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In Haro, Amorós, and Pan [Phys. Rev. D 93, 084018 (2016)] a new cosmological model is proposed with
no big bang singularity in the past, though past geodesically incomplete. This model starts with an
inflationary era, follows with a stiff matter dominated period and evolves to accelerated expansion in an
asymptotically de Sitter regime in a realistic fashion. The big bang singularity is replaced by a directional
singularity. This singularity cannot be reached by comoving observers, since it would take them an infinite
proper time lapse to go back to it. On the contrary, observers with nonzero linear momentum have the
singularity at finite proper time in their past, though arbitrarily large. Hence, the time lapse from the initial
singularity can be as long as desired, even infinity, depending on the linear momentum of the observer. This
conclusion applies to similar inflationary models. Due to the interest of these models, we address here the
properties of such singularities.
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I. INTRODUCTION

The accelerated expansion of our Universe [1–5] has
motivated the consideration of either new ingredients in
the energy content of cosmological models [6–8] or
corrections to the general theory of gravitation compatible
with observations [9–12].
As a consequence, some energy conditions are violated

by these new ingredients with the result of new future
scenarios for our universe in the form of new singularities
(big rip, sudden singularities…) or nonsingular asymptotic
behaviors observationally undistinguishable from singular-
ities (pseudorip, little rip…). Some of these singularities are
weak in the sense that the universe can be extended beyond
the singularity and in consequence it cannot be considered
the end of the universe. These phenomena have also been
discovered recently in inflationary models [13].
But these singular behaviors may also appear at the

beginning of our universe, replacing the traditional big
bang as initial singularity. One of these models is [14], but
other inflationary models [15] follow a similar pattern.
The model [14] proposes a simple equation of state

which succeeds in removing the big bang singularity,
replacing it by another one, dubbed little bang in analogy
with the little rip, and producing an inflationary era.
A phase transition stops the inflation until in the far future
accelerated expansion is dominant. An interesting feature
shown in [14] is that the new singularity is at infinite
cosmic time, for comoving observers, but at finite proper
time for non-comoving observers. This resembles the
behavior of directional singularities in [16,17].
We would like to comment here the nature and properties

of these initial singularities appearing in some inflationary

cosmological models. We begin by reviewing the possible
singular scenarios in Sec. II, paying special attention to
directional singularities in Sec. III in order to frame the
inflationary model in Sec. IV. The derived conclusions are
summarized in the final section.

II. COSMOLOGICAL SINGULARITIES

In [17] a thorough classification of cosmological singu-
larities has been provided both at finite and infinite
coordinate time, obtained in terms of either the behavior
of the barotropic index w for flat models of scale factor a or
equivalently the deceleration parameter q,

w ¼ p
ρ
¼ −

1

3
−
2

3

aä
_a2

; q ¼ −
aä
_a2

¼ 1þ 3w
2

;

where ρ is the energy density and p is the pressure of the
model and the dot stands for derivative with respect to
coordinate time t.
This classification makes use of generalized power

expansions [18] in coordinate time of the deviation h from
the pure cosmological constant case,

wðtÞ ¼ −1þ 2

3
hðtÞ; qðtÞ ¼ −1 − hðtÞ;

and extends the one in [19], which has been enlarged in
[20–22]. We shall not include here nonsingular behaviors
such as little rip [23], pseudorip [24] and the little sibling of
the big rip [25], since we are concerned just with singu-
larities, though they are also taken into account in [17]. The
classification can be summarized as follows:

(i) Type -1: “Grand bang/rip”: [17] The scale factor
vanishes or blows up at w ¼ −1. The Hubble ratio,
the energy density and the pressure blow up. These
are strong singularities.*leonardo.fernandez@upm.es; http://dcain.etsin.upm.es/ilfj.htm
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(ii) Type 0: “Big bang”: The scale factor vanishes at
w ≠ −1. The Hubble ratio, the energy density and
the pressure blow up. These are also strong.

(iii) Type I: “Big rip” [26]: The scale factor, the Hubble
ratio, the energy density and the pressure blow up.
Null geodesics are complete, but not timelike geo-
desics. They are strong singularities.

(iv) Type II: “Sudden singularities” [27,28]: They have
been also dubbed “quiescent singularities” [29]: The
scale factor, the Hubble ratio and the energy density
remain finite, whereas the pressure blows up. That
is, the second derivative of the scale factor diverges.
Some subcases have been dubbed big brake [30]
and big boost [31]. These are weak singularities [32]
and the models just violate the dominant energy
condition.

(v) Type III: “Big freeze” [33] or “finite scale factor
singularities”: The scale factor remains finite, but the
Hubble factor, the energy density and the pressure
blow up. That is, the first derivative of the scale
factor is singular. Depending on the definition used
[34,35], they can be either strong or weak [36].

(vi) Type IV [37]: The scale factor, the Hubble ratio, the
energy density and the pressure are finite, whereas
higher derivatives of the scale factor blow up. They
are dubbed “generalized sudden singularities” if the
barotropic index w is finite [22] and big separation if
it blows up with vanishing pressure and energy
density. These are weak singularities.

(vii) Type V: “w-singularities” [38,39]: The scale factor,
the Hubble ratio, the energy density, the pressure
and higher derivatives of the scale factor are finite,
whereas the barotropic index w blows up. They are
weak singularities [40].

(viii) Type∞: “Directional singularities” [16]: These type
of singularities appear at infinite coordinate time,
but at finite proper time, at least for some observers.
In this sense they are directional. These are p.p.
curvature singularities (curvature singularities along
a parallelly transported basis) [41]. We pay little
attention to this overlooked type of singularities.

This analysis has been done at the classical level. It must
be taken into account that some of these singularities have
been shown to be removable on considering quantum
gravity [42] and loop quantum gravity corrections [43].

III. TYPE ∞ SINGULARITIES

Type ∞ singularities appear at coordinate time t ¼ �∞.
In general, this time is inaccessible, but this is not so in
certain cosmological models.
For a flat Friedmann-Lemaître-Robinson-Walker cosmo-

logical model with scale factor aðtÞ and metric

ds2 ¼ −dt2 þ a2ðtÞðdr2 þ r2ðdθ2 þ sin2 θdϕ2ÞÞ; ð1Þ

we notice [16] that the system of equations for geodesic
curves, followed by nonaccelerated observers (δ ¼ 1) and
lightlike particles (δ ¼ 0) with specific linear momentum
P, can be reduced to

dt
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δþ P2

a2ðtÞ

s
; ð2aÞ

dr
dτ

¼ � P
a2ðtÞ ; ð2bÞ

for constant θ and ϕ, due to the symmetry of these models,
and where τ is the intrinsic or proper time as measured by
the observer.
For null geodesics we have

dt
dτ

¼ P
aðtÞ ⇒ Δτ ¼ 1

P

Z
t

−∞
aðtÞdt:

Hence, for the initial event t ¼ −∞ to be at a finite
proper time lapse Δτ of an event at t, we require

Z
t

−∞
aðtÞdt < ∞: ð3Þ

That is, singular behavior at t ¼ −∞ only may appear if
the scale factor is an integrable function of coordinate time.
This means that it is necessary, but not sufficient, that aðtÞ
tends to zero when t tends to −∞.
Similarly, for timelike geodesics with nonzero P,

Δτ ¼
Z

t

−∞

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

a2ðtÞ
q <

1

P

Z
t

−∞
aðtÞdt;

the proper time lapse to t ¼ −∞ is finite if the time lapse
for lightlike geodesics is finite and then t ¼ −∞ is
accessible for these observers.
Hence, condition (3) implies that both lightlike and

timelike geodesics with nonzero P have t ¼ −∞ at a finite
proper time lapse in their past.
On the contrary, comoving observers, following timelike

geodesics with P ¼ 0, have dτ ¼ dt and therefore t ¼ −∞
is for them at an infinite proper time lapse in the past and
cannot have experienced the singularity.
This is the reason why Type ∞ singularities are direc-

tional, in the sense that they are accessible for causal
geodesics, except for those with P ¼ 0.
According to [17], Type ∞ singularities may appear in

three instances:
(i) Finite

R
−∞ hdt, hðtÞ > 0: a−∞ ¼ 0, ρ−∞ ¼ ∞,

p−∞ ¼ −∞, w−∞ ¼ −1. They differ from little rip
in the sign of hðtÞ, so they can be dubbed little bang
if it is an initial singularity or little crunch [17] if it is
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a final singularity. Instances of this case are models
with scale factor aðtÞ ∝ e−αð−tÞp with p > 1, α > 0.

(ii) h−∞¼0, jhðtÞj≳ jtj−1, hðtÞ < 0: a−∞ ¼ 0, ρ−∞ ¼ 0,
p−∞ ¼ 0, w−∞ ¼ −1. By changing the sign of hðtÞ
we obtain a sort of little rip with vanishing asymp-
totic energy density and pressure. Examples for this
case are models with scale factor aðtÞ ∝ e−αð−tÞp

with p ∈ ð0; 1Þ, α > 0.
(iii) Finite h−∞ ∈ ð−1; 0Þ: a−∞ ¼ 0, ρ−∞ ¼ 0, p−∞ ¼ 0,

finite w−∞ ≠ −1. This is the case, for instance, of
models with aðtÞ ∝ t−p, p > 1, as the ones studied
in [16].

It is interesting to check the strength of these singularities
in order to know if the model can be extended beyond the
singularity.
There are several definitions of strong singularities.

The concept comes up first in [44] by defining a strong
curvature singularity as one for which no object “can arrive
intact at the singularity”.
Tipler [34] clarifies the concept by defining a strong

curvature singularity as one for which “any object hitting it
is crushed to zero volume.” The volume of the object is
rigorously defined by any three linearly independent
spacelike vorticity-free Jacobi fields orthogonal to the
velocity of the geodesic. This definition is equivalent to
inextendibility of the spacetime in a continuous fashion
beyond the singularity.
In the context of cosmic censorship Królak [35] pro-

posed another definition which requires that, instead of a
vanishing volume of the object, the derivative of the volume
must be negative close to the singularity.
Such definitions are complex to apply from scratch, but

fortunately there are necessary and sufficient conditions for
their requirements [45]. They are even simpler in our case,
since Friedmann-Lemaître-Robinson-Walker spacetimes
are conformally flat.
For instance, according to Tipler, a null geodesic ends up

at a strong singularity at proper time τ0 if and only if

Z
τ

0

dτ0
Z

τ0

0

dτ00Rijuiuj ð4Þ

blows up as τ tends to τ0. R is the Ricci tensor of the
spacetime and u is the velocity of the geodesic.
According to Królak, a null geodesic ends up at a strong

singularity at τ0 if and only if

Z
τ

0

dτ0Rijuiuj ð5Þ

blows up as τ tends to τ0.
For timelike geodesics the previous conditions become

just sufficient conditions.

Let us check these requirements for the first two
subtypes of singularities. For the third subtype the strength
was checked in [16].
For a null geodesic, the components of the velocity u are

ut ¼ dt
dτ

¼ P
a
; ur ¼ dr

dτ
¼ � P

fa2
;

and hence the Ricci curvature along the geodesic takes the
expression

Rijuiujdτ ¼ 2P2

�
_a2

a4
−

ä
a3

�
dτ

¼ 2P

�
_a2

a3
−

ä
a4

�
dt

¼ −2Pẍe−xdt; ð6Þ

in terms of xðtÞ ¼ ln aðtÞ.
For timelike geodesics,

ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

a2

s
; ur ¼ � P

a2
;

since a−∞ ¼ 0 we have

Rijuiujdτ ¼
− 3ä

a þ 2P2ð _a2a4 − ä
a3Þffiffiffiffiffiffiffiffiffiffiffiffi

1þ P2

a2

q dt

≃
�
−
3ä
P

þ 2P

�
_a2

a3
−

ä
a2

��
dt:

The second term already appears for null geodesics. The
first term is smaller than the second one, since w≃ −1 for
these models. Therefore the conclusions for null geodesics
are valid also for timelike geodesics close to these direc-
tional singularities.
In order to have finite integrals of (6) it is necessary that ẍ

tends to zero when t tends to −∞, since e−x ¼ a−1 tends to
infinity for directional singularities, and hence x tends to
−∞ either.
The function x should be then a divergent function of

time with decreasing concavity ẍ, asymptotically tending to
zero. This happens with functions which behave asymp-
totically as xðtÞ≃ −ð−tÞp, with 0 < p < 2. Faster diverg-
ing functions have nonzero asymptotic acceleration and
functions decreasing more slowly do not diverge at infinity.
These sort of functions produce divergent integrals of

the Ricci curvature and hence we are to conclude that all
Type ∞ singularities are strong according to Tipler’s and
Królak’s criteria.
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IV. THE MODEL

The model proposed in [14] has a scale factor of the form

aðtÞ ¼

8>><
>>:

aEe
− 1
6γ

�
1þ2Hf

He
þ

ffiffiffiffiffi
8Hf
He

q �
½e−3γHet−1�

e
He
2
t if t < 0

aE
�
3γ
2
ðHe þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HeHf

p Þtþ 1
� 2

3γeHft if t ≥ 0;

ð7Þ

where aE, γ, He, Hf, HE are parameters of the model.
Taking into account the values of these parameters in the

model, the scale factor can be approximated as

aðtÞ≃
(

aEe
− 1
6γ½e−3γHet−1�e

He
2
t for t < 0

aEð3γ2 Hetþ 1Þ 2
3γeHft for t ≥ 0.

ð8Þ

We are interested in the behavior of the model for very
small negative t. For that era, the barotropic index of the
model is

wðtÞ≃ −1þ 2

18γ
e3γHet; hðtÞ≃ e3γHet

6γ
:

In [14] it is shown that this model has no big bang
singularity and there is no initial singularity in cosmic time.
However, a singularity appears at finite proper time in the
past for noncomoving observers.
This can be derived within our formalism for this model

and similar ones, since in this case it is clear that hðtÞ is an
integrable function of coordinate time and therefore the
model has a Type ∞ singularity of the first kind in our
classification (a∞ ¼ 0, ρ∞ ¼ ∞, p∞ ¼ −∞, w∞ ¼ −1).

V. CONCLUDING REMARKS

We have shown that the model in [14] and similar
inflationary models [15] with the property

Z
T

−∞
aðtÞdt < ∞;

for some time T have a directional singularity as initial
singularity, which is accessible in finite proper time only
for null geodesics and timelike geodesics with finite linear
momentum P. Comoving observers, following cosmologi-
cal fluid worldlines, have not experienced the initial
singularity, since it would have taken them infinite proper
time to reach present time. Their geodesic trajectories are
complete toward the past.
This does not happen in other cosmological models for

which there is no such discrepancy between the finiteness
of proper time and coordinate time lapses.
The absence of a big bang singularity is an interesting

feature for a cosmological model, even though the curva-
ture still blows up at the new singularity. Milder singular-
ities with vanishing, instead of diverging, energy density
and pressure could be obtained with similar models, but
with nonintegrable hðtÞ.
For a model starting with a big bang singularity, the

proper time of comoving observers is finite and defines the
maximum age of the universe that can be experienced by
nonaccelerated observers.
On the contrary, for a model with a little bang singularity,

the age of the universe in the previous sense is infinite and
the proper time as measured by nonaccelerated observers
can be as large as desired by diminishing their linear
momentum P.
It is an intriguing feature the idea of initial singularity

in these models, with observers for which the universe
extends indefinitely to the past, avoiding the singularity.
However, as it has been pointed in Sec. II, this is a pure
classical analysis. It is expected that the necessary
quantum effects to be considered on approaching the
singularities may appease them as it has happened in
other instances.
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