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We investigate puncture statistics based on the covariant area spectrum in loop quantum gravity. First, we
consider Maxwell-Boltzmann statistics with a Gibbs factor for punctures. We establish formulas which
relate physical quantities such as horizon area to the parameter characterizing holographic degrees of
freedom. We also perform numerical calculations and obtain consistency with these formulas. These results
tell us that the holographic bound is satisfied in the large area limit and the correction term of the entropy-
area law can be proportional to the logarithm of the horizon area. Second, we also consider Bose-Einstein
statistics and show that the above formulas are also useful in this case. By applying the formulas, we can
understand intrinsic features of Bose-Einstein condensate which corresponds to the case when the horizon
area almost consists of punctures in the ground state. When this phenomena occurs, the area is
approximately constant against the parameter characterizing the temperature. When this phenomena is
broken, the area shows rapid increase which suggests the phase transition from quantum to classical area.
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I. INTRODUCTION

Canonical quantization of general relativity has a long
history beginning in the 1960s [1]. Basically, metric and its
conjugate momentum had been used as canonical variables
in these early days. In this case, the Hamiltonian constraint
is nonpolynomial about these variables. So, it is almost
impossible to solve its quantized counterpart. In [2], it was
shown that if we use the complex Ashtekar connection and
its conjugate, the Hamiltonian constraint can be written as
polynomial about these variables. Surprisingly, it was
found that Wilson loop for this connection is a solution
of quantized Hamiltonian constraint [3]. Using Wilson
loop, spin network, basic ingredients of the loop quantum
gravity(LQG), has been constructed [4]. Discrete area
spectrum is one of the main predictions in LQG [5,6].
However, it has been recognized that the reality con-

ditions for the physical quantities to be real are difficult
to be solved. Then, the SU(2) real connection has been
introduced where imaginary number i in the complex
Ashtekar connection was replaced by the real parameter
γ called the Barbero-Immirzi(BI) parameter [7]. Although
the Hamiltonian constraint becomes nonpolynomial, this
complication can be relieved if we rewrite it using the
technique developed in [8]. If we apply it in the symmetry-
reduced model, we can discuss singularity avoidance which
has been paid much attention [9].
The microscopic origin of black hole entropy in LQG

had also been discussed in [10], where the number of
degrees of freedom of the edge configuration for a fixed
SU(2) area spectrum was counted. Then, Ashtekar, Baez,
Corichi, and Krasnov refined this idea based on the isolated

horizon framework (so-called ABCK framework where the
isolated horizon itself was described by U(1) connection
[11,12]) and determined γ to satisfy the Bekenstein-
Hawking entropy-area law S ¼ A=ð4GÞ where S, A and
G are black hole entropy, horizon area and the gravitational
constant, respectively. Here, ambiguity of γ turned out to be
the merit of using a real connection. Including the correc-
tion of error in original counting [13], or ambiguity in
counting [14–16], relation with the quasinormal mode
[17–19], various aspects have been discussed related to
the ABCK framework [20–22].
The situation slightly changed when it was found that the

isolated horizon can be written using the SU(2) connection
[23]. This means that the horizon Hilbert space can be
described by the SU(2) Chern-Simons state. Its dimension
is written by the spin freedom j and the level of the Chern-
Simons state k. Using a suitable analytic continuation of
these variables to complex variables, it was obtained that
the complex Ashtekar connection is desirable to reproduce
S ¼ A=ð4GÞ [24,25]. Furthermore, when we introduce the
geometric temperature by demanding the horizon state be a
Kubo-Martin-Schwinger state, we can also arrive at the
complex connection [26].
Is there an essential reason why the complex Ashtekar

connection is preferable? One of the reasons would be that
the covariance is satisfied in this connection while it is
violated in the real connection [27]. This should be taken
seriously, and we should pay attention how to choose the
Lorentz covariant connection which has been investigated
in [28]. The connection obtained in [28] is called shifted
connection which includes the BI parameter. Surprisingly,
the Hamiltonian constraint can be written as a polynomial
equation in this case again. Using a shifted connection,
covariant LQG has been formulated, and a covariant area*tamaki@ge.ce.nihon‑u.ac.jp
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spectrum has been obtained [29,30]. Making the consistent
relation between covariant LQG and the spin foam models
became the important realm recently [31]. We should also
notice that the covariant area spectrum does not include the
BI parameter although the shifted connection itself does.
Then, it is natural to ask whether or not we can obtain
consistency with the entropy-area law if we consider
counting microscopic freedom of black holes in covariant
LQG. In [32], by assuming the horizon area consists of the
minimum area eigenvalue, it was argued that the answer is
in the affirmative.
Here, we consider the generality of the holographic bound

and argue the correction term of the entropy-area law
discussed in [33,34]. These are motivated by the quasilocal
first law of black hole thermodynamics where the quasilocal
energy is defined using the horizon area [35]. Then, regard-
ing the puncture, which is an intersection of the edge at the
horizon, as a particle, we can argue its statistical mechanics.
One of the important points in [33,34] is that if we assume
the degeneracy of matter fields close to the horizon as
expðλA=GÞ where λ is a dimensionless constant, λ must
approach 1=4 in the large area limit when punctures are
indistinguishable. The correction term of the entropy-area
law is basically proportional to

ffiffiffiffi
A

p
unless we assume the

special form for the fugacity. Then, our concerns arewhether
these properties hold or not in the covariant area spectrum.
The answer is in the affirmative for the holographic bound
while the correction term depends on the ambiguity of the
covariant area spectrum as we discuss later.
This paper is organized as follows. In Sec. II, we introduce

tools necessary for constructing puncture statistics following
[33,34]. In Sec. III, we consider the case when Maxwell-
Boltzmann statistics with a Gibbs factor for punctures is
assumed. We establish formulas which relate physical
quantities such as horizon area to the parameter character-
izing holographic degrees of freedom. We also perform
numerical calculations and obtain consistency with these
formulas. These results show that the holographic bound is
saturated in the large area limit and that the correction term of
the entropy-area law can be proportional to lnA. In Sec. IV,
we consider the case when Bose-Einstein statistics is
assumed and argue that the above formulas are also useful
in this case. By applying the formulas, we can understand the
intrinsic features of Bose-Einstein condensate which corre-
sponds to the case when black holes almost consist of
punctures in the ground state. We show that when this
phenomena occurs, the area is approximately constant
against the parameter characterizing the temperature.
When this phenomena is broken, the area shows a rapid
increasewhich suggests the phase transition fromquantum to
classical area spectrum.Concluding remarks follow inSec.V.

II. PREPARATION FOR PUNCTURE STATISTICS

Following [33,34], we introduce several notions neces-
sary for arguing puncture statistics. First, we mention the

quasilocal law of black hole thermodynamics which holds
for the stationary observer at proper distance l from the
horizon [35],

E ¼ A
8πl

; ð2:1Þ

where E is quasilocal horizon energy of black hole.
We rewrite (2.1) using the inverse Unruh temperature
βU ≔ 2πl

G as

βUE ¼ A
4G

: ð2:2Þ

Then, we can discuss the energy spectrum of the
puncture by combining (2.2) with the area spectrum. In
[33,34], the SU(2) area spectrum written as

A ¼ 8πγG
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jiðji þ 1Þ

p
; ð2:3Þ

has been used. Here, ji is a half-integer associated with
the puncture i. Here, we use the covariant area spectrum
written as

A ¼ 8πG
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jiðji þ 1Þ − n2i þ ρ2i þ 1

q
; ð2:4Þ

where ni is a half-integer with ji ≥ ni and ρi is a real
number [29]. Notice that there is no ambiguity related to γ.
In [30], it has been shown that it is enough for counting the
degrees of freedom to consider the simple representation
ni ¼ 0, which we assume here.
The important point is how to determine ρi. The relation

(2.1) and the spectrum (2.4) show that the puncture i has
quasilocal energy

Ei ¼
G
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jiðji þ 1Þ þ ρ2i þ 1

q
: ð2:5Þ

Thus, the simplest possibility is to choose ρi ¼ 0, which we
include considering below. The next simplest possibility
would be to regard ρi as a dependent variable of ji. In this
case, ji ¼ 1=2 does not necessarily correspond to the
ground state, which is important when we discuss Bose-
Einstein condensate as shown in [34]. Although it is an
interesting possibility, it is reasonable to assume that Ei is
monotonic with ji as a first extension of the previous case
in [33,34]. Here, we choose ρ2i as

ρ2i ¼ 0; j2mi ðm > 1Þ; e2ji ; ð2:6Þ

which correspond to the cases,

l
G
Ei → ji; jmi ; eji ; ð2:7Þ
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in the limit ji → ∞. The reason why we choose a
monomial or an exponential as (2.6) is supposed by the
observation that only the qualitative behavior in the limit
ji → ∞ determines the holographic property and the
correction term of the entropy-area law in [33,34].
Let us consider puncture statistics. In general, we do not

require that the inverse temperature is equal to βU. We write
the inverse temperature β using βU as

β ¼ βUð1þ δβÞ; ð2:8Þ

where δβ is a parameter. We only demand that δβ vanishes
in the semiclassical limit A → ∞ to satisfy the
relation (2.2).
We define nj as the number of punctures carrying spin j

and N as the total number of punctures. So, we have

N ¼
X
j

nj: ð2:9Þ

We also define DðfnjgÞ as the number of holographic
degrees of freedom for a given configuration fnjg. Here,
we assume

DðfnjgÞ ¼ exp ðð1 − δhÞĀÞ; ð2:10Þ

where Ā ≔ A
4G and δh is a free parameter. We suppose

that the freedom DðfnjgÞ comes from the matter fields
close to the horizon motivated by the entanglement entropy
hypothesis [36].

III. MAXWELL-BOLTZMANN STATISTICS

We include the Gibbs factor N! in the Maxwell-
Boltzmann statistics. The case without the Gibbs factor
is discussed later in this section. Then the canonical
partition function QðN; βÞ is given by

QðN; βÞ ¼ 1

N!

X
nj

DðfnjgÞ
N!Q
jnj!

Y
j

e−βnjEj : ð3:1Þ

Here, we abbreviate the puncture index i and write the spin
index j in the quasilocal energy as

Ej ¼
G
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ þ ρ2 þ 1

q
: ð3:2Þ

Using (2.10), we can express the partition function as

Q ¼ qN

N!
; ð3:3Þ

where

q ¼
X∞
j¼1=2

exp
�
−2πδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ þ ρ2 þ 1

q �
: ð3:4Þ

Here, we defined

δ ≔ δβ þ δh: ð3:5Þ

We introduce the fugacity z ¼ expðβμÞ where μ is a
chemical potential. In this case, we can express the grand
canonical partition function by

ZMB ¼
X
N

ðzqÞN
N!

¼ expðzqÞ: ð3:6Þ

The total number N and the mean energy E are

N ¼ z
∂
∂z ðlnZMBÞ ¼ zq; ð3:7Þ

E ¼ −∂βðlnZMBÞ þ Nμ ¼ −z∂βq: ð3:8Þ

We can express the entropy as

S ¼ βE − N ln zþ lnZMB

¼ Āð1þ δβÞ þ Nð1 − ln zÞ: ð3:9Þ

As we said above, we required δβ → 0 in the limit A → ∞.
So, if z ¼ e, the correction term of the entropy-area law
proportional to N disappears as pointed out in [34].
Since one of the purposes using the covariant area

spectrum is to investigate the correction term, we consider
the case z ≠ e. In other treatments, it is often argued that the
correction term proportional to ln Ā appears [37–39]. From
(3.7) and (3.8), we have

Ā∶Nð1 − ln zÞ ¼ −β∂βq∶qð1 − ln zÞ: ð3:10Þ

Thus, in discussing the ratio between Ā and the correction
term, it is enough if we investigate the ratio between ∂βq
and q. Since z plays a minor role for this reason, we set
z ¼ 1 below, for simplicity.
How can we estimate the relation between q and A? We

should first notice that convergence of the sequence (3.4)
highly depends on δ. So, our strategy is to analyze the
dependencies of q and A as a function of δ for obtaining the
relation between q and A.
Since it would be difficult in calculating (3.4) exactly, we

suppose using numerical calculation. In this case, it is
important to know jmax should sum up, which is a key to
understand above the property. Concretely, we assume that
we need to sum up from j ¼ 1=2 to jmax in obtaining the
value qfix for enough precision toward the true value q,
e.g., relative error jq − qfixj=q < 10−20. To accomplish the
above task, we need to estimate the dependence of jmax on δ
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as a first step, which is also a difficult task, in general.
However, we can expect that jmax → ∞ in the limit δ → 0,
and we can estimate (3.4) using the asymptotic form in the
limit j → ∞. For this reason, we assume jδj ≪ 1.
Let us consider the cases (2.7). If we have Ēj ≔ l

G Ej →
jn ðn ¼ 1; mÞ in j → ∞, we can write

qfix ≃
Xjmax

j¼1=2

expð−2πδjnÞ ¼
Xjmax

j¼1=2

exp ½−2πðϵjÞn�; ð3:11Þ

where δ ≕ ϵn. If we define x ≔ ϵj and fðxÞ≔ expð−2πxnÞ,
we can rewrite

qfix ≃
Xx2
x¼x1

fðxÞ; ð3:12Þ

where x1 ¼ ϵ=2 and x2 ¼ ϵjmax.
Using these notations, we comment on following impor-

tant properties.
(i) If we reduce ϵold → ϵnew ¼ ϵold=10,

(a) we should change jmax;old→ jmax;new ¼ 10jmax;old
in preserving the same precision.

(b) we obtain qfix;old → qfix;new ¼ 10qfix;old approx-
imately.

To understand these properties, we should first notice that
interval Δx ¼ ϵ

2
in the sum (3.12) becomes 1=10 while x2

does not change by (a). This means that there are
2jmax;old terms we should sum up in the former case while
20jmax;old terms in the latter case in (3.12). Thus, we
obtain qfix;old→ qfix;new ¼ 10qfix;old approximately. Since
jq − qfixj ¼

P∞
x2 fðxÞ, we also have jqold − qfix;oldj →

10jqold − qfix;oldj approximately. Therefore, we have same
relative error and the precision is preserved.
For this approximation to be valid, following conditions

should hold.
Conditions
(i) Changing x1;old → x1;new is negligible.
(ii) fðxÞ does not have the property,

jfðxþ ΔxÞ=fðxÞj ≪ 1, or ≫ 1.
The former assumption is implicitly used when we use

the asymptotic form in the limit j → ∞. The latter
assumption holds when δ is small enough in the above case.
From these consideration, we obtain

q ∝ ϵ−1 ¼ δ−1=n: ð3:13Þ

Since A ∝ −∂βq ∝ −∂δq, we also have

A ∝ δ−ðnþ1Þ=n: ð3:14Þ

We mention that our results (3.13) and (3.14) are consistent
with those in [34] where (2.3) was used which corresponds
to the case n ¼ 1.

Next, we consider the case Ēj → ej in j → ∞. In this
case, we can write

qfix ≃
Xjmax

j¼1=2

expð−2πδejÞ: ð3:15Þ

As in the previous case, if we want to obtain qfix → Bqfix
ðB ≫ 10Þ, we need to change the number of terms we
should sum up from 2jmax to 2Bjmax ðB ≫ 10Þ for
preserving the precision. This means that δ should change
to satisfy

δoldejmax ¼ δneweBjmax : ð3:16Þ

So, we have δnew ¼ δoldeð−Bþ1Þjmax ≃ δolde−Bjmax . This
means B≃ − 1

jmax
lnðδnewδold

Þ. As a result, we have

q ∝ −
1

jmax
ln

�
δ

C

�
; ð3:17Þ

where C is a constant. So, we have

A ∝ −
1

jmaxδ
: ð3:18Þ

The formulas (3.13), (3.14), (3.17), and (3.18) play quite
important roles in this paper.
If we use the relations ðΔEÞ2 ¼ −∂βE, (2.1), and (3.14),

we obtain

ΔE
E

¼ ΔA
A

∝ δ
1
2n: ð3:19Þ

The case of (3.18) is included in the limit n → ∞. It is
surprising that fluctuations of both energy and horizon area
are summarized in this simple manner.
In the above estimate, we used the asymptotic form in

the limit j → ∞. Thus, it is desirable to check consistency
using a numerical calculation. For this purpose, we choose

ρ2 ¼ 0; j4; j6; e2j; ð3:20Þ

which correspond to the cases,

Ēj → j; j2; j3; ej; ð3:21Þ

in the limit j → ∞. However, we stress that we use the
exact expression (3.2) by substituting (3.20). We show
δ − q, Ā relations in Fig. 1 which have complete consis-
tency with (3.13), (3.14), (3.17), and (3.18). Especially, in
all cases, A → ∞ for δ → 0. So we confirmed that the
holographic bound is saturated, i.e., δh → 0, in the semi-
classical limit where the temperature should approach
Unruh temperature β → βU. This is a generalization of
the result in [34].
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Then, we should also notice the results q ∝ ln Ā for ρ2 ¼
e2j derived by (3.17) and (3.18). To check its accuracy, we
also show that expðq=2Þ=Ā is almost constant for ρ2 ¼ e2j

in Fig. 2. The deviation from constant for large δ would be
due to it from the asymptotic form. So, we obtain the log
correction if we use the freedom ρ2. This is also our new
results obtained by considering the covariant area spectrum.
Finally, we comment on the case without the Gibbs

factor. In this case, we have

ZMB ¼
X

qN: ð3:22Þ

So, q < 1 is required. However, it is impossible in the small
δ as we see from (3.13) and (3.17).

IV. BOSE-EINSTEIN STATISTICS

Here, we consider Bose-Einstein statistics as a candidate
of the puncture statistics. First, we discuss the case z ¼ 1 as
an extension of the case in Maxwell-Boltzmann statistics.
In this case, the grand canonical partition function can be
written as

ZBEðβÞ ¼
Y
j

½1 − expð−δβUEjÞ�−1: ð4:1Þ

So, we have

q ≔ lnZBEðβÞ ¼ −Σj ln ½1 − expð−δβUEjÞ�: ð4:2Þ

We can perform an analogous discussion in the previous
section. For example, if we have Ēj → jn ðn ¼ 1; mÞ in
j → ∞, we replace fðxÞ by gðxÞ ¼ ln ½1 − expð−2πxnÞ� in
(3.12). Then, the discussion below (3.12) holds, and we
obtain (3.13) and (3.14). Similarly, for Ēj → ej, we obtain
(3.17) and (3.18).
The conclusions are that we have a holographic bound in

the large area limit, and the correction term of the entropy-
area law behaves same as the case in Maxwell-Boltzmann
statistics qualitatively. The result for n ¼ 1 is consistent
with [34] where the correction term is shown to be
proportional to

ffiffiffiffi
A

p
both in Maxwell-Boltzmann statistics

and in Bose-Einstein statistics. We have shown that these
can be understood in an unified way including the cases in
covariant area spectrum.
Next, we discuss the case z ≠ 1. The grand canonical

partition function can be written as

ZBEðβ; μÞ ¼
Y
j

½1 − expðβμ − δβUEjÞ�−1: ð4:3Þ

FIG. 1. The δ-q and Ā relations showing the consistency with
(3.13), (3.14), (3.17), and (3.18).

FIG. 2. The δ − expðq=2Þ=Ā relation for ρ2 ¼ e2j.
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So, we should require

δβUEj − βμ > 0: ð4:4Þ

Since we assumed that Ej is monotonic function with j, we
obtain

if β > βUð1 − δhÞ; then μ <
βUδ

β
E1=2;

if β < βUð1 − δhÞ; then μ ¼ −∞;

as an extension of [34]. So, the high temperature region
with β < βUð1 − δhÞ should be described by a Maxwell-
Boltzmann statistics. We concentrate on the case with
β > βUð1 − δhÞ.
We consider whether or not above discussion can be

extendible for the case z ≠ 1. We define

q ≔ lnZBE ¼ −Σj ln ½1 − expðβμ − δβUEjÞ�: ð4:5Þ

The rhs of this equation includes two independent param-
eters δβ and δh. To avoid complication, we set δh ¼ 0

below. Then, if we have Ēj → jn in j → ∞, we replace gðxÞ
by g0ðxÞ ¼ ln ½1 − exp ð−2πxn þ βμÞ� to perform analo-
gous discussion.
However, in this case, g0ðxÞ does not necessarily satisfy the

conditions in the previous section. This depends on the ratio
between ð2πxn1 − βμÞ and ϵ. Concretely, if ð2πxn1 − βμÞ is
small enough, g0ðx1 þ ϵ

2
Þ=g0ðx1Þ can be much smaller than 1.

Of course, if we take ϵ → 0, we can obtain same conclusion
as above. Below, we consider the case where the conditions
are violated.
We can understand physical meaning of the conditions

by using the number of punctures nj for general Ēj. Here,
nj is represented by

nj ¼ ½expðδβUEj − βμÞ − 1�−1: ð4:6Þ

We define

α ≔ δβUE1=2 − βμ: ð4:7Þ

If α ≪ 1, the mean number of the grand state can be
approximated as

n1=2 ≃ 1

α
; ð4:8Þ

which is quite large. Thus, n1=n1=2 ≪ 1 is possible, which
corresponds to the case g0ðx1 þ ϵ

2
Þ=g0ðx1Þ ≪ 1.

Moreover, the total sum of the mean number j > 1=2,
nex ≔

P∞
j¼1 nj can be much smaller than n1=2 which

corresponds to the Bose-Einstein condensate state defined
as a state where the horizon is almost dominated by spin
1=2 puncture. Since nj (j ≥ 1) can satisfy the conditions,

nex can be estimated by following the analogous discussion
as above. That is, if we have Ēj → jn or ej in j → ∞, we
can estimate that nex ∝ δ−1=n or − ln δ, respectively. So the
criteria for the Bose-Einstein condensate are

if Ēj → jn; then
1

δ1=n
≪

1

α
; ð4:9Þ

if Ēj → ej; then − ln δ ≪
1

α
: ð4:10Þ

We show the relation between j and its number density
corresponding to Ēj → j or ej for δ ¼ 10−4 and α ¼ 10−8

in Fig. 3. Although both are the cases of the Bose-Einstein
condensate, decays of nj make a contrast in these cases.
We are interested in changes of physical quantities

caused by the Bose-Einstein condensate. We show Ā as
a function of δ for the case α ¼ 10−8 in Fig. 4. Surprisingly,
a plateau appears for large δ while Ā increases as δ → 0
following (3.14) or (3.18) for small δ. If we use the criteria
(4.9) and (4.10), the Bose-Einstein condensate occurs for
all δ in this diagram. Then, how can we understand this
plateau?
We can discuss that Ā in the plateau corresponds to the

case where Ā almost consists of the area spectrum j ¼ 1=2,
Ā1=2. The reason is as follows. To estimate the area Āex

consisting of the area spectrum j > 1=2, we use

Āex

β
¼ Eex ¼ nexμ − ∂β lnZBE;ex: ð4:11Þ

If Ēj → jn in j → ∞, we have

nex ∝ δ−1=n; ∂β lnZBE;ex ∝ δ−ðnþ1Þ=n; ð4:12Þ

FIG. 3. The relation between j and its number density corre-
sponding to Ēj → j and ej for δ ¼ 10−4, α ¼ 10−8 and δh ¼ 0.
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where we used (3.13) and (3.14). So, if δ is small enough,
first term of rhs in (4.11) can be negligible. Thus, we have

Āex ∝ δ−ðnþ1Þ=n: ð4:13Þ

Similarly, we can consider the case Ēj → ej in j → ∞, and
this case is included in the limit n → ∞ in (4.13). So, the
condition for Āex ≪ Ā1=2 ∝ α−1 can be estimated as

δ ≫ αn=ðnþ1Þ: ð4:14Þ

We can find that this is consistent with the results in Fig. 4.
This result is also newly revealed in this paper.
If we consider what observables in black hole physics

are, we may adopt the criterion (4.14) as a condition for
the Bose-Einstein condensate. When this condition is
broken, Ā shows rapid grow as δ → 0. If we can discuss
this phenomena as a phase transition from the quantum
black hole to the classical black hole, it is very interesting.

V. CONCLUSION AND DISCUSSION

We have investigated the puncture statistics based on
the covariant area spectrum. First, we have considered
Maxwell-Boltzmann statistics with a Gibbs factor for

punctures. If we assume the fugacity z ≠ 1, we have
reconfirmed the results in [34] that the correction term
of the entropy-area law disappears for z ¼ e. When we
assume the fugacity z ¼ 1, we have established formulas
which relate physical quantities such as horizon area to the
parameter characterizing holographic degrees of freedom
using asymptotic form of the area spectrum in the large spin
limit. We have also performed numerical calculations and
obtained consistency with these formulas. From these
results, we have obtained that the holographic bound is
satisfied in the large area limit which is the extension of the
previous research. We have found that the correction term
of the entropy-area law can be proportional to the logarithm
of the horizon area as it has been pointed out in other
researches.
Second, we have also considered Bose-Einstein statistics

and shown that above formulas are also useful in this case.
By applying the formulas, we have understood intrinsic
features of the Bose-Einstein condensate which correspond
to the case when the horizon area almost consists of
punctures in the ground state. We have shown that when
this phenomena occurs, the area is approximately constant
against the parameter δ characterizing the temperature.
When this phenomena is broken, the area shows a rapid
increase as δ → 0, which suggests the phase transition from
quantum to classical area.
What should we consider as a next step? Although we

have assumed that ρ is a dependent function of j, the
validity should be checked by other method. For example,
to reveal the property of ρ in the covariant area spectrum
and the puncture statistics, it is important to investigate the
Hawking radiation as in [40] which is one of our future
work. It is also interesting to discuss possibility of the phase
transition using covariant area spectrum as in [41]. In a long
span, we should also investigate a covariant volume
spectrum, which would lead us to the covariant loop
quantum cosmology. This must be the interesting arena
in the next decade.
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