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We explicitly compute the plasma wave (PW) induced by a plane gravitational wave (GW) traveling
through a region of strongly magnetized plasma, governed by force-free electrodynamics. The PW
comoves with the GW and absorbs its energy to grow over time, creating an essentially force-free
counterpart to the inverse-Gertsenshtein effect. The time-averaged Poynting flux of the induced PW is
comparable to the vacuum case, but the associated current may offer a more sensitive alternative to
photodetection when designing experiments for detecting/constraining high-frequency gravitational waves.
Aside from the exact solutions, we also offer an analysis of the general properties of the GW to PW
conversion process, which should find use when evaluating electromagnetic counterparts to astrophysical
gravitational waves that are generated directly by the latter as a second-order phenomenon.
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I. INTRODUCTION

The Laser Interferometry Gravitational-Wave
Observatory’s successful detection [1] of gravitational
waves (GW) in the tens to thousands hertz frequency
range heralds in the era of gravitational wave astronomy,
allowing us to probe deeper into the depth of the cosmos
and the core regions of violent astrophysical events. Just as
with electromagnetic observations, GW messengers pop-
ulate a broad frequency range, and projects are currently
underway to detect them in the segments of around
10−16 Hz through the B-mode polarization of the cosmic
microwave background, nanohertz band via pulsar timing
arrays, millihertz range by space-based laser interferome-
ters, and up to about 104 hertz with a network of second-
generation ground-based interferometers.
In comparison, activities in the higher frequency

(> 100k Hz) end of the spectrum have been relatively
subdued. One of the reasons is that the relevant GW sources
have been less certain, so there is a chance that this corner
of the GW universe is simply quiet. However, most of the
speculative sources proposed so far are intimately tied into
fundamental physics (e.g., of cosmological [2–10] and
braneworld [11,12] origins), and so a detection in this
frequency regime may yield important insights, while null
results would still be interesting in terms of constraining
exotic models. Another reason for the lack of interest is that
our technology has not been sufficiently advanced to make
the current detector designs sensitive enough to make the
detection of such speculative sources likely (see, e.g.,
Refs. [13,14]). However, rapid progresses in potentially
relevant experimental capabilities are being made in the
fields of controlled fusion and laboratory astrophysics. In
addition, the wavelengths of high-frequency gravitational

waves (HFGW) are such that they impose less of a demand
on the physical size of the detectors. Therefore, the cost-
benefit ratio may eventually justify a new generation of
detectors being built to listen for such signals, and it is
consequently useful to maintain an active investigation into
their design options (see, e.g., [15]).
As high HFGWs need to be converted into, for example,

electromagnetic (EM) signals, in order for us to take a
readout, the very core of the design problem is then to find a
physical process that achieves this conversion most effi-
ciently. The options explored so far concentrate on GW
interacting with a static magnetic field, with or without a
background electromagnetic wave (EMW) at the same
frequency as the GW [14,16–21]. In such investigations,
the presence of the magnetic field is vital for mediating the
coupling between the GW and the EMW, and a curved
background spacetime can also serve as the catalyst. More
interestingly for our present study though, it has been noted
that currents enabled by the presence of a plasma can also
greatly enhance the coupling [22–30] through their being
disturbed by the GW. It is therefore interesting to examine
the possibility of replacing the vacuum electromagnetic
field with a strongly magnetized tenuous plasma as the
quiescent configuration (in a stationary solution of the so-
called force-free electrodynamics, thus no background
radiation). In previous studies involving magnetized
plasma/fluid, while detailed equations of motion are written
down and some estimates on the amplitude of induced
plasma waves (PW) are made, analytical solutions relevant
for HFGW detection are generally lacking, and a precise
evaluation of the coupling strength and a depiction of the
characteristics, such as the associated charges and currents,
of the induced radiation remain illusive (we note that
explicit solutions are given by Ref. [29] for the EMW to
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GW conversion, but not vice versa, which is noted to be
more complicated, and Ref. [30] offers standing but not
traveling wave solutions).
In this paper, we leverage some recent advances in

modeling plasma dynamics in curved spacetimes to find
simple and explicit analytical solutions and show that,
unfortunately, the temporally averaged Poynting flux asso-
ciated with the PW induced by the HFGW is no stronger
than their vacuum counterparts. The introduction of the
plasma however allows for the existence of currents, whose
amplitudes depend on that of the GW linearly, and makes
possible more sensitive detectors of the ammeter type. It is
beyond the scope of this paper to design a technologically
viable detector though, and therefore, the parameter choices
are somewhat arbitrary. We hope our demonstration of
the potential enhancement in sensitivity through plasma
injection, as well as the introduction of the user-friendly
analytical solutions, would solicit interest from experts and
lead to more detailed studies. We also mention that
although not discussed in any detail below, our analytical
solutions may also be applied to the beginning of the GW’s
journey, namely, to study their EM counterparts generated
by the GWs themselves inside magnetospheres of compact
objects. A large body of excellent literature (see references)
already exist on this subject, and we refer interested readers
to them for potential applications of our results.
We derive the equations governing the coupling between

the GWand the PW in Sec. II and analyze properties of the
conversion process that they encode in Sec. III. In par-
ticular, we clarify what kinds of GW excite which types of
PW, providing discussions from a physical point of view.
We then discuss general solutions to these equations in
Sec. IV and concentrate on a particular one that is relevant
for HFGW detection in Sec. V. We further sketch the case
for a potential detector design in Sec. VI, before concluding
with a discussion in Sec. VII. Unless otherwise stated, the
formulas below are expressed in geometrized units where
G ¼ c ¼ ϵ0 ¼ 1. Boldface letters are used to represent
three- or four-dimensional vectors and tensors, with spe-
cific assignments made clear from context.

II. FORCE-FREE EQUATIONS

Analytical solutions describing the interaction between a
GW and a magnetized fluid has been worked out in
Ref. [30] for the case of a standing GW and used to test
a magnetohydrodynamics code. For the sake of HFGW
detection, we need a description of induced PW converted
from a traveling GW, and we solve for it under the
assumption that the plasma’s mass density is negligible
in its contribution to the overall stress-energy tensor as
compared to the electromagnetic field itself, or in other
words, we assume that the plasma is tenuous. Such a
situation is described by the so-called “force-free electro-
dynamics,” frequently invoked when examining astro-
physical environments [31,32]. More specifically, the

inertia-less plasma particles do not have a tendency to
preserve their previous states of motion and thus require no
separate kinetic equations (the state of the magnetized
plasma is sufficiently described with only the electric and
magnetic fields). A plasma particle’s movement is instead
governed entirely by the requirement that it experiences
vanishing 4-force density (or else it would be infinitely
accelerated), i.e.,

Fabjb ¼ 0; ð1Þ

where jb is the 4-current density due to the plasma
particles’ motion. Enforcing this condition on the currents
that act as the source terms in the usual Maxwell’s
equations leads to force-free equations, in which the
presence of the plasma manifests as nonlinear modifica-
tions [33].
In this particular limit of magnetohydrodynamics, the

propagation speed of the plasma waves are that of the speed
of light, therefore optimal for creating resonant conditions
where phase coherence with the GW is maintained for as
long as possible, allowing for consistent draining (as
opposed to periodically feeding back in) of energy from
GW to generate as large an EM signal as possible.
Adopting the force-free assumption also allows us to take
advantage of some technologies that have recently become
available [34], resulting in our being able to find closed-
form solutions.
Specifically, let us assume that the spacetime is initially

flat and there is an uniform magnetic field along the z
direction, which is described by the field 2-form (the
Faraday tensor)

F0 ¼ B0dx ∧ dy: ð2Þ

In the flat spacetime, the background solution as given by
Eq. (2) carries no current, so the force-free condition is
satisfied trivially. However, once metric perturbations are
introduced (metric becomes ηab þ hab, where ηab denotes
the Minkowski values), a background current appears,
taking the value of

ja0 ¼ B0

0
BB@

∂yhtx − ∂xhty

∂thty − ∂zhyz − 1
2
∂yðhtt þ hxx þ hyy − hzzÞ

−∂thtx þ ∂zhxz þ 1
2
∂xðhtt þ hxx þ hyy − hzzÞ

∂xhyz − ∂yhxz

1
CCA:

ð3Þ

Consequently, F0abjb0 ≠ 0 in a curved spacetime, and
Eq. (2) ceases to be a valid force-free solution. The PWs
then emerge to restore force-freeness, and the now
PW-added field 2-form can be written as
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F ¼ B0dðxþ αðt; x; y; zÞÞ ∧ dðyþ βðt; x; y; zÞÞ; ð4Þ
whereby the terms xþ α and yþ β are called Euler
potentials. That such a decomposition of the field 2-form
is possible is established in Refs. [34–36]. The force-free
equations of motion can then be transcribed into the
exterior calculus language as [34]

ðdxþ dαÞ ∧ d � F ¼ 0; ðdyþ dβÞ ∧ d � F ¼ 0; ð5Þ

wherein the spacetime curvature enters only through the
Hodge dual operator � (see Appendix A for details), a fact
that significantly simplifies formalism. To make further
progress, let us define, as in [37], the auxiliary variables

ψ1 ¼ ∂xβ − ∂yα; ψ2 ¼ ∂yβ þ ∂xα; ð6Þ
turning the explicit form of the equations (5) (keeping to
linear order in metric perturbation) into

ð−∂2
t þ ∂2

zÞψ1

¼ ∂2htx
∂t∂y −

∂2hty
∂t∂x þ ∂2hyz

∂z∂x −
∂2hxz
∂z∂y ;

ð−∂2
t þ ∂2

x þ ∂2
y þ ∂2

zÞψ2

¼ 1

2
ð∂2

x þ ∂2
yÞðhtt þ hxx þ hyy − hzzÞ

þ ∂2hyz
∂y∂z þ

∂2hxz
∂x∂z −

∂2hyt
∂y∂t −

∂2hxt
∂x∂t : ð7Þ

The quantity ψ1 that propagates along the z direction (see
the left-hand side of Eq. (7) then depicts waves climbing
the magnetic field lines or the Alfvén waves, while ψ2

describes the fast magnetosonic waves [37].
For the purpose of our study, we specialize to a

sinusoidal plane gravitational wave, with a uniform trans-
verse profile, propagating in a direction in the x − z plane
that extends an angle χ with the z axis (for a more generic
wave profile, both along and transverse to the propagation
direction, see Appendix B). We define the amplitudes h×
and hþ for the cross and plus polarizations (and h is used
when distinguishing between them is not necessary), such
that in an adapted coordinates system ðt; x0; y; z0Þ where the
GW travels along the z0 axis (i.e., spatially rotated against
the original coordinates around the y axis by the angle χ)
the metric perturbation takes on the familiar form of

ha0b0 ¼

0
BBB@

0 0 0 0

0 hþ h× 0

0 h× −hþ 0

0 0 0 0

1
CCCA cosðϕ0 − ωðt − z0ÞÞ: ð8Þ

Transferring back to the original coordinate system where
the magnetic field is along the z axis and in which we carry
out our computations, we then have

hab ¼

0
BBB@

0 0 0 0

0 hþ cos2 χ h× cos χ ðhþ=2Þ sin 2χ
0 h× cos χ −hþ h× sin χ

0 ðhþ=2Þ sin 2χ h× sin χ hþ sin2 χ

1
CCCA

× cos ξ; ð9Þ

where ξ≡ ϕ0 − ωðtþ x sin χ − z cos χÞ. The force-free
equations (7) then become

−
∂2ψ1

∂t2 þ ∂2ψ1

∂z2 ¼ h×ω2 sin2 χ cos χ cos ξ; ð10Þ

−
∂2ψ2

∂t2 þ ∂2ψ2

∂x2 þ ∂2ψ2

∂y2 þ ∂2ψ2

∂z2 ¼ hþω2 sin2 χ cos ξ:

ð11Þ

Note that in our derivations above we have ignored the
backreaction of the electromagnetic field on the metric,
which is suppressed by a factor of G=c4 in SI units (and by
a corresponding suppression of the EM field strengths
when transferring into geometrized units).

III. SELECTION RULES

We see that the Euler potential formalism allows us to
write down very simple equations (10) and (11), from
which we can glean answers to important questions such as
which types of GW excite which types of PW. We in fact
have a fairly clean dichotomy: cross-polarized GWs excite
the Alfvén waves, while plus-polarized GWs excite fast
magnetosonic waves.
The intuitive reasons behind these simple rules are

encoded in Eq. (3), which represents the EM effects of
immersing the background magnetic field in a curved
spacetime. Such effects are the intermediate agents respon-
sible for driving the PWs. More precisely, the force-free
condition demands that (to leading order in metric pertur-
bation, and thus also α and β)

F0abjð1Þb ¼ F0abðδjb þ jb0Þ ¼ 0; ð12Þ

where δj ¼ �ðd � δFÞ, with

δF≡ B0ðdx ∧ dβ þ dα ∧ dyÞ ð13Þ

being the leading order perturbation to the field 2-form. In
essence then, PWs need to be produced in order to provide
a current δja that cancels out (the troublesome components
of) the GW-generated background ja0 . Furthermore, we note
that jz0 is not an active component in Eq. (12), as F0xy ¼
−F0yx are the only nonvanishing components of F0, so only
jx0 and j

y
0 need to be neutralized (currents in the x − y plane

experience a Lorentz force from the background magnetic
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field in the z direction). In contrast, the component jð1Þz
does not need to vanish, even at leading order, a fact that we
use later to propose HFGW detectors of the ammeter type.
The fast magnetosonic and Alfvén waves split the task of
current-neutralization between them. Comparing Eq. (3)
with Eq. (7), we see that the source to the fast magnetosonic
wave ψ2 is simply ð∂xj

y
0 − ∂yjx0Þ=B0, while the source to

the Alfvén wave ψ1 is −ð∂xjx0 þ ∂yj
y
0Þ=B0. We examine the

two types of waves in turn.
The general characteristic of a magnetosonic wave in any

magnetized plasma is that it has a tendency [but not
absolutely enforced by the operator on the left-hand side
of Eq. (11)] to travel in the direction perpendicular to the
background magnetic field B0, with its associated pertur-
bation to the magnetic field δB having a component along
B0 [see, e.g., [38] and also Eq. (30) below]. Therefore, δBz

is a good quantitative representation for the fast magneto-
sonic waves. Substituting into Eq. (13) the two terms ∂yβ
and ∂xα of Eq. (6) that combine into ψ2, we see that they in
fact give us δBz ¼ B0ψ2 [obeyed by our specific fast
magnetosonic wave solution presented in Sec. V, see
Eqs. (27) and (30) below].
With regard to polarization, because ψ2 is essentially

δBz, the GWs effective at inducing fast magnetosonic
waves would be the ones that are capable of coupling to
the background magnetic field in such a way as to generate
a δBz by introducing currents onto the x − y plane. From
Eq. (3), the diagonal entries in hab are obviously adapt at
this task, and according to Eq. (9), they correspond to the
plus polarization. There are also other terms in jx0 and jy0,
including a hyz that corresponds to the cross polarization.
However, with our long wave train without y dependence,
the jx0 introduced by this term has no variation in the y
direction and is thus incapable of producing δBz. When a
more complicated wave profile is introduced, such as that
in Eq. (B3) of Appendix B, both polarizations are activated,
but the general rule still applies, namely, that

(i) GWs effective at introducing a current that rescales
the background magnetic field would be efficient in
inducing fast magnetosonic waves.

The Alfvén waves, on the other hand, are restricted to
propagate along the background magnetic field [see the
left-hand side of Eq. (10)] and are characterized by the
presence of an accompanying dynamical current compo-
nent flowing in the same direction (see, e.g., [39–41]).
Therefore, GWs that can produce a dynamical current (as
opposed to a constant flux) in the z direction are better
“impedance matched” and more effective at feeding
energy into Alfvén waves. Indeed, although the source
term to ψ1 in Eq. (7) is derived by combining jx0 and j

y
0, the

particularities of the combination is such that the source
term turns out to be simply ∂zj

z
0 [ignoring the shift

coordinate freedom terms like htx that do not appear for
GWs, see Eq. (9)]. From Eqs. (3) and (9), we see that h×
entering through hyz satisfies this requirement, with the

lack of y dependence once again suppressing the other
polarization hidden in hxz. Just as with the fast magneto-
sonic waves, more complicated wave profiles allowed in
Eq. (B2) reactivates hþ. In summary, a more general rule
is that
(ii) GWs that introduce variable currents along the

background magnetic field direction would be more
efficient at eliciting Alfvén waves.

IV. GENERAL SOLUTIONS

We hope that the intuitive guidelines of Sec. III prove
useful in more complicated situations, for example, ones
involving secondary EM radiation coming from compact
celestial objects. In such cases, the ja0 currents from
immersing a background EM field in curved spacetimes
are straightforward to compute as well, without the need to
solve any equations [they are simply �ðd � F0Þ]. One can
then apply the rules of Sec. III to predict the GW-induced
PW content without having to solve the FFE equations.
Nevertheless, for more quantitative predictions, detailed
solutions are sought, and we present a recipe for acquiring
general solutions in this section.
We begin by noting that the selection rules do not mean

that a particular type of mode cannot exist in the absence of
the correct type of GW. In the absence of a source term, the
homogeneous force-free equations can still be solved, and
the resulting ψ1 or ψ2 represent waves being injected at the
boundaries of the magnetized regions,and simply traverse
such regions as their flat-spacetime counterparts would,
without drawing energy from the GW. Such solutions are
useful when superposed onto the so-called particular sol-
utions to the inhomogeneous equations when constructing
general solutions. The inhomogeneous solutions are more
complicated to obtain, but fortunately, we have treated the
relativistic effects perturbatively. Specifically, the metric
perturbations have all been placed onto the right-hand side
of the force-free equations, leaving us with simple flat
spacetime partial differential operators for the principal part
of these equations, for whom the Green’s functions are well
known. This allows us to adopt standard Green’s function
methods to solve them, not only for the long sinusoidal wave
trains as assumed for Eqs. (10) and (11) but also for themore
complicated cases of Appendix B.
Let the source terms on the right-hand sides of Eqs. (10)

and (11) be denoted by S1 and S2, and then the particular
solutions to the inhomogeneous equations are

ψ1ðx0Þ ¼
Z

G1ðΔ0
t;Δ0

zÞS1ðx00Þdt00dz00; ð14Þ

ψ2ðx0Þ ¼
Z

G2ðx00 − x0ÞS2ðx00Þd4x00; ð15Þ

where Δ0
z ≡ z0 − z00, Δ0

t ≡ t0 − t00, and G1=2 are Green’s
functions. The integrations are to be carried out over the
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entire vessel containing the magnetized plasma.
Homogeneous solutions (satisfying the FFE equations with
S1=2 ¼ 0) can then be superposed onto the results in order
to satisfy desired boundary and initial conditions. Because
we have decoupled the equations for the Alfvén and fast
magnetosonic waves, their boundary conditions can be
imposed separately. As already mentioned, these homo-
geneous solutions are simply freely propagating waves that
behave as if they are in flat spacetime and do not interact
with the GW. Therefore, fixing boundary conditions is not
important when studying the GW to PW conversion
process, and they do not determine which type of PW is
induced by the GW. They are however required if one is to
compute the observables such as energy fluxes or currents
to be measured by HFGW detectors because freely propa-
gating waves injected at the boundaries contaminate these
quantities. We discuss this further in Sec. V. Returning to
the particular solution, Green’s functions are those of the
flat spacetime, specifically

G1ðz00; t00; z0; t0Þ ¼
1

2
ΘðΔ0

tÞΘðΔ0
t þ Δ0

zÞΘðΔ0
t − Δ0

zÞ; ð16Þ

G2ðx00;x0Þ ¼ δðt0 − ðt00 − RÞÞ
4πR

; ð17Þ

where R≡ jx00 − x0j, and Θ are the Heaviside step
functions.
For simpler S1=2 such as those appearing on the right-

hand sides of Eqs. (10) and (11), closed-form solutions for
ψ1=2 exist. We examine a closed-form particular solution
for ψ2 in Sec. V in quite some detail, so here, we present
only a solution for ψ1. Assuming the interaction between
the GWand the magnetized plasma begins at t0 and that the
z extent of the plasma container is sufficiently large that at
the time t0 concerned all the regions where G1 > 0 are
included within, then we have

ψ1 ¼ 2h×

�
sin2

χ

2
sin

�
Δ0ωcos2

χ

2

�
sin

�
ξ̂þ 1

2
ωΔ0 cos χ

�

− cos2
χ

2
sin

�
Δ0ωsin2

χ

2

�
sin

�
ξ̂ −

1

2
Δ0ω cos χ

��
;

ξ̂≡ ϕ0 −
1

2
ωðt0 þ t0Þ − x0ω sin χ þ ωz0 cos χ; ð18Þ

where also Δ0 ≡ t0 − t0.
Given the solutions for ψ1=2, we then need to reconstruct

the original α and β perturbation functions before we can
compute the EM fields. From Eq. (6), we deduce that these
quantities satisfy the two-dimensional elliptic equations

� ∂2

∂x2 þ
∂2

∂y2
�
α ¼ −

∂ψ1

∂y þ ∂ψ2

∂x ; ð19Þ

� ∂2

∂x2 þ
∂2

∂y2
�
β ¼ ∂ψ1

∂x þ ∂ψ2

∂y : ð20Þ

Once again, we have a Green’s function giving us the
particular solution

α ¼
Z

ln jρ − ρ0j
2π

Sαðρ0Þd2ρ; ð21Þ

where ρ denotes locations on the x − y plane, Sα represents
the right-hand side of Eq. (19), and a similar solution exists
for β. A further integration by parts allows us to write

αðxÞ ¼
Z

dx0dy0
Δxψ2ðx0; y0; zÞ − Δyψ1ðx0; y0; zÞ

2π½Δ2
x þ Δ2

y�
; ð22Þ

βðxÞ ¼
Z

dx0dy0
Δxψ1ðx0; y0; zÞ þ Δyψ2ðx0; y0; zÞ

2π½Δ2
x þ Δ2

x�
; ð23Þ

whereby Δx ≡ x − x0 and Δy ≡ y − y0. It turns out that
symbolic manipulation software such as Mathematica are
capable of generating closed-form expressions for α and β
that correspond to the ψ1 given by Eq. (18). The expres-
sions are too long and tedious to be reproduced here, but the
integrands are straightforward to input. On the other hand,
the closed-form fast magnetosonic wave we examine in the
next section has simple expressions for α, β, as well as the
Faraday tensor.
We have (here and in the next section) thus given closed-

form particular solutions to both of the inhomogeneous
Eqs. (10) and (11), which can be combined with homo-
geneous solutions to generate general solutions satisfying
different boundary and initial conditions. For more com-
plicated S1=2 than considered in this paper, numerical
integrations can be utilized to yield the various quantities.

V. ACCUMULATIVE SOLUTIONS

In this section, we specialize to an exact solution that
resembles the vacuum inverse-Gertsenshtein effect most
closely and is therefore the most relevant for HFGW
detection. Equations (10) and (11) are simple enough that
we can isolate such interesting solutions straight away. We
expect efficient GW to PW conversion to be more likely
when the two types of waves can comove in the same
direction and retain a constant relative phase. For the
Alfvén waves, the intrinsic propagation direction is along
the z axis, but the source term on the right-hand side of
Eq. (10) vanishes when χ ¼ 0. There is however no
restriction on the propagation direction for the fast mag-
netosonic waves, and therefore, we concentrate on this
variety. More specifically, we search for solutions that
depict the following scenario: The GW traveling in the
direction determined by χ excites a fast magnetosonic wave
moving in the same direction, which continues to siphon
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energy off of the GW while it propagates. Indeed, the
following ansatz

ψ2 ¼
ζ

4
hþω sin2 χ sin ξ; ð24Þ

solves Eq. (11), where ζ ¼ t − x sin χ þ z cos χ is the
“advanced” time (with ξ being the retarded time) that
measures distance along the propagation direction.
Therefore, the PW grows linearly in amplitude as it
propagates, and it is in this sense we term the solution
“accumulative”.
Below, we concentrate on this type of growing solutions

and elucidate their properties, which would be useful if
actual experimental apparatus is to be designed to exploit it
in the detection of HFGW. We also note that the source
term on the right-hand side of Eq. (11) is the largest when
χ ¼ π=2 (GW propagating along the magnetic field gen-
erates no current [22,23]), and we assume this value for the
experimental setup. We however retain χ in our formulas in
order to present as generic a solution as possible to facilitate
application to other occasions. Schematically, we trap a
strongly magnetised plasma in between two screens as
depicted in green in Fig. 1 (for simplicity, we set x ¼ 0 on
the right screen where the GW first comes into contact with
the plasma) and examine the PW generated by the GW in
that region. For comparison, we mention that a growing
vacuum EMW would similarly be induced by the GW
if the plasma is evacuated from the magnetized region.
This phenomenon is commonly termed the inverse-
Gertsenshtein effect [16,42,43], and ours is essentially a
force-free version of it.
Before we compute the relevant field quantities, a few

remarks regarding the growing solutions for ψ2 are in order.

First of all, the advanced time ζ has an arbitrary initial
value. Taking the transformation ζ → ζ þ ζ0 with a con-
stant ζ0 will simply introduce an additional contribution
that solves the homogeneous part of Eq. (11). Physically,
the value of ζ0 is determined by the initial condition at
wherever the GW begins to interact with the plasma and
whether there has already been a seed wave present then.
Furthermore, the ζ in Eq. (24) can be broken into
components, and the segmental expressions falling out
such as

ψ2 ¼
t
2
hþω sin ξ sin2 χ; ð25Þ

also solve Eq. (11). These solutions represent essentially
the same physics of amplitude growth during concurrent
GW-PW propagation (along null geodesics of constant ξ)
but with a rescaling and a geodesic-dependent translation of
the affine parameter ζ. Which particular form of the
growing solutions to use obviously depends on the boun-
dary conditions we wish to impose, and as we enforce a no-
initial Poynting flux condition on the entrance screen at
x ¼ 0, it turns out that the most convenient choice is of the
form

ψ2 ¼ −
x
2
hþω sin ξ sin χ: ð26Þ

Note that we have the freedom to add freely propagating
waves [solutions to the homogeneous part of Eq. (11)] to
the solution to help enforce boundary and initial conditions.
In order to avoid being overly restrictive, given that we do
not know of the detailed properties of the would-be
detectors and the initial conditions for their interaction
with GWs, we look for steady state solutions representing
the plasma after interacting with a long GW train for a
significant amount of time and only impose the boundary
condition that the screen at x ¼ 0 does not inject any
Poynting flux into the cavity, so that flux registered on the
left screen comes from the GW conversion. Because we do
not enforce boundary conditions on the other surfaces of
the plasma cavity, our solution is not unique; we instead
examine a representative solution, given by

ψ2 ¼ −
1

2
hþðcos ξþ xω sin ξ sin χÞ: ð27Þ

With Eq. (27) and the assumption that ψ1 ¼ 0,
the solutions to Eq. (6) are easy to obtain by inspection,
giving us

α ¼ −
x
2
hþ cos ξ; β ¼ 0; ð28Þ

which indeed satisfy the original Eqs. (A3) and (A4) for
these entities. We caution that solution (28) is valid only
when either h× ¼ 0, or χ ¼ π=2, or χ ¼ 0. This is because

FIG. 1. A schematic depiction of the interactions. The plasma
and a strong magnetic field (black arrows) in the z direction is
contained between the two green screens. The GW (black
wiggles) traverses the magnetic field orthogonally from the right.
A fast magnetosonic wave (red wiggles) is induced which grows
linearly over distance along −x, resulting in a small Poynting flux
being registered on the left screen.
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our solution corresponds to ψ1 ¼ 0, but a vanishing ψ1 is
only a solution to Eq. (10) when the right-hand side of that
equation vanishes. For compactness, we do not display the
equations for each case separately, but readers should bear
in mind this constraint when applying the formulas below.
Substituting Eq. (28) into Eq. (4) for the Faraday tensor,

we can subsequently compute the electric field E through
Ea ¼ Fabτb, where τb is the timelike 1-form orthogonal
to spatial slices of constant t, and magnetic field
Bd ¼ ð1=2ÞϵabcdFabτc, as well as the Poynting vector P ¼
E ×B (we adopt the convention that ϵ0123 ¼ −1, so ϵ123 ¼
τaϵ

a123 ¼ 1 in the Minkowski limit). We use perturbed
metric for the computation, but keep the results up to only
linear order in h, which are (all contravariant spatial
vectors)

Eð1Þ ¼ x
2
B0hþω sin ξ

0
B@

0

1

0

1
CA; Bð0Þ ¼ B0

0
B@

0

0

1

1
CA; ð29Þ

Bð1Þ ¼ −
1

2
B0hþ cos ξ

0
B@

0

0

1

1
CA −

x
2
B0hþω sin ξ

0
B@

cos χ

0

sin χ

1
CA;

ð30Þ

Pð1Þ ¼ x
2
B2
0hþω sin ξ

0
B@

1

0

0

1
CA; ð31Þ

where we note that for our steady state solution, there is a
component in Bð1Þ that does not grow linearly in x.
Nevertheless, there is no first-order Poynting flux at
x ¼ 0. In more details, the Pð1Þ above is produced by
crossing the induced electric field with the background
magnetic field. This first-order flux oscillates between
going in the positive and negative x directions and would
not contribute to a temporally integrated signal. A con-
sistent flux (without periodic sign reversals causing nearly
cancelling positive and negative accumulations) associated
with a propagating wave, on the other hand, comes from the
second term of

Pð2Þ ≡Eð1Þ ×Bð1Þ ¼ −
x
8
B2
0h

2þω sin 2ξ

0
B@

1

0

0

1
CA

−
x2

4
B2
0h

2þω2sin2ξ

0
B@

sin χ

0

− cos χ

1
CA: ð32Þ

We caution that Pð2Þ does not constitute the entirety of the
second-order Poynting flux Pð2Þ, as there is a contribution

from the second order Eð2Þ crossing with the background
Bð0Þ. The examination of such a term is beyond the scope of
our current investigation, but it may nevertheless contain a
part that does not average out over time.
With PWs, charges and currents are allowed, which

can be computed by simply noting that half of the
Maxwell’s equations are given by d � F ¼ J, where J is
the current 3-form, relating to the usual 4-current density
ja (zeroth component being the charge density ρ) via
ja ¼ ð1=3!ÞϵabcdJbcd. To first-order in metric perturbation,
we have

ρð1Þ ¼ 0; jð1Þ ¼ B0h×ω sin ξ sin χ

0
B@

cos χ

0

sin χ

1
CA; ð33Þ

where the cross polarization h× is introduced and hþ
removed when taking the Hodge dual to obtain �F.
When χ ¼ π=2 so we can have h× ≠ 0, the nonvanishing
last row of jð1Þ is simply jz0 [see Eq. (3)] that does not need
to be removed by the PWs (see discussion in Sec. III). We
also do not need to be concerned with h× generating Alfvén
waves, as the source term in Eq. (10) vanishes when
χ ¼ π=2. Now that we have the explicit expression for ja, it
is easy to verify that Eq. (1) is indeed satisfied.

VI. HIGH FREQUENCY GRAVITATIONAL
WAVE DETECTOR

In the absence of a GW, the plasma will be quiescent,
with microwave detectors on the left-hand screen register-
ing no Poynting flux. When a GW wave train traverses the
magnetic field orthogonally, a fast magnetosonic wave is
produced, which grows in amplitude as it propagates. Such
a wave is described by Eq. (27). The dominant instanta-
neous energy flux recorded on the left screen at x ¼ −L is
subsequently given by Eq. (31), which when translated into
SI units becomes (unit of P is watts per square meter)

Pð1Þ
x ¼ 2.0 × 10−12B2

10L10ωGHzhþ−30 sin ξ; ð34Þ

where

B10 ¼ B0=ð10 TeslaÞ; hþ−30 ¼ hþ=10−30;

h×−30 ¼ h×=10−30; L10 ¼ L=ð10 mÞ;
ωGHz ¼ ω=ð5 × 109 HzÞ; ð35Þ

are dimensionless rescaled quantities normalized by typical
values (experimentally reasonable and commonly shared
across different HFGW source predictions) [21]. The time-
averaged flux due to the propagating wave, on the other
hand, appears at the next order and evaluates to
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hPð2Þ
x i ¼ −8.3 × 10−41B2

10L
2
10ω

2
GHzh

2
þ−30 sin χ: ð36Þ

We notice that, as typical for HFGW detection, higher
frequencies can compensate for low strains [44].
The time-averaged flux (36) is at the Oðh2Þ order, thus

comparable to the vacuum inverse-Gertsenshtein effect [21].
In addition, we do not expect the remaining part ofPð2Þ from
Eð2Þ ×Bð0Þ to provide significant enhancements, as that
term would also be proportional to B2

10h
2
−30 and would

unlikely containmuch higher powers ofωGHz (L10 shares the
same power for dimensional reasons). This is because even
with new second-order source terms being introduced into
the right-hand sides of Eq. (7), the differential operators
would still contain only two derivatives in order for the
dimensions to match up; therefore, we do not have extra
derivatives to bring out additional factors ofω. Furthermore,
numerical factors appearing in our geometrized unit com-
putations are all of moderate values, often arising from
combinatorics tied down to the 3þ 1 dimensionality of our
spacetime, so there is unlikely significant boosts from large
newly emerging coefficients in the second order computa-
tions. In contrast, the state of the art photodetector sensitivity
circa 2012 is 10−22 W [45]. Consequently, detecting this
temporally averaged flux is not feasible.
However, we notice that the instantaneous flux (34) is at

OðhÞ and is comfortably measurable from a purely power
amplitude point of view, provided that the detector is located
inside of the magnetized region. With previous detector
designs searching for GW to vacuum EMW conversions,
the photodetectors are placed outside of the screens that are
presumed transparent to the EMW (see Fig. 2 in Ref. [45]),
even though a similar first-order effect should be present in
that case as well (see, e.g., Eq. (1) of Ref. [44]). This may be
due to concerns regarding the effect of the magnetic field on
the photodetector (although this issue appears manage-
able [46]) or uncertainty inwhether a photodetector is capable
of registering such a rapidly sloshing energy flux. After all,
Eq. (34) does not represent a steady streamof photonsmoving
towards either the positive or the negative x direction.
With PWs, however, there is an accompanying current,

also at OðhÞ, due to the kinetic motion of the plasma
particles, which may be more readily detectable given that
no photon to current conversion is required. Specifically,
currents flowing in either direction is permitted, and a direct
measurement of the first-order effect simply as a high
frequency alternating current may be possible. We have
computed the current and charge densities for the growing
solution, given by Eq. (33), which in SI units takes the
value of (with units of amperes per square meter, and we set
χ ¼ π=2 so h× does not need to vanish)

jð1Þ ¼ 1.3 × 10−22B10h×−30ωGHz sin ξ

0
B@

0

0

1

1
CA: ð37Þ

The dependence of the current density on x through ξ
means that the current collector would likely need to be
stratified along the x direction, with signals from adjacent
stripes (each of half a wavelength, or 3π=ð50ωGHzÞ m)
aggregated by subtraction instead of addition, to ensure that
positive and negative contributions in the current density do
not cancel out. This may also help subtract out some of the
background stray noise currents. If we manage to construct
a current collecting area of 10 m by 10 m, and perhaps
increase the target frequency range (note ωGHz is angular
frequency) and/or magnetic field strength, we can bring the
total current to the atto (10−18) ampere regime, for which
measurement equipments are already available at the turn
of the century [47], and the state of the art may be even
more sensitive.

VII. DISCUSSION

In this paper, we have studied the force-free version of
the inverse-Gertsenshtein effect and obtained explicit
solutions, allowing us to compute the first-order currents
that were not present in the vacuum case, offering possibly
a new avenue for detecting HFGW. Specifically, we have
considered a quiescent background configuration, where
the magnetic field is constant in space and time. There is no
background electric field, Poynting flux, or current density
present in the absence of a GW. We then target nascent
electrical current or Poynting flux converted from the GW
for detection.
In other words, our consideration has been restricted to

detectors of the “conversion” type [16,42,45,48,49]. Our
computation shows that temporally averaged Poynting flux
for the induced PW is at theOðh2Þ order, which turns out to
be the same for the vacuum cases, and thus, the introduction
of plasma is unlikely to lead to feasible detectors of the
traditional photodetection design. In previous literature,
more complicated designs termed the “geometric” types
[17–21,50–58] have also been proposed. With such detec-
tors, effects depending on the GW amplitude at the first
order is seen in, for example, the polarization state or
frequency of a strong background EMW. Such more subtle
characteristics of a EMW tends to be relatively difficult to
measure however, and the demand on the purity of the
background EMW is also high, so one faces not only a
detection problem but also a generation one. In contrast, the
current associated with the PW also appears at the OðhÞ
order but requires fewer intermediate stages before a signal
readout can be taken, in addition to needing no nontrivial
backgrounds. So introducing plasma may perhaps lead to
more sensitive ammeter designs of the conversion type.
Although beyond the scope of this paper, one may of

course also consider geometric type force-free detectors,
where background Alfvén or fast magnetosonic wave
pulses are launched through the plasma cavity and emerge
altered by the GW. The examination of such design choices
should be carried out in conjunction with an investigation
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into technological options, and the general method intro-
duced here should be adaptable to such studies.
Lastly, we note that although there is no background

current or Poynting flux in theory, the motion of the plasma
particles may not conform to force-free electrodynamics
perfectly in practical situations or vibrations of the appa-
ratus may launch unwanted waves (sound wave conver-
sion). Therefore, some level of stray background radiation
and current is to be expected, which is likely stochastic. On
the other hand, although we have used a clean mono-
chromatic long GW train for analysis, the predicted HFGW
signals are also mostly stochastic, and the standard method
for analyzing such signals is by examining the correlation
between readouts from two detectors placed in close
proximity [58]. This poses certain technical challenges,
for example, the local vibrations at the two detectors would
also be correlated. In addition, the usual gravity gradient
noise etc. all need to be carefully investigated, and so in the
end, the noise budget, instead of device sensitivity, may

well prove to be the limiting factor for the ammeter
detectors.

ACKNOWLEDGMENTS

We thank Hao Wen for discussions regarding HFGW
detector noises and an anonymous referee for helpful
suggestions that led to the introduction of Secs. III and
IV. F. Z. is supported by the National Natural Science
Foundation of China Grants No. 11443008 and
No. 11503003, Fundamental Research Funds for the
Central Universities Grant No. 2015KJJCB06, and a
Returned Overseas Chinese Scholars Foundation grant.

APPENDIX A: HODGE DUAL EXPRESSIONS

When the perturbed metric is ηab þ ϵhab (we introduce a
flag ϵ to help track the order of small quantities), the Hodge
dual rules are

�dt ∧ dx¼ 1

2
dy ∧ dzðhttϵ− hxxϵþ hyyϵþ hzzϵþ 2Þ þ htyϵdt ∧ dz− htzϵdt ∧ dyþ hxyϵdx ∧ dz− hxzϵdx ∧ dyþOðϵ2Þ;

�dt ∧ dy¼ 1

2
dx ∧ dzð−httϵ− hxxϵþ hyyϵ− hzzϵ− 2Þ− htxϵdt ∧ dzþ htzϵdt ∧ dx− hxyϵdy ∧ dz− hyzϵdx ∧ dyþOðϵ2Þ;

�dt ∧ dz¼ 1

2
dx ∧ dyðhttϵþ hxxϵþ hyyϵ− hzzϵþ 2Þ þ htxϵdt ∧ dy− htyϵdt ∧ dx− hxzϵdy ∧ dzþ hyzϵdx ∧ dzþOðϵ2Þ;

�dx ∧ dy¼ 1

2
dt ∧ dzðhttϵþ hxxϵþ hyyϵ− hzzϵ− 2Þ þ htxϵdx ∧ dzþ htyϵdy ∧ dz− hxzϵdt ∧ dx− hyzϵdt ∧ dyþOðϵ2Þ;

�dx ∧ dz¼ 1

2
dt ∧ dyð−httϵ− hxxϵþ hyyϵ− hzzϵþ 2Þ− htxϵdx ∧ dyþ htzϵdy ∧ dzþ hxyϵdt ∧ dxþ hyzϵdt ∧ dzþOðϵ2Þ;

�dy ∧ dz¼ 1

2
dt ∧ dxðhttϵ− hxxϵþ hyyϵþ hzzϵ− 2Þ− htyϵdx ∧ dy− htzϵdx ∧ dz− hxyϵdt ∧ dy− hxzϵdt ∧ dzþOðϵ2Þ;

and the corresponding force-free equations are

1

2

�
2
∂2α

∂x∂yþ 2
∂hty
∂t −

∂htt
∂y −

∂hxx
∂y −

∂hyy
∂y þ ∂hzz

∂y − 2
∂hyz
∂z − 2

∂2β

∂t2 þ 2
∂2β

∂y2 þ 2
∂2β

∂z2
�

¼ Oðϵ2Þ; ðA1Þ

1

2

�
2
∂2β

∂x∂yþ 2
∂htx
∂t −

∂htt
∂x −

∂hxx
∂x −

∂hyy
∂x þ ∂hzz

∂x − 2
∂hxz
∂z − 2

∂2α

∂t2 þ 2
∂2α

∂x2 þ 2
∂2α

∂z2
�

¼ Oðϵ2Þ: ðA2Þ

With the definition of ψ1 and ψ2 as in Eq. (6), these equations simplify to Eq. (7). We can also specialize the source terms
to the plane GW considered in the main text, in which case the equations satisfied by α and β to OðhÞ are

−
∂2α

∂x∂yþ
∂2β

∂t2 −
∂2β

∂y2 −
∂2β

∂z2 ¼ h×
2
ω sin ξ sin 2χ; ðA3Þ

∂2β

∂x∂y −
∂2α

∂t2 þ ∂2α

∂x2 þ
∂2α

∂z2 ¼ −hþω sin ξ sin χ: ðA4Þ
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APPENDIX B: GENERIC WAVE PROFILES

In the main text, we have specialized to an infinite plane
wave train with a sinusoidal profile in the propagation
direction and no variation across the wavefront in the
transverse directions. Such configurations are the most
natural for HFGW detection, but when it comes to
examining the accompanying EM radiation generated by
an astrophysical GW, it is desirable to expand our consid-
eration to more generic wave profiles. To this end, we

define new variables (ξ3 is the retarded time, while ξ1 and y
are along the transverse directions)

�
ξ1

ξ3

�
¼

�
x cos χ þ z sin χ

−t − x sin χ þ z cos χ

�
ðB1Þ

and let the wave profile be specified by a function
gðξ1; y; ξ3Þ. The force-free equations are then

−
∂2ψ1

∂t2 þ ∂2ψ1

∂z2 ¼ −
sin χ
2

�
h×

�
sin 2χ

�∂2g
∂ξ23 −

∂2g
∂ξ21

�
− 2 cos 2χ

∂2g
∂ξ1∂ξ3

�
þ 2hþ cos χ

�
cos χ

∂2g
∂y∂ξ3 þ sin χ

∂2g
∂ξ1∂y

��
;

ðB2Þ

−
∂2ψ2

∂t2 þ ∂2ψ2

∂x2 þ ∂2ψ2

∂y2 þ ∂2ψ2

∂z2 ¼ − sin χ

�
−h×

�
cos χ

∂2g
∂ξ3∂yþ sin χ

∂2g
∂ξ1∂y

�

þ hþ

�
sin χ

�∂2g
∂ξ23 þ

∂2g
∂y2

�
− cos χ

∂2g
∂ξ1∂ξ3

��
: ðB3Þ

Taking gðξ1; y; ξ3Þ ¼ cosðωξ3 þ ϕ0Þ, these generic expressions reduce to the sinusoidal expressions (10) and (11).
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