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In this paper we consider light-cone fluctuations arising as a consequence of the nontrivial topology of
the locally flat cosmic string spacetime. By setting the light-cone along the z-direction we are able to
develop a full analysis to calculate the renormalized graviton two-point function, as well as the mean square
fluctuation in the geodesic interval function and the time delay (or advance) in the propagation of a light
pulse. We found that all these expressions depend upon the parameter characterizing the conical topology
of the cosmic string spacetime and vanish in the absence of it. We also point out that at large distances from
the cosmic string the mean square fluctuation in the geodesic interval function is extremely small while in
the opposite limit it logarithmically increases.
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I. INTRODUCTION

Light-cone fluctuations have been an active topic of
discussion in physics in the past few years and is one of the
most relevant features that is expected to be exhibited in a
complete quantum theory of gravity. In fact, in a model of
linearized quantum theory of gravity it has been shown that
the effect of light-cone fluctuations is to smear out ultra-
violet divergencies stemming from light-cone singularities
of two-point functions [1]. This is in accordance with the
conjecture made in 1956 by Pauli who said that active
quantum fluctuations of spacetime metric might drive
fluctuations of light cones [2] which in turn could under-
take the role of a universal regulator to remove quantum
field theory divergencies (see [3–5] for further discussion).
Moreover, light-cone fluctuations in the context of the
linearized quantum gravity model also offer a way of
studying horizon fluctuations which may reveal new
insights about black hole physics [6–9].
As it is common, by assuming that gravitons are in a

squeezed vacuum state, the fluctuations in their propaga-
tion lead to a delay or advance in the time of propagation of
a light pulse toward its final destination, as a consequence
of a nonzero linearized metric fluctuation responsible for
inducing a nonzero averaged and finite Green’s function
taken on the light cone. In this sense, the author in [1],
where the linearized quantum gravity model was devel-
oped, investigated gravitons in a flat spacetime and in an
expanding universe (see also [10,11]). Additionally, in
Ref. [12] fluctuations on the graviton’s trajectory were
investigated in flat spacetimes with nontrivial topology, and
in Refs. [13,14] the role of theories with extra dimensions

was taken into account. The effect of compactified space-
times on the light-cone fluctuations was also considered in
Ref. [15]. In Refs. [16–21] the authors studied metric and
light-cone fluctuations using a stochastic approach.
Cosmic strings are linear topological defects arising due

to phase transitions in the early universe and are predicted
in the framework of some gauge extensions of the Standard
Model of particle physics, possibly giving rise to a variety
of cosmological, astrophysical and gravitational phenom-
ena [22–24]. From the gravitational point of view, for
instance, the spacetime created by an idealized infinitely
long and straight cosmic string presents a conical topology
with a planar deficit angle given by Δϕ ¼ 8πGμ on the
plane perpendicular to it. Here G is the Newton’s gravi-
tational constant and μ the cosmic string linear energy
density.
The conical structure of the cosmic string spacetime

disturbs the quantum vacuum fluctuations associated with
scalar, fermionic and vector fields, providing that the
vacuum expectation value of physical observables like
the energy-momentum tensor [25–34] or the Casimir-
Polder force [35,36] is nonzero. By considering the
presence of a magnetic flux running along the string,
additional vacuum fluctuations associated with charged
fields also take place [37–48]. Moreover, quantum gravity
features have also been carried out in the context of the
scattering of nonrelativistic and relativistic particles in
(2þ 1)-dimensional cosmic string spacetime [49–53]. In
these works, the role of the cosmic string topology on the
scattering amplitude was investigated. So, it is no surprise
that the cosmic string nontrivial topology may also affect
the fluctuations of the light cone in such way there is a
nonzero renormalized graviton two-point function. As we
will see, the averaged graviton two-point function depends
on the cosmic string parameter, α ¼ 1 − 4Gμ, and is
responsible for producing a nonzero mean square fluc-
tuation (MSF) in the geodesic interval function which in
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turn yields a nonzero time delay (or advance) in the
propagation of a light pulse. Hence, the main objective
of the present paper is to investigate the propagation of
photons in the locally flat cosmic string spacetime in order
to see how the MSF is affected by the cosmic string
parameter α.
The paper is organized as follows: In Sec. II we review

some general aspects of light-cone fluctuations following
the approach suggested in Ref. [1]. In particular, we will see
how the MSF depends on the renormalized graviton two-
point function. In Sec. III, the latter is calculated in the
cosmic string spacetime. In Sec. IV, we apply the two-point
function found in Sec. III to obtain the MSF and derive the
time delay (or advance) in the propagation of a light pulse.
Section V is devoted to the conclusions and discussions.
Some necessary calculations to obtain the results of Sec. III
are presented in Appendixes A and B. Through the paper
we work in natural units ℏ ¼ c ¼ 1.

II. LIGHT-CONE FLUCTUATIONS REVISITED

In this section we will review some aspects related to the
light-cone fluctuations approach. Let us then start by
considering a line element in the form

ds2 ¼ ðηð0Þμν þ hμνÞdxμdxν; ð2:1Þ

where ηð0Þμν is the metric tensor describing a flat spacetime,
with hμν being its linearized perturbation. In the perturbed
spacetime represented by the line element above, the half of
the squared geodesic separation between two points x and
x0, defined as σðx; x0Þ, may be expanded in powers of hμν,
as it is shown below:

σðx; x0Þ≃ σ0ðx; x0Þ þ σ1ðx; x0Þ; ð2:2Þ

where 2σ0ðx; x0Þ ¼ ðx − x0Þ2 ¼ ðt − t0Þ2 − ðx − x0Þ2 is
defined for the flat background and σ1ðx; x0Þ is only the
first order term in the expansion.
On the other hand, by assuming that the first order

perturbation metric tensor hμνðxÞ is quantized, its positive
hþμνðxÞ and negative h−μνðxÞ frequencies decomposition will
act on the squeezed vacuum state jψi, such that
hþμνðxÞjψi ¼ 0 and hψ jh−μνðxÞ ¼ 0, straightforwardly pro-
viding hψ jhμνjψi ¼ hhμνi ¼ 0. The metric fluctuations are,
therefore, manifested through the calculation of the quan-
tity hh2μνi, which is in general nonzero.
In fact, a relation between hh2μνi and hσ21i follows from

the null geodesic,

dt2 ¼ dx2 − hμνdxμdxν; ð2:3Þ

which is obtained from Eq. (2.1) using the transverse trace-
free gauge, that is, hjj ¼ ∂jhij ¼ h0ν ¼ 0. Thereby, the
expansion of Eq. (2.3) up to first order in hμν provides [1]

Δt ¼ Δr −
1

2

Z
r1

r0

hijninjdr; ð2:4Þ

where dr ¼ jdxj, Δr ¼ r1 − r0 and ni ¼ dxi=dr is a unit
vector defining the spatial direction of the geodesic.
Additionally, if one identifies the right-hand side of

Eq. (2.4) as being the proper spatial distance Δl between
two points in the spacetime, the square of the geodesic
separation will be 2σ ¼ Δt2 − Δl2 and, as a consequence,
expanding up to first order in hμν, one obtains

2σ ≃ Δt2 − Δr2 þ Δr
Z

r1

r0

hijninjdr: ð2:5Þ

The correction to σ0 is then give by the integral term in
Eq. (2.5), i.e.,

σ1 ¼
1

2
Δr

Z
r1

r0

hμνnμnνdr; ð2:6Þ

which in turn also provides the vacuum expectation value

hσ21iR ¼ 1

8
ðΔrÞ2

Z
r1

r0

dr
Z

r1

r0

dr0ninjnlnm

× hhijðxÞhlmðx0Þ þ hijðx0ÞhlmðxÞiR: ð2:7Þ

The expression hhijðxÞhlmðx0Þ þ hijðx0ÞhlmðxÞiR is the
renormalized graviton two-function and, as we can see,
hijðxÞ has a crucial role to calculate it.
The light-cone fluctuations are codified in the propaga-

tion of a light pulse which, because of boundary conditions
or the topology of the spacetime, ends up to be delayed or
advanced in time by an amount of Δτ given by

Δτ ¼
ffiffiffiffiffiffiffiffiffiffiffi
hσ21iR

p
Δr

: ð2:8Þ

Note that essentially, a nonzero value for hσ21i corresponds
to the fact that the retarded Green’s function in flat
spacetime for a massless scalar field has no longer a
singularity at σ0 ¼ 0. This can be seen through the
following expression for the averaged retarded Green’s
function [1] for a massless scalar field:

hGretðx; x0Þi ¼
θðt − t0Þ
8π2

ffiffiffiffiffiffiffiffiffiffiffi
π

2hσ21i
r

exp
�
−

σ20
2hσ21i

�
; ð2:9Þ

defined for hσ21i > 0. It turns out that the result in Eq. (2.9)
is essential since the quantization of the metric perturbation
leads, in the transverse trace-free gauge, to a Klein-
Gordon–like equation, that is,□hij ¼ 0 [1,54]. This means
that the solution for hij can be given in terms of a massless
scalar field wave function having a plane wavelike solution.
Nevertheless, when the line element describes a curved
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spacetime the Green’s function is represented by the
Hadamard function so that near the light cone it has a flat
leading asymptotic behavior.
In the next section we will see how hij can be evaluated

in the cosmic string spacetime so that its influence in the
fluctuations of the light-cone will be clear. We will also see
that although the cosmic string spacetime is only locally
flat, by setting the light-cone along the z-direction we will
be able to confidently use Eq. (2.7) derived from Eq. (2.3),
which has a flat background metric.

III. GRAVITON TWO-POINT FUNCTION
IN THE COSMIC STRING SPACETIME

A. Massless scalar field in the cosmic
string spacetime

As it was said at the end of the previous section, an
important point to quantify the metric perturbations in the
transverse trace-free gauge is the massless scalar solution of
the Klein-Gordon equation which will be obtained in this
section.
Let us then consider the line element describing the

cosmic string spacetime, that is,

ds2 ¼ gμνdxμdxν ¼ dt2 − dρ2 − ρ2dϕ2 − dz2; ð3:1Þ

where the spacetime coordinates take values in the follow-
ing interval: ρ ≥ 0, 0 ≤ ϕ ≤ ϕ0 ¼ 2π=q and −∞ ≤
ðt; zÞ ≤ ∞. Moreover, the parameter q ¼ 1=α is related
to the presence of the cosmic string through α ¼ 1 − 4Gμ,
where μ is the linear energy density of the cosmic string and
G is the Newton’s gravitational constant. Note that in order
for the line element (3.1) to describe a cosmic string
spacetime it is necessary to consider q ≥ 1, otherwise,
one would have a line element describing a disclination,
i.e., in the case 0 < q < 1 [55].
The field equation for a nonminimally coupled massless

scalar field in a curved spacetime is given by the Klein-
Gordon equation

�
1ffiffiffiffiffijgjp ∂ρð

ffiffiffiffiffi
jgj

p
gρσ∂σÞ þ ξR

�
ΦðxÞ ¼ 0; ð3:2Þ

where g ¼ detðgμνÞ, ξ is the nonminimal coupling constant
to gravity andR is the scalar curvature. In the cosmic string
spacetime R ¼ 2ðq − 1ÞδðρÞ=ρ. It is zero everywhere
except at ρ ¼ 0, where the cosmic string is localized.
However, as we aim to consider regions in space where
ρ > 0, the scalar curvature vanishes and, therefore, con-
sidering the line element (3.1), Eq. (3.2) becomes

�
d2

dρ2
þ 1

ρ

d
dρ

þ η2 −
q2n2

ρ2

�
fðρÞ ¼ 0; ð3:3Þ

where we have used the ansatz,

ΦðxÞ ¼ Ce−iωtþinqϕþikzzfðρÞ; ð3:4Þ

with η2 ¼ ω2 − k2z , C is a normalization constant and fðρÞ
an unknown radial function. As Eq. (3.3) is a Bessel
differential equation, its regular solution at the origin is
given by the Bessel function of the first kind, i.e.,
fðρÞ ¼ JqjnjðηρÞ. Thus, the general solution takes the form

ΦðxÞ ¼ Ce−iωtþinqϕþikzzJqjnjðηρÞ: ð3:5Þ

The constant C can be obtained by the normalization
condition

i
Z

d3x
ffiffiffiffiffi
jgj

p
½Φ�

γ0 ðxÞ∂tΦγðxÞ − ΦγðxÞ∂tΦ�
γ0 � ¼ δγ;γ0 ; ð3:6Þ

where γ ¼ ðn; η; kzÞ is the set of quantum numbers and the
delta symbol on the right-hand side is understood as the
Dirac delta function for the continuous quantum number, η
and kz, and Kronecker delta for the discrete n. Thereby, we
obtain

jCj2 ¼ qη
8π2ω

: ð3:7Þ

Therefore, the complete set of renormalized wave
functions is

ΦγðxÞ ¼
�

qη
8π2ω

�1
2

e−iωtþinqϕþikzzJqjnjðηρÞ: ð3:8Þ

Having the solution above for the massless scalar field in
the cosmic string spacetime we can proceed to calculate the
graviton two-point function in the next section.

B. Graviton two-point function

As it has already been mentioned, the metric fluctuations
can be written by means of a plane wave expansion of a
massless scalar field. Thus, the general solution for hijðxÞ is
given by

hijðxÞ ¼
X
γ;λ

½aγ;λeijðk; λÞΦγðxÞ þ H:c:Þ�; ð3:9Þ

where k ¼ ðη; kzÞ represents the wave vector in cylindrical
coordinates, λ labels the polarization states, eijðk; λÞ is the
polarization tensor and the sum over γ means

X
γ

¼
Z

dkz

Z
dη

X
n

: ð3:10Þ

The massless scalar field ΦγðxÞ satisfies the Klein-Gordon
equation (3.2) and, in the cosmic string spacetime, is given
by Eq. (3.8).
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The graviton two-point function or, in other words, the
Hadamard function is defined from Eq. (2.7) as

Gijlmðx; x0Þ ¼ hhijðxÞhlmðx0Þ þ hijðx0ÞhlmðxÞi; ð3:11Þ

which, by using the expression in Eq. (3.9) for hij, becomes

Gijlmðx; x0Þ ¼ 2Re
X
γ;λ

eijðk; λÞelmðk; λÞΦγðxÞΦ�
γðx0Þ:

ð3:12Þ

Note that the two-point function above presents a singular
behavior at the coincidence limit, x0 → x, so that a renorm-
alization procedure is needed to obtain a finite and well-
defined result. In this sense, a suitable renormalization
procedure can be implemented by subtracting from
Gijlmðx; x0Þ the corresponding Minkowski contribution.
An expression for the sum in λ of the polarization

tensors was obtained in [12], in Cartesian coordinates, and
is given by

X
λ

eijðk; λÞelmðk; λÞ

¼ δilδjm þ δimδjl − δijδlm þ k̂ik̂jk̂lk̂m þ k̂ik̂jδlm

þ k̂lk̂mδij − k̂ik̂mδjl − k̂ik̂lδjm − k̂jk̂mδil − k̂jk̂lδim;

ð3:13Þ

with k̂i ¼ ki=jkj and jkj ¼ ω. One should note that
although the line element (3.1) describing the cosmic
string spacetime is given in cylindrical coordinates, the
assumption of setting the light cone along the z-direction
allows us to adapt (3.13) for our purpose. Thus, the only
component of the unit vectors in Eq. (2.7) is nz, so that the
graviton Hadamard function (3.12) simplifies to

Gzzzzðx; x0Þ ¼ 2Re
X
γ

�
1 − 2

k2z
jkj2 þ

k4z
jkj4

�
ΦγðxÞΦ�

γðx0Þ

¼ 2ðGðcsÞðx; x0Þ − 2Fzzðx; x0Þ þHzzzzðx; x0ÞÞ;
ð3:14Þ

where GðcsÞðx; x0Þ is the propagator of a massless scalar
field in the cosmic string spacetime and the functions
Fzzðx; x0Þ and Hzzzzðx; x0Þ are defined as

Fzzðx; x0Þ ¼ −Re
X
γ

∂2
Δz

jkj2 ΦγðxÞΦ�
γðx0Þ; ð3:15Þ

and

Hzzzzðx; x0Þ ¼ Re
X
γ

∂4
Δz

jkj4ΦγðxÞΦ�
γðx0Þ; ð3:16Þ

where ∂Δz ≡ ∂
∂Δz and Δz ¼ z − z0.

In the next section we will explicitly calculate the
graviton Hadamard function (3.14) with the help of
Eqs. (3.15) and (3.16) which, together with GðcsÞðx; x0Þ,
are also explicitly calculated in Appendixes A and B.

IV. LIGHT-CONE FLUCTUATION IN THE
COSMIC STRING SPACETIME

In this section we will consider the results presented in
the Appendixes for the renormalized graviton Hadamard
function, Eq. (B23), obtained from Eq. (3.14). These results
will allow us to see the effects of the nontrivial topology of
the cosmic string spacetime, described by the metric (3.1),
in the fluctuations of the light cone. The latter manifests
itself through a nonzero value for the expression in
Eq. (2.8), which represents a shift, an advance or delay,
in the time of propagation of a light pulse. Thus, let us
consider the mean value of the square of the first order
perturbation of the geodesic distance given by Eq. (2.7), i.e.

hσ21iR ¼ 1

8
ðb − aÞ2

Z
b

a
dz

Z
b

a
dz0GðRÞ

zzzzðΔt;Δz; ρ0ÞjΔt¼Δz;

ð4:1Þ

where we have considered the graviton wave propagation
along the z-direction from ðt; ρ0;φ0; aÞ → ðt0; ρ0;φ0; bÞ
and GðRÞ

zzzzðΔt;Δz; ρ0ÞjΔt¼Δz is given by Eq. (B23) taken
on the light cone, with (B24) written as

GðΔt; σ; R; sÞjΔt¼Δz

¼ 1

6π2R8
ð−3Δz2s4 þ 94Δz4s2 − 8Δz6Þ

−
Δz

8π2R9
ln

�
Rþ Δz
R − Δz

�
2

ð−s6 − 12Δz2s4 þ 24Δz4s2Þ:

ð4:2Þ

Note that R and s are given by (B9) and (B26), respectively.
Note also that the above expression is similar to the one
obtained in Ref. [12].
As the graviton Hadamard function (B23) is an even

function of Δz, by applying the Leibniz integral rule,
Eq. (4.1) becomes [10,56]

hσ21iR ¼ 1

4
z20

Z
z0

0

drðz0 − rÞGðRÞ
zzzzðr; ρ0Þ; ð4:3Þ

where GðRÞ
zzzzðr; ρ0Þ ¼ GðRÞ

zzzzðΔt;Δz; ρ0ÞjΔt¼Δz and we have
made the change r ¼ Δz and z0 ¼ b − a. Hence, by using
Eq. (B23) taken on the light cone, the integral in Eq. (4.3) is
found to be
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hσ21iR ¼ z20
4

2
4X0

½q=2�

n¼1

Inðz0; snÞ −
q sinðqπÞ

2π

×
Z

∞

0

dξ
Iξðz0; sξÞ

½coshðqξÞ − cosðqπÞ�

3
5; ð4:4Þ

where ½q=2� represents the integer part of q=2, and the
prime on the sign of summation means that in the case q is
an integer number the term n ¼ q=2 should be taken with
the coefficient 1=2. We also have

Iðz0; sÞ ¼
ðz20 þ s2Þ12ð8z40 þ 25z20s

2 þ 14s4Þ − ð8z50 þ 8z30s
2 þ 3z0s4Þ ln½ðz

2
0
þs2Þ12−z0

s �
6π2ðz20 þ s2Þ52 −

7

3π2
; ð4:5Þ

with s given by sn ¼ 2ρ0 sinðnπ=qÞ for the first term on the
right-hand side of Eq. (4.4) and by sξ ¼ 2ρ0 coshðξ=2Þ for
the second term, both expressions defined in Appendix B.
Thereby, Eq. (4.4) is the most general closed expression for
hσ21iR. The corresponding shift in time of a light pulse
propagating along the z-axis in the cosmic string spacetime
is then written as

Δτ ¼
ffiffiffiffiffiffiffiffiffiffiffi
hσ21iR

p
z0

: ð4:6Þ

We can additionally analyze hσ21iR in the limits ρ0 ≫ z0
and ρ0 ≪ z0. Thereby, let us first begin with the former case
and consider Eq. (4.5) in the form

IðxÞ ¼ ðx2 þ 1Þ12ð8x4 þ 25x2 þ 14Þ − ð8x5 þ 8x3 þ 3xÞ ln ½ðx2 þ 1Þ12 − x�
6π2ðx2 þ 1Þ52 −

7

3π2
: ð4:7Þ

Here we consider IðxÞ ¼ Iðz0; sÞ and x ¼ z0
s . By taking the limit x ≪ 1, Eq. (4.7) reduces to

IðxÞ≃ 32x6

45π2
þOðx7Þ; ð4:8Þ

which is a valid approximation for both IðxÞ’s in the sum and in the integral on the right-hand side of Eq. (4.4). Hence, one
gets

hσ21iR ≃ z20
360π2

�
z0
ρ0

�
6

2
4X0

½q=2�

n¼1

1

sin6ðnπ=qÞ −
q sinðqπÞ

2π

Z
∞

0

dξ
1

½coshðqξÞ − cosðqπÞ�
1

cosh6ðξ=2Þ

3
5: ð4:9Þ

For integer values of q, we find

hσ21iR ≃ z20
720π2

�
z0
ρ0

�
6Xq−1
n¼1

1

sin6ðnπ=qÞ ¼
z20

720π2

�
z0
ρ0

�
6 1

945
ðq2 − 1Þð2q4 þ 23q2 þ 191Þ: ð4:10Þ

It is worth mentioning that the resulting expression above, obtained for integer values of q, is an analytic function and, thus,
by analytic continuation, it is valid for all values of q. The result (4.10) shows that for regions far way from the string, that is,
z0 ≪ ρ0, the values of hσ21iR are negligible, since it decreases with ðz0=ρ0Þ6.
On the other hand, in order to analyze (4.4) in the regime where ρ0 ≪ z0 it is useful to write Eq. (4.5) as

IðyÞ ¼
ðy2 þ 1Þ12ð8þ 25y2 þ 14y4Þ − ð8þ 8y3 þ 3y4Þ ln½ðy2þ1Þ12−1

y �
6π2ðy2 þ 1Þ52 −

7

3π2
: ð4:11Þ

Here we also consider IðyÞ ¼ Iðz0; sÞ and y ¼ s
z0
. Thus, taking the limit y ≪ 1, we obtain
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IðyÞ≃ −
2

3π2
ð3þ 4 lnðy=2ÞÞ þOðy2Þ

≃ −
2

3π2
ð3þ 4 lnðρ0=z0Þ þ 4 lnðs=2ρ0ÞÞ

≃ 8

3π2
j lnðρ0=z0Þj; ð4:12Þ

which is the dominant term in the expansion. This
approximation is certainly valid for the first term on the
right-hand side of Eq. (4.4). Nevertheless, one needs to be
careful when applying it for the second term because the
factor s → sξ ¼ 2ρ0 coshðξ=2Þ varies up to infinity and, as
a consequence, there is no guarantee that y ≪ 1. However,
since the integral in (4.4) is an exponentially decaying
function of y, we can consider the following additional
approximation:

Z
∞

0

dξ
Iξðz0; sξÞ

½coshðqξÞ − cosðqπÞ�
≤ I0ðz0; s0Þ

Z
∞

0

dξ
1

½coshðqξÞ − cosðqπÞ� : ð4:13Þ

This means that we can approximate sξ by 2ρ0, providing
that the approximation (4.12) can also be adopted for the
second term on the right-hand side of Eq. (4.4). One should
note, however, that the approximation (4.13) is only valid in
the regime where z0 ≫ ρ0. Moreover, the error associated
with this assumption is about 2% for ρ0=z0 ¼ 0.001 and
q ¼ 3=2, and only decreases as q increases or/and ρ0=z0
decreases. Therefore, we must write (4.4) in the limit
ρ0 ≪ z0 as

hσ21iR ≃ 2z20
3π2

jlnðρ0=z0Þj
�
½q=2�0

−
q sinðqπÞ

2π

Z
∞

0

dξ
1

½coshðqξÞ − cosðqπÞ�
�
;

ð4:14Þ

where the prime means that in the case q is an integer
½q=2� → ðq − 1Þ=2. For the latter, Eq. (4.14) becomes

hσ21iR ≃ ðq − 1Þ z20
3π2

j lnðρ0=z0Þj; ð4:15Þ

which is also an analytical function of q, and by analytic
continuation is valid for any value of q. The result above in
the regime where ρ0 ≪ z0 is very interesting since it tells us
that the values of hσ21iR logarithmically increase as we
consider points in the region near the cosmic string. Note
that both expressions in Eqs. (4.10) and (4.15) vanish for
q ¼ 1 as expected.
In Fig. 1 we have plotted the general expression (4.4) for

the MSF as a function of ρ0=z0, in units of z20, for q ¼ 1.5,

2.0 and 2.5. This quantity is also the square of the time
shift, Δτ2. The plot reassures what we have already pointed
out, i.e., considering z0 fixed, for points far away from the
cosmic string, the MSF decays with a power law of the
form ðz0=ρ0Þ6, while for points near the cosmic string it
logarithmically increases. It is interesting to note that,
keeping ρ0 fixed and increasing z0, the time shift Δτ
decreases, suggesting that over long flight distances the
light-cone fluctuations tend to average to smaller values.
We can also see that the values of hσ21iR increase as q is
increased.

V. SUMMARY AND DISCUSSION

We have investigated the propagation of gravitons in the
locally flat cosmic string spacetime by analyzing light-cone
fluctuations arising due to the nontrivial topology.
Following arguments of previous works [1,54], the general
solution for the metric perturbation, hijðxÞ, in Eq. (3.9), is
given in terms of the solution of the massless scalar field. In
this sense, we have then calculated the complete set of
orthonormal solution (3.8) of a massless scalar field by
solving the Klein-Gordon equation in the cosmic string
spacetime.
Because of the loss of isotropy of space, due to the

presence of the cosmic string, we have considered the light
cone as being along the z-direction so that we have been
able to obtain a general expression for the graviton two-
point function. This expression is given in terms of the
massless scalar field propagator GðcsÞðx; x0Þ in the cosmic
string spacetime and the functions Fzzðx; x0Þ and
Hzzzzðx; x0Þ, all of them found in Appendixes and given
by (A11), (B12) and (B22), respectively. With these results
we have calculated a closed expression for the renormalized
graviton two-point function in Eq. (B23), which in turn
offered a way of obtaining a closed expression for the MSF
found in Eqs. (4.4) and (4.5), and consequently the delay or

FIG. 1. The square of the time shift, Δτ2 ¼ hσ21iR=z20, is plotted,
as a function of ρ0=z0, for q ¼ 1.5, 2.0 and 2.5.
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advance in time given by Eq. (4.6), characterizing the light-
cone fluctuations in the cosmic string spacetime.
Moreover, as the expression in (4.4) is given in terms of

an integral representation, two limiting cases were consid-
ered: when ρ0 ≫ z0 and when z0 ≫ ρ0. In the former limit
we found the expression in Eq. (4.10) for general values of
q. The result in this case is negligible since it is of order
ðρ0=z0Þ6. Regarding the case when z0 ≫ ρ0, using the
additional reasonable approximation in Eq. (4.13), we
found the expression (4.15), for general q. The result, in
this regime, is much more interesting since (4.15), or
equivalently the time shift, logarithmically increases with
ρ0=z0. One should also note that all the results presented
here are valid only for ρ > 0, since at the origin, where the
cosmic string is localized, there is a singularity. This
behavior can be clearly seen in Fig. 1 which shows that
(4.4) logarithmically diverges as ρ0=z0 → 0.
Finally we would like to point out that, although there

exist several works concerned with quantum field fluctua-
tions in the cosmic string spacetime as mentioned in Sec. I,
to the best of our knowledge, this is the first time an
investigation about light-cone fluctuations in the cosmic
string spacetime has been carried out.
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APPENDIX A: HADAMARD FUNCTION IN THE
COSMIC STRING SPACETIME

The complete set of normalized mode functions given by
Eq. (3.8) allows us to evaluate the Hadamard function
associated with the cosmic string spacetime as

GðcsÞðx; x0Þ ¼
X
γ

ΦσðxÞΦ�
γðx0Þ; ðA1Þ

where γ ¼ ðη; n; kzÞ is the set of quantum numbers already
introduced in Eq. (3.10). Thereby, using (3.8), Eq. (A1)
provides

GðcsÞðx; x0Þ ¼ q
8π2

X∞
n¼−∞

Z
∞

−∞
dkzeikzΔz

×
Z

∞

0

dηη
eiωΔt

ω
JqjnjðηρÞJqjnjðηρ0ÞeiqnΔϕ;

ðA2Þ

where Δt ¼ t − t0, Δz ¼ z − z0, Δφ ¼ ϕ − ϕ0 and
ω2 ¼ k2z þ η2 þm2. Note that although we are interested
in using the Hadamard function for the massless scalar field
in the cosmic string spacetime we wish to go on calculating
(A2) as general as possible and only later on taking m ¼ 0.
The exponential term in the right-hand side of (A2) can

be written in the integral form,

eωΔτ

ω
¼ 2ffiffiffi

π
p

Z
∞

0

dse−ω
2s2−Δτ2

4s2 ; ðA3Þ

where we have made a Wick rotation Δτ ¼ iΔt.
The Hadamard function in the cosmic string spacetime
now becomes

GðcsÞðx; x0Þ ¼ q
4π2

ffiffiffi
π

p
Z

∞

0

dse−m
2s2−Δz2

4s2
−Δτ2

4s2

×
Z

∞

−∞
dkze

−s2ðkz−iΔz
2s2

Þ2 X∞
n¼−∞

eiqnΔϕ

×
Z

∞

0

dηηe−η
2s2JqjnjðηρÞJqjnjðηρ0Þ: ðA4Þ

One can further simplify (A4) using [57]

Z
∞

0

dηηe−η
2s2JqjnjðηρÞJqjnjðηρ0Þ ¼

e−
ðρ2þρ02Þ

4s2

2s2
Iqjnj

�
ρρ0

2s2

�
;

ðA5Þ
that is,

GðcsÞðx; x0Þ ¼ q
8π2ρρ0

Z
∞

0

dye−
mρρ0
2y −Δz2y

2ρρ0−
Δτ2y
2ρρ0−

ðρ2þρ02Þy
2ρρ0

×
X∞
n¼−∞

eiqnΔϕIqjnjðyÞ; ðA6Þ

where we have made the change y ¼ ρρ0=ð2s2Þ. In order to
solve the integral above we can make use of the summation
formula derived previously in Refs. [58,59], i.e.

X∞
n¼−∞

eiqnΔϕIqjnjðyÞ

¼ ey

q
þ 2

q

X0
½q=2�

n¼1

ey cos ð
2πn
q −ΔϕÞ

−
1

2π

X
j¼þ;−

Z
∞

0

dξ
sin ½qðjΔϕþ πÞ�e−y coshðξÞ

½coshðqξÞ − cosðjqΔϕþ qπÞ� ;

ðA7Þ
where ½q=2� represents the integer part of q=2, and the
prime on the sign of summation means that in the case q is
an integer number the term n ¼ q=2 should be taken with
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the coefficient 1=2. Note that, if q < 2 the summation
contribution should be omitted.
Hence, substituting (A7) into (A6) we obtain

GðcsÞðx;x0Þ

¼ m2

4π2

�
f1ðmσ0Þþ2

X0
½q=2�

n¼1

f1ðmσnÞ

−
q
2π

X
j¼þ;−

Z
∞

0

dξ
sin ½qðjΔϕþπÞ�e−ycoshðξÞ

½coshðqξÞ− cosðjqΔϕþqπÞ�f1ðmσξÞ
�
;

ðA8Þ

where we have used the notation

fνðxÞ ¼
KνðxÞ
xν

; ðA9Þ

with KνðxÞ being the modified Bessel function and

σ20 ¼ −Δt2 þ Δz2 þ ρ2 þ ρ02 − 2ρρ0 cosðΔϕÞ;

σ2n ¼ −Δt2 þ Δz2 þ ρ2 þ ρ02 − 2ρρ0 cos
�
2πn
q

− Δϕ
�
;

σ2ξ ¼ −Δt2 þ Δz2 þ ρ2 þ ρ02 þ 2ρρ0 coshðξÞ: ðA10Þ

Thus, Eq. (A8) is a general closed expression for the
Hadamard function in the cosmic string spacetime.
Taking nowm ¼ 0 in Eq. (A6), and using the summation

formula (A7) again we find

GðcsÞðx; x0Þ

¼ 1

4π2
1

σ20
þ 1

2π2
X0
½q=2�

n¼1

1

σ2n

−
q
8π3

X
j¼þ;−

Z
∞

0

dξ
sin ½qðjΔϕþ πÞ�e−y coshðξÞ

½coshðqξÞ − cosðjqΔϕþ qπÞ�
1

σ2ξ
;

ðA11Þ

which is the expression we use to calculate the graviton
two-point function.
For integer values of q the last term on the right-hand

side of (A11) vanishes and the summation in n should be
replaced with

X½q=2�
n¼1

→
1

2

Xq−1
n¼1

: ðA12Þ

Thus, Eq. (A11) reduces to

GðcsÞðx; x0Þ ¼ 1

4π2
1

σ20
þ 1

4π2
Xq−1
n¼1

1

σ2n
: ðA13Þ

Therefore, Eqs. (A11) and (A13) are the expressions,
when q is general and integer, respectively, for the
Hadamard function for a massless scalar field in the cosmic
string spacetime. One should note that the renormalized
propagators are obtained from Eqs. (A8) and (A11) by
subtracting the Minkowski contribution, which is the first
term on the right-hand side of each expression.

APPENDIX B: CALCULATION OF THE
FUNCTIONS Fzzðx; x0Þ AND Hzzzzðx; x0Þ

In this Appendix we wish to find a closed expression for
the functions Fzzðx; x0Þ andHzzzzðx; x0Þ given by (3.15) and
(3.16), respectively. Let us then focus first on Eq. (3.15) and
write it in the form

Fzzðx; x0Þ ¼ −∂2
ΔzRe

X
γ

e−iωΔt

ω3
φγðxÞφ�

γðx0Þ; ðB1Þ

with φγðxÞ being only the spatial part of the solution (3.8),
and we have taken ω out of the normalization constant.
We would like now to proceed similarly to what we have

done to calculate (A2) by using the expression in Eq. (A3).
However, the eigenfrequency ω in the denominator of
the above expression has a cubic power which makes the
calculation more difficult. In order to overcome this
problem, let us additionally consider the identity

e−iωΔt

ω3
¼ −

Z
Δt

0

dt2

Z
t2

0

dt1
e−iωt1

ω
þ 1

ω3
−
iΔt
ω2

: ðB2Þ

Thereby, upon substituting the identity (B2) into Eq. (B1),
its real part is found to be

Fzzðx; x0Þ ¼ −∂2
Δz

�
−
Z

Δt

0

dt2

Z
t2

0

dt1
X
γ

e−iωt1

ω
φγðxÞφ�

γðx0Þ

þ
X
γ

1

ω3
φγðxÞφ�

γðx0Þ
�
: ðB3Þ

Note that a similar “sum” over γ in the first term on the
right-hand side of (B3) has already been developed in
Appendix A and is given by (A11), replacing Δt with t1.
Regarding the second term on the right-hand side, to carry
it out, one can use the expression

1

ω2s ¼
2

ΓðsÞ
Z

∞

0

dττ2s−1e−ω
2τ2 : ðB4Þ

Thus, following the same steps we took to get Eq. (A6),
one has
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X
σ

∂2
Δz

ω3
φγðxÞφ�

γðx0Þ

¼ q
8π2

∂2
Δz

Z
∞

0

dy
y
e−

Δz2y
2ρρ0 −

ðρ2þρ02Þy
2ρρ0

×
X∞
n¼−∞

eiqnΔϕIqjnjðyÞ: ðB5Þ

Substituting the sum in n given by (A7), we can see that the
integral in y is logarithmically divergent at the origin.
Nevertheless, we can introduce a positive regularization
parameter, p, so that the integral can be solved as follows:

Z
∞

0

dy
e−

yR2

2ρρ0

y
¼ lim

p→0

Z
∞

0

dy
e−

yR2

2ρρ0

ðyþ pÞ

¼ lim
p→0

e
R2

2ρρ0pΓ
�
0;

R2

2ρρ0
p

�
; ðB6Þ

where Γða; zÞ is the incomplete gamma function. We can
now expand, for small p, the right-hand side of Eq. (B6) as

∂2
Δz limp→0

expΓð0; xpÞ

¼ ∂2
Δz limp→0

expð−γe − lnðxpÞ þ pþOðp2ÞÞ

¼ −∂2
Δz limp→0

expðγe þ lnðxpÞÞ

¼ −∂2
Δz limp→0

ð1þ xpþOðp2ÞÞðγe þ lnðxpÞÞ

¼ −∂2
Δz limp→0

½γe þ lnðxÞ þ lnðpÞ þ ðxpþOðp2ÞÞ lnðpÞ�

¼ −∂2
Δz lnðxÞ; ðB7Þ

where x ¼ R2=ð2ρρ0Þ and γe is the Euler’s constant. Note
that we have also exchanged the limit and the derivative so
that ∂Δzðγe þ lnðpÞÞ ¼ 0. In order to calculate Eq. (B5) it is
convenient to consider at this point that the wave is
propagating along the z-direction from ðt; ρ0;φ0; zÞ →
ðt0; ρ0;φ0; z0Þ. Thus, with the result in (B7), Eq. (B5)
becomes

X
σ

∂2
Δz

ω3
φγðxÞφ�

γðx0Þ

¼ −
1

8π2
∂Δz

2
4ln

�
Δz2

2ρ20

�
þ 2

X0
½q=2�

n¼1

ln

�
R2
n

2ρ20

�

−
q sinðqπÞ

π

Z
∞

0

dξ
lnðR

2
ξ

2ρ2
0

Þ
½coshðqξÞ − cosðqπÞ�

3
5; ðB8Þ

where the first term on the right-hand side is the Minkowski
contribution and the others are the contributions due to the
conical structure of the spacetime, with

R2
n ¼ Δz2 þ 4ρ20sin

2ðπn=qÞ;
R2
ξ ¼ Δz2 þ 4ρ20cosh

2ðξ=2Þ: ðB9Þ

Regarding the second term on the right-hand side of (B3),
as we have pointed out before, we can use Eq. (A11) with
Δt → t1. By integrating it we found

Izz ¼
Z

Δt

0

dt2

Z
t2

0

dt1
X
γ

e−iωt1

ω
φγðxÞφ�

γðx0Þ;

¼ 1

4π2

�
SðΔt;ΔzÞ − 1

2
ln

�
Δz2

2ρ20

��

þ 1

2π2
X0
½q=2�

n¼1

�
SðΔt; RnÞ − ln

�
R2
n

2ρ20

��

−
q sinðqπÞ

4π3

Z
∞

0

dξ
½SξðΔt; RξÞ − lnðR

2
ξ

2ρ2
0

Þ�
½coshðqξÞ − cosðqπÞ� ; ðB10Þ

where the first term on the right-hand side is the Minkowski
contribution and we use the general notation

SðΔt; RÞ ¼
�
Δt
4R

ln

�
Rþ Δt
R − Δt

�
2

þ 1

2
ln

�
R2 − Δt2

2ρ20

��
:

ðB11Þ

Now, substituting the results (B8) and (B10) into
Eq. (B5), we obtain

FðRÞ
zz ðx; x0Þ ¼ ∂2

Δz

2
4 1

2π2
X0
½q=2�

n¼1

SnðΔt; RnÞ

−
q sinðqπÞ

4π3

Z
∞

0

dξ
SξðΔt; RξÞ

½coshðqξÞ − cosðqπÞ�

3
5;

ðB12Þ
where we have subtracted the Minkowski contribution,
which is the divergent contribution on the light cone
and needs to be removed. Note that, for integer values of
q, the second term on the right-hand side of (B12) vanishes.
Let us now turn to the calculation of the function

Hzzzzðx; x0Þ. Thus, similarly to Eq. (B1), it can be written as

Hzzzzðx; x0Þ ¼ ∂4
ΔzRe

X
γ

e−iωΔt

ω5
φγðxÞφ�

γðx0Þ: ðB13Þ

In order to evaluate (B13), we consider the following
identity:

e−iωΔt

ω5
¼

Z
Δt

0

dt4

Z
t4

0

dt3

Z
t3

0

dt2

Z
t2

0

dt1
e−iωt1

ω

þ 1

ω5
−
Δt2

2ω3
−

iΔt
2ω4

þ iΔt3

6ω2
: ðB14Þ
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Substituting (B14) into (B13), its real part is given by

Hzzzzðx; x0Þ ¼ ∂4
Δz

�Z
Δt

0

dt4

Z
t4

0

dt3

Z
t3

0

dt2

Z
t2

0

dt1

×
X
γ

e−iωt1

ω
φγðxÞφ�

γðx0Þ

−
Δt2

2

X
γ

1

ω3
φγðxÞφ�

γðx0Þ

þ
X
γ

1

ω5
φγðxÞφ�

γðx0Þ
�
: ðB15Þ

Here again the sum over γ in the first term on the right-hand
side is given by (A11), with Δt → t1. Moreover, the second
term on the right-hand side has already been obtained and is
given by Eq. (B8) and the third term can be worked out
similarly. Hence, by using (B4), the latter can be written as

X
γ

∂4
Δz

ω5
φγðxÞφ�

γðx0Þ ¼ q
8π2

ρρ0

3
∂4
Δz

Z
∞

0

dy
y2

e−
Δz2y
2ρρ0−

ðρ2þρ02Þy
2ρρ0

×
X∞
n¼−∞

eiqnΔϕIqjnjðyÞ: ðB16Þ

The sum in n is given by Eq. (A7) and the integral in y above
is again divergent. Nevertheless, as before, we can introduce
a regularization parameter so that the divergent integral can
be solved as

Z
∞

0

dy
e−

yR2

2ρρ0

y2
¼ lim

p→0

Z
∞

0

dy
e−

yR2

2ρρ0

ðyþ pÞ2

¼ lim
p→0

�
1

p
−

R2

2ρρ0
e

R2

2ρρ0pΓ
�
0;

R2

2ρρ0
p

��
: ðB17Þ

Following the same steps as before, the limit in Eq. (B17) is
found to be

∂4
Δz limp→0

�
1

p
− xexpΓð0; xpÞ

�
¼ ∂4

Δzðx lnðxÞÞ: ðB18Þ

Once again taking thewave propagation in the z-direction so
that ðt; ρ0;φ0; zÞ → ðt0; ρ0;φ0; z0Þ, and using Eq. (B18), the
expression in (B16) turns into

X
γ

∂4
Δz

ω5
φγðxÞφ�

γðx0Þ

¼ 1

48π2
∂4
Δz

�
Δz2 ln

�
Δz2

2ρ20

�
þ 2

X0
½q=2�

n

R2
n ln

�
R2
n

2ρ20

�

−
q sinðqπÞ

π

Z
∞

0

dξ
R2
ξ lnð

R2
ξ

2ρ2
0

Þ
½coshðqξÞ − cosðqπÞ�

�
; ðB19Þ

where the first term represents the Minkowski contribution.
On the other hand, using (A11), the integral of the first

term on the right-hand side of Eq. (B15) can be written

Izzzz ¼
Z

Δt

0

dt4

Z
t4

0

dt3

Z
t3

0

dt2

Z
t2

0

dt1
X
γ

e−iωt1

ω
φγðxÞφ�

γðx0Þ

¼ 1

48π2

�
MðΔt;ΔzÞ − ð3Δt2 þ Δz2Þ ln

�
Δz2

2ρ20

�
− 5Δt2

�

þ 1

24π2
X0
½q=2�

n¼1

�
MnðΔt; RnÞ − ð3Δt2 þ R2

nÞ ln
�
R2
n

2ρ20

�
− 5Δt2

�

−
q sinðqπÞ
48π3

Z
∞

0

dξ
½MξðΔt; RξÞ − ð3Δt2 þ R2

ξÞ lnð
R2
ξ

2ρ2
0

Þ − 5Δt2�
½coshðqξÞ − cosðqπÞ� ; ðB20Þ

where the first term on the right-hand side is the Minkowski
contribution and we use the general notation

MðΔt; RÞ ¼
�
3RΔtþ Δt3

R

�
ln

�
Rþ Δt
R − Δt

�

þ ð3Δt2 þ R2Þ ln
�
R2 − Δt2

2ρ20

�
: ðB21Þ

By substituting Eqs. (B8), (B19) and (B20) into
Eq. (B15), the renormalized expression is written as

HðRÞ
zzzzðx; x0Þ ¼ ∂4

Δz

�
1

24π2
X0
½q=2�

n¼1

MnðΔt; RnÞ

−
q sinðqπÞ
48π3

Z
∞

0

dξ
MξðΔt; RξÞ

½coshðqξÞ − cosðqπÞ�
�
;

ðB22Þ
where we have subtracted the Minkowski contribution.
Note that because of the derivative in Δz the terms with
5Δt2 in Eq. (B20) have been neglected in Eq. (B22).

MOTA, BEZERRA DE MELLO, BESSA, and BEZERRA PHYSICAL REVIEW D 94, 024039 (2016)

024039-10



Once the functions GðcsÞðx; x0Þ, FðRÞ
zz ðx; x0Þ and HðRÞ

zzzzðx; x0Þ have been calculated, after taking the derivatives with respect
to Δz in Eqs. (B12) and (B22), a closed expression for Eq. (3.14) is found to be

GðRÞ
zzzzðΔt;Δz; ρ0Þ ¼

X0
½q=2�

n¼1

GnðΔt; σn; Rn; snÞ −
q sinðqπÞ

2π

Z
∞

0

dξ
GξðΔt; σξ; Rξ; sξÞ

½coshðqξÞ − cosðqπÞ� ; ðB23Þ

where

GðΔt; σ; R; sÞ ¼ 1

6π2R8σ2
½ðΔz2 − Δt2Þð16Δz6 − 24Δz4Δt2Þ − 3Δt2s6 þ ð9Δt4 þ 69Δz2Δt2 þ 16Δz4Þs4

þ ð32Δz6 þ 32Δz4Δt2 − 72Δz2Δt4Þs2� − Δt
8π2R9

ln

�
Rþ Δt
R − Δt

�
2

½−s6 − ð3Δt2 þ 9Δz2Þs4 þ 24Δt2Δz2s2

− 8Δz4Δt2 þ 8Δz6�; ðB24Þ

with

σn ¼ −Δt2 þ R2
n;

σξ ¼ −Δt2 þ R2
ξ ; ðB25Þ

and

sn ¼ 2ρ0 sinðnπ=qÞ;
sξ ¼ 2ρ0 coshðξ=2Þ: ðB26Þ

The results derived in these Appendixes are applied to our
analysis through the body of the text.
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