞðχcddIcdEdÞ; ð19Þ

where ξab and χab are diagonal constant (n × n) matrices. It
turns out that if we choose χab ¼ δab ¼ diagð1;…; 1Þ the
resulting metric GI can be used to investigate systems with
at least one first-order phase transition. Alternatively, if we
choose χab ¼ ηab ¼ diagð−1;…; 1Þ, we obtain a metric
GII that correctly describes systems with second-order
phase transitions. This is the case of black holes.
In GTD, a thermodynamic system is described by its

corresponding equilibrium space E, which is defined as
follows. Let φ∶E → T or, in coordinates, φ∶fEag ↦
fΦðEaÞ; Ea; IbðEaÞg, be a smooth embedding map which
satisfies the condition φ�ðΘÞ ¼ 0, i.e., dΦ ¼ δabIadEb and,
consequently, ∂Φ=∂Ea ≡ Φ;a ¼ Ia ≡ δabIb on E. The pull-
back φ� induces a canonical metric g ¼ φ�ðGÞ on E. For
instance (modulo an ignorable multiplicative constant),

gII ¼ φ�ðGIIÞ ¼ ΦηbaΦ;bcdEadEc; ð20Þ

where ηca ¼ diagð−1; 1;…; 1Þ. This is how the metric of the
equilibrium space becomes “multiplied by the potential” in
a Legendre-invariant way. Indeed, the conformal factor
ξabIaEb in the metric (19) transforms under the pullback as
ξabEbφ�ðIaÞ ¼ ξabEbδacΦ;c ∼ Φ. Here, we have used
Euler’s identity in the following form. If Φ is a homo-
geneous function of degree β, i.e.,ΦðλEaÞ ¼ λβΦðEaÞ, then
Euler’s identity reads EaΦ;a ¼ βΦ. If Φ is a generalized
homogeneous function [29], i.e., ΦðλαaEaÞ ¼ λΦðEaÞ, then
αaEaΦ;a ¼ αΦΦ. This issue has been discussed in detail in
Ref. [30]. In any case, we see that the metric of the
equilibrium space gets the potential Φ as conformal factor,
in accordance with the Legendre-invariance requirement.
When written in the form (20), the thermodynamic

metric gII of the equilibrium space does not seem to have
any particular physical significance. However, it is possible
to use the properties of the phase space generating metric
(19) to show the explicit components of gII have a
significance in fluctuation theory. This is shown in
Appendix C.

B. Phase transitions

We now consider the particular case of the black hole
with fundamental equation S ¼ SðM; qÞ given in Eq. (11).
Accordingly, the thermodynamic potential is S, and
Ea ¼ fM; qg. Then, from Eq. (20), we obtain the metric

g ¼ −4π2r1þ2γ
þ

ðrþ − γr−Þðrþ − r−Þ2γ
× ½2rþðrþ − 2γr− − r−ÞdM2

þ ½r2þ þ γð1þ 2γÞr2− þ ðγ − 1Þrþr−�dq2�; ð21Þ
where we dropped the index II and reexpressed the final
results in terms of r� for simplicity. Notice that the

1It is still possible to multiply both terms of the metric by
Legendre-invariant functions (or constants) Λ1ðZAÞ and Λ2ðZAÞ,
respectively, without affecting the main results.
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components of the metric have units of length2. A lengthy
computation leads to the curvature scalar

R ¼ 4T2

γ

NðM; qÞ
DðM; qÞ ; ð22Þ

where

D ¼ ðrþ − 2γr− − r−Þ2½r2þ þ γð1þ 2γÞr2−
þ ðγ − 1Þrþr−�2ðrþ − γr−Þ4; ð23Þ

and NðM; qÞ is a rather complicated function that is always
different from zero when DðM; qÞ ¼ 0. Curvature singu-
larities exist if at least one of the following conditions is
satisfied:

rþ − 2γr− − r− ¼ 0; ð24Þ

r2þ þ γð1þ 2γÞr2− þ ðγ − 1Þrþr− ¼ 0; ð25Þ

rþ − γr− ¼ 0: ð26Þ

The first singularity implies that the specific mass must be
given by

M2

q2
¼ η2ð1þ 3γÞ2

2ð1þ γÞð1þ 2γÞ ; ð27Þ

an expression which implies that

R → ∞ for

�
γ < −1; γ > −1=2 if η2 ¼ 1

γ ∈ ð−1;−1=2Þ if η2 ¼ −1:
ð28Þ

We see that, depending on the value of the parameter γ,
phase transitions occur for black holes with electric and
phantom charges.
For the second singularity condition (25), we obtain two

possible solutions,�
rþ
r−

�
1;2

¼ 1

2

�
1 − γ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6γ − 7γ2

q �
; ð29Þ

which are real only within the interval γ ∈ ð−1; 1=7Þ. On
the other hand, for this interval of the parameter γ, we know
from Eq. (6) that η1 ¼ 1 and 0 < r− < rþ. This implies that
only in the case of pure dilatonic fields (η1 ¼ 1) singular-
ities are possible. In Fig. 1, we illustrate the behavior of the
ratio rþ=r− to find out the exact region where singularities
are present. Indeed, since in this case rþ=r− > 1, Fig. (1)
shows that only for γ ∈ ð−1; 0Þ are solutions allowed.
Finally, from the condition (9), one can see that only the
case η2 ¼ 1 is allowed in the interval 0 < r− < rþ.
We conclude that the second singularity condition cannot
be satisfied in the case of phantom black holes
(η1 ¼ η2 ¼ −1).

Finally, from the third singularity condition (26), we
obtain that

rþ ¼ γr− i:e: M2 ¼ 2η2γ

1þ γ
q2: ð30Þ

Since rþ > r−, as stated in Sec. II, the singularity exists
only for γ > 1, which, according to Eq. (6), implies that
η1 ¼ −1 and that η2 ¼ 1, in order for M2 to be positive.
Then, from the condition (9), it follows that λþ ¼ 1−
λ2 > 0. This means that this singularity is present only in
theories with λ2 < 1 and a phantom dilatonic field.
According to the formalism of GTD, the above singu-

larities correspond to phase transitions of the corresponding
black holes. On the other hand, according to classical black
hole thermodynamics, the phase transition structure is
determined by the behavior of the heat capacity. A more
general structure is obtained by considering all the response
functions of the system. In the case under consideration, the
fundamental equation is given as the homogeneous func-
tion S ¼ SðM; qÞ which, in analogy to ordinary thermo-
dynamics, leads to the following heat capacity and response
functions [13]

Cq ¼ T

�∂S
∂T

�
q
; αϕ ¼ 1

q

�∂q
∂T

�
ϕ

;

βT ¼ −
1

q

�∂q
∂ϕ

�
T
; ð31Þ

where for simplicity we denote as ϕ the intensive variable
dual to the charge q. Using the fundamental equation (11),
we obtain (SM ¼ ∂S=∂M, etc.)

FIG. 1. The ratio rþ=r− as a function of the parameter γ as
follows from the singularity condition (25). Since r− < rþ,
singularities can exist only in the interval γ ∈ ð−1; 0Þ.
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Cq ¼ −
�

S2M
SMM

�
q
¼ −

2πr1þγ
þ ðrþ − r−Þ1−γðrþ − γr−Þ

rþ − 2γr− − r−
;

ð32Þ

αϕ ¼ −
1

q

�
S2M
SMq

�
ϕ

¼ −
π

γq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

η2ð1þ γÞ

s
r3=2þγ
þ ðrþ − r−Þ1−γðrþ − γr−Þ

r3=2−
;

ð33Þ

and

βT ¼ 1

qT

�
1

Sqq

�
T

¼ 1

4πqT
ðrþ − r−Þ1þγðrþ − γr−Þ

rγ−½r2þ þ γð1þ 2γÞr2− þ ðγ − 1Þrþr−�
: ð34Þ

The identification of the curvature singularities can now be
performed as follows. The singularity (24) coincides with a
divergence of the heat capacity Cq, whereas the singularity
(25) corresponds to the blowup of the compressibility βT.
This implies that the singularities (24) and (25) determine
second-order phase transitions.
The third singularity (26), however, is different. In fact, it

does not correspond to a divergence of the heat capacity or
the response functions; instead, it occurs at the point where
all of them vanish. This means that at the singularity
rþ ¼ γr−, the black hole undergoes a transition from a
stable state to an unstable state (or vice versa) which is,
moreover, accompanied by a divergence of all second
derivatives of the fundamental equation. In addition, the
determinant of the thermodynamic metric (21) diverges,
and so the geometric description breaks down.
It is interesting to notice that in the limiting case γ ¼ 1

only one singularity is present. Indeed, a straightforward
computation shows that in this case the curvature scalar
becomes

R ¼ 6r6− þ 57rþr5− − r2þr4− þ 14r3þr3− − 8r4þr2− − 7r5þr− þ 3r6þ
2π2r4þð3r2− þ r2þÞ2ð3r− − rþÞ2

; ð35Þ

indicating that only the first singularity survives, which
corresponds to the divergence of the heat capacity Cq. Since
γ ¼ ð1 − η1λ

2Þ=ð1þ η1λ
2Þ, the limiting case γ ¼ 1 corre-

sponds to λ ¼ 0, i.e., when the dilatonic and electromag-
netic fields are minimally coupled in the action (1). This
shows that the presence of a nonminimal coupling in the
action drastically affects the thermodynamic properties of
black holes.
For the case γ ¼ 1, it is possible to invert the funda-

mental equation (11) to obtain

M ¼ 1

2
ffiffiffiffiffiffi
πS

p ðSþ η2πq2Þ; ð36Þ

which determines the fundamental equation in the mass
representation, M ¼ MðS; qÞ, for which a GTD analysis
can be performed [16]. Indeed, the GTD approach was
formulated in such a way that it can be applied to any
representation. However, when performing concrete calcu-
lations, it is necessary to consider some details related to a
change of a representation. If a fundamental equation is not
invertible, there is only one possible representation, and
GTD allows us to carry out the complete analysis in that
particular representation. If, on the contrary, a fundamental
equation is invertible, there are (at least) two representa-
tions. On the phase space T , a change of representation
can be interpreted as a conformal transformation [31].

Consequently, for a geometric construction, like GTD, to
be invariant with respect to changes of representation, it is
necessary to demand conformal invariance. Then, the
metric G of L must be conformal and Legendre invariant.
These conditions are very restrictive and leave us with
practically no useful metrics for T [31]. In particular, the
metricGI=II , as given in Eq. (19), is not conformal invariant
and can therefore lead to inconsistent results when applied
to different representations. This explains the inconsisten-
cies found in Ref. [16].
Nevertheless, there is a simple solution to this problem;

namely, it is always possible to consider a change of
representation as a coordinate transformation in E. For
concreteness, let us consider the above example with γ ¼ 1
for which the S representation is determined by the
fundamental equation (11) and the M representation is
determined by Eq. (36). The coordinates of E in the S
representation are fM; qg. Let us introduce in E new
coordinates fS; q0g by means of the equations

M ¼ 1

2
ffiffiffiffiffiffi
πS

p ðSþ η2πq02Þ; q ¼ q0; ð37Þ

which is a well-defined coordinate transformation because
its Jacobian is different from zero, J ¼ ∂M=∂S ≠ 0.
Obviously, such a coordinate transformation does not
affect the geometric properties of the metric g of E and,
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consequently, the thermodynamic properties of the corre-
sponding system. This issue will be considered in more
detail elsewhere [32].

IV. FINAL REMARKS

In this work, we used the formalism of GTD to analyze
the thermodynamic properties of phantom dilatonic black
holes. We considered a particular class of spherically
symmetric black holes which is characterized by two
parameters, namely, mass M and electric charge q. The
dilatonic field depends on M and q as well. The corre-
sponding action contains two parameters, η1 and η2, that
determine the phantom nature of the electric charge and the
dilatonic field. Phantom fields are characterized by negative
energy densities at the level of the action.
We used the fundamental equation of this class of phantom

black holes to construct a Legendre-invariant metric for the
corresponding equilibrium space. The investigation of the
thermodynamic curvature shows that there are three different
types of singularities which correspond to phase transitions.
We also analyze the phase transition structure by using the
standard methods of classical thermodynamics. We found
that two phase transitions predicted by GTD correspond to
divergences of the heat capacity and compressibility, indicat-
ing that the results of GTD are compatible with classical
black hole thermodynamics. As for the third thermodynamic
singularity, we found that it corresponds to a transition of the
black hole in which it undergoes a drastic change of its
stability properties. This type of transition occurs only in the
presence of a phantom charge. Therefore, we interpret this
transition as a consequence of the exotic nature of the
phantom black hole.
Our results contribute to the clarification of some

inconsistencies found by Rodrigues and Oporto in
Ref. [16], when applying the formalism of GTD to the
case of exotic black holes with phantom charges. In
addition, we found a different type of phase transition
related to a change between states with different stability
properties. We explain this as a result of the exotic nature of
the matter that generates the black hole. Another possible
explanation could be that the Ehrenfest scheme, which is
used in classical black hole thermodynamics to determine
the phase transition structure, needs a generalization for
the case of exotic matter. In the case of certain ordinary
laboratory systems, it is already known that the Ehrenfest
scheme fails to predict the observed phase transitions (see,
for instance, Ref. [33] and the references cited therein).
Maybe we are now confronted with a similar situation in
black hole thermodynamics. We expect to analyze this task
in a future investigation.
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APPENDIX A: LEGENDRE INVARIANCE

InGTD,we use the terminology and some conceptswhich
are commonly used in differential geometry and relativistic
field theories but not in thermodynamic geometry. In this
Appendix, we explain such terms and conceptual issues.
We will use the ideas of special relativity as an example,
without pretending to be mathematically rigorous. More
details can be found in the textbooks [34,35].
Consider a two-dimensional manifoldM2 endowed with

the Minkowski metric

ds22 ¼ dt2 − dx2: ðA1Þ

Under the action of a Lorentz transformation ft; xg →
f~t; ~xg given by

t ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ð~tþ v~xÞ; x ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ð~xþ v~tÞ; ðA2Þ

where v is a constant, the line element (A1) transforms into

ds22 ¼ d~t2 − d~x2: ðA3Þ

We say then that the line element (A1) remains invariant
under a Lorentz transformation, or, equivalently, it is
Lorentz invariant or it preserves Lorentz invariance. One
can also say that the Minkowski metric is Lorentz invariant.
The physical theories that are based upon the Minkowski
metric (for instance, special relativity and gauge field
theories) are called Lorentz invariant.
The line element (A1) is by definition a scalar, but it does

not imply that it is invariant with respect to any arbitrary
coordinate transformation. Consider, for instance, the
transformation

t ¼ α1~t; x ¼ α2 ~xþ α3~t2; ðA4Þ

where α1, α2, and α3 are constants. Then, the line element
(A1) transforms into

ds22 ¼ ðα21 − 4α23~t
2Þd~t2 − 4α2α3~td~xd~t − α22d~x

2; ðA5Þ

which is clearly different from (A1). We then say that the
Minkowski metric is not invariant with respect to the
transformation (A4). Nevertheless, the fact that a line
element is a scalar implies a very important property,
namely, that the geometric (and physical) properties of the
corresponding manifold do not depend on the choice of
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coordinates (in general relativity, this property is called
covariance). One property which is very important for our
purposes is the curvature. It can easily be shown that for the
line elements (A1), (A3), and (A5) all the components of
the Riemann curvature tensor Rabcd vanish identically; i.e.,
the vanishing of the curvature is a property which does not
depend on the choice of coordinates.
We note that from the point of view of pure Riemannian

geometry the Lorentz transformation (A2) and the non-
linear transformation (A4) belong to the class of diffeo-
morphisms with respect to which the Minkowski line
element (A1) behaves as a scalar. The fact that the
Lorentz transformation preserves in addition the functional
form of the line element (i.e, the Lorentz transformation is
an isometry) is a complementary condition that is not
required in pure Riemannian geometry. If one is interested
in only the geometric behavior of the line element as a
scalar, it is not necessary to consider Lorentz transforma-
tions as something special. On the other hand, if one is
interested in the physical consequences of a transformation
that leaves also the functional form of the Minkowski line
element invariant, the Lorentz transformations are impor-
tant to understand the canonical laws of spacetime. We will
see below that in GTD we impose Legendre invariance as a
complementary condition to take into account the proper-
ties of classical thermodynamics. In this connection, one
can by analogy say that the Legendre transformations are to
GTD what the Lorentz transformations are to special
relativity.
Consider now the coordinate transformation ft; x; yg →

f~t; ~x; ~yg with

t ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ð~tþ v~xÞ; x ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ð~xþ v~tÞ:

y ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ð~yþ v~tÞ; ðA6Þ

and let us ask the following question: Is the Minkowski line
element (A1) invariant with respect to this transformation?
It is easy to see that the question is not well posed because
the Minkowski line element is two dimensional whereas the
coordinate transformation (A6) involves three coordinates;
i.e., it can be applied in a three-dimensional manifold only
in which the line element must contain an additional term,
for instance,

ds23 ¼ dt2 − dx2 − dy2: ðA7Þ

This fact will be relevant below when considering Legendre
transformations and Hessian metrics.
We now turn back to thermodynamics. It is well known

that the laws of classical equilibrium thermodynamics can
be written in different thermodynamic potentials, without
affecting the properties of the systems under consideration
[13]. This is to say that the properties of a thermodynamic

system do not depend on the choice of the thermodynamic
potential used to describe it. On the other hand, different
thermodynamic potentials are always related by means of
Legendre transformations [13]. Using the terminology
explained above in this Appendix, we can say that
equilibrium thermodynamics is Legendre invariant. One
of the main goals of GTD is to incorporate this property
into a geometric description of thermodynamics. To this
end, it is necessary to define the Legendre transformations
as coordinate transformations. This was done long ago by
Arnold [26], who proved that any Legendre transformation
can be represented as fZAg → f ~ZAg ¼ f ~Φ; ~Ea; ~Iag
ða ¼ 1;…; nÞ, where the explicit relations between the
old and the new coordinates are given in Eq. (17). Since a
Legendre transformation involves 2nþ 1 coordinates, it
must act on a ð2nþ 1Þ-dimensional manifold, which is
called thermodynamic phase space T . Then, a metric
defined on T by means of the line element

ds22nþ1 ¼ GABdZAdZB ðA8Þ

is said to be Legendre invariant if the functional depend-
ence of the components GAB does not change under a
Legendre transformation. The Legendre-invariance condi-
tion leads to a set of algebraic equations on the components
GAB, which for the case n ¼ 2 were given explicitly in
Ref. [12]. By solving this set of equations, in GTD, we have
found so far three classes of Legendre-invariant metrics,
namely, the two classes mentioned in Eq. (19),

ðds22nþ1ÞI=II ≡GI=II ¼ ðdΦ − δabIadEbÞ2
þ ðξabIaEbÞðχcddIcdEdÞ; ðA9Þ

and a third class which is invariant under partial Legendre
transformations,

GIII ¼ ðdΦ − IadEaÞ2 þ ðEaIaÞ2kþ1dEadIa;

Ia ¼ δabIb; ðA10Þ

where k is an integer. To show the Legendre invariance, for
instance, in the case of the metric (A9), it is sufficient to
apply the Legendre transformation (17) to each of the
metric components. Then, we obtain

GI=II ¼ ðd ~Φ − δab~I
ad ~EbÞ2 þ ðξab~Ia ~EbÞðχcdd~Icd ~EdÞ;

ðA11Þ

which shows clearly that the functional dependence of the
metric components does not change, as demanded by
Legendre invariance. Thus, we have seen that the phase
space T can be considered in GTD as an auxiliary space
which is necessary in order to handle correctly Legendre
transformations as coordinate transformations. Furthermore,
to study the properties of thermodynamic systems in GTD,
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we consider the n-dimensional equilibrium space E with
coordinates fEag as a subspace of T defined by the
embeddingmapφ∶E → T such that the pullbackφ� satisfies
the condition φ�ðdΦ − δabIadEbÞ ¼ 0 and induces on E the
thermodynamic metric g ¼ φ�ðGÞ. In the case of GII , the
induced metric gII is explicitly given in Eq. (20).
Accordingly, we say that the metric g of E is Legendre
invariant, if it can be obtained from a Legendre-invariant
metric G of T as g ¼ φ�ðGÞ.
Consider now the class of Hessian metrics

ds2n ≡ gH ¼ ∂2H
∂Ea∂Eb dE

adEb; ðA12Þ

where HðEaÞ is a thermodynamic potential, and let us ask
the question of whether a Hessian metric is Legendre
invariant. It is true that this line element is a scalar, but as
explained above, it does not imply that it is invariant with
respect to arbitrary coordinate transformations. In particu-
lar, only coordinate transformations of the form fEag →
f ~Eag are allowed in the n-dimensional manifoldH defined
by the Hessian metric (A12). Since the Legendre trans-
formations involve 2nþ 1 coordinates, they cannot be
applied in the n-dimensional manifold H, and therefore
we need to introduce a ð2nþ 1Þ-dimensional manifold
T H with metric GH and coordinates ZA such that
φ�ðGHÞ ¼ gH. A straightforward computation shows that
the metric

GH ¼ ðdΦ − δabIadEbÞ2 þ δabdEadIb ðA13Þ

induces the Hessian metric (A12), but it is not Legendre
invariant. In this sense, we say that Hessian metrics do not
preserve Legendre invariance.
Finally, let us consider the question about the uniqueness

of the Legendre-invariant metrics GI=II and GIII used in
GTD. In all the cases, the first term contains the funda-
mental 1-form Θ ¼ dΦ − δabIadEb, which, according to
Darboux theorem, is defined modulo an arbitrary nonzero
multiplicative function f ¼ fðZAÞ; i.e., Θ and fΘ are
equivalent. In this sense, the GTD metrics of the phase
space are not unique. However, this arbitrariness does not
influence the thermodynamic metric g ¼ φ�ðGÞ because,
due to the property φ�ðfΘÞ ¼ fφ�ðΘÞ ¼ 0, the function f
does not appear in the thermodynamic metric. Furthermore,
the second term of the GTD metrics can also be multiplied
by a nonzero Legendre invariant function Λ ¼ ΛðZAÞ.
However, if we impose the additional physical condition
that the curvature of the equilibrium space vanishes in the
case of a thermodynamic system with no thermodynamic
interaction (more details will be given in Appendix B), then
Λ is reduced to a constant which can be set equal to 1,
without loss of generality. In this sense, all the metrics we
use in GTD for the equilibrium space are unique. This is
shown explicitly in the case of the final expression for the

metric gII , given in Eq. (20), which we use in GTD to
describe black holes.

APPENDIX B: CURVATURE AND
THERMODYNAMIC

INTERACTION

The idea of using curvature as a measure of interaction is
due originally to Einstein. In general relativity, the curva-
ture of the four-dimensional spacetime manifold represents
the gravitational interaction. If no gravitational interaction
exists, the spacetime is flat. The same idea has been shown
to be true also in the case of the electromagnetic, weak, and
strong interactions (gauge interactions) which are deter-
mined by the curvature of a different higher-dimensional
manifold (a principal fiber bundle). This means that all the
fundamental interactions known in nature have a geometric
description in which the curvature is a measure of the
interaction (see, for instance, Ref. [36]). By analogy, one of
the goals of GTD is to propose a geometric description of
thermodynamics in which the corresponding curvature
represents the effective thermodynamic interaction. To this
end, we use Legendre invariance as a guidance principle.
This idea is based again on the known properties of field
theories. Indeed, to construct general relativity, Einstein
used the diffeomorphism invariance, whereas gauge field
theories are based upon the gauge invariance. In each case,
the invariance corresponds to transformations which
leave invariant the properties of the underlying theory.
Accordingly, in GTD, we propose to use Legendre invari-
ance as a guidance principle because equilibrium thermo-
dynamics is Legendre invariant. This is the geometric
intuitive approach we have been using in GTD to interpret
the thermodynamic as representing the thermodynamic
interaction. This approach has been presented with some
detail in Ref. [37]. A more physical approach based upon
the interpretation of the thermodynamic metrics used in
GTD as the second moment of the fluctuations of a new
thermodynamic potential will be mentioned in Appendix C.
As mentioned in Appendix A, the GTD metrics were

obtained by applying the condition of Legendre invariance
in a mathematically consistent way, i.e., by introducing the
thermodynamic phase space T . However, in order to take
into account the above condition that the curvature of the
equilibrium space represents the thermodynamic interac-
tion, we must demand that in the particular case where no
interaction is present (ideal gas) the curvature vanishes.
This is therefore an additional physical condition that must
be imposed on the GTD metrics, and in fact, a straightfor-
ward computation shows that this is true for the metrics
presented in Appendix A. This means that the equilibrium
space of the ideal gas must be flat; a detailed analysis of this
case was performed in Ref. [38].
Thus, we see that the GTDmetrics are not only Legendre

invariant, but they also satisfy the physical condition of
leading to flat equilibrium spaces when thermodynamic
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interaction is lacking. In fact, these two conditions were used
in the original formulation of GTD [12] to select viable
metrics.More recently, by using a group theoretical approach
based upon infinitesimal Lie symmetries, the most general
metric (with n ¼ 2) which is invariant under the action of
infinitesimal Legendre transformations was obtained [24].
However, this general metric does not satisfy the physical
condition of leading to a flat equilibriummanifold in the case
of the ideal gas; i.e., it cannot be used in GTD. To show this,
let us consider the general metric obtained in Eq. (33) of
Ref. [24], which, using the conventions and notations of the
present work, can be written as

Ginf ¼ Θ2 þ 2ΩðdE1dI2 − dE2dI1Þ; ðB1Þ

where the function Ω ¼ ΩðE1; E2; I1; I2Þ is nonzero
and invariant under infinitesimal Legendre transformations.
The induced metric of the equilibrium space reads

ginf ¼ φ�ðGinfÞ ¼ 2ΩfΦ12½ðdE1Þ2 − ðdE2Þ2�
þ ðΦ22 − Φ11ÞdE1dE2g; ðB2Þ

with

Φ12 ¼
∂2Φ

∂E1∂E2
; etc: ðB3Þ

Here, we have used the condition φ�ðΘÞ ¼ φ�ðdΦ−
I1dE1 − I2dE2Þ ¼ 0. If we now consider the fundamental
equation for an ideal gas, which in the entropy representa-
tion is essentially Φ ¼ S ¼ lnU þ lnV þ const with
U ¼ E1 and V ¼ E2, it can be shown that there is no
function Ω that leads to a zero curvature tensor for E.
In other words, the equilibrium space constructed from
the metric Ginf for an ideal gas is not flat; therefore, Ginf

cannot be used in GTD. In fact, the GTD metrics GI=II and
GIII are by no means related to Ginf .
Finally, let us notice that the results presented in Ref. [24]

support the results obtained in GTD. Indeed, the main result
of Ref. [24] is that the most general metric which is invariant
under infinitesimal Legendre transformations does not lead
to a flat equilibrium space for the ideal gas. Therefore, to
reach this physical goal, it is necessary to use noninfinites-
imal (discrete) Legendre transformations, and this is exactly
what we have been doing in GTD.

APPENDIX C: ON THE PHYSICAL
SIGNIFICANCE OF THE

GTD METRICS

In this Appendix, we investigate the question about the
physical significance of the metrics obtained in GTD under
the condition of Legendre invariance and that the thermo-
dynamic curvature is a measure the thermodynamic inter-
action. To this end, we will consider the main conceptual
ideas of classical thermodynamic fluctuation theory [39].

Suppose the equilibrium state of a thermodynamic system
is determined by the fundamental equation HðEaÞ. Let us
denote by dEa the infinitesimal deviations of the variables
Ea from the equilibrium state. In very broad terms, in
fluctuation theory, one considers the deviations of H by
means of the expansion

HðEa þ dEaÞ ¼ HðEaÞ þ ∂H
∂Ea dE

a

þ 1

2

∂2H
∂Ea∂Eb dE

adEb þ � � � ðC1Þ

If we choose H as the total entropy of the Universe S and
recall that it reaches a maximum at equilibrium, i.e.,
∂S=∂Ea ¼ 0, then the second moment of the fluctuation
is essentially given by the components of the Ruppeiner
metric [10]. This important result provides the Ruppeiner
metric with a clear physical significance and permits
finding the connection with information geometry. It is
also important to note that in this case the coordinates must
correspond to conserved quantities in order for the first
derivative to vanish and for the Hessian to determine the
components of the thermodynamic metric. This is, of
course, not always the case. For instance, if we have a
look at the thermodynamic metrics g, induced by the
Legendre -invariant metrics G, in the entropy representa-
tion, it is easy to see that their components do not
correspond to the second moment of the entropy fluctua-
tions. Nevertheless, we will now briefly show that it is
possible to introduce new coordinates in the phase space
such that the thermodynamic metrics can be interpreted in
terms of the second moment of the fluctuations of a
different thermodynamic potential.
Let us first notice that all the GTD metrics given in

Eqs. (A9) and (A10) can be rewritten as

G ¼ ðdΦ − δabIadEbÞ2 þ habdEadIb; ðC2Þ
where the components hab are functions of the coordinates
Ea and Ia. If we calculate the thermodynamic metric g ¼
φ�ðGÞ under the condition that the canonical contact form
Θ vanishes, φ�ðΘÞ ¼ φ�ðdΦ − δabIadEbÞ ¼ 0, we obtain
g ¼ habδcbΦ;cddEadEd of which the components, as men-
tioned above, cannot be interpreted in the framework of
fluctuation theory. However, let us recall that the metric G
is fixed in the coordinates ZA ¼ fΦ; Ea; Iag as a result of
imposing Legendre invariance, but we can still perform a
coordinate transformation of the form ZA → ZA ¼
fF;Xa; Yag, where in general

F ¼ FðΦ; Eb; IbÞ; Xa ¼ XaðΦ; Eb; IbÞ;
Ya ¼ YaðΦ; Eb; IbÞ: ðC3Þ
The only condition to be imposed is that the Jacobian of the
transformation is different from zero. This procedure is
similar to the one we mentioned for the Minkowski metric
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in Appendix A; namely, once the Minkowski metric is
fixed as (A1) in order to be Lorentz invariant, we can
perform any coordinate transformation, for instance, (A4),
without changing the geometric properties of the
Minkowski spacetime.
Applying the above coordinate transformation to the

second term of G, i.e., habdEadIb, it is easy to see that, by
choosing the new coordinates Xa ¼ XaðEb; IbÞ and Ya ¼
YaðEb; IbÞ in the appropriate way, the second term can
always be brought to the form δabdXadYb. Now, let us
consider the 1-form Θ ¼ fðdF − YadXaÞ, where f ¼
fðF;Xa; YaÞ is a nonvanishing function. Indeed, according
to the Darboux theorem, this is the canonical contact form
in the new coordinates ZA. Now, let us ask the question of
whether the coordinate transformation ZA → ZA can be
used also to identify the two canonical contact forms, i.e., if
the differential equation dΦ − IadEa ¼ fðdF − YadXaÞ
holds.2 To answer this question, it is necessary to compute
the corresponding integrability conditions. Lengthy calcu-
lations show that they are not satisfied in general for any of
the GTD metrics. Nevertheless, a detailed study of the
analytic form of the integrability conditions shows that they
are satisfied if we impose a “deformation” of the contact
form, i.e., Θ → f0dF − faYadXa, where the nonvanishing
functions f0 and fa can depend on all coordinates F, Xa,
and Ya. Summarizing, we have proved that it is always
possible to find a coordinate transformation ZA → ZA that
brings the GTD line element (C2) into the form

G ¼ ðf0dF − faYadXaÞ2 þ δabdXadYb: ðC4Þ

This is then the line element of the phase space T in the
new coordinates ZA. Let us consider the corresponding
equilibrium space E by means of the embedding map
φ∶E → T which is defined by the condition
φ�ðdF − YadXaÞ ¼ 0. Then, the thermodynamic metric
g ¼ φ�ðGÞ induced in E can be expressed as

g ¼ ðf0 − faÞðf0 − fbÞ
∂F
∂Xa

∂F
∂Xb dE

adEb

þ ∂2F
∂Xa∂Xa dE

adEb: ðC5Þ

We see that this metric contains first- and second-order
derivatives of the new coordinate FðXaÞ. Moreover, it
depends on nþ 1 arbitrary functions f0 and fa. Once we
specify a function FðXaÞ, the metric can be calculated
explicitly. This means that FðXaÞ plays the role of a
fundamental equation in the new coordinates. Let us also
demand that FðXaÞ reaches an extremum value at equi-
librium, i.e., ∂F=∂Xa ¼ 0. Then, at each point of the
equilibrium space, the metric g reduces to

g ¼ ∂2F
∂Xa∂Xb dE

adEb: ðC6Þ

If we now consider the infinitesimal fluctuations dXa of the
potential F around an equilibrium state Ea, we obtain

FðXa þ dXaÞ ¼ FðXaÞ þ 1

2

∂2F
∂Xa∂Xb dE

adEb: ðC7Þ

We conclude that the components of the GTDmetrics in the
equilibrium space can be interpreted as the second moment
of the fluctuation of the new thermodynamic potential F.
The above analysis shows that it is possible to relate the

GTD metrics with fluctuation theory. Moreover, we have
shown that GTD allows us to construct new thermody-
namic potentials other than those that are usually con-
structed in classical thermodynamics by means of Legendre
transformations. The physical significance of the new
potential F, however, is not clear. We believe that it is
necessary to construct new potentials for specific thermo-
dynamic systems in order to investigate their physical
meaning. In this brief comment, we only presented a brief
scheme of the mathematical proof of the existence of new
thermodynamic potentials. We will present a more detailed
analysis elsewhere [40].
Probably, this result will also allow us to interpret the

thermodynamic curvature as a measure of the thermody-
namic interaction by using a more physical approach.
Indeed, the Ruppeiner scalar curvature can be related with
the fluctuating structure size because the metric is the
Hessian of a particular thermodynamic potential, namely,
the entropy. We can therefore expect a similar interpretation
for the scalar curvature of the GTD metrics, but now in
terms of the new thermodynamic potential F. In other
words, the Ruppeiner metric establishes the connection
between curvature and interaction by using the entropy as
the thermodynamic potential, whereas the GTD metrics use
quite different potentials.
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