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For Oð4Þ-symmetric instantons, there are two complementary interpretations for their analytic
continuations. One is the nothing-to-something interpretation, where the initial and final hypersurfaces
are disconnected by Euclidean manifolds. The other is the something-to-something interpretation,
introduced by Brown and Weinberg, where the initial and final hypersurfaces are connected by the
Euclidean manifold. These interpretations have their own pros and cons and hence they are complementary.
In this paper, we consider analytic continuations of thin-shell instantons that have less symmetry, i.e., the
spherical symmetry. When we consider the Farhi-Guth-Guven/Fischler-Morgan-Polchinski tunneling, the
something-to-something interpretation has been used in the usual literature. On the other hand, we can
apply the nothing-to-something interpretation with some limited conditions. We argue that for both
interpretations, we can give the consistent decay rate. As we apply and interpret what follows the nothing-
to-something interpretation, a stationary black hole can emit an expanding shell that results in a spacetime
without a singularity or event horizon.
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I. INTRODUCTION

One of the main goals of modern theoretical physics
is to develop a consistent theory of quantum gravity.
This consistent quantum theory of gravity will help us
to understand two important and interesting physical
problems; one is the information loss problem of a black
hole [1] and the other is the initial singularity problem of
the Universe [2]. Even though there is no consensus on
quantum gravity yet, we already briefly know that these
problems should be fairly discussed by quantizing the
spacetime, i.e., by investigating the wave function of the
Universe via the Wheeler-DeWitt equation [3].
The Euclidean path integral approach gives good

wisdom for these two problems [4]. Although the
Euclidean path integral is not a complete approach in
the sense that the path integral is not bounded from below,
this Euclidean path integral is at least a good approximation
of the ground state wave function. This wave function
can be well approximated by solving on-shell solutions,
so-called instantons. These instanton solutions present
approximate but very important contributions as nonper-
turbative effects; and all of these results will probably not
be largely changed even when we eventually know a
consistent theory of quantum gravity.

In this perspective, we focus on classical and quantum
behaviors of thin-shell bubbles in Einstein gravity. By
using the thin-shell approximation [5], we can investigate
not only the Oð4Þ symmetry, but also the spherical
symmetry. This means that now we can deal with non-
perturbative effects of black holes and hence this can be
related to the information loss problem (for further review,
see [6]). As Maldacena [7] and Hawking [8] have pointed
out, nonperturbative effects of a black hole will shed some
light on the information loss problem [9–11].
More specifically, in this paper, we are interested in the

interpretation of instantons. By interpretation, we mean the
way to analytically continue instantons to Lorentzian sig-
natures,while an instanton itself is a solution in theEuclidean
signatures. As we discuss in the following sections, in the
Oð4Þ-symmetric instantons [12,13], there are two competi-
tive interpretations; one is that the initial and final hyper-
surfaces are separated by instantons and the other is that the
initial and final hypersurfaces are connected by instantons
[14]. The former is a more mathematically complete inter-
pretation, while the latter is a more natural generalization
from the interpretation of the Minkowski case. In this paper,
we regard the two interpretations as being complementary to
each other. In addition, we generalize this complementary
interpretation to thin-shell instantons thathave lesssymmetry
than the Oð4Þ symmetry. This helps us to see the same
instanton with a different point of view; and we may find
interesting solutions that will be helpful in understanding
the information loss problem of black holes.
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This paper is organized as follows. In Sec. II, we
summarize two complementary interpretations for Oð4Þ-
symmetric instantons. In Sec. III, we generalize these
interpretations to thin-shell instantons. We discuss that
for some limited cases, we can interpret thin-shell instan-
tons such that the final hypersurface is disconnected from
the initial hypersurface. In this case, we can further argue
that a stationary black hole can disappear into a trivial
geometry without a singularity or an event horizon by
emitting an outgoing shell. This sheds some light on the
information loss problem. Finally, in Sec. IV, we summa-
rize our results and discuss possible future issues. In this
paper, we use the convention that c ¼ ℏ ¼ G ¼ 1.

II. ANALYTIC CONTINUATION OF DE SITTER
SPACE: Oð4Þ SYMMETRY

A. Coordinates of Euclidean de Sitter space

We can describe a Euclidean de Sitter space with the
cosmological constant Λ ¼ 1=l2 by two well-known
coordinates [14]: either the time-dependent form (left of
Fig. 1)

ds2 ¼ dη2 þ ρ2ðηÞðdχ2 þ sin2χdΩ2Þ; ð1Þ
where

ρ ¼ l sin
η

l
ð2Þ

and variables cover

0 ≤
η

l
≤ π; ð3Þ

0 ≤ χ ≤ π ð4Þ

or the time-independent form (right of Fig. 1)

ds2 ¼
�
1 −

r2

l2

�
dτ2 þ

�
1 −

r2

l2

�−1
dr2 þ r2dΩ2; ð5Þ

where

0 ≤ r ≤ l; ð6Þ
− π ≤

τ

l
≤ π: ð7Þ

These two coordinates are connected by the following
relations:

r ¼ l sin
η

l
sin χ; ð8Þ

tan
τ

l
¼ tan

η

l
cos χ: ð9Þ

B. Analytic continuations

When we interpret inhomogeneous tunneling [12],
we do the Wick rotation along the χ ¼ π=2 slice
(red dashed line in the left of Fig. 1) [15], where this
hypersurface satisfies the conditions

r ¼ ρðηÞ; ð10Þ
τ

l
¼ 0; �π ð11Þ

and hence is equivalent with the red dashed line in the right
of Fig. 1.
On the other hand, when we interpret the homogeneous

tunneling [13,16], we do the Wick rotation along the
η=l ¼ π=2 slice (blue dashed curve in the left of Fig. 1),
where it satisfies

FIG. 1. Coordinate patch of the Euclidean de Sitter space with
the η-χ coordinate (left: η is the radial direction and χ is the
angular direction) and τ-r coordinate (right: τ is the angular
direction and r is the radial direction). For inhomogeneous
tunneling, we paste Euclidean and Lorentzian manifolds at the
red dotted line. For homogeneous tunneling, we paste the
manifolds at the blue dotted curve.

FIG. 2. Penrose diagram of static Lorentzian de Sitter space. A,
B, and C are pieces of Lorentzian de Sitter space that are
analytically continued by Euclidean manifolds (Fig. 3).
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r ¼ l sin χ; ð12Þ
τ

l
¼ � π

2
; ð13Þ

and hence is equivalent with the blue dashed curve in the
right of Fig. 1.
In this paper, we are interested in the inhomogeneous

tunneling. Then we can identify the red dashed line of
Fig. 1 with the red dashed line of Fig. 2. In this regard, there
are two ways to interpret.

1. Nothing-to-something interpretation

One way is to paste the entire hypersurface from the
Euclidean manifold to the Lorentzian manifold (left of
Fig. 3). Then the initial state and final state include both the
left and right side of the Lorentzian causal patches (A and C
of Fig. 2). The Lorentzian-Euclidean combined manifold
for the initial state is disconnected to that of the final
state. In this sense, one Lorentzian-Euclidean combined
manifold can be interpreted such that the manifold is
created from nothing.1 In this paper, we call this the
nothing-to-something interpretation.

2. Something-to-something interpretation

Brown and Weinberg suggested an alternative interpre-
tation [14]. Mathematically it is possible to paste B to the
right part of the Euclidean manifold (τ=l ¼ −π) and paste
A to the left part of the Euclidean manifold (τ=l ¼ 0): the
right of Fig. 3. Then we interpret that B is the initial state
and A is the final state. If the instanton solution is nontrivial
for the region B [16,17], one needs to interpret that a
thermal excitation created the nontrivial field combination
on B.

C. Pros and cons: motivation of this paper

Both of previous approaches give the same decay rate.
Therefore, in terms of the calculations, we cannot distin-
guish which is true. However, these two different inter-
pretations may have pros and cons. We illustrate these as
follows.

(i) Nothing-to-something interpretation, pros: This is
mathematically natural. The Euclidean-Lorentzian
joined manifold is entirely smooth and maximally
extended.

(ii) Nothing-to-something interpretation, cons: This
interpretation needs to cover beyond the Hubble
radius r ¼ l, which is outside one’s causal patch
where it may be unphysical.

FIG. 3. There are two ways to paste Euclidean and Lorentzian de Sitter space. Left: we paste all of the complete manifold after the
t ¼ 0 slice. Then we interpret that a Lorentzian de Sitter space is created from nothing. Right: we paste slices of A and B. Then B is the
initial state and A is the final state. Two states are connected by the instanton.

1However, this does not mean that there is no initial hypersur-
face. There can be an initial hypersurface, but the initial hyper-
surface and final hypersurface are disconnected by the instanton.
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(iii) Something-to-something interpretation, pros:
Everything happens inside one’s causal patch. The
initial state and final state are connected by the
Euclidean manifold, where this corresponds well
with the case without gravity.

(iv) Something-to-something interpretation, cons: The
Euclidean-Lorentzian joined manifold cannot be
maximally extended. If the scalar field is nontrivial
beyond the Hubble radius, then it needs to rely on
the thermal excitation, which is quite subtle. In
addition, this interpretation cannot be applied for
anti–de Sitter spaces.

In this paper, we regard these two interpretations as
complementary approaches. We apply beyond the Oð4Þ
symmetry such as to spherical symmetry and see that there
is a possibility to interpret using both ways.

III. DYNAMICS AND TUNNELING
OF THIN-SHELL BUBBLES

A. Equation of motion

We investigate the Einstein gravity with a scalar field,

S ¼
Z
M

ffiffiffiffiffiffi
−g

p
d4x

�
R
16π

−
1

2
∇μϕ∇μϕ −UðϕÞ

�

þ
Z
∂M

ffiffiffiffiffiffi
−h

p
d3x

�
K −K0

8π

�
; ð14Þ

where gμν is the metric, R is the Ricci scalar, ϕ is a scalar
field, UðϕÞ is a potential of the scalar field, K is the
Gibbons-Hawking boundary term [18] at a hypersurface h
(which is the boundary ∂M of the entire manifold M),
and K0 is the Gibbons-Hawking boundary term of the
Minkowski metric.
As a toy model, we consider a true vacuum bubble in the

Schwarzschild background with the thin-shell approxima-
tion. That is, we use the following metrics for inside and
outside the shell:

ds2 ¼ −f�ðRÞdT2 þ 1

f�ðRÞ
dR2 þ R2dΩ2; ð15Þ

where þ denotes outside the shell, − denotes inside the
shell, and the metrics satisfy

f� ¼ 1 −
2M�
R

þ R2

L2
�
; ð16Þ

whereM− ¼ 0, Lþ ¼ ∞,Mþ ¼ M > 0, andM and L− are
free parameters. In addition, the shell is located at rðtÞ with
the induced metric

ds2shell ¼ −dt2 þ r2ðtÞdΩ2: ð17Þ

According to the well-known Israel’s junction equation
[5], we can derive the equation of motion,

ϵ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ f−

q
− ϵþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ fþ

q
¼ 4πrσ; ð18Þ

where σ is a constant tension parameter and ϵ� ¼ �1
denotes the outward normal directions outside and inside
the shell, respectively. Here, ϵ� should be proportional to
the extrinsic curvatures β�, where

β� ≡ f− − fþ∓16π2σ2r2

8πσr
: ð19Þ

In our setting with M− ¼ 0 and Lþ ¼ ∞, we can easily
check that β− > 0. Regarding βþ, in the large r limit, if
4πσL− < 1, then βþ > 0 is also satisfied. In this paper, we
consider these limits so that every tunneling happens within
the right patch of the Penrose diagram of the Schwarzschild
solution (see Sec. III B 2).
Finally, the junction equation can be simplified as

_r2 þ VðrÞ ¼ 0; ð20Þ

VðrÞ≡ fþ −
ðf− − fþ − 16π2σ2r2Þ2

64π2σ2r2
: ð21Þ

Note that VðrÞ always goes to −∞ for the r → 0 limit or the
r → ∞ limit if 4πσL− < 1 (Fig. 4).

B. Farhi-Guth-Guven/Fischler-Morgan-Polchinski
tunneling

We especially consider the case when VðrÞ ¼ 0 has two
solutions, say r1 < r2. If r1 ≤ r ≤ r2, then the shell is
classically forbidden, while quantum mechanically we can
consider a tunneling between r1 and r2, or vice versa
[19,20]. Originally, Farhi et al. [19] and Fischler et al. [20]
considered tunneling of a false vacuum bubble, while in
this paper we consider a true vacuum bubble (hence, inside

10 20 30 40 50
r

3

2

1

1
V r

FIG. 4. An example of the effective potential VðrÞ for M ¼ 5
and L− ¼ 0.1, varying the tension σ0 ¼ 1=4πL− (gray: the
extreme case in which Δτ ¼ ∞), σ1 ¼ 0.998 × σ0 (black),
σ2 ≃ 0.99617 × σ0 (red: when two 0’s are degenerate), and
σ3 ¼ 0.995 × σ0 (blue: when there is no 0).
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is anti–de Sitter space). This is just a technical reason for
choosing positive extrinsic curvatures. However, we can
adopt the same techniques of Farhi et al. and Fischler et al.
In this sense, we name this tunneling process Farhi-Guth-
Guven/Fischler-Morgan-Polchinski tunneling.

1. Usual interpretation: something to something

Figure 5 is the usual and traditional interpretation of
Farhi-Guth-Guven tunneling [19]. The upper diagram is the
shell dynamics in the Lorentzian signatures. The left of (a)
is the anti–de Sitter space and the right of (a) is the
Schwarzschild space. Initially, the shell starts from r ¼ 0
and expands up to its maximum radius r1. After the
tunneling, the shell reaches r2 and expands toward infinity.
The lower diagram is the shell dynamics in the Euclidean
signatures. The shell moves from r1 to r2. As we identify
the initial and final surface, the Euclidean manifold

connects from the initial to the final surface, and hence
this is the something-to-something interpretation. Note that
the left of (b) is periodically identified as Euclidean anti–de
Sitter and hence there is no cusp singularity at R ¼ 0 with
any period. On the other hand, for the right of (b), in order
to avoid the cusp singularity at the event horizon, we need
to use the exact Euclidean time period 8πM.

2. Special interpretation: nothing to something

If the time period of the shell Δτ (the Euclidean time for
the process in which the shell starts from r1, reaches r2, and
returns back to r1) corresponds to the time period of the
background 8πM, i.e., after considering the correct redshift,
if the condition is satisfied that

8πM ¼ Δτþ ≡
Z

Δτ

0

dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ − VðrÞp

fþ
; ð22Þ

FIG. 5. Farhi-Guth-Guven tunneling for a true vacuum bubble case. The left of (b) is a periodically identified anti–de Sitter space at
R ¼ 0 and hence R ¼ 0 is regular for any period, while the right of (b) is a Euclidean Schwarzschild with the time period Δτþ ¼ 8πM;
if the time period is different from 8πM, then there appears a cusp singularity on the red dot (event horizon).
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then one can apply not only the something-to-something
interpretation, but also the nothing-to-something interpre-
tation. If Δτþ is not the same as 8πM, then in the action
integration, the boundary term at infinity2 of the back-
ground (¼ 4πM2) cannot be canceled to that of the solution
(¼ ΔτþM=2). By fixing the solution period as 8πM, one
may need to worry whether there appears a cusp singularity
in the inside geometry or not. If M− > 0, then unless
M− ¼ Mþ, there is a cusp singularity at the horizon.
However, if M− ¼ 0, then one can periodically identify
with an arbitrary period at R ¼ 0; hence, in our examples,
there is no problem. (When there appears a cusp singularity,
we comment on this later: see Sec. III C 2.) Fig. 6 is the new
interpretation. By pasting inside and outside geometry, we

obtain Fig. 7. One can notice that this Euclidean-Lorentzian
joined manifold is disconnected from the initial
Schwarzschild black hole and hence this is indeed the
nothing-to-something interpretation. As a simple generali-
zation, one can further find more general cases:
Δτþ × N ¼ 8πM, where N is a natural number.
We can show that for a given M and L−, there exists σ

that satisfies Δτþ × N ¼ 8πM. We can rewrite the effective
potential VðrÞ as

VðrÞ ¼ 1 −
M2

16π2σ2r4
−

M
16π2σ2

ðL−2
− þ 16π2σ2Þ 1

r

−
1

64π2σ2
ðL−2

− − 16π2σ2Þ2r2: ð23Þ

First, if 4πσL− ¼ 1, then VðrÞ ¼ 1 as r goes to infinity.
Therefore, VðrÞ has only one 0 and this corresponds to the
limit when Δτ ¼ ∞. If σ decreases infinitesimally from the
limit 1 ¼ 4πσL− satisfying

1

L−
≥ 4πσ; ð24Þ

FIG. 6. If the Euclidean time period of the thin shell corresponds to that of the event horizon of the Euclidean Schwarzschild, then one
can do both interpretations: something to something (gray) or nothing to something (black). Here, (a) is the shell dynamics for the
Lorentzian regime and (b) is for the Euclidean regime.

2In interpreting the nothing-to-something interpretation, the
importance of the boundary term at infinity was overlooked in
Gregory et al. [21], since the authors were interested in the de
Sitter background. On the other hand, in the Minkowski back-
ground, we surely need to include the boundary term at infinity
[18] and in order to cancel out this term between the initial and
final surfaces, we need to restrict Δτþ.
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then it allows two 0’s. However, this is just a necessary
condition. There may be a possibility that it allows no 0’s
with the condition L−1

− ≥ 4πσ. In order to find this limit, we
think of the condition of σ that satisfies a degenerate 0:
Vðr0Þ ¼ V 0ðr0Þ ¼ 0 with a 0 r0. In this case, the solution
stops at a constant radius,3 and hence one can identify an
arbitrary period including Δτ ¼ 0. Note that the corre-
sponding r0 is

r30 ¼ M

�
C þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 8

p

L−2
− − 16π2σ2

�
; ð25Þ

where

C≡ L−2
− þ 16π2σ2

L−2
− − 16π2σ2

: ð26Þ

By plugging this r0 into Vðr0Þ ¼ 0, we can prove that there
are two 0’s if M < M�, where

M� ≡ 64π3σ3

ðL−2
− − 16π2σ2Þ2

�
3þ 3C

2
ðC þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 8

p
Þ
�
−3=2

× ðC þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 8

p
Þ2: ð27Þ

In Fig. 8, we plot M� as a function of L− and 4πσ. For a
given L−, this M� ranges from 0 to infinity, and so for a
given L− and a given M, there is always a range of σ that

allows M� > M. Therefore, for a given L− and M, we can
smoothly scale Δτ from 0 to ∞ by adjusting σ; and hence
[since r > 2M and Eq. (22) is a regular integration], there
exists a proper σ that satisfies Δτþ × N ¼ 8πM (Fig. 9).

C. Decay rates

1. Euclidean approach: Farhi-Guth-Guven/Gregory-
Moss-Withers tunneling

The decay rate is

Γ ∝ e−2B; ð28Þ

where

B ¼ SEðsolutionÞ − SEðbackgroundÞ ð29Þ

and the Euclidean action is

SE ¼ −
Z
M

ffiffiffiffiffiffiþg
p

d4x
�
R
16π

−
1

2
∇μϕ∇μϕ −UðϕÞ

�

−
Z
∂M

ffiffiffiffiffiffiffiþh
p

d3x

�
K −K0

8π

�
: ð30Þ

If we want to interpret this as the nothing-to-something
interpretation, in order to subtract the boundary terms at
infinity, the Euclidean time of the background should be the
same as that of the solution. This may make a cusp
singularity of the solution part, but if the inside of the
shell has zero mass, then we do not need to worry about the
cusp singularity. Applying the thin-shell approximation,
one can calculate the decay rate of the thin-shell bubbles.
In the literature, there are independent but consistent
derivations of the decay rate. Without derivation, we use

FIG. 7. One can eventually interpret following the nothing-to-
something interpretation.

FIG. 8. M� as a function of L− and 4πσ, where we restricted the
region by 4πσL− ≤ 1.

3Of course, we need to be careful that in this limit, the distance
between r2 and r1 is the same order of the thickness of the shell,
and hence, to describe this region more properly, we need to rely
on what is beyond the thin-shell approximation. If we do this
properly, then we expect that there should be a smooth transition
from the two-zero limit to the degenerate limit.
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the formula following Gregory et al. [21] (here, 0 is a
differentiation with respect to r; · is a differentiation with
respect to τ),

2B¼Ai−Af

4
þ1

4

Z
dτ½ð2rfþ−r2f0þÞ_τþ−ð2rf−−r2f0−Þ_τ−�;

ð31Þ
where τ (Euclidean proper time of the shell) and τ�
(Euclidean time of the outside and inside geometry) satisfy

f2� _τ
2
� þ _r2 ¼ f�; ð32Þ

f� _τ� ¼ β�: ð33Þ

Here, the first term of Eq. (31) originates from the
regularization of the cusp singularity.
By using this, one can present the second term as

1

4

Z
dr

�
βþ

ð2r − r2f0þ=fþÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ − β2þ

p − β−
ð2r − r2f0−=f−Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f− − β2−
p

�
: ð34Þ

By using the identity β2þ − fþ ¼ β2− − f− and
β0−r − β− ¼ β0þr − βþ, one can change the form

1

4

Z
dr

�ð2β0þr2 − r2βþf0þ=fþÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ − β2þ

p −
ð2β0−r2 − r2β−f0−=f−Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f− − β2−
p

�
:

ð35Þ

Finally, by using the integration by parts, one can present
this integration as equivalent to

Z
drr

�
cos−1

�
βþffiffiffiffiffiffi
fþ

p
�
− cos−1

�
β−ffiffiffiffiffiffi
f−

p
��

: ð36Þ

In addition, by using straightforward calculations, we can
finally reach the following form [22]:

2B¼Ai−Af

4
þ2

Z
r2

r1

drr

����cos−1
�
fþþf−−16π2σ2r2

2
ffiffiffiffiffiffiffiffiffiffiffi
fþf−

p
�����:
ð37Þ

2. Hamiltonian approach: Fischler-Morgan-Polchinski
tunneling

According to Fischler et al. [20], following the WKB
approximation, the tunneling rate is

Γ ∝ e2iðΣf−ΣiÞ; ð38Þ
where the wave function is approximated byΨ ∼ eiΣ with a
Σ that satisfies the Hamilton-Jacobi equation and the metric
ansatz is given by

ds2 ¼ −Ntdt2 þ L2ðdηþ NηdtÞ2 þ r2dΩ2; ð39Þ

where all metric functions Nt, Nη, L, and r are functions of
η and t, where η is defined over a spacelike hypersurface.
When we do the thin-shell approximation, on the inside or
outside of the shell, the integration becomes

0.7930 0.7935 0.7940

5

10

15

20

25

30

r2 r1

0.7930 0.7935 0.7940

50

100

150

200

FIG. 9. Left: r2 − r1 by varying σ, where we are considering M ¼ 5 and L− ¼ 0.1. Right: Δτþ as a function of σ. If σ approaches
1=4πL−, then Δτþ diverges. On the other side, if σ approaches the degenerate limit, then it approaches the stationary shell limit (red
dashed line), where we can identify with an arbitrary period, including 8πM=N (gray dashed lines are 8πM, 8πM=2, 8πM=3, 8πM=4,
and 8πM=5 from top to bottom).

FIG. 10. Schematic picture for the Fischler-Morgan-Polchinski
integration.

PISIN CHEN, YAO-CHIEH HU, and DONG-HAN YEOM PHYSICAL REVIEW D 94, 024044 (2016)

024044-8



iΣvol ¼ −
Z
vol

dη

�
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2f� − r02

q
− rr0cos−1

�
r0

L
ffiffiffiffiffiffi
f�

p
��

;

ð40Þ
while η covers inside (−) or outside (þ) the shell (now 0 is a
differentiation with respect to η). The integration on the
shell (between ηshell − ϵ and ηshell þ ϵ, where ηshell is the
coordinate on the shell and ϵ is an arbitrary small number)
becomes

iΣshell ¼
Z

rshell
dr

�
rcos−1

�
r0ðηshell − ϵÞ

L̂
ffiffiffiffiffiffi
f−

p
�

− rcos−1
�
r0ðηshell þ ϵÞ
L̂

ffiffiffiffiffiffi
fþ

p
��

; ð41Þ

where the shell is on rshell. If the stationary shell condition
is satisfied, then

r0ðηshell � ϵÞ
L̂

¼ β�; ð42Þ

r0

L
¼

ffiffiffiffiffiffi
f�

p
ð43Þ

for inside and outside the shell.
For the nothing-to-something interpretation, there is no

shell initially and there are two shells after tunneling. On
the final hypersurface, there are two shells. Therefore, the
integral is presented as follows (Fig. 10):

Z
η1−ϵ

0

dηð…Þ þ
Z

η1þϵ

η1−ϵ
dηð…Þ þ

Z
η2−ϵ

η1þϵ
dηð…Þ

þ
Z

η2þϵ

η2−ϵ
dηð…Þ þ

Z
∞

η2þϵ
dηð…Þ; ð44Þ

where η1 is the position of the left shell and η2 is the
position of the right shell.

Shell integration.—The second and fourth terms are the
integration over the shell. Note that η1 − ϵ and η2 þ ϵ are
the same outside geometry while η2 − ϵ and η1 þ ϵ are
the same inside geometry. Therefore, if we change the
integration as follows,

−
Z

η1−ϵ

η1þϵ
þ
Z

η2þϵ

η2−ϵ
ð…Þ; ð45Þ

then two integrals share the common integrand. Now by
changing the variable to r integration, the first integration is
to r1 (left shell) and the second integration is to r2 (right
shell); then we can present this integration by

Z
r2

r1

drð…Þ: ð46Þ

Therefore, one can easily prove that this gives the same
result of the second term of the Gregory-Moss-Withers
tunneling [21].4

Volume integration.—There remain volume integrations,Z
η1

0

dηð…Þ þ
Z

η2

η1

dηð…Þ þ
Z

∞

η2

dηð…Þ; ð47Þ

where the second integration is over the inside geometry
while the first and third integrations are over the outside
geometry. Note that because of the stationary shell con-
dition (r0 ¼ L

ffiffiffiffiffiffi
f�

p
), the only contribution comes from the

arccos integration, where the arccos term is π if r0 < 0
(beyond the Einstein-Rosen bridge) or 0 if r0 > 0. In the
end, the volume term contributes,

iΣf;vol ¼ −
π

2
ðr2∞ − r21Þ −

π

2
ðr21 − r2hÞ; ð48Þ

where rh is the horizon radius of the internal geometry
and r∞ ¼ ∞. This should be subtracted by the initial
hypersurface integration,

iΣi ¼ −
π

2
ðr2∞ − r2þÞ; ð49Þ

where rþ ¼ 2M is the initial horizon radius. Finally, the
subtracted volume term becomes

−2iðΣf;vol − ΣiÞ ¼ πðr2þ − r2hÞ ¼
Ai −Af

4
: ð50Þ

This gives the first term of the Gregory-Moss-Withers
tunneling [21].

Comments on cusp singularities.—We focused on the case
when the internal geometry is anti–de Sitter, i.e., M− ¼ 0.
If M− > 0; then in general there appears a cusp singularity
at the horizon of the internal geometry. This can be
regularized by a certain scheme as Gregory et al. did
[21]. This regularization scheme could be doubted since
it is a kind of singularity. On the other hand, if this
regularized result can be justified by another independent
way, then we can trust the regularization method. Note that
the volume terms of Fischler et al. [20] exactly give the

4If Δτþ × N ¼ 8πM with even number N, then the thin-shell
integration can vanish since r1 ¼ r2; like this, if N is an odd
number greater than 3, then the Hamiltonian approach can
underestimate the shell integration. In these cases, we need to
follow the Euclidean approach rather than the naive results of the
Hamiltonian approach. One can interpret that the Hamiltonian
approach (WKB approximation) considers the most probable
history of a tunneling process, while the Euclidean approach can
cover more various solutions that cannot be covered by the WKB
approximation. There is an interesting analogy with oscillating
instantons in the Oð4Þ-symmetric cases [17]. In addition,
relations with the negative modes could be a future interesting
topic [23].
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regularization terms of Gregory et al. [21]. This can be an
independent justification of the regularization technique as
well as the resolution of subtleties of the instanton approach
(as was observed by [24]).

D. Applications to the information loss problem

The nothing-to-something interpretation can be under-
stood as the decay of a black hole. This can be especially
applied to the information loss problem [1].
If M− > 0, then this implies that a quantum fluctuation

that emits a large mass (although the probability is
exponentially suppressed) can cause a bias from the
adiabatic process [25]. Therefore, the true event horizon
rEH can be different from that of the putative event horizon
r0EH, where this would be the event horizon if there are only
adiabatic processes. If jrEH − r0EHj ∝ Mþ −M− ≫ lPl and
the firewall [26] could be assumed to grow around r0EH,
then it can be a good proof that the firewall becomes
observable from a distance, due to this nonadiabatic
fluctuating process [25].
IfM− ¼ 0, then this instanton induces a trivial geometry.

In the Euclidean path integral approach, the propagator
between the initial hypersurface and final hypersurface can
be presented by

hfjii ¼
Z
i→f

DgDϕe−SE ≃X
i→f

e−S
ins
E ; ð51Þ

where we sum over all metrics and fields that connect
hypersurfaces i and f; in the last part of the above equation,
this path integral can be well approximated by a sum over
on-shell histories (instantons). Among the instanton paths
that connect from i to f, if there is a trivial geometry
without horizons or singularities, e.g., the periodically
identified anti–de Sitter space, then it is used to recover
correlations in the end, as was emphasized by [7,8].
Therefore, as long as there exists such an instanton with
M− ¼ 0, it will help recover correlations and will be
well embedded in the scenario of the effective loss of
information [9].

IV. DISCUSSION

In this paper, we focused on two complementary
interpretations of instantons. There are two types of
interpretations, what we named the nothing-to-
something interpretation, when the initial surface and final
surface are disconnected by Euclidean geometries, and
what we named the something-to-something interpretation,
when the initial surface and final surface are connected by a
Euclidean geometry. For Coleman-DeLuccia instantons
[12], the nothing-to-something interpretation is rather
usual, while for thin-shell instantons [19], the something-
to-something interpretation is usual. On the other hand,
a rather unusual interpretation is possible not only for

Coleman-DeLuccia instantons [14], but also for thin-shell
instantons with some restricted conditions. We obtained a
consistent decay rate by both approaches: the Euclidean
approach [19,21] and Hamiltonian approach [20]. One
important comment is that the two approaches do not
coincide with each other, if the boundary term at infinity is
not canceled; hence, if Δτþ ¼ 8πM is not satisfied, then we
cannot do a consistent interpretation.
It is interesting that two independent approaches

coincide with each other. The volume term of the
Hamiltonian approach [20] corresponds to the regulariza-
tion term around the cusp singularity of the Euclidean
geometry [21]. This shows that the regularization technique
of the Euclidean manifold is indeed in a right way. This
justification helps us to investigate more general instantons,
where we remain for possible future projects.
For a thin-shell instanton, if the nothing-to-something

interpretation is possible, then we can further interpret that
a stationary black hole decays and emits an outgoing shell;
and finally a black hole decreases its mass or even
disappears. One remark is that Fig. 7 is related to the
work of Hartle and Hawking [27]. In this path integral
derivation of Hawking radiation [27], they constructed a
tunneling of a particle (energy ω ≪ M, and hence one may
neglect the backreaction due to the emission of the
particle), where the particle moves from inside to outside
the black hole, and first moves backward in time and
second moves forward in time. This process is not allowed
classically, but the entire wave function allows such a
process; and the entire wave function can be approximated
by a classical path that is analytically continued by the
Euclidean time. Our result Fig. 7 can be interpreted as a
generalization of [27], but in our case, we can even consider
the case that the emitted energy is comparable with the
original black hole mass, since we have considered the
backreaction precisely.
Since a black hole can disappear by a quantum process,

this can shed some light on the information loss problem
[1]. This is not yet a very general solution, but if at once
such a process exists, then information can be conserved
through such a process [7–9]. In terms of the entire wave
function, information should be conserved but the classical
equations of motion including general relativity may not
need to be satisfied due to the superposition of classical
geometries, and hence this can be interpreted as the firewall
phenomena [26], while there is no real firewall that
explicitly violates general relativity within a semiclassical
background that can even be naked [25,28]. On the other
hand, for a semiclassical geometry, it satisfies local
quantum field theory and general relativity, while it violates
unitarity; since Hawking radiation does not contain infor-
mation, it can be free from troubles with black hole
complementarity [29,30]. In this sense, we may name this
idea the effective loss of information, since information is
lost by a semiclassical observer, while the entire wave
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function conserves information, although it is fair to say
that we need to generalize more on this process.
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