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There is a host of alternative theories of gravitation in the literature, among them the fðR; TÞ and
fðR; TϕÞ theories recently elaborated by Harko et al. In these theories, R, T and Tϕ are respectively the
Ricci scalar and the traces of the energy-momentum tensors of matter and of a scalar field. There is already
in the literature a series of studies of different forms of the fðR; TÞ and fðR; TϕÞ functions as well as their
cosmological consequences. However, there have been no studies so far related to gravitational waves.
Here we consider such an issue, in particular, studying the putative extra polarization modes that can appear
in the scope of such theories. Different functional forms of fðR; TϕÞ are considered and the gravitational
waveforms are found for the extra polarization modes in the cases in which they are present.
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I. INTRODUCTION

Recently, gravitational waves (GWs) were directly
detected for the first time [1]. Forthcoming observations
will contribute to the study and understanding of a large
number of research fields in physics, astrophysics and
cosmology, from the absolute ground state of matter [2] to
the upper limits on the brane tension values of braneworld
cosmologies [3]. In the near future, we may also be able to
estimate parameters of compact binary systems [4–7],
constrain the equation of state of neutron stars [8–13]
and distinguish general relativity (GR) from alternative
theories of gravity [14–17].
It is well known that alternative theories of gravity arise

as possibilities for evading some standard cosmology
shortcomings [18–21]. Recently elaborated by Harko et al.,
the fðR; TÞ gravity [22] is one of the promising
alternatives.
Although plenty of well-behaved cosmological models

have been derived from such a theory (see [23–32] and

references therein), no efforts have been made in applying
fðR; TÞ gravity to the study of GWs.
It is the purpose of the present article to explore the

physical features of GWs in fðR; TÞ gravity and in different
possible formulations of fðR; TϕÞ gravity. We will show
that the physics of GWs is strongly dependent on the
functional forms of fðR; TÞ and fðR; TϕÞ, in such a way
that different formulations can exhibit different numbers of
polarization states. In order to characterize the polarization
states of GWs for some formulations of interest, we will
evaluate the Newman-Penrose (NP) quantities [33–35]
predicted by them. For now, it is worth mentioning that
the NP formalism has been applied to different alternative
theories of gravity, leading to interesting and testable
results [14,36,37].

II. f ðR;TÞ GRAVITY

Proposed by Harko et al. [22] as a generalization of the
fðRÞ theories (see [38,39] and references therein), the
gravitational part of the fðR; TÞ action depends not only on
a generic function of the Ricci scalar R, as in fðRÞ gravity
theories, but also on a function of T, the trace of the energy-
momentum tensor Tμν. According to the authors, the
dependence on T arises from the consideration of quantum
effects (conformal anomaly) which are usually neglected in
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fðRÞ or GR theories, for instance. The full action in fðR; TÞ
gravity reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR; TÞ þ Lm�; ð1Þ

with fðR; TÞ being an arbitrary function of R and T, g is the
determinant of the metric gμν, with greek indices assuming
the values 0–3 and

ffiffiffiffiffiffi−gp
Lm is the Lagrangian density of

matter. Throughout this work we will use units such
that 4πG ¼ c ¼ 1.
By varying Eq. (1) with respect to the metric, one obtains

the fðR; TÞ field equations

fRðR; TÞRμν −
1

2
fðR; TÞgμν þ ðgμν□ −∇μ∇νÞfRðR; TÞ

¼ −
1

2
Tμν − fTðR; TÞTμν − fTðR; TÞΘμν; ð2Þ

with □≡ ∂μð ffiffiffiffiffiffi−gp
gμν∂νÞ= ffiffiffiffiffiffi−gp

, Θμν ≡ gαβδTαβ=δgμν,
fRðR; TÞ≡ ∂fðR; TÞ=∂R, fTðR; TÞ≡ ∂fðR; TÞ=∂T, and
where Rμν is the Ricci tensor, ∇μ is the covariant derivative
with respect to the symmetric connection associated to gμν
and the energy-momentum tensor, as usual, reads

Tμν ¼
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð3Þ

For reasons that will be presented below, in this article
we are also concerned with a different theory for which
Harko et al. [22] have considered the coupling of gravity
with a self-interacting scalar field ϕ, namely fðR; TϕÞ
gravity, with Tϕ standing for the trace of the energy-
momentum tensor of the scalar field.
Such a formulation was developed in a cosmological

perspective in [23] and gave rise to a complete scenario of
the Universe’s evolution, able to describe the inflationary,
radiation, matter and dark energy eras.
For this case, the full action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR; TϕÞ þ Lðϕ;∇μϕÞ þ Lm�; ð4Þ

where Lðϕ;∇μϕÞ is the usual Lagrangian for the scalar
field, namely

Lðϕ;∇μϕÞ ¼
1

2
∇αϕ∇αϕ − VðϕÞ; ð5Þ

and VðϕÞ is a self-interacting potential. Notice that in this
theory, the matter fields have only a minimal coupling with
gravity and they do not couple with ϕ.
From (3) and (5), the energy-momentum tensor for the

scalar field reads

Tϕ
μν ¼ ∇μϕ∇νϕ −

1

2
gμν∇αϕ∇αϕþ gμνVðϕÞ ð6Þ

and its trace is given by

Tϕ ¼ −∇αϕ∇αϕþ 4VðϕÞ: ð7Þ

III. GWS IN THE f ðR;TÞ GRAVITY

In order to find the number of polarization modes of
GWs of a theory we need to examine the far-field,
linearized, vacuum field equations of the theory. For
vacuum, the fðR; TÞ and fðRÞ field equations [38,39]
are the same, namely,

fRRμν −
1

2
fgμν −∇μ∇νfR þ gμν□fR ¼ 0: ð8Þ

The calculation of the NP parameters for such a theory
was carried out in Ref. [14]. The authors considered
fðRÞ ¼ R − αR−β, with α and β being constants, and found
out that if α ≠ 0 and β ≠ 0, one has for the NP quantities

Ψ2 ≠ 0; Ψ3 ¼ 0; Ψ4 ≠ 0; and Φ22 ≠ 0; ð9Þ

showing that this theory presents the scalar longitudinal
mode (Ψ2) and the “breathing” scalar transversal mode
(Φ22) in addition to the usual tensor modes represented by
Ψ4. But it is worth emphasizing that since Ψ2 ≠ 0, this is
the only observer-independent mode. The presence or
absence of all other modes depends on the observer
(see, e.g., [14,33]).
Therefore, the standard fðR; TÞ formalism does not give

new information about GW polarization states, because in
vacuum the fðRÞ formalism is retrieved.

IV. GWS IN THE f ðR;TϕÞ= − R=4þ f ðTϕÞ THEORY

Because one expects scalar field terms to appear in the
fðR; TϕÞ field equations for vacuum, new polarization
states of GWs can be present in such theories. The present
and the following sections will deal with this issue.
In what follows we consider GWs in the absence of

matter and therefore we take Lm ¼ 0. The field equations of
the fðR; TϕÞ ¼ −R=4þ fðTϕÞ theory read [23]

Gμν ¼ 2½Tϕ
μν − gμνfðTϕÞ − 2fTðTϕÞ∇μϕ∇νϕ�; ð10Þ

where Gμν is the usual Einstein tensor. It is also useful to
know explicitly the Ricci scalar, namely

R ¼ −2½Tϕ − 4fðTϕÞ − 2fTðTϕÞ∇αϕ∇αϕ�: ð11Þ

The equation of motion for the scalar field can be found
by applying the covariant divergence of the field equa-
tions (10). One then obtains
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ð1 − 2fTÞ□ϕþ ð1 − 4fTÞ
∂V
∂ϕ − 2fTT∇νϕ∇νT ¼ 0; ð12Þ

with fTT ≡ ∂2fðR; TÞ=∂T2.
The properties of GWs depend upon the particular

choice for fðTϕÞ, for which we analyze some well-
motivated possibilities below.

A. The f ðTϕÞ= 2λTϕ case

One interesting particular case is to consider that f
depends linearly on the trace of the energy-momentum
tensor of the scalar field, i.e., fðTϕÞ ¼ 2λTϕ, where λ is a
constant. Such a functional form has already been used in
fðR; TϕÞ models, yielding a description of a complete
cosmological scenario, as can be seen in [23]. For this case,
Eq. (12) reduces to

□ϕþ
�
1 − 8λ

1 − 4λ

� ∂VðϕÞ
∂ϕ ¼ 0; ð13Þ

for λ ≠ 1=4.
Since we need to analyze the field equations in the

linearized regime, we expand the potential around its
minimum, obtaining [33]

□ϕþ
�
1 − 8λ

1 − 4λ

�
m2ðϕ − ϕ0Þ ¼ 0; ð14Þ

where now □ ¼ ημν∂μ∂ν with ημν being the Minkowski
metric, m2 ¼ ð∂2V=∂ϕ2Þϕ¼ϕ0

and ϕ0 locates the minimum
of the potential, which could be obtained from cosmologi-
cal boundary conditions. A solution of this equation reads

ϕðxÞ ¼ ϕ0 þ ϕ1eiqαx
α
; ð15Þ

where ϕ1 is a small amplitude and qα is the wave vector
which obeys the following equation,

qαqα ¼
�
1 − 8λ

1 − 4λ

�
m2; ð16Þ

with λ ≤ 1=8 or λ > 1=4.
The Ricci scalar (11) for fðTϕÞ ¼ 2λTϕ reads

R ¼ 2½ð1 − 4λÞ∇αϕ∇αϕ − 4ð1 − 8λÞVðϕÞ�; ð17Þ

and by considering terms up to first order in ϕ we find a
constant curvature scalar, namely

R ¼ −8ð1 − 8λÞV0 þOðϕ2
1Þ; ð18Þ

where V0 is the minimum value of the potential.
Therefore, from the point of view of the propagation of

GWs, the overall effect of the inclusion of a minimally

coupled scalar field to first order is equivalent to consid-
ering an effective cosmological constant (CC)

Λ ¼ 2ð1 − 8λÞV0; ð19Þ

which is positive for λ < 1=8, null for λ ¼ 1=8 and negative
otherwise. As it is well known, Λ does not introduce any
additional polarization states for GWs [40]. Therefore, we
can conclude that GWs in the fðR; TϕÞ ¼ −R=4þ 2λTϕ

theory have only the two usual polarizations of GR, i.e., þ
and ×.
The above result shows that the linearized field equations

of this theory, in the absence of matter, have the Minkowski
metric as background only if λ ¼ 1=8 or V0 ¼ 0. In this
case, the GWequations are exactly the same as those of GR
theory.
Otherwise, in order to obtain the first order equations for

the GWs, we need to expand the metric around the de Sitter
metric. Here we do not consider such an issue; instead we
refer the reader to Ref. [41] for a study of linear fields on de
Sitter space-time.

B. The f ðTϕÞ= 2λðTϕÞn case with V0 ≠ 0

If the minimum value of the potential V0 ≠ 0, and by
assuming m2ϕ1 ≪ V0, the case fðTϕÞ ¼ 2λðTϕÞn, with n
being a constant, does not provide a first order term in ϕ
in the right-hand side of Eq. (10) or (11). The first two
non-null terms of the expansion are the zero and second
order terms. Therefore, as in the previous case, there are
GWs just with the þ and × polarizations. The overall
effect is just a redefinition of Λ in the de Sitter back-
ground metric as

Λ ¼ 2½V0 − 2λð4V0Þn�: ð20Þ

C. The f ðTϕÞ= 2λ
ffiffiffiffiffiffi
Tϕ

p
case

Such an fðTϕÞ functionality has already been studied as
an fðR; TÞ gravity case in [42]. This particular fðTϕÞ is the
only one in which the conservation law is respected in a
minimal coupling of matter and geometry. This fðTϕÞ
exhibits the following equation for ϕ,

ð
ffiffiffiffiffiffi
Tϕ

p
− 2λÞ□ϕþ ð

ffiffiffiffiffiffi
Tϕ

p
− 4λÞ∂V∂ϕþ λ∇μϕ∇μðlnTϕÞ ¼ 0:

ð21Þ

Following the same procedure as before, expanding
VðϕÞ around a non-null minimum value V0 and keeping
terms up to first order in ϕ in the above equation we find

□ϕþ
� ffiffiffiffiffiffi

V0

p
− 2λffiffiffiffiffiffi

V0

p
− λ

�
m2ðϕ − ϕ0Þ ¼ 0: ð22Þ
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The solution of this equation is of the form (15) with

qαqα ¼
� ffiffiffiffiffiffi

V0

p
− 2λffiffiffiffiffiffi

V0

p
− λ

�
m2; ð23Þ

and λ ≤
ffiffiffiffiffiffi
V0

p
=2 or λ >

ffiffiffiffiffiffi
V0

p
. However, this solution does

not imply any additional polarization states for GWs
since this is a particular case of the precedent section with
n ¼ 1=2 in Eq. (20).
On the other hand, if we now adopt V0 ¼ 0 from the

beginning we find that
ffiffiffiffiffiffi
Tϕ

p
is of first order in ϕ. Then,

keeping terms up to first order in ϕ in Eq. (21) (which is
now equivalent to saying that

ffiffiffiffiffiffi
Tϕ

p
≪ λ) we find

□ϕþ 2m2ðϕ − ϕ0Þ −
1

2
∂μϕ∂μ lnðTϕÞ ¼ 0: ð24Þ

If we assume a propagating solution like (15) for this
equation we find that it is identically satisfied only if
m ¼ 0. However, it does not imply qμqμ ¼ 0. Accordingly,
the curvature scalar is given by

R ¼ 12λ
ffiffiffiffiffiffiffiffiffiffi
qμqμ

p
ϕ1eiqαx

α þOðϕ2Þ ð25Þ

and, considering the scalar wave ϕ and the GW propagating
in the z direction, we choose qμ ¼ ðω; 0; 0; kÞ, where ω is
the frequency of the scalar field and k is the z component of
the wave vector. Thus, the non-null components of the
Ricci tensor are

R00 ¼ 2λ

�
3ω2 − k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
�
ϕ1eiqαx

α
; ð26Þ

R33 ¼ 2λ

�
3k2 − ω2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
�
ϕ1eiqαx

α
; ð27Þ

R03 ¼ R30 ¼ −4λ
�

ωkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
�
ϕ1eiqαx

α
; ð28Þ

R11 ¼ R22 ¼ −2λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
ϕ1eiqαx

α
: ð29Þ

Now, by using the above results together with the
definitions (A5)–(A8) and with the help of Eqs. (A9)–
(A13), we evaluate the NP parameters, namely

Ψ2 ¼ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
ϕ1eiqαx

α
; ð30Þ

Ψ3 ¼ 0; ð31Þ

Φ22 ¼ −λ
� ðωþ kÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − k2
p

�
ϕ1eiqαx

α
: ð32Þ

Note also that since there are no further constraints on the
components of the Riemann tensor,Ψ4 ≠ 0. Thus, similarly

to the fðRÞ gravity case mentioned above, we are led to
conclude that Eq. (9) holds once again, but now the
presence or absence of the scalar longitudinal mode and
of the scalar transversal mode depends on λ. If λ ¼ 0 these
extra polarization modes disappear and we recover GR
theory with the only non-null parameter Ψ4.
It is interesting to notice that in the usual scalar-tensor

theories of gravity, the presence of a propagating Ψ2 mode
is related to the mass of the scalar field, in such a way that if
the mass is zero, this mode does not exist (see [33,36]). On
the other hand, we showed that the equations of the
fðR; TϕÞ ¼ −R=4þ 2λ

ffiffiffiffiffiffi
Tϕ

p
theory in the linearized

regime implied a null mass for the scalar field, but the
Ψ2 mode is still present.
Although there are no initial constraints on qμqμ, the

result we have obtained is not valid for qμqμ ¼ 0 (ω ¼ k)
since the invariant Φ22 diverges. Furthermore, we should
have qμqμ ¼ ω2 − k2 > 0 in order to not violate the
causality. Therefore, in the weak field regime of this theory,
we have a massless scalar field with a speed smaller than
the speed of light. As a consequence, since the GW modes
associated with Ψ2 and Φ22 have the same speed as that of
the scalar field, they also have a speed vGW < c.

V. GWS IN THE f ðR;TϕÞ= f 1ðRÞ þ f 2ðTϕÞ THEORY

In this section we follow closely the method used
in Ref. [14]. Considering the case for which
fðR; TϕÞ ¼ f1ðRÞ þ f2ðTϕÞ, the field equations (2) read

f1RRμν −
1

2
f1gμν þ ðgμν□ −∇μ∇νÞf1R

¼ −
1

2
½Tϕ

μν − gμνf2ðTϕÞ − 2f2T∇μϕ∇νϕ� ð33Þ

whose corresponding trace is given by

f1RR − 2f1 þ 3□f1R ¼ −
1

2
ðTϕ − 4f2 − 2f2T∇αϕ∇αϕÞ:

ð34Þ

By restricting fðR; TÞ to the case f1ðRÞ¼−1
4
ðR−αR−βÞ

and f2ðTϕÞ ¼ 2λTϕ, and ignoring terms of order two or
higher in ϕ, we find a dynamical equation for the Ricci
scalar, namely

□R−ð1þβÞ þ β þ 2

3β
R−β −

1

3αβ
Rþ 8ð8λ − 1ÞV0

3αβ
¼ 0; ð35Þ

which must be solved in order to verify if there is a
propagating GW polarization mode associated with R.
Considering β ≥ 1, we have R−β ≫ R in the weak field
regime and the above equation now reads (similar calcu-
lations can be carried out by assuming other range of values
for β)
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□ψ þ β þ 2

3β
ψ

β
1þβ þ 8ð8λ − 1ÞV0

3αβ
¼ 0; ð36Þ

where, for convenience, we have renamed ψ ¼ R−ð1þβÞ.
Nevertheless, Eq. (36) has the following form,

□ψ þ ∂U
∂ψ ¼ 0; ð37Þ

with the potential given by

UðψÞ ¼
�ðβ þ 1Þðβ þ 2Þ

3βð2β þ 1Þ
�
ψ

2βþ1
βþ1 þ 8ð8λ − 1ÞV0

3αβ
ψ : ð38Þ

Therefore, since it is Lorentz invariant, it can be solved by
the following method used in Ref. [43]. Let us first consider
the static solution of (37),

d2ψ
dz2

¼ ∂U
∂ψ ; ð39Þ

which can be written as

1

2

�
dψ
dz

�
2

¼ UðψÞ: ð40Þ

Substituting the potential (38) in the above equation and
noticing that the last term of the potential is much smaller
than the first, we find that

ψ
1

2ðβþ1Þ þ 4ð8λ − 1Þð2β þ 1ÞV0

αðβ þ 1Þðβ þ 2Þð2β − 1Þψ
− 2β−1
2ðβþ1Þ

¼
� ðβ þ 2Þ
6βðβ þ 1Þð2β þ 1Þ

�1
2ðzþ CÞ; ð41Þ

with C being an integration constant.
The most simple solution of the above equation can be

found for β ¼ 1, namely

RðzÞ ¼ ψ−1
2ðzÞ ¼ ξ2

�
ðzþ CÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ CÞ2 − 4

ffiffiffi
3

p
=ξ

q i2
;

ð42Þ

where

ξ ¼ α

8
ffiffiffi
3

p ð8λ − 1ÞV0

: ð43Þ

Now, since R is Lorentz invariant, we can obtain a time-
dependent solution from the static solution (42) by con-
sidering a Lorentz transformation

Rðt; zÞ ¼ ξ2fγðz − vtÞ þ C

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½γðz − vtÞ þ C�2 − 4

ffiffiffi
3

p
=ξ

q
g2; ð44Þ

where γ ¼ ð1 − v2Þ−1
2 is the Lorentz factor.

Now, with this result in the field equations (33) we are
able to find the following relevant components of the Ricci
tensor,

R00 ¼ Fðt; zÞGðt; zÞ − 1

2
Rðt; zÞ; ð45Þ

R33 ¼ v2Fðt; zÞGðt; zÞ þ 1

2
Rðt; zÞ; ð46Þ

R03 ¼ −vFðt; zÞGðt; zÞ; ð47Þ

where the functions Fðt; zÞ and Gðt; zÞ are given respec-
tively by

Fðt; zÞ ¼ 16γ2

½γðz − vtÞ þ C�2 − 4
ffiffiffi
3

p
=ξ

ð48Þ

and

Gðt; zÞ ¼ 1� 1

4

½γðz − vtÞ þ C�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½γðz − vtÞ þ C�2 − 4

ffiffiffi
3

p
=ξ

q : ð49Þ

The components R11 and R22 are also non-null but since
they do not enter in the calculation of the NP parameters,
we do not quote them here. Finally, from Eqs. (A5)–(A8)
and with the help of Eqs. (A9)–(A13), we are able to find
the NP parameters

Ψ2 ¼
1

12
Rðt; zÞ; ð50Þ

Ψ3 ¼ 0; ð51Þ

Φ22 ¼ −
1

4
ð1þ vÞ2Fðt; zÞGðt; zÞ: ð52Þ

Additionally, since the theory does not exhibit further
constraints in the spacetime geometry, we conclude that
Ψ4 ≠ 0 although it is not possible to obtain its behavior
from the curvature scalar or from the Ricci tensor (because
Ψ4 is the NP invariant associated with the Weyl tensor).
Therefore, again we find that Eq. (9) holds.
Now, the presence or absence of the scalar polarization

states does not depend on λ. This is because they can be
generated simply by the particular choice of the function
f1ðRÞ we considered. On the other hand, by taking
α ¼ 0 we have R ¼ F ¼ 0 and then Ψ2 ¼ Φ22 ¼ 0, which
is in accordance with our previous assertion that the
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fðR; TϕÞ ¼ −R=4þ 2λTϕ theory exhibits only the two
usual tensor polarizations of GR.
It is worth stressing that the value β ¼ 1 was chosen in

Eq. (41) only for simplicity of the subsequent calculations,
but it should be remembered that the theory fðRÞ ¼
− 1

4
ðR − αR−1Þ suffers the well-known Dolgov-Kawasaki

instability [44]. Although the waveforms for Ψ2 and Φ22

depend on the choice of β, we do not expect qualitative
changes in the final result.

VI. CONCLUSIONS

With the recent detection of GWs by the Advanced
LIGO team [1], a new window to observe the Universe has
finally been opened. The high detection rate expected for
some events, as the one detected (black hole–black hole
merger), allied to some electromagnetic counterparts, may
lead us to understand physics at extreme regimes of
gravitational fields, densities etc.
The GW spectrum and its polarization modes are theory

dependent. Previously motivated by shortcomings of the
standard cosmological scenario, the alternative theories of
gravity can also contribute to the study of GWs, being able
to generate observables to be corroborated by experiment.
In this article, we have presented a study of GWs in the

fðR; TÞ and fðR; TϕÞ theories of gravity. The fðR; TÞ
theories consider the gravitational part of the action to be
dependent not only on a generic function of R, but also on a
function of T. The dependence on T comes from the
consideration of exotic fluids or quantum effects. The
fðR; TÞ models depend on a source term, which represents
the variation of the energy-momentum tensor with respect
to the metric. On the other hand, in the fðR; TϕÞ theories, it
is considered a function of R and of the trace of the energy-
momentum tensor of a self-interacting scalar field ϕ, while
the energy-momentum tensor of matter fields enters the
field equations in the usual way. In both cases, the field
equations of the fðRÞ gravity are recovered if T ¼ 0 or
Tϕ ¼ 0.
It is the first time that GWs are considered in fðR; TÞ and

fðR; TϕÞ theories. The first steps of this investigation have
shown us that, in terms of the polarization modes, it is not
possible to distinguish fðR; TÞ gravity from fðRÞ gravity.
This is because in order to find the number of polarization
modes of GWs in a given theory one has to examine the
theory in a region far from the source of GWs where T ¼ 0.
In this regime, fðR; TÞ gravity retrieves fðRÞ theory.
However, it is expected that it would be possible to
distinguish the two theories by analyzing the waveforms
produced by a given source, a binary system for instance,
since the energy-momentum tensor of the source enters in a
different manner in the fðR; TÞ gravity.
In Ref. [23], through the introduction of a scalar field, the

fðR; TϕÞ theory was considered. In that paper, there is a
contribution coming from the Tϕ term, and, consequently,

the theory is distinguishable from the fðRÞ gravity even for
T ¼ 0 regimes, namely radiation era and vacuum. Starting
from such a formulation, we have shown in the present
article that indeed it is possible to obtain fðR; TϕÞ gravity
information in vacuum regime without necessarily recov-
ering fðRÞ gravity. By using the field equations of the
theory, we have obtained the NP quantities and we have
found out extra polarization states of GWs.
As expected, the properties of GWs depend upon the

functional form of fðR; TϕÞ. In Sec. IV we took
fðR; TϕÞ ¼ −R=4þ fðTϕÞ and analyzed different forms
for fðTϕÞ along with different assumptions for the scalar
field potential. For fðTϕÞ ¼ 2λTϕ we showed that the
effects of the inclusion of the scalar field up to first order
terms are equivalent to considering that the usual CC
Λ → 2ð1 − 8λÞV0. However, it has already been shown that
a CC does not introduce any additional polarization states
for GWs (see Ref. [40]).
It is well known that in a Λ ¼ 0 case, in order to study

isolated systems in the weak field regime, one investigates
the linearized gravitational fields in Minkowski space-time.
Such GW equations are recovered in fðR; TϕÞ ¼ −R=4þ
2λTϕ gravity when λ ¼ 1=8 or V0 ¼ 0. On the other hand,
for the Λ > 0 case, it seems natural to replace the
Minkowski metric with the de Sitter one, as quoted in
Sec. IVA.
A particular form for fðTϕÞ, namely fðTϕÞ ¼ 2λ

ffiffiffiffiffiffi
Tϕ

p
,

exhibits a quite different scenario. In this theory we have
shown that GWs can have two scalar polarization modes
(longitudinal and transversal) beyond the usual Einstein
polarizations. Nevertheless, it is worth remembering that
since Ψ2 ≠ 0, the Eð2Þ classification of the theory is II6;
i.e., Ψ2 is the only observer-independent mode. The
presence or absence of all other modes depends on the
observer. Additionally, we found out that these scalar
polarization modes have a speed vGW < c, as in the
massive gravity case [37].
Similar results were obtained for the theory fðR; TϕÞ ¼

− 1
4
ðR − αR−βÞ þ 2λTϕ, but now the presence or absence of

the extra scalar polarization modes does not depend on the
presence of the term 2λTϕ since the fðRÞ gravity also
presents these modes. However, the waveforms of the NP
parameters Ψ2 and Φ22 we have obtained are quite different
from those of the fðRÞ gravity (as one can compare with the
expressions obtained in Ref. [14]), which could be a way to
distinguish between the two theories.
The recent detection of GWs by the LIGO team is

consistent with a binary black hole system in general
relativity [1]. However, because of the similar orientations
of the Hanford and Livingston LIGO instruments, the data
cannot exclude the presence of non-Einsteinian polariza-
tion modes. To determine the polarization content of a
signal requires a network of detectors with different
orientations, such as Virgo [45]. Also, with only two
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detectors and in the absence of an electromagnetic or
neutrino counterpart, there is a large uncertainty in the sky
location of the source. As a consequence, there is an
uncertainty in the speed of the GWs estimated from the
difference of the time of arrival of the signal in each
detector; thus vGW < c cannot be ruled out. Therefore, the
fðR; TÞ formalism discussed here, as well as several other
alternative theories of gravitation, are not excluded from the
point of view of the polarization modes or the speed of
GWs. We hope that with the future detection of GWs
stronger bounds could be established for such parameters.
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APPENDIX: AN OVERVIEW OF THE
NEWMAN-PENROSE FORMALISM

A powerful tool to study the properties of GWs was
developed in [33]. The basic idea is to analyze all the
physically relevant components of the Riemann tensor
which cause relative acceleration among test particles. In
[33], the authors used a null tetrad basis, which is specially
suitable to treat approximately null waves, to calculate the
NP quantities [34,35], which are directly related to the GW
polarization states in a given theory. Those quantities are
given in terms of the irreducible parts of the Riemann
tensor, i.e., the Weyl tensor, the traceless Ricci tensor and
the Ricci scalar.
The analysis in [33] showed that there are up to six

possible modes of polarization for GWs, depending on the
theory, which can be corroborated by experiments.
Therefore it is possible to categorize a given theory from
its non-null NP quantities.
At a given point, the complex tetrad ðk; l;m; m̄Þ is

related to the usual Cartesian tetrad ðet; ex; ey; ezÞ as

k ¼ 1ffiffiffi
2

p ðet þ ezÞ; ðA1Þ

l ¼ 1ffiffiffi
2

p ðet − ezÞ; ðA2Þ

m ¼ 1ffiffiffi
2

p ðex þ ieyÞ; ðA3Þ

m̄ ¼ 1ffiffiffi
2

p ðex − ieyÞ: ðA4Þ

In general, the NP quantities are independent. In the
study of approximately plane waves, there are some
differential and symmetrical properties of the Riemann
tensor which reduce the number of non-null independent
components from 20 (ten Ψ’s, nine Φ’s and Λ) to six.
Therefore we can choose the set fΨ2;Ψ3;Ψ4;Φ22g to
describe, in a given coordinate system, the six independent
components of a wave in a given theory. Consequently, in
the tetrad basis and in the case of plane waves, the NP
quantities are given by

Ψ2 ¼ −
1

6
Rlklk; ðA5Þ

Ψ3 ¼ −
1

2
Rlklm̄; ðA6Þ

Ψ4 ¼ −Rlm̄lm̄; ðA7Þ

Φ22 ¼ −Rlmlm̄; ðA8Þ

with Rαβμν being the Riemann tensor. Note that Ψ3 and Ψ4

are complex quantities, so that each of them represents two
independent polarization states, one represented by the real
part and the other by the imaginary part of Ψ3 and Ψ4.
Other useful expressions for the NP formalism are the

following,

Rlk ¼ Rlklk; ðA9Þ

Rll ¼ 2Rlmlm̄; ðA10Þ

Rlm ¼ Rlklm; ðA11Þ

Rlm̄ ¼ Rlklm̄; ðA12Þ

R ¼ −2Rlk ¼ −2Rlklk; ðA13Þ

with Rμν being the Ricci tensor.
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