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We study a particular exact solution to the Born-Infeld determinantal gravity consisting of a
cosmological model which undergoes a “brusque bounce.” The latter consists of an event characterized
by a non-null (but finite) value of the squared Hubble rate H2 occurring at a minimum (non-null) scale
factor. The energy density and pressure of the fluid covering the whole manifold are perfectly well behaved
in such an event, but the curvature invariants turn out to be undefined there because of the undefined

character of _H. It is shown that the spacetime that results is geodesically complete and singularity free, and
that it corresponds to a picture of an eternal Universe in which a (somewhat unconventional) bounce
replaces the standard big bang singularity. This example tends to asize that, beyond Einstein’s theory of
general relativity, and in the context of extended theories of gravity formulated by purely torsional means,
the criterion of a singularity based on pathologies of scalars constructed upon the Riemann curvature tensor
becomes objectionable.
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I. INTRODUCTION

Since the early days of the new phase of the general
theory of relativity (GR), crowded by the singularity
theorems of Hawking and Penrose [1,2], the very concept
of a singularity was the subject of great concern for the
mathematical relativist. The root of this issue was discussed
in the pioneer Galilean dialogue between Sagredo and
Salviati, elaborated in Ref. [3]. What the latter was trying to
explain to the former (who inevitably brought up what he
thought was a good electromagnetic analogy), was that the
problem in defining a spacetime singularity relies on the
existence of points that—most of the time—are not
necessarily part of the spacetime structure itself. This
harmless and almost semantic property raised enormous
difficulties at the time of being concrete regarding what a
singularity is, for its mere existence should be inferred from
the points in the manifold close to the conflictive point (in
some appropriated mathematical sense).
One hundred years after its conception, there exists now

a wide repertoire of ideas on what can be considered to be a
singular state within the context of GR [4] (for an early
classification, see Refs. [5–7]). Actually, it is remarkably
easy to produce some sort of singular state by cutting out
and/or excising subsets of a given (otherwise regular)
spacetime, even though the manifold so obtained might
have a definitely dubious physical interpretation. For
instance, by removing a point from Minkowski spacetime
we can clearly get geodesics that abruptly end at such a
removed point, indicating that the observers represented by
these curves will impedingly cease to exist there. Even
though this example seems deliberately artificial, it teaches
us an important lesson. In order to arrive to the concept of

singularity, and irrespective of the potential bad behavior of
the metric tensor and its related curvature in or near the
conflictive point, what turns out to be relevant is the
behavior of causal curves and geodesics in the spacetime.
As a matter of fact, the key idea of what now is widely
accepted as the most fruitful condition for a spacetime to be
defined as singular is that it be timelike (null) geodesically
incomplete, i.e., if it contains a maximally extended time-
like (null) geodesic whose affine parameter does not
assume values in the full range from −∞ to þ∞.
Even this quite accepted definition has its deficiencies.

On the one hand, there exist examples of geodesically
complete spacetimes that admit incomplete (nongeodesic)
curves. Although this is regarded as unimportant in the
context of the usual spatially homogeneous and isotropic
cosmological FRW (Friedmann-Robertson-Walker) mod-
els, it is certainly relevant in more generic spacetimes. In
those cases, the end point of the incomplete curves inM is
incorporated as a regular point in the boundary ∂ of an

extended manifold fM ¼ ∂ ∪ M, called the b-completion
of M [8,9] (a generalization of this seminal construction
may be found in [10]). On the other hand, more modern
developments show that other kinds of singularities are not
based on geodesic completeness. This is the case of the so-
called sudden singularities [11–14], where the pressure of
the matter fields becomes divergent in a late event whose
fatality, however, is unseen by the geodesics [15].
In any case, it is clear that the singularities in all their

facets are an essential and inextricable part of the con-
ceptual body of GR, for a large class of solutions of
Einstein’s field equations are singular. One might regard
this abundance of singular spacetimes as a reminder that
GR has only a finite range of applicability. Although the
theory has successfully passed an important number of*francof@cab.cnea.gov.ar
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experimental tests over a wide spectrum of scales, includ-
ing a couple concerning the emission of gravitational
radiation [16,17], it is clear that further experimental
evidence in the strong gravitational field regime, where
GM=Rc2 ¼ Oð1Þ (hereM and R are the characteristic mass
and length scale of the phenomenon under consideration),
is mandatory [18].
This suggests that one might look for a theory that can

provide a proper, more refined treatment in order to avoid
singularities, at least in the paradigmatic situations arising
in the strong fields mentioned above. Unfortunately, the
fact that the singularity theorems use Einstein’s equations
only in a very weak sense—essentially only to conclude
that gravitation is attractive—rather suggests that the
construction of a new theory without singular behavior
may constitute a difficult task.
Bearing this in mind, and not long ago [19,20], we

exposed how to construct a gravitational action following
the same guiding principles used many decades ago by
Born and Infeld (BI) in the context of electrodynamics
[21,22]. BI-like structures for the gravitational field were
considered earlier in the literature. Historically they appear
throughout two generations, the first, inaugurated by [23]
and followed by other articles along the same line of
research (see, e.g., Refs. [24–35]). In all these construc-
tions, the gravitational action is obtained by combining
higher order invariants built from the curvature in a
Riemannian context, namely,

IBIð1Þ ¼
Z

d4x½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν þ aRμν þ bXμνj

q
−

ffiffiffiffiffiffiffiffiffi
jgμνj

q
�; ð1Þ

where j…j stands for the absolute value of the determinant,
and a, b are coupling constants. In (1) we have separated
the linear Ricci term Rμν from the quadratic or higher order
terms in the curvature contained formally in Xμν. The
presence of all these curvature terms under the square root
in expression (1) is responsible for the fourth-order
character of the field equations for the metric field gμν.
This fact complicates enormously the obtention of
deformed exact solutions, i.e., solutions not present in
GR and capable of shedding some light on the singularity
problem.
In turn, in Ref. [36] another BI-like scheme based on a

Palatini approach (actually called “Eddington-Born-Infeld”
gravity), was considered and first thoroughly studied
mostly in cosmological environments, where a number
of exact solutions without the big bang singularity were
found [37–45]. The action in this case reads

IBIð2Þ ¼
Z

d4x½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν þ aRμνðΓÞj

q
−

ffiffiffiffiffiffiffiffiffi
jgμνj

q
�; ð2Þ

where RμνðΓÞ represents the symmetric part of the Ricci
tensor built with the connection Γ, which is taken as an

independent field. In this second generation of BI theories,
and due to the independent role played by the metric
and the connection, second-order motion equations are
obtained, even though they are different than Einstein’s
equations only when matter sources are present. This
unfortunate fact eliminates the possibility of obtaining
regular black hole states in pure vacuum. Very recent
studies concerning stellar models and charged black holes
within this framework can be found in Refs. [46–49].
In what follows, we shall discuss the emergence of a

geodesically complete bouncing cosmological solution in
the context of the theory presented in [19] and [20], which,
unlike the second generation of BI gravitational theories
just mentioned, is also able to deform vacuum general
relativistic solutions. The spacetime in consideration rep-
resents an exact solution of the motion equations, which are
second-order differential equations for the vielbein field
eaðxÞ (unlike the ones coming from the first generation
referenced above). The manuscript is organized in such a
way that we briefly review the BI construction in Sec. II
below. Afterwards, in Sec. III, we obtain the solution and
present a detailed discussion of its geometrical properties.
Finally, we comment on its nature and discuss the regularity
properties underlying the manifold thus obtained in Sec. IV.
Throughout the paper, we will adopt the signature

ðþ;−;−;…Þ, and, as usual, latin indexes a∶ 0; 1;… refer
to tangent-space objects while greek μ∶ 0; 1;… allude to
spacetime components.

II. BORN-INFELD GRAVITY

Following Refs. [19] and [20], we will assume that the
dynamic of the gravitational field is described by the action
in D spacetime dimensions

IBIG ¼ λ

16πG

Z
dDx½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν þ 2λ−1Fμνj

q
−

ffiffiffiffiffiffiffiffiffi
jgμνj

q
�; ð3Þ

where the tensor Fμν, the agent encoding the gravitational
degrees of freedom, will be defined in brief [see
Eq. (11) below].
The action thus constructed provides an alternative

dynamical behavior in the high energy regime, i.e., in
situations where λ−1Fμν ¼ Oð1Þ, where λ is the Born-Infeld
constant. In what follows, I shall briefly review the guiding
principles leading to (3). For details, the reader can consult
the references just mentioned.
In order for (3) to be a reasonable candidate for

describing the gravitational field at length scales of order
l2 ¼ λ−1, we must ensure that the theory actually reduces
to general relativity in the low field limit. If we factor outffiffiffiffiffiffiffiffiffijgμνj
p

in (3) and use

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jIþ 2λ−1F j

q
¼ 1þ λ−1TrðFÞ þOðλ−2Þ; ð4Þ
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we get the action describing the low field limit

I↓ ¼ 1

16πG

Z
dDx

ffiffiffiffiffiffiffiffiffi
jgμνj

q
TrðFÞ; ð5Þ

where I is the identity, and F ≡ Fν
μ. To elucidate the nature

of the tensor F and its relation with the scalar curvature R
characterizing the Hilbert-Einstein action, we will require
that the equations of motion for the fields responsible for
the spacetime dynamics be of second order. Instead of
being the metric tensor gðxÞ, we shall demand that the
fundamental agent encoding the gravitational degrees of
freedom consist of a set of D 1-forms feaðxÞg. A sufficient
(though not necessary) condition for having second-order
field equations is that the action (3) includes up to first
derivatives of eaðxÞ, which means that F itself should be
made up from this field and its first derivatives. This
prescription, in view of the equivalence between (5) and
GR, poses what would appear at first sight to be an
insurmountable problem, because R contains second deriv-
atives of the metric field. This problem disappears if we
turn the attention to the absolute parallelism (or teleparallel)
formulation of GR.
According to this point of view general relativity can be

formulated in a spacetime possessing absolute parallelism.
This approach is usually known as the teleparallel equiv-
alent of general relativity (TEGR) [50,51], and it relies on
the existence of a set feaðxÞg of D 1-forms that turn out to
be autoparallel for the Weitzenböck connection

Γλ
μν ¼ eλa∂νeaμ; ð6Þ

where eλa refers to the inverse matrix of eaμ. This connection
is curvature free, and it is compatible with the metric
gðxÞ ¼ ηabeaðxÞebðxÞ, in the sense that the Weitzenböck
covariant derivative of the metric vanishes. However,
despite the fact that the curvature tensor associated to
the Weitzenböck connection is null, the latter gives rise to a
non-null torsion, which in the present context is simply1

Ta ¼ dea; ð7Þ

which means Tρ
μν ¼ eρað∂μeaν − ∂νeaμÞ in spacetime com-

ponents. This ingredient can be combined in quadratic
pieces in order to obtain a very remarkable identity, namely,

R½ea� ¼ −T þ 2 e−1ðTμ
μ
ρeÞ;ρ; ð8Þ

where e ¼ ffiffiffiffiffijgjp
is the determinant of the matrix eaμ, R is

the scalar curvature, and the invariant T is

T ¼ SρμνTρ
μν: ð9Þ

In this last equation we have introduced the important
tensor

Sρμν ¼ −
1

4
ðTμν

ρ − Tνμ
ρ − Tρ

μνÞ þ 1

2
ðδμρTθν

θ − δνρTθμ
θÞ:
ð10Þ

Equation (8) is the central point in the equivalence
between GR and TEGR because it states that the scalar
curvature constructed from the Levi-Cività connection can
be explicitly viewed as a purely torsional object T plus a
total derivative. This peculiar invariant (usually known as
the Weitzenböck invariant) is quadratic in the torsion tensor
and, thus, is made up of the vielbein and its first deriva-
tives alone.
Coming back to Eq. (5), we realize that in order to obtain

the proper low energy limit given by Einstein’s theory, we
need to demand TrðFÞ ¼ T. This establishes the compo-
nents of F according to2

Fμν ¼ αFð1Þ
μν þ βFð2Þ

μν þ γFð3Þ
μν ; ð11Þ

where α, β, γ are dimensionless constants such as αþ β þ
Dγ ¼ 1 [hence, ensuring that TrðFÞ ¼ T], and the tensors

FðiÞ
μν are defined by means of

Fð1Þ
μν ¼ SμλρTνλρ; Fð2Þ

μν ¼ SλμρTλ
νρ; Fð3Þ

μν ¼ gμνT: ð12Þ

Then, we conclude by using the fundamental tensor (11)
such that the gravitational action (3) reduces to GR in the
low field limit. Additionally, due to the fact that it is
constructed upon ea and its first derivatives alone, the
motion equations coming from it are of second order.
What makes action (3) more interesting is that it seems to

incorporate a systematic treatment in order to avoid
singularities. This constitutes the original idea behind the
structures like (3), whose spirit was fully understood first in
the electromagnetic context by Born and Infeld [21,22].
Pictorially, the success of the determinantal structure
concerning the singularity problem can be backtracked
to the following simple fact: the tensor F, by means of its
symmetric part, allows us to think of a “new” metric tensor
~gμνðea; ea;μÞ

~g ¼ gþ 2λ−1F½μν�: ð13Þ

Hopefully, this new metric can prevent the emergence of a
singular state by moving geodesics away in a sort of

1In general, the torsion 2-form is Ta ¼ Dea≐dea þ ωa
b∧eb,

where ωa
b is the spin connection. But TEGR fixes ωa

b ¼ 0. For
details, the reader is invited to consult Ref. [52].

2An antisymmetric second-rank tensor containing up to first
derivatives of ea could be added to (11) without ruining the low
energy limit of the theory. We shall not consider such a term in
this work.
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repulsive regime at scales l2 ¼ λ−1, thus evading the
singularity theorems at such scales. Even though this
repulsive high energy regime might not be a general feature
of the theory [53,54], it was shown that it actually exists
under certain circumstances [19,20]. In the next section we
shall provide another example of it.

III. A PRIMORDIAL BRUSQUE BOUNCE

Historically, FRW cosmological spacetimes have been
paradigmatic examples of singular behavior in GR. The big
bang singularity, much like the r ¼ 0 Schwarzschild
singularity, is an archetypical strong curvature singularity,
as defined in [55] and [56] (see also [6] for further
comments on this concept). Undoubtedly, this kind of
singular state constitutes the most explicit and harmful
situation envisioned within the general relativistic context.
Now we want to show how a radically different descrip-

tion of the very early stages of the Universe emerges out as
a consequence of action (3). For this reason we have to
prescribe a frame field ea for spatially flat isotropic
and homogeneous FRW manifolds first. An appropriated
parallelization of these spacetimes is provided by the
frame [57]

eaμ ¼ diagð1; aðtÞ; aðtÞ;…Þ; e ¼ aD−1: ð14Þ

This frame not only leads to the metric tensor

g ¼ diagð1;−aðtÞ2;−aðtÞ2;…Þ; ð15Þ

but also constitutes a globally well-defined basis for the
cotangent space T �ðMÞ, with M ¼ ðR4; gÞ. In order to
describe the cosmic evolution, we will assume a perfect
fluid with energy density ρ and pressure p as the source of
the motion equations. We have then

Tμν ¼ ðρþ pÞVμVν þ pgμν; ð16Þ

where Vμ is the tangent vector to the congruence of
causal curves defining the flow lines. Additionally we
shall suppose that such a perfect fluid is isentropic, so that
we will have p ¼ ωρ, with ω the barotropic index. The
energy-momentum tensor (16) adopts a very simple
form in the comoving frame, where it simply reads
Tμ
ν ¼ diagðρ;−ωρ;−ωρ;…Þ.
The motion equations are obtained by varying the action

(3) with respect to the vielbein components eaμ. In the
following, we will be interested in the case D ¼ 4. For the
tetrad (14) we can easily check that the only non-null
components of Tμνρ and Sμνρ [see Eqs. (7) and (10),
respectively] are

Sμ0μ ¼ −Sμμ0 ¼ −aðtÞ _aðtÞ;
Tμ0μ ¼ −Tμμ0 ¼ aðtÞ _aðtÞ; μ ≠ 0; ð17Þ

so the Weitzenböck (9) results in T ¼ −6H2, where H ¼
_a=a is the Hubble rate, and the dots refer to derivatives with
respect to the proper time t. With these components in
hand, we can evaluate the three pieces of Fμν according to
Eqs. (12). These are

Fð1Þ
μν ¼ diagð0; 2_a2; 2_a2; 2_a2Þ;

Fð2Þ
μν ¼ diagð−3H2; _a2; _a2; _a2Þ;

Fð3Þ
μν ¼ diagð−6H2; 6_a2; 6_a2; 6_a2Þ: ð18Þ

The constraint equation (the one coming from the
variation with respect to e00) readsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − BH2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − AH2

p ½1þ 2BH2 − 3ABH4� − 1 ¼ 16πG
λ

ρ; ð19Þ

where

A ¼ 6ðβ þ 2γÞ=λ; B ¼ 2ð2αþ β þ 6γÞ=λ: ð20Þ

As usual, the conserved character of Tμν gives rise to

d
dt

ðρa3Þ ¼ −p
d
dt

ða3Þ → _ρþ 3ðρþ pÞH ¼ 0: ð21Þ

For the isentropic case under consideration, this last
equation acquires the familiar form

ρðtÞ ¼ ρ0

�
a0
aðtÞ

�
3ð1þωÞ

; ð22Þ

where a0 and ρ0 are two integration constants.
From now on, we will focus on the important case where

A ¼ B in (19), which is susceptible to an analytical
treatment.3 Due to (20), this implies α ¼ β and a free γ
parameter in the action, which can be reabsorbed in λ.
Redefining λ ⇝ ð2AÞ−1λ, Eq. (19) reads in this case

6H2

�
1 −

9H2

2λ

�
¼ 16πGρ: ð23Þ

From this expression, the Hubble rate is easily
obtained as

H2 ¼ λ

9
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3y

p
Þ; ð24Þ

where we have defined the nondimensional variable

y ¼ 16πG
λ

ρðtÞ: ð25Þ

3Different choices of α, β, and γ in a cosmological context
were considered earlier in Ref. [20].
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From this definition it follows that

_y ¼ −3ð1þ ωÞHy: ð26Þ

The branch with positive sign in Eq. (24) (referred to
hereafter as the “positive branch”) reveals itself as a purely
high energy state, disconnected from the GR limit. This is
so because it leads to a maximumHubble rate as the density
goes to zero, or equivalently, when a0=aðtÞ → 0. It is clear
then that this configuration must be excluded from the
physically admissible solution space.
The “negative branch” [i.e., the one with negative sign in

Eq. (24)] behaves differently according to the sign of the BI
constant λ. Note that even when λ < 0 the equation is well
defined. However, we will show in short that this situation
leads us to no regularization process at all, because the
Hubble rate diverges as the scale factor goes to zero just as
in GR. In turn, if λ > 0, the negative branch shows that the
Hubble parameter in terms of the variable y reaches a
maximum value given by H2

max ¼ λ=9, which corresponds
to a maximum energy density ρmax ¼ ð48πGÞ−1λ. This is
the type of cosmic evolution that we want to discuss
thoroughly in the next paragraphs.
Whatever the barotropic index is (excepting the case

ω ¼ −1, which can be worked out by introducing a
cosmological constant term in the action), the variable y
allows us to integrate Eq. (24) in closed form. As a matter
of fact, we have from (24) and (26) that

_y ¼ �Ay
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3y

pq
;

where A ¼ ð1þ ωÞ ffiffiffiffiffijλjp
is a non-null constant. Note that

the � on the right-hand side of this equation comes from
taking the square root in (24), and should not be confused
with the ones coming from the different branches, which
appear in the radicand. This equation can be straightfor-
wardly integrated, leading to the following expressions
according to the sign of λ:

�eAt� c ¼ ðf−ðyÞÞ−1 − arctanðf−ðyÞÞ; λ < 0; ð27Þ

�eAt�c¼ðfþðyÞÞ−1þ arctanhðfþðyÞÞ; λ> 0; ð28Þ
where c is an integration constant.
In these equations we have defined eA ¼ A=

ffiffiffi
2

p
, and the

functions fþ=−ðyÞ are such that

f−ðyÞ ¼
�
−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3y
p
2

�
1=2

ð29Þ

fþðyÞ ¼
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3y

p
2

�
1=2

: ð30Þ

Starting from the exact expressions (27) and (28), we can
characterize the scale factors as functions of the proper

time t. Naturally, irrespective of the sign of λ we have the
GR limit when y → 0, i.e., when jλj → ∞. In this limit,
Eqs. (27) and (28) become

aðtÞ
a0

¼
�
3

2
H0ð1þ ωÞt

�
2=3ð1þωÞ

; ð31Þ

where H2
0 ¼ 8πGρ0=3 according to the Friedmann equa-

tion. This last equation describes the dynamics of the scale
factor in GR.
From now on, and due to the fact that we are interested in

the very early stages of the cosmic evolution, we shall focus
on a radiation filled Universe (ω ¼ 1=3). Similar results
are obtained for other values of the barotropic index,
provided ω ≠ −1.
For the case of λ < 0, an expansion of (27) in the small

quantity aðtÞ=a0 give us at first order

aðtÞ
a0

∝
ffiffiffi
λ

p
t; H ∝ t−1: ð32Þ

From the point of view of singularities, the case λ < 0 and
its underlying dynamics given by (32) are as unsatisfactory
as they are in GR. The resulting spacetime is geodesically
incomplete, and the energy density and pressure become
unbounded as t → 0þ. In other words, the spacetime does
not admit an extension in t ¼ 0 and any pair of events
ðt1; t2Þ with t1 < 0 and t2 > 0 cannot be connected by any
causal geodesic.
A quite different dynamic is obtained when one con-

siders λ > 0. Around y ¼ 1=3, Eq. (28) can be approxi-
mated by �

aðtÞ
a0

�
4

¼ 48πGρ0
λð1� 4

ffiffiffi
λ

p
tÞ þOðλt2Þ; ð33Þ

whereas the Hubble rate is

HðtÞ ¼ ∓
ffiffiffi
λ

p

ð1� 4
ffiffiffi
λ

p
tÞ þOðλt2Þ: ð34Þ

It is important to note that in these equations (and in the
following throughout the paper) the minus sign corre-
sponds to t > 0 and the plus to t < 0 in the term
ð1� 4

ffiffiffi
λ

p
tÞ. All the remaining signs in the expressions

must preserve the right order. For instance, positive times
require the plus sign on the right-hand side of Eq. (34).
The event t ¼ 0 is called a brusque bounce because there

exists a minimum scale factor

amin

a0
¼

�
48πGρ0

λ

�
1=4

; ð35Þ

for which H2 ≠ 0. Actually, H is not defined at t ¼ 0

because limt→0�HðtÞ ¼ � ffiffiffi
λ

p
, even though H2 is perfectly
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behaved there with value H2ð0Þ ¼ λ; see Eq. (34). This
pathology is not as dangerous as it might seem at first
glance, because it does not jeopardize the C1 character of
causal geodesics at t ¼ 0. This can be explicitly checked by
means of the geodesic equation, or even easily, by taking
advantage of the six conserved quantities associated to the
isotropy and homogeneity of FRW spacetimes. It is not
hard to see that in standard spherical coordinates ðr; θ;ϕÞ,
the tangent vector of the geodesics is described by [15]

ð∂τtÞ2 ¼ δþ P2

aðtÞ
∂τr ¼

P1 cosϕþ P2 sinϕ
aðtÞ

∂τϕ ¼ L3

aðtÞr2 ; ð36Þ

where δ is 0 or 1 according to the null or timelike character
of the geodesic, respectively, and τ is an affine parameter.
Note that, due to spherical symmetry, every geodesic may
be constrained to lay in the hypersurface θ ¼ π=2, and
L1 ¼ L2 ¼ P3 ¼ 0 by an appropriated coordinate change.
In Eq. (36), P2 ¼ P2

1 þ P2
2 þ P2

3 is the total linear momen-
tum and L2 ¼ L2

1 þ L2
2 þ L2

3, the total angular momentum
(where Pi and Li, i∶ 1; 2; 3, are the six constants of motion
associated to the six-dimensional group of isometries
characteristic of FRW models). So, due to the fact that
aðtÞ ≠ 0 for all t, the geodesics are C1 curves.
According to (36) the acceleration vector involves first

derivatives of the scale factor, which are not defined in the
bounce. This means that the Riemann tensor itself and the
scalars constructed from it are not defined in t ¼ 0.
Nonetheless, the behavior of the Riemann tensor as one
approaches the bounce for either side of the time variable is
not divergent. For instance, we can evaluate the scalar
curvature for the obtained solution in the vicinity of the
bounce. In order to do this we have to compute R ¼
6ð2H2 þ _HÞ for the scale factor (33):

R ¼ 12λð1� 2Þ
ð1� 4

ffiffiffi
λ

p
tÞ2 þOðλt2Þ: ð37Þ

Other invariants suffer from this indefiniteness at the
bounce too. Examples of these are the quadratic scalars
such as R2 ¼ RμνRμν andK ¼ Rμ

νλρRμ
νλρ, because they not

only involve products of the form H4 and _H2 (which are
well defined), but also a term H2 _H (which is not).
One may wonder, thus, what the effect of the bounce is

not only on point particles, but also on extended finite
objects. In order to examine this issue, we must note that
the event p0 given by t ¼ 0 is not a strong curvature
singularity, as defined by Tipler in [55]. We can see this
explicitly by examining the expression

T ¼ lim
t→0

Z
RμνKμKνdt; ð38Þ

where Kμ is the tangent vector of every null geodesic
generator λðtÞ that intersects the point p0 at affine param-
eter value 0. It was shown that T < ∞ captures the physical
requirement that an extended finite object is not crushed to
zero volume by the effect of tidal forces. Condition T < ∞
can be fulfilled if for every interval ð0; t1Þ there is an affine
parameter t2 ∈ ð0; t1Þ such that

RμνKμKνjt¼t2 < t−q2 ; ð39Þ

for any fixed q < 1 [55]. We proceed now to prove that (39)
(and then T < ∞) actually holds.
The Ricci tensor for spatially flat FRW cosmologies

reads

R00 ¼ 3ðH2 þ _HÞ R̂μν ¼ ð3H2 þ _HÞĝμν; ð40Þ

where R̂μν and ĝμν refer to purely spatial Ricci and metric
tensors, respectively. In a neighborhood of t ¼ 0, we can
make use of expressions (33) and (34), and by means of the
velocity vectors (36), we can compute the left-hand side of
Eq. (39). For t > 0 it reads

RμνKμKν ¼ C1

ð1 − 4
ffiffiffi
λ

p
tÞ2 −

C2

ð1 − 4
ffiffiffi
λ

p
tÞ7=4 ; ð41Þ

where C1 and C2 are positive functions of the constants of
motion and of the spatial coordinates, but not functions of
the proper time. We clearly have then

RμνKμKν <
C1

ð1 − 4
ffiffiffi
λ

p
tÞ2 : ð42Þ

We immediately note that

C1

ð1 − 4
ffiffiffi
λ

p
tÞ2 < t−q; ð43Þ

for any t sufficiently close to zero and any q < 1, as a
consequence of the divergent character of t−q as t → 0þ.
This establishes (39), and the fact that the brusque bounce
does not crush extended finite objects to zero volume by the
effect of tidal forces.
This means that the spacetime, regarded as the pair

ðT �ðMÞ; eaÞ, admits a C0 local extension at p0. This
consists of taking the two signs in (28) and gluing together
the two scale factors at the event p0, i.e., T �ðMÞ¼
T �ðM1Þ∪T �ðM2Þ, where M1¼ðR4;g;t≤0Þ and M2 ¼
ðR4; g; t ≥ 0Þ, with g ¼ dt2 − a2ðtÞðdx2 þ dy2 þ dz2Þ.
This procedure, of course, will encompass the right election
of the integration constant appearing in (28).
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Finally, the maximal extension so constructed is globally
hyperbolic. In terms of the conformal time

~τ ¼
Z

a−1ðtÞdt; ð44Þ

which is well defined for −∞ < t < ∞ by virtue of the
everywhere non-null (and C0) character of aðtÞ, the
extension is conformal to Minkowski spacetime. Any
hypersurface of constant time (t ¼ 0 among them) con-
stitutes a Cauchy surface.
The scale factor thus obtained from Eq. (28) is visualized

in Fig. 1, where curves with four different values of the
Born-Infeld constant λ are depicted. From top to bottom,
the solid lines represent the values λ ¼ 3; 10; 102; 103,
where for simplicity we have taken 16πGρ0 ¼ 1.
Furthermore, we have included in Fig. 1 the corresponding
GR curve for a radiation-dominated Universe (dashed line),
namely, aðtÞ=a0 ¼

ffiffiffiffiffiffiffiffiffiffi
2H0t

p
[see Eq. (31)].

IV. FINAL REMARKS

In Einstein’s theory of general relativity, no physical
process exists in order to avoid the inevitable fact that, far
back in time, the energy density and pressure of the matter
fields were infinite as a consequence of the vanishing of the
scale factor at the big bang. We have shown throughout the
preceding paragraphs that Born-Infeld gravity offers a quite
different description of the very early stages of the cosmic
evolution, and it was shown in this article that the
dynamical equations (19) for A ¼ B lead to a bounce of
the scale factor where the Universe possesses a minimum
size given in (35) for a radiationlike Universe. In general,
for ω ≠ −1 it is easy to show that the minimum 3-volume
associated to the bounce is�

amin

a0

�
3

¼
�
48πGρ0

λ

�
1=ð1þωÞ

: ð45Þ

Throughout this work we have advocated for not con-
sidering the event t ¼ 0 as a singularity, at least, not in any

of the widely accepted senses. This viewpoint is supported
by at least two strong arguments:
(a) On the one hand, we stressed in the last section that the

geodesics are well behaved at the bounce, in the sense
that they are C1 curves there. Actually, the spacetime is
geodesically complete, and all the causal geodesics are
of class C∞, except at the bounce itself. Moreover, the
Tipler condition T < ∞ assures us not only that
pointlike particles traveling along causal geodesics
do not experience any kind of singular behavior, but
that extended objects of finite size do not crush to zero
volume in passing the bounce. Nonetheless, these two
minimum conditions are also satisfied, for instance, by
the so-called sudden singularities [11–14].

(b) On the other hand, in the brusque bounce both the
energy density and the pressure of the matter fields are
perfectly well behaved and finite because we assume
throughout the analysis a very simple equation of state
of the form p ¼ ωρ. Actually, we have from (22)
and (33) that sufficiently close to the bounce the
energy density (for ω ¼ 1=3) scales as

ρðtÞ ¼ λ

48πG
ð1� 4

ffiffiffi
λ

p
tÞ; ð46Þ

so a maximum energy density ρmax ¼ λ=48πG and a
maximum pressure pmax ¼ λ=144πG are reached at the
very moment of the bounce. This is not the case, for
instance, in the sudden singularities, where the energy
density is finite but not the pressure, but it is the case for
the type IV singularities. In the latter thematter fields are
finite, but divergences in higher order derivatives of the
Hubble rate occur (even thoughH and _H are finite) [58].

However, a word of caution should be said about this
optimistic point of view concerning the bounce as a regular
event. If we insist on viewing the metric tensor as the
dynamical field that encodes the geometrical properties of
the spacetime, the very fact that the Riemann curvature
tensor is not defined at the bounce—as well as the whole
repertoire of curvature invariants constructed from it—is
certainly unsatisfactory. As long as we profess this
Riemannian philosophy, it is inevitable to think about
the bounce as a singularity.
But the theory here exposed is not based on Riemannian

concepts, even though the metric emerges as an agent that
confers orthonormality to the vielbein field ea, which
embodies the spacetime geometrical structure by means
of a parallelization process. This global basis of the
cotangent bundle constitutes a preferred reference frame
that can be used to define the space structure, in the sense
that we can define a given spacetime as the pair
ðT �ðMDÞ; eaðxÞÞ instead of ðMD; gμνðxÞÞ. This preferred
frame is, nonetheless, not unique. The authors of Ref. [52]
established the existence of a remnant group of Lorentz
transformations in the so-called fðTÞ gravity, which

FIG. 1. The scale factor that emerges from Eq. (28), for four
different values of the BI constant. From top to bottom in the
solid curves, λ ¼ 3; 10; 102; 103. The dashed curve represents the
ω ¼ 1=3 GR Universe.
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constitutes a modified scheme for the description of the
gravitational field based upon the same geometrical struc-
ture of the theory here considered. Preliminary results show
that this is actually the case also in the present context,
which means that for every spacetime ðT �ðMDÞ; eaðxÞÞ
there exists a subgroup AðeaÞ of the Lorentz group such
that ea

0 ðxÞ ¼ Λa0
a eaðxÞ describes the same spacetime, for

Λa0
a ∈ AðeaÞ. In any case, it is clear that the motion

equations of the theory under consideration determine
the full tetrad components (up to transformations of the
potential remnant group), and not just the metric tensor. To
look for pathologies concerning the Riemann tensor and the
scalars coming from it (i.e., coming from the metric and its
first and second derivatives) seems manifestly misleading.4

These comments tend to emphasize that, beyond
Einstein’s theory of general relativity, and in the context
of extended theories of gravity formulated by purely
torsional means, the criterion of a singularity based on
unbounded large (or even undefined) values of scalar
polynomials in the Riemann curvature becomes strongly

objectionable. One should pay attention to the tensors and
scalars constructed inWeitzenböck spacetime instead. If we
focus on invariants containing just first derivatives of the
vielbein, we have that they behave asH2n, with n a positive
integer. Precisely, we know from (17) that T ¼ −6H2, and
with the help of (11) and (12), we obtain

TrðFnÞ ∝ H2n; Fn ≡ Fμ
ν1F

ν1
ν2…Fνðn−1Þ

ρ : ð47Þ

All these Weitzenböck scalars are well behaved throughout
the whole cosmic evolution, because so is H2. The same is
true for the action itself, which is nothing more than
combinations of terms of the form (47).
The results we have obtained support the idea that the

Universe did not begin a finite time ago. This is not actually
a new idea, for in many alternative approaches to the
description of the very early Universe we find similar
outcomes (see, for instance, [59] and references therein
contained). Remarkably, this conclusion is obtained here as
a consequence of assuming a dynamic for the matter fields
as simple as p ¼ ωρ and barotropic indexes with a very
diaphanous physical interpretation, such as ω ¼ 0; 1=3.
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