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We perform a detailed study of the geodesic equations in the spacetime of the static and rotating charged
black hole corresponding to the Kerr-Newman-(A)dS spacetime. We derive the equations of motion for test
particles and light rays and present their solutions in terms of the Weierstrass g, ¢, and ¢ functions as well as
the Kleinian ¢ function. With the help of parametric diagrams and effective potentials, we analyze the
geodesic motion and classify the possible orbit types. This spacetime is also a solution of f(R) gravity with

a constant curvature scalar.
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I. INTRODUCTION

A large body of observational evidence has been
gathered in support of an accelerated expansion of the
Universe at the present time. This includes, in particular,
measurements of the luminosity distance of type Ia super-
novae [1], the anisotropy of the cosmic microwave back-
ground [2,3], weak lensing [4], baryon acoustic oscillations
[5], and the large scale structure of the Universe [6].

Explaining the current accelerated expansion of the
Universe is one of the most challenging problems of
modern cosmology. In the current cosmological standard
model, the ACDM model, a small positive cosmological
constant is included in the Einstein field equations to model
this acceleration. It is, therefore, clearly of considerable
interest to study the influence of a cosmological constant on
further solutions of the Einstein equations, especially black
hole spacetimes.

For a deeper understanding of the gravitational field of
massive objects and in order to accurately predict obser-
vational effects (such as light deflection, gravitational time
delay, perihelion shift and Lense-Thirring effect), it is
mandatory to have very good knowledge of the motion
of test particles and light rays in the spacetimes of interest.
But only analytical methods allow for arbitrarily high
accuracy of the prediction of this motion and the associated
observables.

In the Schwarzschild spacetime, the equations of
motion of test particles and light rays were solved
analytically in terms of elliptic functions by Hagihara
in 1931 [7]. The geodesic equations in the Reissner-
Nordstrom, Kerr, and Kerr-Newman spacetimes have the
same mathematical structure [8] and can be solved
analogously. This analytical method was recently further
advanced and applied to the hyperelliptical -case,
where the analytical solution of the equations of motion
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in the four-dimensional Schwarzschild-(A)dS, Reissner-
Nordstrom-(A)dS, and Kerr-(A)dS spacetimes was
presented [9-14].

These mathematical tools were also applied to the
geodesic motion in Taub-NUT and wormhole spacetimes
[15,16], and to higher-dimensional spacetimes, including
static black hole spacetimes and Myers-Perry spacetimes
[10,17-19], while in five-dimensional black ring space-
times, the equations of motion could be solved analytically
in special cases [20,21]. Moreover, the motion of test
particles was studied in various black string spacetimes
including field theoretical cosmic string spacetimes and
black holes pierced by a black string [22-29]. In addition,
the geodesic equations were solved analytically in a static
black hole spacetime of f(R) gravity [30], for Horava-
Lifshitz black holes [31], and for BTZ and GMGHS black
holes [32,33].

On the other hand, the large body of current cosmo-
logical data could also be taken to indicate that general
relativity itself should be extended. The latter would also be
supported by the necessity for dark matter as revealed from
astrophysical and cosmological observations (see e.g. [34])
and moreover by theoretical arguments at the ultraviolet
scale (e.g., quantum gravity, initial singularities).

Consequently, numerous theoretical attempts to model
the evolution of the Universe are based on the modification
of gravity (see e.g. the reviews [35-39]). Popular sugges-
tions to modify gravity include theories with higher powers
of the Riemann and Ricci tensors as well as the curvature
scalar R. Lovelock theory [40] and f(R) gravity [35,41,42]
are such examples, where the Einstein-Hilbert action is
generalized accordingly.

A change of the action has influence on the dynamics of
the Universe, but it may also affect the dynamics at the
galactic or solar system scales. Clearly, any modifications
of the action must retain the well-tested sector of general
relativity, like its description of the solar system. However,
modified theories may yield different answers from general
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relativity in the strong field regime. It is, therefore, essential
to inquire about the existence of black holes and about their
properties in modified theories of gravity (see e.g. [43]).
In general, the study of black holes in these theories may
reveal interesting features not present in general relativity.

Focusing on black holes in f(R) theories [44—54], we note
that a particular class of solutions is obtained when the
curvature scalar is constant, R = R. Taking the trace of
the field equations then specifies this constant in terms of the
function f(R) and its derivative at Ry. A comparison with
general relativity and its black hole solutions reveals, that the
finite curvature scalar acts basically like a cosmological
constant. In vacuum, therefore, the Schwarzschild-(A)dS and
Kerr-(A)dS solutions are recovered, when certain rescalings
are performed. When adding charge to the solutions by
including an electromagnetic field, the Reissner-Nordstrom-
(A)dS and the Kerr-Newman-(A)dS solutions can be recov-
ered after certain rescalings because the trace of the energy
momentum tensor vanishes.

In this paper, we study the geodesic motion in the
spacetime of the static and rotating charged black hole
(Kerr-Newman-(A)dS spacetime). Since after certain rescal-
ings the Kerr-Newman-(A)dS black hole of general relativity
also describes a rotating charged black hole in f(R) gravity,
the current analysis can also be applied to this black hole
solution in f(R) gravity. Let us mention, however, that the
stability of this f(R) black hole can only be established after
the function f(R) is specified.

We here analyze the possible orbit types using effective
potential techniques and parametric diagrams. Furthermore,
we present the analytical solutions of the equations of motion
for test particles and light. The equations of motion are of the
elliptic and hyperelliptic type, and the solutions are given in
terms of the Weierstrass g, {, and ¢ functions as well as the
Kleinian ¢ functions. Complete integrability of the geodesic
equations is guaranteed by the presence of four integrals of
motion of the Kerr-Newman-(A)dS spacetime, with the
fourth one being the Carter constant.

Similar analyses of geodesic motion and solutions of the
equations of motion were presented in the Kerr-(A)dS
spacetime [12] and in the Kerr-Newman spacetime [55], but
in the Kerr-Newman-(A)dS spacetime the geodesic motion
has not been analyzed analytically before in great detail,
although some aspects were studied in [56,57]. The
analytical solution of the geodesic equation of light and
a study of the gravitational lensing and frame dragging of
light were presented in [58]. However, an analysis of all
possible orbits for particles and light was not presented, and
the full set of analytic solutions to the equations of motions
were not found.

Our paper is organized as follows: In Sec. II, we give a
brief review of the field equations and the metric of the
rotating black hole in f(R) gravity and its connection to
general relativity. In Sec. III, we present the equations of
motion in the Kerr-Newman-(A)dS spacetime. We analyze
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the geodesic motion in Sec. IV and give a list of all possible
orbit types. The analysis is given separately for the static
case (Reissner-Nordstrom-(A)dS) and the rotating case
(Kerr-Newman-(A)dS). In Sec. V, we present the full set
of analytical solutions of the geodesic equations in the
general rotating case of the Kerr-Newman-(A)dS black
hole. Some example orbits in the static and the rotating case
are shown in Sec. VI. We conclude in Sec. VII.

II. FIELD EQUATIONS IN f(R) MODIFIED
GRAVITY AND RESCALINGS

In this section, we give a brief review of the field
equations and the metric of the rotating black hole in f(R),
which represents the Kerr-Newman-(A)dS spacetime after
certain rescalings. In four dimensions, the action of f(R)
gravity with a Maxwell field is given by

S=38,+ Sy, (1)

where S, and Sy, are the gravitational and the electromag-
netic actions,

1
Sy = 162G d4xv —9(R + f(R)), (2)
-1
Sy = E d4x\/—g[FﬂuF”UL (3)

where G is the gravitational constant, which we will set to
one, g is the determinant of the metric, R is the curvature
scalar, and R + f(R) is the function defining the modified
gravity theory under consideration. From the above action,
the Maxwell equations take the form

V,F =0, (4)

while the field equations in the metric formalism are

Ryu(1 4 F/(R) = 5 (R + F(R))g,0
F@u V-9 (R) = 2T, (9)

where R, is the Ricci tensor, V denotes the usual covariant
derivative, and the stress-energy tensor of the electromag-
netic field is given by

Guv

TFpana (6)

T, =F,F, -
and has vanishing trace
T, = 0. (7)

Taking the trace of Eq. (5) under the assumption that the
curvature scalar is constant, R = R, leads to
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Ro(1+ f'(Ry)) —2(Ry + f(Ry)) = 0. (8)

This is the same equation as in the vacuum case because the
matter field has vanishing trace, Eq. (7), and it determines
the constant value of the curvature scalar:

2/ (Ro)
Ry=——+".
C (R -1 ®)
Using this relation in Eq. (5) gives the field equations
I f(Ry) 2
—— = T . l
“ ARy -1 T Ry 1)

Comparison with the Einstein equations in the presence of a
cosmological constant A then indicates an equivalence of
the two sets of equations for Ry = 4A when we further
rescale the left-hand side of the equations adequately.

Consequently, up to rescalings, the Kerr-Newman-(A)dS
solution of general relativity is also a solution of the field
equations in f(R) gravity [50-52]. Thus, the stationary
black hole solution can be obtained in Boyer-Lindquist-like
coordinates (z,r,0,¢) as follows [50],

A : 29(1 2 2 2
dsz:__;{dt_w} g P g
P — Ar AG
ALsi 29 2 2 2
+ == [adt—r Ta d(p} : (11)
P =)
with
R 0?
A, = (P +a <1—Or2> —OMr 4+ ———
ARG (15 (Ry)
(12)
==1+ 1_§a2’ p? = r* + a*cos?0,
Ry 2 na2
Ay =1 —I—Ea cos“6, (13)

where Q is the electric charge, a is the angular momentum
per mass of the black hole, and R enters like a cosmo-
logical constant (R, = 4A), yielding a nonasymptotically
flat de Sitter or anti—de Sitter spacetime, when Ry, is finite.
Note that the electric charge enters with a scaling factor in
the metric. As in the Kerr spacetime, there is a ringlike
singularity defined by p? = 0, and the horizons are given
by A, = 0.

III. THE GEODESIC EQUATIONS

In this section, we derive the equations of motion for a
rotating charged black hole Eq. (11), using the Hamilton-
Jacobi formalism, and later introduce effective potentials
for the » and € motion.
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The Hamilton-Jacobi equation,

oS 1 ..05 0S
T ] B
81+29 Ox' Ox/ 0 (14)

can be solved with an ansatz for the action
1
SZEET—EI+LZ¢+S9<0) +8,(r). (15)

The constants of motion are the energy E and the angular
momentum L which are given by the generalized momenta
P, and Py:

Pt:gtti+gt(p¢:_E9 P¢:g(p(p(p+gt(pt:L (16)
Using Egs. (14)—(16), we get

LZ:‘Z
Agsin®6

0\ ? 24ELE — E2a’sin’0
Ay (86‘) + ea’cos2 — =2 A, @i

05\ ?
--(3)

(@* + r*)*E? + a®’L*=? — 2aEL=(r? + a?)
A, ’
(17)

—€r2+

where each side depends on r or € only. With the separation
ansatz Eq. (15) and with the help of the Carter constant
[59], we derive the equations of motion:

p* <ﬂ>2:— A (K +er?) + [(a® + r?)E = aLE]* = R(r),

dr
(18)

do\ 2
p* (—) = Ay(K — ea? cos? 0)

7y (aEsin@ — LE)?> =0(0), (19)
) (@) _ aEZ(a*+r?) - a*22L
’ - A

- m (aEESin29 - EQL), (20)

2 dr\ _ E(r? + a*)? — aL=(r? + a?)
dr A,
in’g L=

_ (Ea2 - “). (21)

Ae Sin29

In the following, we will explicitly solve these equations.
Equation (18) suggests the introduction of an effective
potential Vg , such that Vg, = E corresponds to (45)? = 0,
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L=a + /A (K + er?)

Vo —
eff,
" a* + r?

. (22)

where (4)% > 0 for E < Vg, and E > V. In the same
way, an effective potential corresponding to Eq. (19) can be
introduced,

LE 4 /Agsin’0(K — ea*cos?0)
asin’0

. (23)

chf 0 =

but here (42)> > 0 for Vg, < E < V. Introducing the
Mino time A [60] connected to the proper time 7z by % = p?,
the equations of motion read

<%)2 =—A,(K+er?) +[(a® + *)E - aLZ]? = R(r),

(24)

(aEsin’0 — L=)?

sin%6

— 6(0). (25)

aE=(a® + r*) — a’=*L
A,

N

SIS

~——
I

1

(aSEsin®0 — Z2L),  (26)

B Apsin®6
dr\ _ E(r* +d*)? — aLZ(r* + a?)
di) A,
sin%6 LZa
— Ea® — . 27
A, ( “ sin29> @7)

We introduce dimensionless quantities to rescale the
parameters:

- T . a 7 t i L
ryr = — e = — = —
b a M’ M? M’
~ K ~ ~ 0
sz, R0:R0M2, Q:M’
y = M2 (28)

Then the equations (24)—(27) can be rewritten as
dr\? % =2 ~2 | =2 ~F =12 B
o —A;:(K + €7*) + [(a* + F)E —a LZE]" = R(7),
Y
(29)
2 ~
<ﬁ> = Ay(K — ea*cos?0)
dy

(aEsin20 — LE)* = 0(9), (30)

sinZ0
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<d(p) _GEE(@ +7P) - @22

d}’ A;
1 -
- a=Esin?0 — Z2L), 31
Agsin29 (a=Esin ) (31)
d_? _E(?2+& )2—&ZE(?2+& )
d}’ - A;
sin%0 L=a
- Ea* — ) 32
Ag < “ sin29) ( )

IV. ANALYSIS OF THE GEODESIC
EQUATIONS

In this section, we will analyze the geodesic equations and
give alistof all possible orbits. First we will study the special
case of a static charged black hole (Reissner-Nordstrom-(A)
dS) and then we will give a full analysis of the general
rotating charged black hole solution (Kerr-Newman-(A)dS).

A. The static case

In this section, we investigate the possible orbit types in
the static case with the help of the analytical solutions
which are described in previous sections, parameter dia-
grams (see Fig. 1), and the effective potential (see Fig. 2).

In the static case a = 0, the motion is confined to a plane
and, therefore, the geodesic equations reduce to

ar\2 2M g% 1
Y (o (1-2249 g2
(d(p) L2< ( PR °r>

y (+L—f)) — R(r). (33)

. 2 Q2 . .
where we introduced ¢° = TR An effective potential
can be defined as

2m  ¢* 1 L?
Vet = <1 _—‘F?—EROVQ) <8+7>- (35)

The shape of an orbit depends on the energy E and the
angular momentum L of the test particle or light ray, as well
as the charge ¢ and the cosmological constant A. The mass
can be absorbed through a rescaling of the radial coordinate
and the parameters:

M? ~ 1

"= M’ 2’ 12

r
M ’
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FIG. 1. Parametric £ — E? diagrams of the 7 motion. For RO > 0, the polynomial R(7) has a single positive zero in region I, three
positive zeros in region II, and five positive zeros in region III. If ¢ = 0, then region III vanishes, implying that stable bound orbits for
light do not exist outside the horizons. If RO < 0, then there are two positive zeros in regions I, II and four positive zeros in region III.
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(a) Effective potential in the range 7 € [0, 250] (b) Closeup of figure (a)

FIG. 2. Effective potential (blue) with parameters € = 1, I~i’0 = % x 107, g = 0.75 and £ = 0.076. The horizons are depicted as
vertical dashed lines. Example energies of region I, II, and III (compare Fig. 4 and Table III) are given as red horizontal lines.

Thus, Eq. (33) can be written as 5. Terminating orbit (TO) with ranges
. (a) either 7 € [0, 0) (Terminating escape orbit—
dr? 5 6 2 5 Vx4 ~3 TEO)
— | = €eR LI+ ((E* — &)L + Ry)7* + (2eL)F N ) B o
do (b) or 7 € [0, r;] with r; > 7, (Terminating bound
—(1 +8£~2 72 27— 72 = R(7). 37 orbit—TBO).
( 7) 1 (%) (37) TOs only occur for g # 0; otherwise, the charge will
In the following, we give a list of the possible orbit types. provide a potential .barrier.prevegting the geodesic
Let 7_ be the inner horizon and 7, be the outer event horizon. from reaching the singularity at 7 = 0.
1. Escape orbit (EO) with range 7 € [r;, o) where These five regular types of geodesic motion correspond
ro> to different arrangements of the real and positive zeros of
2. Two-world escape orbit (TEO) with range [r;, o) R(r) dezﬁmng the borders of R(r)>0 or, equiva-
where 0 < r; < r_. lently, = > Ve ) .
3. Bound orbit (BO) with range 7€ [r.r,] with Equation (37) implies that R(7) > 0 is a necessary con-
i, Ty > Ty dition for the existence of a geodesic and, thus, that the
4. Many-world bound orbit (MBO) with range 7 €  Ppositive zeros of R(7) are the turning points of the orbits. If
[r1, 7] where 0 < ry <r_and r, > r,. for a given set of parameters R, g, &, EZ, £ the polynomial
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TABLE 1. Types of orbits in the spacetime of a static charged black hole for g # 0 and a positive cosmological constant Ro > 0.
The range of orbits is represented by thick lines. The dots show the turning points of the orbits. The positions of the horizons are marked
by vertical double lines. The single vertical line indicates 7 = 0. Terminating orbits exist in all three regions only if g = 0.

Zeros Region Range of 7 Orbit
1 I ——— TEO
3 I o—t—f—— MBO, EO
| 4 4 °
i * * o MBO, EO
5 111 I—Q—H—H—o—o—o—o— MBO, BO, EO

TABLE II.  Types of orbits in the spacetime of a static charged black hole for § # 0 and a negative cosmological constant R, < 0.
The range of the orbits is represented by thick lines. The dots show the turning points of the orbits. The positions of the horizons are
marked by vertical double lines. The single vertical line indicates 7 = 0. Terminating orbits exist in all three regions only if g = 0.

Zeros Region Range of 7 Orbit
2 L1 o o MBO
é 'y
I } # 4 MBO
4 111 F—o—1 o o . MBO, BO

R(7) has n positive zeros, then for varying E? and L this
number can only change if two zeros merge to one. Solving

R(F) =0, d’;(;;) = 0 for E? and L, for & = 1, yields
o (HF=2) 4 = Ry
- P(P-3F+2¢)
7 =37 +2g*
S (38)
(R + G* = 7)
and, for € = 0, yields
1 (2(1 +V9-87) . > 59
= — = - Ry |.
E*\(34/9-88)

In Fig. 1, the results of this analysis are shown for both test
particles (¢ = 1) and light rays (¢ = 0).

In the parametric £ — E*> diagrams, three regions of
geodesic motion with different numbers of zeros can be
identified (in the following r; < r;,; is assumed):

1. Region I:

(@) Ry > 0: R(¥) has a single positive real zero r,
and R(7) > 0 for 7 > r|. The only possible orbit
type is EO.

(b) Ry < 0: R(7) has two positive zeros ry, r, and
R(7) = 0for r; <7 < r,. The only possible orbit
type is MBO.

2. Region IL:

(a) Ry > 0: R(7) has three positive zeros r, r,, 3
with R(7) > 0 for r{ <7 < r, and r3 < 7. Pos-
sible orbit types are MBO and EO.

(b) Ry < 0: R(¥) has two positive zeros ry, r, and
R(7) > 0for r; <7 < r,. The only possible orbit
type is MBO.

3. Region III:

(a) Ry > 0: R(7) has five positive zeros ry, ry, 13, I's,
rs with R(7) >0 for ri <7<y, <7<
and rs < 7. Possible orbit types are MBO, BO,
and EO.

(b) Ry < 0: R(¥) has four positive zeros r, s, 13, 14
with R(7) >0 for ry <7 <ry and r; <7< ry.
Possible orbit types are MBO and BO.

Terminating orbits are possible in all three regions if the
black hole is uncharged g = 0. For light rays, only regions I
and II appear and, therefore, stable bound orbits do not exist

for e = 0. A summary of possible orbit types for I~20 > 0 and
INQO < 0 can be found in Tables I and I, respectively.

1.57
1
L o5 a
/
0-
2 3 4
E
-0.5"

FIG. 3. e=1, a=04, K=02, Ry =4 x 107%: Parametric
L — E? diagram for the function 0.6 possesses one zero in
region a and two zeros in region b. In the grey areas, geodesic
motion is not possible.
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2.5

1.5 IIla

Iva
Va

Iva
05 1 15 2'2 25 3 35
E

\

(© e=1,a=0.9, K =0.3,
Ro=4-10"5¢=0.2

FIG. 4. Combined L — E2 diagrams of the 7 motion (green lines) and # motion (blue lines). The dashed green lines show, where

INQ(? = 0) = 0. The polynomial R has no zero in region I, 2 negative zeros in region II, 1 negative and 1 positive zeros in region III, 3
positive and 1 negative zeros in region IV, 5 positive and 1 negative zeros in region V. Inside the grey areas the 6 equation does not allow

[Tt}

geodesic motion. In regions marked with the letter “a,” the orbits cross ¢ = 7, but not 7 = 0. Whereas in regions marked with the letter

“b,” ¥ = 0 can be crossed but § = z is never crossed.

For R, > 0, a plot of the effective potential introduced in
Eq. (35) with example energies corresponding to the
different regions is shown in Fig 2. Here the possible orbit
types can be identified.

B. The rotating case

In this section, we analyze the equations of motion in the
rotating case (Kerr-Newman-(A)dS spacetime) and inves-
tigate the possible orbit types.

1. Types of latitudinal motion

In this subsection and the next subsection, we use the
function ®(0) in Eq. (30) and the polynomial R(7) in
Eq. (29) to determine the possible orbits of light and test
particles.

First, we substitute v = cos?0 with 6 € [0,1] in the

function @(0):

O() = (1 + %a%) (K — a’v)

272 7 L=
— | a*E*(1 —v) —2L=aE . 40
(@p0 -0 —tzaz s =) w0

Geodesic motion is possible if @(6) > 0, then real values of
the coordinate 8 are obtained. This condition also implies

that K > 0 for all geodesics with R, > —5 or A>3
From the observational side A > —% is always true, since

the cosmological constant acquires a very small positive
value.

The number of zeros of ©(6), which are the turning
points of the latitudinal motion, only changes if a zero
crosses 0 or 1, or if a double zero occurs. v = 0 is a zero of

o if

O(v = 0) = K — (a*E* - 2LEGE + L*=2),  (41)

and, therefore,

(42)

To remove the pole of (:)(1) at v = 1, we consider

0'(v) = (1-0) (1 + %lev) (K — ed®v)
—(aE(1 —v) - LE), (44)

where @(v) = ;1-0'(v). Then double zeros fulfill the
conditions,

®'(v) =0 and =0, (45)

which yields
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0 5

(a) e=1,a=0.7 K =12, (b)
q

[T

closeup of figure (a)

10

p
() e=1,a=07 K=1, Ry=4-10"5,

q=0.7,L=05

14

1.2

FIG. 5.

(e) closeup of figure (d) )

1 2 3

e=1,a=09, K =0.3,
Rg=4-10"%¢=02L=1.45

Plots of the effective potential together with examples of energies for the different orbit types of Table III. The blue and green

curves represent the two branches of the effective potential. In the grey area, the red dashed lines correspond to energies. The red dots
mark the zeros of the polynomial R, which are the turning points of the orbits. In the grey area, no motion is possible since R < 0. In the

dashed area, the 6 equation does not allow geodesic motion (© < 0). The vertical black dashed lines show the position of the horizons.

(6E +/36E% + 31”<RO) (Ro@? + 12)

L= _
12Rya=

(40)

From the condition of » = 0 being a zero and the condition
of double zeros, we can plot parametric L — E2 diagrams;
see Fig. 3. These reveal two regions in which geodesic
motion is possible. The function © has a single zero vy in
region a; therefore, the geodesics will cross the equatorial
plane (K > (Ea — LZ)?). In region b, the function €]
has two zeros vy, v,, which corresponds to motion
above or below the equatorial plane (K < (Ea — LE)?).
If K= (Ea—LZ)?% the geodesics will reside in the
equatorial plane.

2. Types of radial motion

The zeros of the polynomial R are the turning points of
orbits of light and test particles, and therefore R determines
the possible types of orbits,

R(F) = —Au(eP + K) + (@@ +P)E—-aLZP?,  (47)

with
— (7252 R~0~ = 2
A; = (P +a°) 1—|—Er2 -2r+g¢q (48)

where we introduced

} o’

= 49
RNTETS) )

There are bound orbits, where test particles move back
and forth between two turning points, and escape orbits,
where the black hole is approached, but the test particles turn
around at a certain point to escape towards infinity.
Terminating orbits end in the singularity, if they reach
simultaneously 7 = 0 and § = 7, such that p> = 0. If a test
particle crosses the black hole horizons twice or even
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TABLE III.  Types of orbits in the Kerr-Newman-dS-spacetime (Ro > (). The range of the orbits is represented by thick lines. The dots
show the turning points of the orbits. The positions of the event horizon and the Cauchy horizon are marked by a vertical double line.
The cosmological horizon is not displayed here since it is not relevant for the orbits. The single vertical line indicates 7 = 0.

Type Zeros Region Range of 7 Orbit

A 0 Ib TrO

B 2 Ib —o o EO, CTEO

C 2 IMla,b o | — - EO, TEO

(ol . EO, TEO

Co — EO, TO/TEO

D 4 IVa o | — —o o EO, MBO, EO
D_ | + —o o EO, MBO, EO
D, o | — 4 . EO, MBO, EO
D, o 4 4 o EO, MBO, EO
D, o ! o o EO, TO/MBO, EO
Do+ -4 : + o EO, TO/MBO, EO
E 4 IVa o —o o EO, BO, TEO
E_ o o—eo EO, BO, TEO
E, o # o o ” ” EO, TO/BO, TEO
Ey— . o ° ¢ i EO, TO/BO, TEO
F 6 Va —o—|—o—H—H—o—o—o—o— EO, MBO, BO, EO

EO, MBO, BO, EO

F, — e % e — EO, MBO, BO, EO
G 6 Va — o oo o | o o EO, BO, MBO, EO
G_ o I o—eo # ” TS EO, BO, MBO, EO
Gy ° o o o - o EO, TO/BO, MBO, EO
Go— ¢ . + o o EO, TO/BO, MBO, EO
multiple times, it can enter another universe. These orbits are R(?) —0 and dR(F) —0 (50)
called two-world orbits or many-world orbits. Due to the dr '

ring singularity, it is possible that a geodesic crosses 7 = 0,
which is then called a transit orbit or crossover orbit [12].
Below we give a list of all possible orbits. Let 7, be the outer
event horizon and 7_ be the inner horizon of the black hole:
1. Transit orbit (TrO) with range 7 € (—o0, ).
2. Escape orbit (EO) with range 7€ [r,o0) with
ry > r,, or with range 7 € (—o0, r| with r; <O0.
3. Two-world escape orbit (TEO) with range [r|, o)
where 0 < r; < r_.
4. Crossover two-world escape orbit (CTEO) with
range [r;, o0) where r; < 0.
5. Bound orbit (BO) with range 7 € [ry, r,] with
(@) ry, rp>r,or
b)O0<r, rp<r_
6. Many-world bound orbit (MBO) with range 7 €
[r1,r,] where 0 < ry <r_and r, >r,.
7. Terminating orbit (TO) with ranges either 7 € [0, o)
or 7 € [0, ry] with
(@) ry > 7, or
b)0<r <7
The type of an orbit is determined by the number of real
zeros of the polynomial R. This number changes if a double
ZEro OCCurs:

Additionally, the distinction between positive (r) and
negative (r) zeros is interesting, since the geodesics can
cross 7 = 0. The number of positive and negative zeros
changes if R(7 = 0) = 0. Taking both these conditions into

account, we can plot parametric L — F? diagrams, which
show five regions with different numbers of zeros. In
region I, R has no zeros. In region II, there are two negative
zeros. A negative and a positive zero are possible in
region III. Region IV has three positive and a single
negative zero. Five positive zeros and a negative zero
appear in region V. In Fig. 4, examples of the parametric
L—E? diagrams of the 7 motion can be seen. We combined
them with the parametric diagrams of the -motion.
Regions I and 1II intersect only with region b so here
the orbits will not cross the equatorial plane. Regions IV
and V only intersect with region a, therefore the orbits will
cross the equatorial plane. Region III intersects both with
regions a and b. In regions I and II, the geodesics can cross
7 = 0, butin regions III, IV, and V, = 0 cannot be crossed.
We conclude that the only way for a geodesic to

reach the singularity (terminating orbit) is R(¥ = 0) =0
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and ©(0 = %) = 0. This is the case if K = (Ea — LZ)? and,
additionally, ¢ = 0. ~

We use the parametric L — E? diagrams and the effective
potential of the r-equation (see Fig. 5) to determine all
possible orbit types. Table III shows an overview. If null
geodesics (¢ = 0) are considered, region V vanishes from
the parametric L — E? diagrams, therefore orbits of type F
and G (see Table III) are not possible for light. This implies
that bound orbits outside the horizons (7 > 7,) are only
possible for particles but not for light. ~

The preceding analysis was done for R, > 0 which
implies a positive cosmological constant. Since the motion
of test particles and light in this spacetime is similar to the
Kerr-(A)dS spacetime, we refer to [12] for an analysis
concerning a negative cosmogical constant. In comparison
with the parametric diagrams of [12], it is obvious that the
overall behavior and the possible orbit types are the same;
still, there are some differences to the Kerr-(A)dS spacetime
caused by the parameter ¢. In the spacetime of a rotating
black hole, there are orbits that do not cross ¥ = 0 and also
do not cross the equatorial plane (6 = 7). This occurs in
region IIIb (see Fig. 4 and Table III), which is not present
for the Kerr-(A)dS case g = 0. In the Kerr-(A)dS space-
time, the green dashed line in Fig. 4 will coincide with the
blue lines from the @ parametric plot, so that region III is
not splitted into an a and a b part. Therefore, in the Kerr-(A)
dS case an orbit that crosses 7 = 0 will not cross & = 7 and
an orbit that crosses & = 5 will not cross 7 = 0.

A further difference to the Kerr case is that terminating
orbits do not exist for g # 0. Only orbits with K = (Ea —

l~,E)2 and simultaneously ¢ = 0 end in the singularity.

V. ANALYTICAL SOLUTION OF THE
GEODESIC EQUATIONS

In this section, we will present the analytical solutions of
the geodesic equations (29)—(32) in the Kerr-Newman-(A)
dS spacetime. We will treat each equation separately and
give the solutions in terms of the Weierstrass ¢, { and o
functions as well as the Kleinian ¢ function.

A. 6 motion

We start with the differential equation (30) describing the
6 motion

A Bzl
o O(0) = Ap(K — ea*cos*0)
4

35 (aEsin20 — LE)?, (51)
S

and substitute » = cos’0 to simplify the equation

<Z_’;>2 = 400 (v) = 40(1 - v) <1 * % @ )

x (K — ea?v) — 4v(GE(1 —v) — LE)2.  (52)

PHYSICAL REVIEW D 94, 024052 (2016)

1. Timelike geodesics
The differential equation (52) is of elliptic type, since
4v0'(v) is in general a polynomial of order four. Here we

consider the case e = 1. Assuming that e (v) has only simple
zeros, equation (52) can be solved in terms of the Weierstrass

elliptic p function. To get the solution we transform 41)(:)/(1))
into the Weierstrass form (4y3 — g,y — g3) with the constants
g, and g5. First, we apply the substitution v = &' yielding

©; = 48K — (Ea - LE)?]

where

1 -~ - -
+ 4£2 [52 <—s + 5 KRo+ 2E2> - (K+ 2ELEZ¢)}

1 ~~ 1 -
o L - )
+4Zj{a( 5 KR+ e~ E? = Rod gﬂ
1. 3
~4 . i
+§R0a e = ;:] a;é (54)

is a now a polynomial of order three. Second, we substitute
¢ = - (4y = %), which gives

dy\?
(d—) =4y’ — gy — g3, (55)

where the Weierstrass invariants are

1 /4
9 = 16 <§a§ - 4ala3>» (56)
1 /1 2
gz = 1_6 (g aja,as — ﬁa% - 610(1%) . (57)

The differential equation (55) represents an elliptic intregal
of the first kind, which can be solved by [9,61,62]

y(¥) = o(r = 70> 92- 93)- (58)

Finally, the solution of Eq. (30) is given by

as
6(y) = arccos <j: : 2 > 59
( ) \/4p(y —70.in> 92> g3) - ?2 ( )

where ygi, =70 + yf\/ﬁ and yo = 7505+ 13
depends only on the initial values y, and 6,. Since the 6
motion is symmetric with respect to the equatorial plane
6 = 3, the sign of the square root can be chosen so that §(y)

is either in (0,7) (positive sign) or in (5, 7) (negative sign).
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2. Null geodesics
The differential equation (52) for € =0 is already a
polynomial of degree three and, thus, with the standard
substitution v = 5~ (4y — %) where 400'(v) =33, b
transforms the problem to the form Eq. (55). The solution
is then given by

4 b
0(y) = arccos | £4/— 07 = Voin; 92.93) =5 | (60)
by 30,

where y4in,90, and g3 are as above with a; replaced
by bi'

B. r motion

The dynamics of r are described by the differential
equation (29):

DN R(5) = Ay(—eP® — & @ +P)E-aLzP
(5) =& = asfeP =By + @+ P)E- L=,

Here the solution procedure is more complicated because R
is, in general, a polynomial of order six. However, for
null geodesics, the order of the polynomial is reduced to
four. In the following, we will consider timelike and null
geodesics separately.

1. Null geodesics

Considering light, i.e. € =0, R is simplified to a
polynomial of degree four and therefore the differential
equation (29) is of elliptic type. Then we can solve it using
the method of section VA. By substituting first

F=¢&L+F,, where 7 is a zero of R, and then

E=p(4y=%), where b;=l5dR (7). Eq. (29)

acquires the form of Eq. (55). Again, this can be solved
with the help of the Weierstrass elliptic g function, so that
the result is

b -
3 b, + ry, (62)

7(y) =
4oy = V7ins 920 93) — %

S 00 d}" — b3 b_
where y7.in = 7o + YO N8 =g5,¥ =3 and yo = 4ro=rr) + 1%
depends only on the initial values y, and 7, and ¢,, g5 are
defined as in Eq. (57) with a; = b;.

2. Timelike geodesics

Considering particles, i.e., ¢ = 1, and assuming that R
has only simple zeros, the differential equation (29) is of the
hyperelliptic type. As presented in [12], this equation can
be solved in terms of derivatives of the Kleinian ¢ function.
To begin with, Eq. (29) is transformed into the standard

PHYSICAL REVIEW D 94, 024052 (2016)

form with the substitution 7 = +1 + 7; where 7 is a zero
of R. Then we get

du\? -
<u d_;/t> =R, (63)
where
S i 6—i) I
- , (1) dOIR _

A separation of variables leads to

7—70:/ udft, (65)
where uy = u(y,). Considering the solution of the integral
(65), we have to address two points. First, due to the two
branches of the square root, the integrand is not well
defined in the complex plane. Second, the solution u(y)

should not depend on the chosen path of integration [9]. Let
¢ be a closed integration path and

d
w= ¢ L (66)
¢ ku
then also
u udu
Y=v0—w= —, (67)
Uy Ru

should be true. Hence, the solution u(y) of our problem has
to fulfill

u(y) = u(y — ) (68)

for every @ # 0 obtained from Eq. (66). These two issues
can be solved if we consider Eq. (65) to be defined on the
Riemann surface y> = R, (x) of genus g = 2 and introduce
a basis of canonical holomorphic and meromorphic differ-
entials dz; and dr;, respectively,

d d
dz; = —)f s dz; = a ~x ) (69)
\/ Ry \/ Ry
2a,x* + 3asx® 2d
dr, — azx + 2ayux” + 3asx dx., dry = x“dx (70)

44/R, 44/R,
!

and real 2w;;, 27;; and imaginary 2w,

Qa)ij :% le', 2(0:] = é le‘, (71)

J J

21);; period matrices

024052-11



SAHEB SOROUSHFAR et al.

27]’] = f drl',

J

21 :?i dr;. (72)

J

Equation (65) is a hyperelliptic integral of the first kind and
can be solved by [12,14]

”(7) - T (J/G)’ (73)

where o; is the ith derivative of the Kleinian ¢ function,

o(z) = CeFO[K | 207" z;7), (74)
which is given by the Riemann @ function with character-
istic K:

T) — Z eiﬂm’(rm+21)' (75)

mez?*

A number of parameters enter here: the symmetric Rie-
mann matrix 7 = (o~ @'), the period-matrix (2w, 2e’), the
period-matrix of the second kind (2#,2#'), the matrix
k = n(2w)~!, and the vector of Riemann constants with
base point at infinity 2K, = (0,1)" + (1,1)"z. The con-
stant C can be given explicitly, see e.g. [63], but is not
important here. In Eq. (73), the argument y,, is an element
of the one-dimensional ¢ divisor: y, = (f(y — ¥7.in). ¥ —

Vrin)' V€sYo + f;;% +(7 —
7z)~! depends only on the initial values y, and 7,, and
the function f can be found from the vanishing condition

with V#in = and Uy =

o((f(x),x)") =0 [12], so it describes the € divisor. Then
the solution of the 7 equation is given by
- o
F(r) = F=(7,)- (76)
01

Here the sign depends on the sign that was chosen in the
substitution 7 = i% + 7. The functions ¢, and o, depend

on y,, o, n, T and also on the polynomial I~€u according to
Eqgs. (65)—(72), which contains all the parameter depend-
ence of the modified gravity solution. The solution of 7 is
the analytic solution of the equation of motion of a test
particle in the Kerr-Newman-(A)dS spacetime. This sol-
ution is valid in all regions of this spacetime.

C. @ motion

The ¢-equation (31) can be rewritten using the 7 and 6
equations, (29) and (30):

dp — GEZ(a% + ) — a*22L 5 G=Esin?0 — =21 ”

AVR Aysin?0,/©(0)

(77)

PHYSICAL REVIEW D 94, 024052 (2016)

Integrating this equation gives an r-dependent integral /,
and a 6-dependent integral I, which can be solved
separately:

FAaEZ(a® + ) — @221
=@ = / ( )~ dr
o

AVR

/9a =Esin%0 — =2L

%  Aysin?0,/©(0)

1. The O-dependent integral

do=1,—1, (78)

Let us first consider the 0-dependent integral,

0 (aE=sin®0 — Z2L
19:/ (aEEZsin“6 )d6 (79)
0o

Apsin264/0O(6)

which can be simplified by the substitution v = cos? 6,

v GEE(1 —v) - Z2L
I=7F / GEE(1 - v) a4, (80)
% A, (1 =0)y/400 ()

where the polynomial ®'(v) is given in Eq. (44) and
A, =1+ R° @*v. Assuming 40®'(v) has only simple zeros
and is a polynomial of order four, then I, is an elliptic
integral of the third kind. In this case, the solution to [ is
given by [12]

19 :w{(aEE—EZZ)(U—Do)

as
o(v—v;)

_24 (v —v;)

R R
B e 0= . .
x<a 12( E-apsE L)(5”+5,2)

L2, +5,-4)> } (81)

(C(v (v —0g) +log —|—2m’ki>

where the coefficients a; of the polynomial 40@'(v) are
given in subsection VA and

_2_i~2
P(Ul)—lz 48 Roaz = P(Uz)’
1
p(v3) = §+4a3 ©(vs). (82)

Also we have v = v(y) = 7 — 79.n» Where yy, is defined in
Eq. (58) and vy = v(yy). The different branches of the
logarithm are represented by the integers k;. The details of
the computation can be found in Ref. [12].
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2. The r-dependent integral

Next we will solve the 7-dependent integral

/= /? GEZ(a® + %) — a*22L 5

) AVR

(83)

Here we will distinguish between timelike and null geo-
desics as the equation simplifies in the latter case.
a. Null geodesics Considering light, i.e. € =0, the

polynomial R is of order four, and therefore I, is an
elliptic integral of the third kind and can be solved
analogously to Iy. We apply the same substitutions 7 =
é + 7y and £ =
case € = 0, then perform a partial fraction decomposition,
and finally substitute y = p(v). Then we get

4
b S /
|bs] " Z: 2 p(v -y

L

GEZ(G% +72) — a®=2L o
- ( 1 / dv, (84)
A o

r=rg

b—13(4y —%), as in subsection VB for the

where b5 is given in Eq. (57), and the y; are the four zeros of
Ayi). The constants C; arise from the partial fraction
decomposition and depend on the parameters of the test
particle and the metric. The integrand (p(v) —y;)~' has
simple poles v;;, v;, where p(v;1) = y; = pP(v;).

I, can be integrated according to Ref. [12], and the
solution is

'. [é(vtj)(v UO)+10g6(U l])

a?=2r
<v—uO>},

(85)

AEE(a +73) -
A~ -

r=rg

with v =0(y) =y — 7z and vy = v(yy), where y;;, is
given in Eq. (62).

b. Timelike geodesics. Considering particles, i.e. e = 1,
and assuming that the polynomial R has only simple zeros,
I, is a hyperelliptic integral of the third kind.

The first step in the solution procedure is to transform R
to the standard form by the substitution 7 = +1/u + 7},
where 7y is a zero of R (see section V B). Next we apply a
partial fraction decomposition to the integrand, so that the
solution method of ref. [12] can be used. The solution
of I, is

PHYSICAL REVIEW D 94, 024052 (2016)

1= €= o) + Golf @) = S(o0)
T
LGy 1 o) 1, o(WHy)
Ry e 2

-G - flao-on)( [" )]} 60

i

with @ = w(y) =y —y;in and @y = o(y,). Again the
constants C; arise from the partial fraction decomposition.
I~?u is defined in Eq. (63), and the u; are the four zeros of
Ajeii/usry g = (7 —Tz)7'. The functions W=+ are

given by W (o) = (f(w), w)" — 2 ﬁf dz with u = (u; +
\/IN'(’MI,) (compare [12]).

D. ¢ motion

The 7 equation (32) can be rewritten using the 7 and 6
equations, (29) and (31),

E(P+a)?-aLlZ(P +a?) dr
A; \/i_e

=2 Z,E~
S Y 0
0 sin 6(0)

di =

and has the same structure as the equation for the ¢ motion.
Integrating the 7 equation yields

The solutions can be found in the same way as in
section V C. For the #-dependent part, we have [12]

(89)

where a, and a3 are given in Eq. (54), p(v) =
B +1a*Roay = p(vy), and v =0(y) =2y —yg; With
the 1n1t1a1 value vy = 0v(yy).

Considering light, i.e. ¢ =0, the solution for the 7-
dependent part is very simple and given by [12]
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1.5 1

(a) Bound orbit with parameters ¢ = 1, Ry = % -10795, (b) Many-world bound orbit with parameters ¢ = 1,
§=0.75, £L=10.076, E = +/0.918. Ro=%-107%,§=10.995, L =0.8, E=0.2. The

particle is reflected at the potential barrier arising from

the charge.

FIG. 6. Two examples of particle orbits in the Reissner-Nordstrom-(A)dS spacetime. The blue curves depict the orbits and the black
dashed circle indicate the positions of the horizons.

-3 -2

(a) Escape orbit with parameters ¢ = 0, Ry = % -107%, (b)  Two-world escape orbit with parameters € = 0,
G=0.75, £L=0.1, E = /0.46. Ro=1.10"%G=095 £ =5 E=038. Light is
reflected at the potential barrier arising from the

charge.

FIG. 7. Two examples of light orbits in the Reissner-Nordstrom-(A)dS spacetime. The blue curves depict the orbits and the black
dashed circle indicate the positions of the horizons.
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(a) Bound orbit with parameters e =1, a = 0.7, K = 2, (b) Escape orbit with parameters e =0, a = 0.7, K = 2,
q=0.7, Ry=4-10"5 L =109, E=0.84. q=0.7, Ryp=4-10"% L =19, E=0.75.

FIG. 8. Two examples of possible orbits in the Kerr-Newman-(A)dS spacetime. The blue lines show the path of the orbits and the
sphere represents the event horizon.

- b [ G In the case of timelike geodesics, i.e. ¢ =1, the
I, = b—3 {Z Z o (0:) [£(vij) (v = vg) +logo(v —v;)) solution of the now hyperelliptic 7-dependent part is given
: ij b
y [12]

—loga(vy — vj)]

GLE(R +a*) — E(R + &) . )

B £ A . (v - Do)}, (90) Ir= \/_|u0| {Cl (@ = @) + Co(f(@) = f(wy))
5 [ )
where b5 is given in Eq. (62), the C; arise from the partial = (W‘(co)) 2 " o(W(w))

fraction decomposition, and ©(v;;) = y; = p(v;2), where -
y; are the four zeros of Ayg;. The variable v = v(y) = — (f(@) = flwp). 0 — wy) </ ! d?)] } (91)

Y — ¥7.in has the initial value vy = v(yy). .

(a) Transit orbit with parameters ¢ =0, a = 0.7, K = 2, (b) Two-world escape orbit with parameters € = 0, a = 0.7,
¢=05, Ro=4-105, L = 0.5, E = 3.75. K=1,¢g=07 Ry=4-10"% L =05, E = 1.5.

FIG. 9. Two examples of possible orbits in the Kerr-Newman-(A)dS spacetime. The blue lines show the path of the orbits and the
spheres represent the inner and outer horizon.
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(a) Bound orbit behind the inner horizon with parameters

e=1,a=09, K=03,¢g=02 Ry=4-1075,
L =1.45, E=1.02.

PHYSICAL REVIEW D 94, 024052 (2016)

/% i/ Z.

e
y /////Ilif\

g

ey,

any-wor ound orbit with parameters € =0,
(b)) M 1d bound orbit with 0
a=07 K=1,¢q=0.7 Ry=4-10"5 L = 0.5,

E = 0.05.

FIG. 10. Two examples of possible orbits in the Kerr-Newman-(A)dS spacetime. The blue lines show the path of the orbits and the

spheres represent the inner and outer horizon.

For the notation, see Eq. (86). The constants 6‘0, 6‘1, 6‘2,,»
result from the partial fraction decomposition.

VI. THE ORBITS

The analytical solutions can be used to plot the orbits of
test particles and light rays. We present example of the
orbits around the static charged (A)dS black hole (Reissner-
Nordstrom-(A)dS) and the rotating charged (A)dS black
hole (Kerr-Newman-(A)dS).

A. The static case

Some examples of timelike and null geodesics in the
static case can be found in Figs. 6 and 7. In Fig. 6, two
bound orbits of test particles are shown: a bound orbit
outside the horizons [Fig. 6(a)] and a many-world bound
orbit [Fig. 6(b)]. On the many-world bound orbit, both
horizons are crossed several times and each time the test
particles emerge into another universe. Note that the test
particle is reflected at the potential barrier behind the
horizons arising from the charge.

An escape orbit and a two-world escape orbit are
depicted in Figs. 7(a) and 7(b), respectively. The two-
world escape orbit crosses both horizons twice and escapes
to another universe. Also the reflection at the potential
barrier is visible.

B. The rotating case

Here we show some orbits in the Kerr-Newman-(A)dS
spacetime. Figure 8, shows two example plots of a bound
orbit for particles and an escape orbit for light. A transit

orbit crossing r = 0 can be seen in Fig. 9(a). A two-world
escape orbit which crosses both horizons twice and escapes
to another universe is depicted in 9(b). In Fig. 10(a), a
bound orbit hidden behind the inner horizon is shown.
Figure 10(b), shows a many-world bound orbit, where both
horizons are crossed several times.

VII. CONCLUSIONS

In this paper, we discussed the motion of test particles and
light rays in the spacetime of the static and rotating charged
black hole (Kerr-Newman-(A)dS spacetime). After reviewing
the spacetime and presenting the corresponding equations of
motion, we classified the possible types of geodesic motion
by an analysis of the zeros of the polynomials underlying the 8
and r motion. The geodesic equations were solved in terms of
Weierstrass elliptic functions and derivatives of Kleinian o
functions. Using effective potential techniques and parametric
diagrams, the possible types of orbits were derived. Finally, a
number of orbits were illustrated.

The techniques employed in this paper present a useful
tool to calculate the exact orbits, and the results obtained
should prove valuable in order to analyze their properties,
including observables like the periastron shift of bound
orbits, the light deflection of flyby orbits, the deflection
angle, and the Lense-Thirring effect. For the calculation of
these observables, analogous formulas to those given in
[9,64-68] may be used.

The analytical solutions of the equations of motion are
also useful in the context of AdS/CFT, since geodesics
in an AdS spacetime can be related to CFT propagators (see

e.g. [69]).
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