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We perform a detailed study of the geodesic equations in the spacetime of the static and rotating charged
black hole corresponding to the Kerr-Newman-(A)dS spacetime. We derive the equations of motion for test
particles and light rays and present their solutions in terms of the Weierstrass ℘, ζ, and σ functions as well as
the Kleinian σ function. With the help of parametric diagrams and effective potentials, we analyze the
geodesic motion and classify the possible orbit types. This spacetime is also a solution of fðRÞ gravity with
a constant curvature scalar.
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I. INTRODUCTION

A large body of observational evidence has been
gathered in support of an accelerated expansion of the
Universe at the present time. This includes, in particular,
measurements of the luminosity distance of type Ia super-
novae [1], the anisotropy of the cosmic microwave back-
ground [2,3], weak lensing [4], baryon acoustic oscillations
[5], and the large scale structure of the Universe [6].
Explaining the current accelerated expansion of the

Universe is one of the most challenging problems of
modern cosmology. In the current cosmological standard
model, the ΛCDM model, a small positive cosmological
constant is included in the Einstein field equations to model
this acceleration. It is, therefore, clearly of considerable
interest to study the influence of a cosmological constant on
further solutions of the Einstein equations, especially black
hole spacetimes.
For a deeper understanding of the gravitational field of

massive objects and in order to accurately predict obser-
vational effects (such as light deflection, gravitational time
delay, perihelion shift and Lense-Thirring effect), it is
mandatory to have very good knowledge of the motion
of test particles and light rays in the spacetimes of interest.
But only analytical methods allow for arbitrarily high
accuracy of the prediction of this motion and the associated
observables.
In the Schwarzschild spacetime, the equations of

motion of test particles and light rays were solved
analytically in terms of elliptic functions by Hagihara
in 1931 [7]. The geodesic equations in the Reissner-
Nordström, Kerr, and Kerr-Newman spacetimes have the
same mathematical structure [8] and can be solved
analogously. This analytical method was recently further
advanced and applied to the hyperelliptical case,
where the analytical solution of the equations of motion

in the four-dimensional Schwarzschild-(A)dS, Reissner-
Nordström-(A)dS, and Kerr-(A)dS spacetimes was
presented [9–14].
These mathematical tools were also applied to the

geodesic motion in Taub-NUT and wormhole spacetimes
[15,16], and to higher-dimensional spacetimes, including
static black hole spacetimes and Myers-Perry spacetimes
[10,17–19], while in five-dimensional black ring space-
times, the equations of motion could be solved analytically
in special cases [20,21]. Moreover, the motion of test
particles was studied in various black string spacetimes
including field theoretical cosmic string spacetimes and
black holes pierced by a black string [22–29]. In addition,
the geodesic equations were solved analytically in a static
black hole spacetime of fðRÞ gravity [30], for Hořava-
Lifshitz black holes [31], and for BTZ and GMGHS black
holes [32,33].
On the other hand, the large body of current cosmo-

logical data could also be taken to indicate that general
relativity itself should be extended. The latter would also be
supported by the necessity for dark matter as revealed from
astrophysical and cosmological observations (see e.g. [34])
and moreover by theoretical arguments at the ultraviolet
scale (e.g., quantum gravity, initial singularities).
Consequently, numerous theoretical attempts to model

the evolution of the Universe are based on the modification
of gravity (see e.g. the reviews [35–39]). Popular sugges-
tions to modify gravity include theories with higher powers
of the Riemann and Ricci tensors as well as the curvature
scalar R. Lovelock theory [40] and fðRÞ gravity [35,41,42]
are such examples, where the Einstein-Hilbert action is
generalized accordingly.
A change of the action has influence on the dynamics of

the Universe, but it may also affect the dynamics at the
galactic or solar system scales. Clearly, any modifications
of the action must retain the well-tested sector of general
relativity, like its description of the solar system. However,
modified theories may yield different answers from general*rsk@guilan.ac.ir
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relativity in the strong field regime. It is, therefore, essential
to inquire about the existence of black holes and about their
properties in modified theories of gravity (see e.g. [43]).
In general, the study of black holes in these theories may
reveal interesting features not present in general relativity.
Focusing on black holes in fðRÞ theories [44–54], we note

that a particular class of solutions is obtained when the
curvature scalar is constant, R ¼ R0. Taking the trace of
the field equations then specifies this constant in terms of the
function fðRÞ and its derivative at R0. A comparison with
general relativity and its black hole solutions reveals, that the
finite curvature scalar acts basically like a cosmological
constant. Invacuum, therefore, theSchwarzschild-(A)dS and
Kerr-(A)dS solutions are recovered, when certain rescalings
are performed. When adding charge to the solutions by
including an electromagnetic field, the Reissner-Nordström-
(A)dS and the Kerr-Newman-(A)dS solutions can be recov-
ered after certain rescalings because the trace of the energy
momentum tensor vanishes.
In this paper, we study the geodesic motion in the

spacetime of the static and rotating charged black hole
(Kerr-Newman-(A)dS spacetime). Since after certain rescal-
ings the Kerr-Newman-(A)dS black hole of general relativity
also describes a rotating charged black hole in fðRÞ gravity,
the current analysis can also be applied to this black hole
solution in fðRÞ gravity. Let us mention, however, that the
stability of this fðRÞ black hole can only be established after
the function fðRÞ is specified.
We here analyze the possible orbit types using effective

potential techniques and parametric diagrams. Furthermore,
we present the analytical solutions of the equations ofmotion
for test particles and light. The equations of motion are of the
elliptic and hyperelliptic type, and the solutions are given in
terms of the Weierstrass ℘, ζ, and σ functions as well as the
Kleinian σ functions. Complete integrability of the geodesic
equations is guaranteed by the presence of four integrals of
motion of the Kerr-Newman-(A)dS spacetime, with the
fourth one being the Carter constant.
Similar analyses of geodesic motion and solutions of the

equations of motion were presented in the Kerr-(A)dS
spacetime [12] and in the Kerr-Newman spacetime [55], but
in the Kerr-Newman-(A)dS spacetime the geodesic motion
has not been analyzed analytically before in great detail,
although some aspects were studied in [56,57]. The
analytical solution of the geodesic equation of light and
a study of the gravitational lensing and frame dragging of
light were presented in [58]. However, an analysis of all
possible orbits for particles and light was not presented, and
the full set of analytic solutions to the equations of motions
were not found.
Our paper is organized as follows: In Sec. II, we give a

brief review of the field equations and the metric of the
rotating black hole in fðRÞ gravity and its connection to
general relativity. In Sec. III, we present the equations of
motion in the Kerr-Newman-(A)dS spacetime. We analyze

the geodesic motion in Sec. IVand give a list of all possible
orbit types. The analysis is given separately for the static
case (Reissner-Nordström-(A)dS) and the rotating case
(Kerr-Newman-(A)dS). In Sec. V, we present the full set
of analytical solutions of the geodesic equations in the
general rotating case of the Kerr-Newman-(A)dS black
hole. Some example orbits in the static and the rotating case
are shown in Sec. VI. We conclude in Sec. VII.

II. FIELD EQUATIONS IN f ðRÞ MODIFIED
GRAVITY AND RESCALINGS

In this section, we give a brief review of the field
equations and the metric of the rotating black hole in fðRÞ,
which represents the Kerr-Newman-(A)dS spacetime after
certain rescalings. In four dimensions, the action of fðRÞ
gravity with a Maxwell field is given by

S ¼ Sg þ SM; ð1Þ

where Sg and SM are the gravitational and the electromag-
netic actions,

Sg ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ fðRÞÞ; ð2Þ

SM ¼ −1
16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½FμνFμν�; ð3Þ

where G is the gravitational constant, which we will set to
one, g is the determinant of the metric, R is the curvature
scalar, and Rþ fðRÞ is the function defining the modified
gravity theory under consideration. From the above action,
the Maxwell equations take the form

∇μFμν ¼ 0; ð4Þ

while the field equations in the metric formalism are

Rμνð1þ f0ðRÞÞ − 1

2
ðRþ fðRÞÞgμν

þ ðgμν∇2 −∇μ∇νÞf0ðRÞ ¼ 2Tμν; ð5Þ

where Rμν is the Ricci tensor,∇ denotes the usual covariant
derivative, and the stress-energy tensor of the electromag-
netic field is given by

Tμν ¼ FμρF
ρ
ν −

gμν
4

FρσFρσ ð6Þ

and has vanishing trace

Tμ
μ ¼ 0: ð7Þ

Taking the trace of Eq. (5) under the assumption that the
curvature scalar is constant, R ¼ R0 leads to
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R0ð1þ f0ðR0ÞÞ − 2ðR0 þ fðR0ÞÞ ¼ 0: ð8Þ

This is the same equation as in the vacuum case because the
matter field has vanishing trace, Eq. (7), and it determines
the constant value of the curvature scalar:

R0 ¼
2fðR0Þ

f0ðR0Þ − 1
: ð9Þ

Using this relation in Eq. (5) gives the field equations

Rμν −
1

2

fðR0Þ
f0ðR0Þ − 1

gμν ¼
2

1þ f0ðR0Þ
Tμν: ð10Þ

Comparison with the Einstein equations in the presence of a
cosmological constant Λ then indicates an equivalence of
the two sets of equations for R0 ¼ 4Λ when we further
rescale the left-hand side of the equations adequately.
Consequently, up to rescalings, the Kerr-Newman-(A)dS

solution of general relativity is also a solution of the field
equations in fðRÞ gravity [50–52]. Thus, the stationary
black hole solution can be obtained in Boyer-Lindquist-like
coordinates ðt; r; θ;φÞ as follows [50],

ds2 ¼ −
Δr

ρ2

�
dt −

asin2θdφ
Ξ

�
2

þ ρ2

Δr
dr2 þ ρ2

Δθ
dθ2

þ Δθsin2θ
ρ2

�
adt −

r2 þ a2

Ξ
dφ

�
2

; ð11Þ

with

Δr ¼ ðr2 þ a2Þ
�
1 −

R0

12
r2
�
− 2Mrþ Q2

ð1þ f0ðR0ÞÞ
;

ð12Þ

Ξ ¼ 1þ R0

12
a2; ρ2 ¼ r2 þ a2cos2θ;

Δθ ¼ 1þ R0

12
a2cos2θ; ð13Þ

where Q is the electric charge, a is the angular momentum
per mass of the black hole, and R0 enters like a cosmo-
logical constant (R0 ¼ 4Λ), yielding a nonasymptotically
flat de Sitter or anti–de Sitter spacetime, when R0 is finite.
Note that the electric charge enters with a scaling factor in
the metric. As in the Kerr spacetime, there is a ringlike
singularity defined by ρ2 ¼ 0, and the horizons are given
by Δr ¼ 0.

III. THE GEODESIC EQUATIONS

In this section, we derive the equations of motion for a
rotating charged black hole Eq. (11), using the Hamilton-
Jacobi formalism, and later introduce effective potentials
for the r and θ motion.

The Hamilton-Jacobi equation,

∂S
∂τ þ

1

2
gij

∂S
∂xi

∂S
∂xj ¼ 0; ð14Þ

can be solved with an ansatz for the action

S ¼ 1

2
ετ − Etþ Lzϕþ SθðθÞ þ SrðrÞ: ð15Þ

The constants of motion are the energy E and the angular
momentum L which are given by the generalized momenta
Pt and Pϕ:

Pt ¼ gtt_tþ gtφ _φ ¼ −E; Pϕ ¼ gφφ _φþ gtφ_t ¼ L: ð16Þ

Using Eqs. (14)–(16), we get

Δθ

�∂S
∂θ
�

2

þ εa2cos2θ −
2aELΞ − E2a2sin2θ

Δθ
þ L2Ξ2

Δθsin2θ

¼ −Δr

�∂S
∂r
�

2

− εr2 þ ða2 þ r2Þ2E2 þ a2L2Ξ2 − 2aELΞðr2 þ a2Þ
Δr

;

ð17Þ

where each side depends on r or θ only. With the separation
ansatz Eq. (15) and with the help of the Carter constant
[59], we derive the equations of motion:

ρ4
�
dr
dτ

�
2

¼− ΔrðK þ εr2Þ þ ½ða2 þ r2ÞE − aLΞ�2 ¼RðrÞ;

ð18Þ

ρ4
�
dθ
dτ

�
2

¼ ΔθðK − εa2 cos2 θÞ

−
1

sin2 θ
ðaE sin2 θ − LΞÞ2 ¼ ΘðθÞ; ð19Þ

ρ2
�
dφ
dτ

�
¼ aEΞða2 þ r2Þ − a2Ξ2L

Δr

−
1

Δθsin2θ
ðaΞEsin2θ − Ξ2LÞ; ð20Þ

ρ2
�
dt
dτ

�
¼ Eðr2 þ a2Þ2 − aLΞðr2 þ a2Þ

Δr

−
sin2θ
Δθ

�
Ea2 −

LΞa
sin2θ

�
: ð21Þ

In the following, we will explicitly solve these equations.
Equation (18) suggests the introduction of an effective
potentialVeff;r such thatVeff;r ¼ E corresponds to ðdrdτÞ2 ¼ 0,
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Veff;r ¼
LΞa�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔrðK þ εr2Þ

p
a2 þ r2

; ð22Þ

where ðdrdτÞ2 ≥ 0 for E ≤ V−
eff;r and E ≥ Vþ

eff;r. In the same
way, an effective potential corresponding to Eq. (19) can be
introduced,

Veff;θ ¼
LΞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δθsin2θðK − εa2cos2θÞ

p
asin2θ

; ð23Þ

but here ðdθdτÞ2 ≥ 0 for V−
eff;θ ≤ E ≤ Vþ

eff;θ. Introducing the
Mino time λ [60] connected to the proper time τ by dτ

dλ ¼ ρ2,
the equations of motion read

�
dr
dλ

�
2

¼ −ΔrðK þ εr2Þ þ ½ða2 þ r2ÞE − aLΞ�2 ¼ RðrÞ;

ð24Þ
�
dθ
dλ

�
2

¼ ΔθðK − εa2cos2θÞ − 1

sin2θ
ðaEsin2θ − LΞÞ2

¼ ΘðθÞ; ð25Þ
�
dφ
dλ

�
¼ aEΞða2 þ r2Þ − a2Ξ2L

Δr

−
1

Δθsin2θ
ðaΞEsin2θ − Ξ2LÞ; ð26Þ

�
dt
dλ

�
¼ Eðr2 þ a2Þ2 − aLΞðr2 þ a2Þ

Δr

−
sin2θ
Δθ

�
Ea2 −

LΞa
sin2θ

�
: ð27Þ

We introduce dimensionless quantities to rescale the
parameters:

~r ¼ r
M

; ~a ¼ a
M

; ~t ¼ t
M

; ~L ¼ L
M

;

~K ¼ K
M2

; ~R0 ¼ R0M2; ~Q ¼ Q
M

;

γ ¼ Mλ: ð28Þ
Then the equations (24)–(27) can be rewritten as�
d~r
dγ

�
2

¼ −Δ~rð ~K þ ε~r2Þ þ ½ð ~a2 þ ~r2ÞE − ~a ~LΞ�2 ¼ ~Rð~rÞ;

ð29Þ
�
dθ
dγ

�
2

¼ Δθð ~K − ε ~a2cos2θÞ

−
1

sin2θ
ð ~aEsin2θ − ~LΞÞ2 ¼ ~ΘðθÞ; ð30Þ

�
dφ
dγ

�
¼ ~aEΞð ~a2 þ ~r2Þ − ~a2Ξ2 ~L

Δ~r

−
1

Δθsin2θ
ð ~aΞEsin2θ − Ξ2 ~LÞ; ð31Þ

�
d~t
dγ

�
¼ Eð~r2 þ ~a2Þ2 − ~a ~LΞð~r2 þ ~a2Þ

Δ~r

−
sin2θ
Δθ

�
E ~a2 −

~LΞ ~a
sin2θ

�
: ð32Þ

IV. ANALYSIS OF THE GEODESIC
EQUATIONS

In this section,wewill analyze the geodesic equations and
give a list of all possible orbits. First wewill study the special
case of a static charged black hole (Reissner-Nordström-(A)
dS) and then we will give a full analysis of the general
rotating charged black hole solution (Kerr-Newman-(A)dS).

A. The static case

In this section, we investigate the possible orbit types in
the static case with the help of the analytical solutions
which are described in previous sections, parameter dia-
grams (see Fig. 1), and the effective potential (see Fig. 2).
In the static case a ¼ 0, the motion is confined to a plane

and, therefore, the geodesic equations reduce to�
dr
dφ

�
2

¼ r4

L2

�
E2 −

�
1 −

2M
r

þ q2

r2
−

1

12
R0r2

�

×

�
εþ L2

r2

��
≕ RðrÞ; ð33Þ

�
dr
dt

�
2

¼ 1

E2

�
1 −

2M
r

þ q2

r2
−

1

12
R0r2

�
2

×

�
E2 −

�
1 −

2M
r

þ q2

r2
−

1

12
R0r2

��
εþ L2

r2

��
;

ð34Þ

where we introduced q2 ¼ Q2

ð1þf0ðRoÞÞ. An effective potential

can be defined as

Veff ¼
�
1 −

2m
r

þ q2

r2
−

1

12
R0r2

��
εþ L2

r2

�
: ð35Þ

The shape of an orbit depends on the energy E and the
angular momentum L of the test particle or light ray, as well
as the charge q and the cosmological constant Λ. The mass
can be absorbed through a rescaling of the radial coordinate
and the parameters:

~r ¼ r
M

; ~q ¼ q
M

; L ¼ M2

L2
; ~R0 ¼

1

12
R0M2: ð36Þ
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Thus, Eq. (33) can be written as�
d~r
dφ

�
2

¼ ε ~R0L~r6 þ ððE2 − εÞLþ ~R0Þ~r4 þ ð2εLÞ~r3

− ð1þ εL ~q2Þ~r2 þ 2~r − ~q2 ¼ Rð~rÞ: ð37Þ
In the following, we give a list of the possible orbit types.

Let ~r− be the inner horizon and ~rþ be the outer event horizon.
1. Escape orbit (EO) with range ~r ∈ ½r1;∞Þ where

r1 > ~rþ.
2. Two-world escape orbit (TEO) with range ½r1;∞Þ

where 0 < r1 < r−.
3. Bound orbit (BO) with range ~r ∈ ½r1; r2� with

r1, r2 > rþ.
4. Many-world bound orbit (MBO) with range ~r ∈

½r1; r2� where 0 < r1 ≤ r− and r2 ≥ rþ.

5. Terminating orbit (TO) with ranges
(a) either ~r ∈ ½0;∞Þ (Terminating escape orbit—

TEO)
(b) or ~r ∈ ½0; r1� with r1 ≥ ~rþ (Terminating bound

orbit—TBO).
TOs only occur for q ≠ 0; otherwise, the charge will
provide a potential barrier preventing the geodesic
from reaching the singularity at ~r ¼ 0.

These five regular types of geodesic motion correspond
to different arrangements of the real and positive zeros of
RðrÞ defining the borders of RðrÞ ≥ 0 or, equiva-
lently, E2 ≥ Veff .
Equation (37) implies that Rð~rÞ ≥ 0 is a necessary con-

dition for the existence of a geodesic and, thus, that the
positive zeros of Rð~rÞ are the turning points of the orbits. If
for a given set of parameters ~R0, ~q, ε, E2, L the polynomial

(a) (b)

FIG. 2. Effective potential (blue) with parameters ε ¼ 1, ~R0 ¼ 1
3
× 10−5, ~q ¼ 0.75 and L ¼ 0.076. The horizons are depicted as

vertical dashed lines. Example energies of region I, II, and III (compare Fig. 4 and Table III) are given as red horizontal lines.

(a) (b)

FIG. 1. Parametric L − E2 diagrams of the ~r motion. For ~R0 > 0, the polynomial Rð~rÞ has a single positive zero in region I, three
positive zeros in region II, and five positive zeros in region III. If ε ¼ 0, then region III vanishes, implying that stable bound orbits for
light do not exist outside the horizons. If ~R0 < 0, then there are two positive zeros in regions I, II and four positive zeros in region III.
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Rð~rÞ has n positive zeros, then for varying E2 and L this
number can only change if two zeros merge to one. Solving
Rð~rÞ ¼ 0, dRð~rÞd~r ¼ 0 for E2 and L, for ε ¼ 1, yields

E2 ¼ ð~rð~r − 2Þ þ ~q2 − ~R0 ~r4Þ2
~r2ð~r2 − 3~rþ 2~q2Þ ;

L ¼ −
~r2 − 3~rþ 2~q2

~r2ð ~R0 ~r4 þ ~q2 − ~rÞ ð38Þ

and, for ε ¼ 0, yields

L ¼ 1

E2

�
2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8~q2

p
Þ

ð3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8~q2

p
Þ3

− ~R0

�
: ð39Þ

In Fig. 1, the results of this analysis are shown for both test
particles (ε ¼ 1) and light rays (ε ¼ 0).
In the parametric L − E2 diagrams, three regions of

geodesic motion with different numbers of zeros can be
identified (in the following ri < riþ1 is assumed):

1. Region I:
(a) ~R0 > 0: Rð~rÞ has a single positive real zero r1

and Rð~rÞ ≥ 0 for ~r ≥ r1. The only possible orbit
type is EO.

(b) ~R0 < 0: Rð~rÞ has two positive zeros r1, r2 and
Rð~rÞ ≥ 0 for r1 ≤ ~r ≤ r2. The only possible orbit
type is MBO.

2. Region II:
(a) ~R0 > 0: Rð~rÞ has three positive zeros r1, r2, r3

with Rð~rÞ ≥ 0 for r1 ≤ ~r ≤ r2 and r3 ≤ ~r. Pos-
sible orbit types are MBO and EO.

(b) ~R0 < 0: Rð~rÞ has two positive zeros r1, r2 and
Rð~rÞ ≥ 0 for r1 ≤ ~r ≤ r2. The only possible orbit
type is MBO.

3. Region III:
(a) ~R0 > 0: Rð~rÞ has five positive zeros r1, r2, r3, r4,

r5 with Rð~rÞ ≥ 0 for r1 ≤ ~r ≤ r2, r3 ≤ ~r ≤ r4
and r5 ≤ ~r. Possible orbit types are MBO, BO,
and EO.

(b) ~R0 < 0: Rð~rÞ has four positive zeros r1, r2, r3, r4
with Rð~rÞ ≥ 0 for r1 ≤ ~r ≤ r2 and r3 ≤ ~r ≤ r4.
Possible orbit types are MBO and BO.

Terminating orbits are possible in all three regions if the
black hole is uncharged ~q ¼ 0. For light rays, only regions I
and II appear and, therefore, stable bound orbits do not exist
for ε ¼ 0. A summary of possible orbit types for ~R0 > 0 and
~R0 < 0 can be found in Tables I and II, respectively.

TABLE I. Types of orbits in the spacetime of a static charged black hole for ~q ≠ 0 and a positive cosmological constant ~R0 > 0.
The range of orbits is represented by thick lines. The dots show the turning points of the orbits. The positions of the horizons are marked
by vertical double lines. The single vertical line indicates ~r ¼ 0. Terminating orbits exist in all three regions only if ~q ¼ 0.

Zeros Region Range of ~r Orbit

1 I TEO

3 II MBO, EO

MBO, EO

5 III MBO, BO, EO

TABLE II. Types of orbits in the spacetime of a static charged black hole for ~q ≠ 0 and a negative cosmological constant ~R0 < 0.
The range of the orbits is represented by thick lines. The dots show the turning points of the orbits. The positions of the horizons are
marked by vertical double lines. The single vertical line indicates ~r ¼ 0. Terminating orbits exist in all three regions only if ~q ¼ 0.

Zeros Region Range of ~r Orbit

2 I, II MBO

II MBO

4 III MBO, BO

FIG. 3. ε ¼ 1, ~a ¼ 0.4, ~K ¼ 0.2, ~R0 ¼ 4 × 10−5: Parametric
~L − E2 diagram for the function ~Θ. ~Θ possesses one zero in
region a and two zeros in region b. In the grey areas, geodesic
motion is not possible.
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For ~R0 > 0, a plot of the effective potential introduced in
Eq. (35) with example energies corresponding to the
different regions is shown in Fig 2. Here the possible orbit
types can be identified.

B. The rotating case

In this section, we analyze the equations of motion in the
rotating case (Kerr-Newman-(A)dS spacetime) and inves-
tigate the possible orbit types.

1. Types of latitudinal motion

In this subsection and the next subsection, we use the
function ~ΘðθÞ in Eq. (30) and the polynomial ~Rð~rÞ in
Eq. (29) to determine the possible orbits of light and test
particles.
First, we substitute υ ¼ cos2θ with θ ∈ ½0; 1� in the

function ~ΘðθÞ:

~ΘðυÞ ¼
�
1þ

~R0

12
~a2υ

�
ð ~K − ε ~a2υÞ

−
�
~a2E2ð1 − υÞ − 2 ~LΞ ~aEþ

~L2Ξ2

ð1 − υÞ
�
: ð40Þ

Geodesic motion is possible if ~ΘðθÞ ≥ 0, then real values of
the coordinate θ are obtained. This condition also implies
that ~K > 0 for all geodesics with ~R0 > − 12

~a2, or Λ > − 3
~a2.

From the observational side Λ > − 3
~a2 is always true, since

the cosmological constant acquires a very small positive
value.

The number of zeros of ~ΘðθÞ, which are the turning
points of the latitudinal motion, only changes if a zero
crosses 0 or 1, or if a double zero occurs. υ ¼ 0 is a zero of
~Θ if

~Θðυ ¼ 0Þ ¼ ~K − ð ~a2E2 − 2 ~LΞ ~aEþ ~L2Ξ2Þ; ð41Þ

and, therefore,

~L ¼ E ~a�
ffiffiffiffi
~K

p
Ξ

: ð42Þ

Since υ ¼ 1 is a pole of ~ΘðυÞ for ~L ≠ 0, it is only possible
that υ ¼ 1 is a zero of ~ΘðυÞ if ~L ¼ 0,

~Θðυ ¼ 1; ~L ¼ 0Þ ¼
�
1þ

~R0

12
~a2
�
ð ~K − ε ~a2Þ: ð43Þ

To remove the pole of ~ΘðυÞ at υ ¼ 1, we consider

~Θ0ðυÞ ¼ ð1 − υÞ
�
1þ

~R0

12
~a2υ

�
ð ~K − ε ~a2υÞ

− ð ~aEð1 − υÞ − ~LΞÞ2; ð44Þ

where ~ΘðυÞ ¼ 1
1−υ

~Θ0ðυÞ. Then double zeros fulfill the
conditions,

~Θ0ðυÞ ¼ 0 and
d ~Θ0ðυÞ
dυ

¼ 0; ð45Þ

which yields

(a) (b) (c)

FIG. 4. Combined ~L − E2 diagrams of the ~r motion (green lines) and θ motion (blue lines). The dashed green lines show, where
~Rð~r ¼ 0Þ ¼ 0. The polynomial ~R has no zero in region I, 2 negative zeros in region II, 1 negative and 1 positive zeros in region III, 3
positive and 1 negative zeros in region IV, 5 positive and 1 negative zeros in region V. Inside the grey areas the θ equation does not allow
geodesic motion. In regions marked with the letter “a,” the orbits cross θ ¼ π

2
, but not ~r ¼ 0. Whereas in regions marked with the letter

“b,” ~r ¼ 0 can be crossed but θ ¼ π
2
is never crossed.
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~L ¼
�
6E�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36E2 þ 3 ~K ~R0

q �
ð ~R0 ~a2 þ 12Þ

12 ~R0 ~aΞ
: ð46Þ

From the condition of υ ¼ 0 being a zero and the condition
of double zeros, we can plot parametric ~L − E2 diagrams;
see Fig. 3. These reveal two regions in which geodesic
motion is possible. The function ~Θ has a single zero υ0 in
region a; therefore, the geodesics will cross the equatorial
plane ( ~K > ðE ~a − ~LΞÞ2). In region b, the function ~Θ
has two zeros υ1, υ2, which corresponds to motion
above or below the equatorial plane ( ~K < ðE ~a − ~LΞÞ2).
If ~K ¼ ðE ~a − ~LΞÞ2, the geodesics will reside in the
equatorial plane.

2. Types of radial motion

The zeros of the polynomial ~R are the turning points of
orbits of light and test particles, and therefore ~R determines
the possible types of orbits,

~Rð~rÞ ¼ −Δ~rðε~r2 þ ~KÞ þ ½ð ~a2 þ ~r2ÞE − ~a ~LΞ�2; ð47Þ

with

Δ~r ¼ ð~r2 þ ~a2Þ
�
1þ

~R0

12
~r2
�
− 2~rþ q2 ð48Þ

where we introduced

q2 ¼
~Q2

ð1þ f0ðR0ÞÞ
: ð49Þ

There are bound orbits, where test particles move back
and forth between two turning points, and escape orbits,
where the black hole is approached, but the test particles turn
around at a certain point to escape towards infinity.
Terminating orbits end in the singularity, if they reach
simultaneously ~r ¼ 0 and ϑ ¼ π

2
, such that ρ2 ¼ 0. If a test

particle crosses the black hole horizons twice or even

(a) (b) (c)

(d) (e) (f)

FIG. 5. Plots of the effective potential together with examples of energies for the different orbit types of Table III. The blue and green
curves represent the two branches of the effective potential. In the grey area, the red dashed lines correspond to energies. The red dots
mark the zeros of the polynomial R, which are the turning points of the orbits. In the grey area, no motion is possible since ~R < 0. In the
dashed area, the θ equation does not allow geodesic motion ( ~Θ < 0). The vertical black dashed lines show the position of the horizons.
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multiple times, it can enter another universe. These orbits are
called two-world orbits or many-world orbits. Due to the
ring singularity, it is possible that a geodesic crosses ~r ¼ 0,
which is then called a transit orbit or crossover orbit [12].
Below we give a list of all possible orbits. Let ~rþ be the outer
event horizon and ~r− be the inner horizon of the black hole:

1. Transit orbit (TrO) with range ~r ∈ ð−∞;∞Þ.
2. Escape orbit (EO) with range ~r ∈ ½r1;∞Þ with

r1 > ~rþ, or with range ~r ∈ ð−∞; r1� with r1 < 0.
3. Two-world escape orbit (TEO) with range ½r1;∞Þ

where 0 < r1 < r−.
4. Crossover two-world escape orbit (CTEO) with

range ½r1;∞Þ where r1 < 0.
5. Bound orbit (BO) with range ~r ∈ ½r1; r2� with

(a) r1, r2 > rþ or
(b) 0 < r1, r2 < r−

6. Many-world bound orbit (MBO) with range ~r ∈
½r1; r2� where 0 < r1 ≤ r− and r2 ≥ rþ.

7. Terminating orbit (TO) with ranges either ~r ∈ ½0;∞Þ
or ~r ∈ ½0; r1� with
(a) r1 ≥ ~rþ or
(b) 0 < r1 < ~r−

The type of an orbit is determined by the number of real
zeros of the polynomial ~R. This number changes if a double
zero occurs:

~Rð~rÞ ¼ 0 and
d ~Rð~rÞ
d~r

¼ 0: ð50Þ

Additionally, the distinction between positive (r) and
negative (r) zeros is interesting, since the geodesics can
cross ~r ¼ 0. The number of positive and negative zeros
changes if ~Rð~r ¼ 0Þ ¼ 0. Taking both these conditions into
account, we can plot parametric ~L − E2 diagrams, which
show five regions with different numbers of zeros. In
region I, ~R has no zeros. In region II, there are two negative
zeros. A negative and a positive zero are possible in
region III. Region IV has three positive and a single
negative zero. Five positive zeros and a negative zero
appear in region V. In Fig. 4, examples of the parametric
~L − E2 diagrams of the ~rmotion can be seen. We combined
them with the parametric diagrams of the θ-motion.
Regions I and II intersect only with region b so here

the orbits will not cross the equatorial plane. Regions IV
and V only intersect with region a, therefore the orbits will
cross the equatorial plane. Region III intersects both with
regions a and b. In regions I and II, the geodesics can cross
~r ¼ 0, but in regions III, IV, and V, ~r ¼ 0 cannot be crossed.
We conclude that the only way for a geodesic to

reach the singularity (terminating orbit) is ~Rð~r ¼ 0Þ ¼ 0

TABLE III. Types of orbits in the Kerr-Newman-dS-spacetime ( ~R0 > 0). The range of the orbits is represented by thick lines. The dots
show the turning points of the orbits. The positions of the event horizon and the Cauchy horizon are marked by a vertical double line.
The cosmological horizon is not displayed here since it is not relevant for the orbits. The single vertical line indicates ~r ¼ 0.

Type Zeros Region Range of ~r Orbit

A 0 Ib TrO
B 2 IIb EO, CTEO
C 2 IIIa,b EO, TEO
C− EO, TEO
C0 EO, TO/TEO
D 4 IVa EO, MBO, EO
D− EO, MBO, EO
Dþ EO, MBO, EO
D� EO, MBO, EO
D0 EO, TO/MBO, EO
D0þ EO, TO/MBO, EO
E 4 IVa EO, BO, TEO
E− EO, BO, TEO
E0 EO, TO/BO, TEO
E0− EO, TO/BO, TEO
F 6 Va EO, MBO, BO, EO
F− EO, MBO, BO, EO
Fþ EO, MBO, BO, EO
G 6 Va EO, BO, MBO, EO
G− EO, BO, MBO, EO
G0 EO, TO/BO, MBO, EO
G0− EO, TO/BO, MBO, EO
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and ~Θðθ ¼ π
2
Þ ¼ 0. This is the case if ~K ¼ ðE ~a − ~LΞÞ2 and,

additionally, q ¼ 0.
We use the parametric ~L − E2 diagrams and the effective

potential of the ~r-equation (see Fig. 5) to determine all
possible orbit types. Table III shows an overview. If null
geodesics (ε ¼ 0) are considered, region V vanishes from
the parametric ~L − E2 diagrams, therefore orbits of type F
and G (see Table III) are not possible for light. This implies
that bound orbits outside the horizons (~r > ~rþ) are only
possible for particles but not for light.
The preceding analysis was done for ~R0 > 0 which

implies a positive cosmological constant. Since the motion
of test particles and light in this spacetime is similar to the
Kerr-(A)dS spacetime, we refer to [12] for an analysis
concerning a negative cosmogical constant. In comparison
with the parametric diagrams of [12], it is obvious that the
overall behavior and the possible orbit types are the same;
still, there are some differences to the Kerr-(A)dS spacetime
caused by the parameter q. In the spacetime of a rotating
black hole, there are orbits that do not cross ~r ¼ 0 and also
do not cross the equatorial plane (θ ¼ π

2
). This occurs in

region IIIb (see Fig. 4 and Table III), which is not present
for the Kerr-(A)dS case q ¼ 0. In the Kerr-(A)dS space-
time, the green dashed line in Fig. 4 will coincide with the
blue lines from the θ parametric plot, so that region III is
not splitted into an a and a b part. Therefore, in the Kerr-(A)
dS case an orbit that crosses ~r ¼ 0 will not cross θ ¼ π

2
and

an orbit that crosses θ ¼ π
2
will not cross ~r ¼ 0.

A further difference to the Kerr case is that terminating
orbits do not exist for q ≠ 0. Only orbits with ~K ¼ ðE ~a −
~LΞÞ2 and simultaneously q ¼ 0 end in the singularity.

V. ANALYTICAL SOLUTION OF THE
GEODESIC EQUATIONS

In this section, we will present the analytical solutions of
the geodesic equations (29)–(32) in the Kerr-Newman-(A)
dS spacetime. We will treat each equation separately and
give the solutions in terms of the Weierstrass ℘, ζ and σ
functions as well as the Kleinian σ function.

A. θ motion

We start with the differential equation (30) describing the
θ motion�

dθ
dγ

�
2

¼ ~ΘðθÞ ¼ Δθð ~K − ε ~a2cos2θÞ

−
1

sin2θ
ð ~aEsin2θ − ~LΞÞ2; ð51Þ

and substitute υ ¼ cos2θ to simplify the equation�
dυ
dγ

�
2

¼ 4υ ~Θ0ðυÞ ¼ 4υð1 − υÞ
�
1þ

~R0

12
~a2υ

�
× ð ~K − ε ~a2υÞ − 4υð ~aEð1 − υÞ − ~LΞÞ2: ð52Þ

1. Timelike geodesics

The differential equation (52) is of elliptic type, since
4υ ~Θ0ðυÞ is in general a polynomial of order four. Here we
consider the case ε ¼ 1. Assuming that ~Θ0ðυÞhasonly simple
zeros, equation (52) can be solved in terms of theWeierstrass
elliptic ℘ function. To get the solution we transform 4υ ~Θ0ðυÞ
into theWeierstrass form (4y3 − g2y − g3) with the constants
g2 and g3. First, we apply the substitution υ ¼ ξ−1 yielding

�
dξ
dγ

�
2

¼ ~Θξ; ð53Þ

where

~Θξ ≕ 4ξ3½ ~K − ðE ~a − ~LΞÞ2�

þ 4ξ2
�
~a2
�
−εþ 1

12
~K ~R0 þ 2E2

�
− ð ~K þ 2E ~LΞ ~aÞ

�

þ 4ξ

�
~a2
�
−

1

12
~K ~R0 þ ε − E2 −

1

12
~R0 ~a2ε

��

þ 1

3
~R0 ~a4ε ≕

X3
i¼1

aiξi ð54Þ

is a now a polynomial of order three. Second, we substitute
ξ ¼ 1

a3
ð4y − a2

3
Þ, which gives

�
dy
dγ

�
2

¼ 4y3 − g2y − g3; ð55Þ

where the Weierstrass invariants are

g2 ¼
1

16

�
4

3
a22 − 4a1a3

�
; ð56Þ

g3 ¼
1

16

�
1

3
a1a2a3 −

2

27
a32 − a0a23

�
: ð57Þ

The differential equation (55) represents an elliptic intregal
of the first kind, which can be solved by [9,61,62]

yðγÞ ¼ ℘ðγ − γθ;in; g2; g3Þ: ð58Þ

Finally, the solution of Eq. (30) is given by

θðγÞ ¼ arccos

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3

4℘ðγ − γθ;in; g2; g3Þ − a2
3

r �
; ð59Þ

where γθ;in ¼ γ0 þ
R
∞
y0

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y03−g2y0−g3

p and y0 ¼ a3
4cos2ðθ0Þ þ

a2
12

depends only on the initial values γ0 and θ0. Since the θ
motion is symmetric with respect to the equatorial plane
θ ¼ π

2
, the sign of the square root can be chosen so that θðγÞ

is either in ð0; π
2
Þ (positive sign) or in ðπ

2
; πÞ (negative sign).
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2. Null geodesics

The differential equation (52) for ε ¼ 0 is already a
polynomial of degree three and, thus, with the standard
substitution υ ¼ 1

b3
ð4y − b2

3
Þ where 4υ ~Θ0ðυÞ ¼P3

i¼1 biυ
i

transforms the problem to the form Eq. (55). The solution
is then given by

θðγÞ ¼ arccos

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

b3
℘ðγ − γθ;in; g2; g3Þ −

b2
3b3

s !
ð60Þ

where γθ;in,g2, and g3 are as above with ai replaced
by bi.

B. r motion

The dynamics of r are described by the differential
equation (29):�
d~r
dγ

�
2

¼ ~Rð~rÞ ¼ Δ~rð−ε~r2 − ~KÞ þ ½ð ~a2 þ ~r2ÞE − ~a ~LΞ�2:

ð61Þ

Here the solution procedure is more complicated because ~R
is, in general, a polynomial of order six. However, for
null geodesics, the order of the polynomial is reduced to
four. In the following, we will consider timelike and null
geodesics separately.

1. Null geodesics

Considering light, i.e. ε ¼ 0, ~R is simplified to a
polynomial of degree four and therefore the differential
equation (29) is of elliptic type. Then we can solve it using
the method of section VA. By substituting first
~r ¼ ξ−1 þ ~r ~R, where ~r ~R is a zero of ~R, and then

ξ ¼ 1
b3
ð4y − b2

3
Þ, where bi ¼ 1

ð4−iÞ!
dð4−iÞ ~R
d~rð4−iÞ ð~r ~RÞ, Eq. (29)

acquires the form of Eq. (55). Again, this can be solved
with the help of the Weierstrass elliptic ℘ function, so that
the result is

~rðγÞ ¼ b3
4℘ðγ − γ ~r;in; g2; g3Þ − b2

3

þ ~r ~R; ð62Þ

where γ ~r;in ¼ γ0 þ
R
∞
y0

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y03−g2;ry0−g3;r

p and y0 ¼ b3
4ð~r0−rRÞ þ

b2
12

depends only on the initial values γ0 and ~r0 and g2, g3 are
defined as in Eq. (57) with ai ¼ bi.

2. Timelike geodesics

Considering particles, i.e., ε ¼ 1, and assuming that ~R
has only simple zeros, the differential equation (29) is of the
hyperelliptic type. As presented in [12], this equation can
be solved in terms of derivatives of the Kleinian σ function.
To begin with, Eq. (29) is transformed into the standard

form with the substitution ~r ¼ � 1
u þ ~r ~R where ~r ~R is a zero

of ~R. Then we get �
u
du
dγ

�
2

¼ ~Ru; ð63Þ

where

~Ru ¼
X5
i¼0

ciui; ci ¼
ð�1Þi
ð6 − iÞ!

dð6−iÞ ~R
duð6−iÞ

ð~r ~RÞ: ð64Þ

A separation of variables leads to

γ − γ0 ¼
Z

u

u0

uduffiffiffiffiffiffi
~Ru

q ; ð65Þ

where u0 ¼ uðγ0Þ. Considering the solution of the integral
(65), we have to address two points. First, due to the two
branches of the square root, the integrand is not well
defined in the complex plane. Second, the solution uðγÞ
should not depend on the chosen path of integration [9]. Let
ζ be a closed integration path and

ω ¼
I
ζ

uduffiffiffiffiffiffi
~Ru

q ; ð66Þ

then also

γ − γ0 − ω ¼
Z

u

u0

uduffiffiffiffiffiffi
~Ru

q ; ð67Þ

should be true. Hence, the solution uðγÞ of our problem has
to fulfill

uðγÞ ¼ uðγ − ωÞ ð68Þ

for every ω ≠ 0 obtained from Eq. (66). These two issues
can be solved if we consider Eq. (65) to be defined on the
Riemann surface y2 ¼ ~RuðxÞ of genus g ¼ 2 and introduce
a basis of canonical holomorphic and meromorphic differ-
entials dzi and dri, respectively,

dz1 ¼
dxffiffiffiffiffiffi
~Rx

q ; dz2 ¼
xdxffiffiffiffiffiffi
~Rx

q ; ð69Þ

dr1 ¼
a3xþ 2a4x2 þ 3a5x3

4

ffiffiffiffiffiffi
~Rx

q dx; dr2 ¼
x2dx

4

ffiffiffiffiffiffi
~Rx

q ; ð70Þ

and real 2ωij, 2ηij and imaginary 2ω0
ij, 2η

0
ij period matrices

2ωij ¼
I
aj

dzi; 2ω0
ij ¼

I
bj

dzi; ð71Þ
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2ηij ¼
I
aj

dri; 2η0ij ¼
I
bj

dri: ð72Þ

Equation (65) is a hyperelliptic integral of the first kind and
can be solved by [12,14]

uðγÞ ¼ −
σ1
σ2

ðγσÞ; ð73Þ

where σi is the ith derivative of the Kleinian σ function,

σðzÞ ¼ Cez
tkzθ½K∞�ð2ω−1z; τÞ; ð74Þ

which is given by the Riemann θ function with character-
istic K∞:

θðz; τÞ ¼
X
m∈Z2

eiπm
tðτmþ2zÞ: ð75Þ

A number of parameters enter here: the symmetric Rie-
mann matrix τ ¼ ðω−1ω0Þ, the period-matrix ð2ω; 2ω0Þ, the
period-matrix of the second kind ð2η; 2η0Þ, the matrix
k ¼ ηð2ωÞ−1, and the vector of Riemann constants with
base point at infinity 2K∞ ¼ ð0; 1Þt þ ð1; 1Þtτ. The con-
stant C can be given explicitly, see e.g. [63], but is not
important here. In Eq. (73), the argument γσ is an element
of the one-dimensional σ divisor: γσ ¼ ðfðγ − γ ~r;inÞ; γ −
γ ~r;inÞt with γ ~r;in ¼ ffiffiffiffiffi

c5
p

γ0 þ
R∞
u0

u0du0ffiffiffiffiffi
~Ru0

p and u0 ¼ �ð~r0 −
~r ~RÞ−1 depends only on the initial values γ0 and ~r0, and
the function f can be found from the vanishing condition
σððfðxÞ; xÞtÞ ¼ 0 [12], so it describes the θ divisor. Then
the solution of the ~r equation is given by

~rðγÞ ¼ ∓ σ2
σ1

ðγσÞ: ð76Þ

Here the sign depends on the sign that was chosen in the
substitution ~r ¼ � 1

u þ ~r ~R. The functions σ1 and σ2 depend
on γσ, ω, η, τ and also on the polynomial ~Ru according to
Eqs. (65)–(72), which contains all the parameter depend-
ence of the modified gravity solution. The solution of ~r is
the analytic solution of the equation of motion of a test
particle in the Kerr-Newman-(A)dS spacetime. This sol-
ution is valid in all regions of this spacetime.

C. φ motion

The φ-equation (31) can be rewritten using the ~r and θ
equations, (29) and (30):

dφ ¼ ~aEΞð ~a2 þ ~r2Þ − ~a2Ξ2 ~L

Δ~r

ffiffiffiffi
~R

p d~r −
~aΞEsin2θ − Ξ2 ~L

Δθsin2θ
ffiffiffiffiffiffiffiffiffiffi
~ΘðθÞ

q dθ:

ð77Þ

Integrating this equation gives an ~r-dependent integral Ir
and a θ-dependent integral Iθ which can be solved
separately:

φ − φ0 ¼
Z

~r

~r0

~aEΞð ~a2 þ ~r2Þ − ~a2Ξ2 ~L

Δ~r

ffiffiffiffi
~R

p d~r

−
Z

θ

θ0

~aΞEsin2θ − Ξ2 ~L

Δθsin2θ
ffiffiffiffiffiffiffiffiffiffi
~ΘðθÞ

q dθ ¼ Ir − Iθ: ð78Þ

1. The θ-dependent integral

Let us first consider the θ-dependent integral,

Iθ ¼
Z

θ

θ0

ð ~aEΞsin2θ − Ξ2 ~LÞdθ
Δθsin2θ

ffiffiffiffiffiffiffiffiffiffi
~ΘðθÞ

q ; ð79Þ

which can be simplified by the substitution υ ¼ cos2 θ,

Iθ ¼ ∓
Z

υ

υ0

~aEΞð1 − υÞ − Ξ2 ~L

Δυð1 − υÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4υ ~Θ0ðυÞ

q dυ0; ð80Þ

where the polynomial Θ0ðυÞ is given in Eq. (44) and

Δυ ¼ 1þ ~R0

12
~a2υ. Assuming 4υΘ0ðυÞ has only simple zeros

and is a polynomial of order four, then Iθ is an elliptic
integral of the third kind. In this case, the solution to Iθ is
given by [12]

Iθ ¼
ja3j
a3

	
ð ~aΞE−Ξ2 ~LÞðυ− υ0Þ

−
X4
i¼1

a3
4℘0ðυiÞ

�
ζðυiÞðυ− υ0Þþ log

σðυ− υiÞ
σðυ0 − υiÞ

þ 2πiki

�

×

�
~a3

~R0

12

�
EΞ− ~a

~R0

12
Ξ2 ~L

�
ðδi1 þ δi2Þ

þΞ2 ~Lðδi3 þ δi4Þ
�


; ð81Þ

where the coefficients ai of the polynomial 4υΘ0ðυÞ are
given in subsection VA and

℘ðυ1Þ ¼
a2
12

−
1

48
~a2 ~R0a3 ¼ ℘ðυ2Þ;

℘ðυ3Þ ¼
a2
12

þ 1

4
a3 ¼ ℘ðυ4Þ: ð82Þ

Also we have υ ¼ υðγÞ ¼ γ − γθ;in, where γθ;in is defined in
Eq. (58) and υ0 ¼ υðγ0Þ. The different branches of the
logarithm are represented by the integers ki. The details of
the computation can be found in Ref. [12].
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2. The r-dependent integral

Next we will solve the ~r-dependent integral

Ir ¼
Z

~r

~r0

~aEΞð ~a2 þ ~r2Þ − ~a2Ξ2 ~L

Δ~r

ffiffiffiffi
~R

p d~r: ð83Þ

Here we will distinguish between timelike and null geo-
desics as the equation simplifies in the latter case.
a. Null geodesics Considering light, i.e. ε ¼ 0, the

polynomial ~R is of order four, and therefore Ir is an
elliptic integral of the third kind and can be solved
analogously to Iθ. We apply the same substitutions ~r ¼
1
ξ þ ~r ~R and ξ ¼ 1

b3
ð4y − b2

3
Þ, as in subsection VB for the

case ε ¼ 0, then perform a partial fraction decomposition,
and finally substitute y ¼ ℘ðυÞ. Then we get

b3
jb3j

Ir ¼
X4
i¼1

Ci

Z
υ

υ0

dυ
℘ðυÞ − yi

−
~aEΞð ~a2 þ ~r2~RÞ − ~a2Ξ2 ~L

Δ~r¼~r ~R

Z
υ

υ0

dυ; ð84Þ

where b3 is given in Eq. (57), and the yi are the four zeros of
Δyð~rÞ. The constants Ci arise from the partial fraction
decomposition and depend on the parameters of the test
particle and the metric. The integrand ð℘ðυÞ − yiÞ−1 has
simple poles υi1, υi2, where ℘ðυi1Þ ¼ yi ¼ ℘ðυi2Þ.
Ir can be integrated according to Ref. [12], and the

solution is

Ir ¼
jb3j
b3

	X4
i¼1

X2
j¼1

Ci

℘0ðυijÞ
½ξðυijÞðυ− υ0Þ þ logσðυ− υijÞ

− logσðυ0 − υijÞ�−
~aEΞð ~a2 þ ~r2~RÞ− ~a2Ξ2 ~L

Δ~r¼~r ~R

ðυ− υ0Þ


;

ð85Þ

with υ ¼ υðγÞ ¼ γ − γ ~r;in and υ0 ¼ υðγ0Þ, where γ ~r;in is
given in Eq. (62).
b. Timelike geodesics. Considering particles, i.e. ε ¼ 1,

and assuming that the polynomial ~R has only simple zeros,
Ir is a hyperelliptic integral of the third kind.
The first step in the solution procedure is to transform ~R

to the standard form by the substitution ~r ¼ �1=uþ ~r ~R,
where ~r ~R is a zero of ~R (see section V B). Next we apply a
partial fraction decomposition to the integrand, so that the
solution method of ref. [12] can be used. The solution
of Ir is

Ir ¼ ∓ ~au0
ju0j

	
C1ðω − ω0Þ þ C0ðfðωÞ − fðω0ÞÞ

þ
X4
i¼1

C2;iffiffiffiffiffiffiffi
~Rui

q �
1

2
log

σðWþðωÞÞ
σðW−ðωÞÞ −

1

2
log

σðWþðω0ÞÞ
σðW−ðω0ÞÞ

− ðfðωÞ − fðω0Þ;ω − ω0Þ
�Z

uþi

u−i

d~r

��

; ð86Þ

with ω ¼ ωðγÞ ¼ γ − γ ~r;in and ω0 ¼ ωðγ0Þ. Again the
constants Ci arise from the partial fraction decomposition.
~Ru is defined in Eq. (63), and the ui are the four zeros of
Δ~r¼�1=uþ~r ~R

; u0 ¼ �ð~r − ~r ~RÞ−1. The functions W� are

given byW�ðωÞ ≔ ðfðωÞ;ωÞt − 2
R u�i
∞ d~z with u�i ¼ ðui �ffiffiffiffiffiffiffi

~Rui

q
Þ (compare [12]).

D. t motion

The ~t equation (32) can be rewritten using the ~r and θ
equations, (29) and (31),

d~t ¼ Eð~r2 þ ~a2Þ2 − ~a ~LΞð~r2 þ ~a2Þ
Δ~r

drffiffiffiffi
~R

p
−
sin2θ
Δθ

�
E ~a2 −

~LΞ ~a
sin2θ

�
dθffiffiffiffiffiffiffiffiffiffi
~ΘðθÞ

q ; ð87Þ

and has the same structure as the equation for the φmotion.
Integrating the ~t equation yields

~t − ~t0 ¼

2
64Z r

r0

Eð~r2 þ ~a2Þ2 − ~a ~LΞð~r2 þ ~a2Þ
Δ~r

drffiffiffiffi
~R

p

−
Z

θ

θ0

sin2θ
Δθ

�
E ~a2 −

~LΞ ~a
sin2θ

�
dθffiffiffiffiffiffiffiffiffiffi
~ΘðθÞ

q
3
75 ¼ ~Ir − ~Iθ:

ð88Þ
The solutions can be found in the same way as in
section V C. For the θ-dependent part, we have [12]

~Iθ ¼ a3ðυ − υ0Þ −
X2
i¼1

a3 ~a2R0

4℘0ðυiÞ
× ½ζðυiÞðυ − υ0Þ þ log σðυ − υiÞ − log σðυ0 − υiÞ�;

ð89Þ
where a2 and a3 are given in Eq. (54), ℘ðυ1Þ ¼
a2
12
þ 1

4
~a2R0a3 ¼ ℘ðυ2Þ, and υ ¼ υðγÞ ¼ 2γ − γθ;in with

the initial value υ0 ¼ υðγ0Þ.
Considering light, i.e. ε ¼ 0, the solution for the ~r-

dependent part is very simple and given by [12]
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(a) (b)

FIG. 6. Two examples of particle orbits in the Reissner-Nordström-(A)dS spacetime. The blue curves depict the orbits and the black
dashed circle indicate the positions of the horizons.

(a) (b)

FIG. 7. Two examples of light orbits in the Reissner-Nordström-(A)dS spacetime. The blue curves depict the orbits and the black
dashed circle indicate the positions of the horizons.
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~Ir ¼
jb3j
b3

	X4
i¼1

X2
j¼1

~Ci

℘0ðυijÞ
½ξðυijÞðυ − υ0Þ þ log σðυ − υijÞ

− log σðυ0 − υijÞ�

−
~a ~LΞð~r2~R þ ~a2Þ − Eð~r2~R þ ~a2Þ2

Δ~r¼~r ~R

ðυ − υ0Þ


; ð90Þ

where b3 is given in Eq. (62), the ~Ci arise from the partial
fraction decomposition, and ℘ðυi1Þ ¼ yi ¼ ℘ðυi2Þ, where
yi are the four zeros of Δyð~rÞ. The variable υ ¼ υðγÞ ¼
γ − γ ~r;in has the initial value υ0 ¼ υðγ0Þ.

In the case of timelike geodesics, i.e. ε ¼ 1, the
solution of the now hyperelliptic ~r-dependent part is given
by [12]

~Ir ¼
u0ffiffiffiffiffi
c5

p ju0j
	
~C1ðω − ω0Þ þ ~C0ðfðωÞ − fðω0ÞÞ

þ
X4
i¼1

~C2;iffiffiffiffiffiffiffi
~~Rui

q �
1

2
log

σðWþðωÞÞ
σðW−ðωÞÞ −

1

2
log

σðWþðω0ÞÞ
σðW−ðω0ÞÞ

− ðfðωÞ − fðω0Þ;ω − ω0Þ
�Z

uþi

u−i

d~r

��

: ð91Þ

(a) (b)

FIG. 8. Two examples of possible orbits in the Kerr-Newman-(A)dS spacetime. The blue lines show the path of the orbits and the
sphere represents the event horizon.

(a) (b)

FIG. 9. Two examples of possible orbits in the Kerr-Newman-(A)dS spacetime. The blue lines show the path of the orbits and the
spheres represent the inner and outer horizon.

DETAILED STUDY OF GEODESICS IN THE KERR- … PHYSICAL REVIEW D 94, 024052 (2016)

024052-15



For the notation, see Eq. (86). The constants ~C0, ~C1, ~C2;i

result from the partial fraction decomposition.

VI. THE ORBITS

The analytical solutions can be used to plot the orbits of
test particles and light rays. We present example of the
orbits around the static charged (A)dS black hole (Reissner-
Nordström-(A)dS) and the rotating charged (A)dS black
hole (Kerr-Newman-(A)dS).

A. The static case

Some examples of timelike and null geodesics in the
static case can be found in Figs. 6 and 7. In Fig. 6, two
bound orbits of test particles are shown: a bound orbit
outside the horizons [Fig. 6(a)] and a many-world bound
orbit [Fig. 6(b)]. On the many-world bound orbit, both
horizons are crossed several times and each time the test
particles emerge into another universe. Note that the test
particle is reflected at the potential barrier behind the
horizons arising from the charge.
An escape orbit and a two-world escape orbit are

depicted in Figs. 7(a) and 7(b), respectively. The two-
world escape orbit crosses both horizons twice and escapes
to another universe. Also the reflection at the potential
barrier is visible.

B. The rotating case

Here we show some orbits in the Kerr-Newman-(A)dS
spacetime. Figure 8, shows two example plots of a bound
orbit for particles and an escape orbit for light. A transit

orbit crossing r ¼ 0 can be seen in Fig. 9(a). A two-world
escape orbit which crosses both horizons twice and escapes
to another universe is depicted in 9(b). In Fig. 10(a), a
bound orbit hidden behind the inner horizon is shown.
Figure 10(b), shows a many-world bound orbit, where both
horizons are crossed several times.

VII. CONCLUSIONS

In this paper, we discussed the motion of test particles and
light rays in the spacetime of the static and rotating charged
black hole (Kerr-Newman-(A)dS spacetime).After reviewing
the spacetime and presenting the corresponding equations of
motion, we classified the possible types of geodesic motion
by an analysis of the zeros of the polynomials underlying the θ
and rmotion. The geodesic equations were solved in terms of
Weierstrass elliptic functions and derivatives of Kleinian σ
functions.Usingeffectivepotential techniques andparametric
diagrams, the possible types of orbits were derived. Finally, a
number of orbits were illustrated.
The techniques employed in this paper present a useful

tool to calculate the exact orbits, and the results obtained
should prove valuable in order to analyze their properties,
including observables like the periastron shift of bound
orbits, the light deflection of flyby orbits, the deflection
angle, and the Lense-Thirring effect. For the calculation of
these observables, analogous formulas to those given in
[9,64–68] may be used.
The analytical solutions of the equations of motion are

also useful in the context of AdS/CFT, since geodesics
in an AdS spacetime can be related to CFT propagators (see
e.g. [69]).

(a) (b)

FIG. 10. Two examples of possible orbits in the Kerr-Newman-(A)dS spacetime. The blue lines show the path of the orbits and the
spheres represent the inner and outer horizon.

SAHEB SOROUSHFAR et al. PHYSICAL REVIEW D 94, 024052 (2016)

024052-16



ACKNOWLEDGMENTS

S. G. and J. K. would like to acknowledge support by the DFG Research Training Group Models of Gravity.

[1] A. G. Riess et al. (Supernova Search Team Collaboration),
Astron. J. 116, 1009 (1998); S. Perlmutter et al. (Supernova
Cosmology Project Collaboration), Astrophys. J. 517, 565
(1999); J. L. Tonry et al. (Supernova Search Team Collabo-
ration), Astrophys. J. 594, 1 (2003); A. G. Riess et al.,
Astrophys. J. 607, 665 (2004).

[2] D. N. Spergel et al. (WMAP Collaboration), Astrophys. J.
Suppl. Ser. 170, 377 (2007); E. Komatsu et al. (WMAP
Collaboration), Astrophys. J. Suppl. Ser. 180, 330 (2009);
192, 18 (2011).

[3] P. A. R. Ade et al. (Planck Collaboration), Astron.
Astrophys. 571, A1 (2014); 571, A16 (2014); arXiv:1502
.01589.

[4] B. Jain and A. Taylor, Phys. Rev. Lett. 91, 141302 (2003);
H. Hoekstra and B. Jain, Annu. Rev. Nucl. Part. Sci. 58, 99
(2008).

[5] D. J. Eisenstein et al. (SDSS Collaboration), Astrophys. J.
633, 560 (2005); S. Cole et al. (2dFGRS Collaboration),
Mon. Not. R. Astron. Soc. 362, 505 (2005); W. J. Percival
et al. (SDSS Collaboration), Mon. Not. R. Astron. Soc. 401,
2148 (2010).

[6] M. Tegmark et al. (SDSS Collaboration), Phys. Rev. D 69,
103501 (2004); U. Seljak et al. (SDSS Collaboration), Phys.
Rev. D 71, 103515 (2005); M. Betoule et al. (SDSS
Collaboration), Astron. Astrophys. 568, A22 (2014).

[7] Y. Hagihara, Jpn. J Astron. Geophys. 8, 67 (1931).
[8] S. Chandrasekhar, The Mathematical Theory of Black Holes

(Oxford University Press, New York, 1983).
[9] E. Hackmann and C. Lämmerzahl, Phys. Rev. Lett. 100,

171101 (2008); E. Hackmann and C. Lämmerzahl, Phys.
Rev. D 78, 024035 (2008).

[10] E.Hackmann,V.Kagramanova, J.Kunz, andC. Lämmerzahl,
Phys. Rev. D 78, 124018 (2008); 79, 029901(E) (2009).

[11] E.Hackmann,V.Kagramanova, J.Kunz, andC. Lämmerzahl,
Europhys. Lett. 88, 30008 (2009).

[12] E. Hackmann, C. Lämmerzahl, V. Kagramanova, and J.
Kunz, Phys. Rev. D 81, 044020 (2010).

[13] S. Grunau and V. Kagramanova, Phys. Rev. D 83, 044009
(2011).

[14] V. Z. Enolski, E. Hackmann, V. Kagramanova, J. Kunz, and
C. Lämmerzahl, J. Geom. Phys. 61, 899 (2011).

[15] V. Kagramanova, J. Kunz, E. Hackmann, and
C. Lämmerzahl, Phys. Rev. D 81, 124044 (2010).

[16] V. Diemer and E. Smolarek, Classical Quantum Gravity 30,
175014 (2013).

[17] V. Kagramanova and S. Reimers, Phys. Rev. D 86, 084029
(2012).

[18] V. Diemer, J. Kunz, C. Lämmerzahl, and S. Reimers, Phys.
Rev. D 89, 124026 (2014).

[19] V. Diemer and J. Kunz, Phys. Rev. D 89, 084001 (2014).

[20] S. Grunau, V. Kagramanova, J. Kunz, and C. Lämmerzahl,
Phys. Rev. D 86, 104002 (2012).

[21] S. Grunau, V. Kagramanova, and J. Kunz, Phys. Rev. D 87,
044054 (2013).

[22] A. N. Aliev and D. V. Galtsov, Sov. Astron. Lett. 14, 48
(1988).

[23] D. V. Galtsov and E. Masar, Classical Quantum Gravity 6,
1313 (1989).

[24] S. Chakraborty and L. Biswas, Classical Quantum Gravity
13, 2153 (1996).

[25] N. Ozdemir, Classical Quantum Gravity 20, 4409 (2003).
[26] F. Ozdemir, N. Ozdemir, and B. T. Kaynak, Int. J. Mod.

Phys. A 19, 1549 (2004).
[27] S. Grunau and B. Khamesra, Phys. Rev. D 87, 124019

(2013).
[28] E. Hackmann, B. Hartmann, C. Laemmerzahl, and P.

Sirimachan, Phys. Rev. D 81, 064016 (2010).
[29] E. Hackmann, B. Hartmann, C. Lämmerzahl, and P.

Sirimachan, Phys. Rev. D 82, 044024 (2010).
[30] S. Soroushfar, R. Saffari, J. Kunz, and C. Lämmerzahl,

Phys. Rev. D 92, 044010 (2015).
[31] V. Enolski, B. Hartmann, V. Kagramanova, J. Kunz, C.

Lämmerzahl, and P. Sirimachan, J. Math. Phys. 53, 012504
(2012).

[32] S. Soroushfar, R. Saffari, and A. Jafari, Phys. Rev. D 93,
104037 (2016).

[33] S. Soroushfar, R. Saffari, and E. Sahami, Phys. Rev. D 94,
024010 (2016).

[34] G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279
(2005).

[35] S. Capozziello and M. De Laurentis, Phys. Rep. 509, 167
(2011).

[36] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys.
Rep. 513, 1 (2012).

[37] A. Joyce, B. Jain, J. Khoury, and M. Trodden, Phys. Rep.
568, 1 (2015).

[38] B. Jain and J. Khoury, Ann. Phys. (Amsterdam) 325, 1479
(2010).

[39] K. Koyama, Rep. Prog. Phys. 79, 046902 (2016).
[40] D. Lovelock, J. Math. Phys. 12, 498 (1971).
[41] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451

(2010).
[42] A. De Felice and S. Tsujikawa, Living Rev. Relativ. 13, 3

(2010).
[43] E. Berti et al., Classical Quantum Gravity 32, 243001

(2015).
[44] I. H. Brevik, S. Nojiri, S. D. Odintsov, and L. Vanzo, Phys.

Rev. D 70, 043520 (2004).
[45] G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, and S.

Zerbini, J. Cosmol. Astropart. Phys. 02 (2005) 010.

DETAILED STUDY OF GEODESICS IN THE KERR- … PHYSICAL REVIEW D 94, 024052 (2016)

024052-17

http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1086/376865
http://dx.doi.org/10.1086/383612
http://dx.doi.org/10.1086/513700
http://dx.doi.org/10.1086/513700
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://dx.doi.org/10.1051/0004-6361/201321529
http://dx.doi.org/10.1051/0004-6361/201321529
http://dx.doi.org/10.1051/0004-6361/201321591
http://arXiv.org/abs/1502.01589
http://arXiv.org/abs/1502.01589
http://dx.doi.org/10.1103/PhysRevLett.91.141302
http://dx.doi.org/10.1146/annurev.nucl.58.110707.171151
http://dx.doi.org/10.1146/annurev.nucl.58.110707.171151
http://dx.doi.org/10.1086/466512
http://dx.doi.org/10.1086/466512
http://dx.doi.org/10.1111/j.1365-2966.2005.09318.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15812.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15812.x
http://dx.doi.org/10.1103/PhysRevD.69.103501
http://dx.doi.org/10.1103/PhysRevD.69.103501
http://dx.doi.org/10.1103/PhysRevD.71.103515
http://dx.doi.org/10.1103/PhysRevD.71.103515
http://dx.doi.org/10.1051/0004-6361/201423413
http://dx.doi.org/10.1103/PhysRevLett.100.171101
http://dx.doi.org/10.1103/PhysRevLett.100.171101
http://dx.doi.org/10.1103/PhysRevD.78.024035
http://dx.doi.org/10.1103/PhysRevD.78.024035
http://dx.doi.org/10.1103/PhysRevD.78.124018
http://dx.doi.org/10.1103/PhysRevD.79.029901
http://dx.doi.org/10.1209/0295-5075/88/30008
http://dx.doi.org/10.1103/PhysRevD.81.044020
http://dx.doi.org/10.1103/PhysRevD.83.044009
http://dx.doi.org/10.1103/PhysRevD.83.044009
http://dx.doi.org/10.1016/j.geomphys.2011.01.001
http://dx.doi.org/10.1103/PhysRevD.81.124044
http://dx.doi.org/10.1088/0264-9381/30/17/175014
http://dx.doi.org/10.1088/0264-9381/30/17/175014
http://dx.doi.org/10.1103/PhysRevD.86.084029
http://dx.doi.org/10.1103/PhysRevD.86.084029
http://dx.doi.org/10.1103/PhysRevD.89.124026
http://dx.doi.org/10.1103/PhysRevD.89.124026
http://dx.doi.org/10.1103/PhysRevD.89.084001
http://dx.doi.org/10.1103/PhysRevD.86.104002
http://dx.doi.org/10.1103/PhysRevD.87.044054
http://dx.doi.org/10.1103/PhysRevD.87.044054
http://dx.doi.org/10.1088/0264-9381/6/10/004
http://dx.doi.org/10.1088/0264-9381/6/10/004
http://dx.doi.org/10.1088/0264-9381/13/8/011
http://dx.doi.org/10.1088/0264-9381/13/8/011
http://dx.doi.org/10.1088/0264-9381/20/20/306
http://dx.doi.org/10.1142/S0217751X04017756
http://dx.doi.org/10.1142/S0217751X04017756
http://dx.doi.org/10.1103/PhysRevD.87.124019
http://dx.doi.org/10.1103/PhysRevD.87.124019
http://dx.doi.org/10.1103/PhysRevD.81.064016
http://dx.doi.org/10.1103/PhysRevD.82.044024
http://dx.doi.org/10.1103/PhysRevD.92.044010
http://dx.doi.org/10.1063/1.3677831
http://dx.doi.org/10.1063/1.3677831
http://dx.doi.org/10.1103/PhysRevD.93.104037
http://dx.doi.org/10.1103/PhysRevD.93.104037
http://dx.doi.org/10.1103/PhysRevD.94.024010
http://dx.doi.org/10.1103/PhysRevD.94.024010
http://dx.doi.org/10.1016/j.physrep.2004.08.031
http://dx.doi.org/10.1016/j.physrep.2004.08.031
http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1016/j.physrep.2014.12.002
http://dx.doi.org/10.1016/j.physrep.2014.12.002
http://dx.doi.org/10.1016/j.aop.2010.04.002
http://dx.doi.org/10.1016/j.aop.2010.04.002
http://dx.doi.org/10.1088/0034-4885/79/4/046902
http://dx.doi.org/10.1063/1.1665613
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.12942/lrr-2010-3
http://dx.doi.org/10.12942/lrr-2010-3
http://dx.doi.org/10.1088/0264-9381/32/24/243001
http://dx.doi.org/10.1088/0264-9381/32/24/243001
http://dx.doi.org/10.1103/PhysRevD.70.043520
http://dx.doi.org/10.1103/PhysRevD.70.043520
http://dx.doi.org/10.1088/1475-7516/2005/02/010


[46] R. Saffari and S. Rahvar, Phys. Rev. D 77, 104028 (2008).
[47] A. de la Cruz-Dombriz, A. Dobado, and A. L. Maroto, Phys.

Rev. D 80, 124011 (2009); 83, 029903(E) (2011).
[48] S. Capozziello, M. de Laurentis, and A. Stabile, Classical

Quantum Gravity 27, 165008 (2010).
[49] L. Sebastiani and S. Zerbini, Eur. Phys. J. C 71, 1591

(2011).
[50] A. Larranaga, Pramana 78, 697 (2012).
[51] J. A. R. Cembranos, A. de la Cruz-Dombriz, and P. Jimeno

Romero, Int. J. Geom. Methods Mod. Phys. 11, 1450001
(2014).

[52] A. de la Cruz-Dombriz and D. Saez-Gomez, Entropy 14,
1717 (2012).

[53] T. Moon, Y. S. Myung, and E. J. Son, Gen. Relativ. Gravit.
43, 3079 (2011).

[54] S. H. Hendi, B. Eslam Panah, and R. Saffari, Int. J. Mod.
Phys. D 23, 1450088 (2014).

[55] E. Hackmann and H. Xu, Phys. Rev. D 87, 124030 (2013).
[56] Z. Stuchlik, G. Bao, E. Ostgaard, and S. Hledik, Phys. Rev.

D 58, 084003 (1998).
[57] S. Heisnam, I. Meitei, and K. Singh, Int. J. Astron.

Astrophys. 4, 365 (2014).

[58] G. V. Kraniotis, Gen. Relativ. Gravit. 46, 1818 (2014).
[59] B. Carter, Phys. Rev. 174, 1559 (1968).
[60] Y. Mino, Phys. Rev. D 67, 084027 (2003).
[61] M. Abramowitz and I. E. Stegun, Handbook of Mathemati-

cal Functions (Dover, New York, 1968).
[62] E. T. Whittaker and G. N. Watson, A Course of Modern

Analysis (Cambrige University Press, Cambrige, England,
1950).

[63] V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, Hyper-
elliptic Kleinian Functions and Applications (Gordon and
Breach, New York, 1997).

[64] W. Rindler and M. Ishak, Phys. Rev. D 76, 043006 (2007).
[65] A. Bhattacharya, A. Panchenko, M. Scalia, C. Cattani, and

K. K. Nandi, J. Cosmol. Astropart. Phys. 09 (2010) 004.
[66] A. Bhattacharya, G. M. Garipova, E. Laserra, A. Bhadra,

and K. K. Nandi, J. Cosmol. Astropart. Phys. 02 (2011) 028.
[67] G. V. Kraniotis and S. B. Whitehouse, Classical Quantum

Gravity 20, 4817 (2003).
[68] G. V. Kraniotis, Classical Quantum Gravity 21, 4743

(2004).
[69] V. Balasubramanian and S. F. Ross, Phys. Rev. D 61,

044007 (2000).

SAHEB SOROUSHFAR et al. PHYSICAL REVIEW D 94, 024052 (2016)

024052-18

http://dx.doi.org/10.1103/PhysRevD.77.104028
http://dx.doi.org/10.1103/PhysRevD.80.124011
http://dx.doi.org/10.1103/PhysRevD.80.124011
http://dx.doi.org/10.1103/PhysRevD.83.029903
http://dx.doi.org/10.1088/0264-9381/27/16/165008
http://dx.doi.org/10.1088/0264-9381/27/16/165008
http://dx.doi.org/10.1140/epjc/s10052-011-1591-8
http://dx.doi.org/10.1140/epjc/s10052-011-1591-8
http://dx.doi.org/10.1007/s12043-012-0278-5
http://dx.doi.org/10.1142/S0219887814500017
http://dx.doi.org/10.1142/S0219887814500017
http://dx.doi.org/10.3390/e14091717
http://dx.doi.org/10.3390/e14091717
http://dx.doi.org/10.1007/s10714-011-1225-3
http://dx.doi.org/10.1007/s10714-011-1225-3
http://dx.doi.org/10.1142/S0218271814500886
http://dx.doi.org/10.1142/S0218271814500886
http://dx.doi.org/10.1103/PhysRevD.87.124030
http://dx.doi.org/10.1103/PhysRevD.58.084003
http://dx.doi.org/10.1103/PhysRevD.58.084003
http://dx.doi.org/10.4236/ijaa.2014.42031
http://dx.doi.org/10.4236/ijaa.2014.42031
http://dx.doi.org/10.1007/s10714-014-1818-8
http://dx.doi.org/10.1103/PhysRev.174.1559
http://dx.doi.org/10.1103/PhysRevD.67.084027
http://dx.doi.org/10.1103/PhysRevD.76.043006
http://dx.doi.org/10.1088/1475-7516/2010/09/004
http://dx.doi.org/10.1088/1475-7516/2011/02/028
http://dx.doi.org/10.1088/0264-9381/20/22/007
http://dx.doi.org/10.1088/0264-9381/20/22/007
http://dx.doi.org/10.1088/0264-9381/21/19/016
http://dx.doi.org/10.1088/0264-9381/21/19/016
http://dx.doi.org/10.1103/PhysRevD.61.044007
http://dx.doi.org/10.1103/PhysRevD.61.044007

