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We use holography to prove the quantum null energy condition (QNEC) at leading order in large N for
CFTs and relevant deformations of CFTs in Minkowski space which have Einstein gravity duals. Given any
codimension-two surface Σ which is locally stationary under a null deformation in the direction k at the
point p, the QNEC is a lower bound on the energy-momentum tensor at p in terms of the second variation

of the entropy to one side of Σ: hTkki ≥ S00=2π
ffiffiffi
h

p
. In a CFT, conformal transformations of this inequality

give results which apply when Σ is not locally stationary. The QNEC was proven previously for free
theories, and taken together with our result this provides strong evidence that the QNEC is a true statement
about quantum field theory in general.
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I. INTRODUCTION

The null energy condition (NEC), Tkk ≡ Tijkikj ≥ 0, is
ubiquitous in classical physics as a signature of stable field
theories. In general relativity it underlies many results, such
as the singularity theorems [1–3] and area theorems [4,5].
In AdS=CFT, imposing the NEC in the bulk has several
consequences for the field theory at leading order in large
N, including the holographic c-theorems [6–8] and strong
subadditivity of the covariant holographic entanglement
entropy [9]. Yet ultimately the NEC, interpreted as a local
bound on the expectation value hTkki, is known to fail in
quantum field theory [10].
The quantum null energy condition (QNEC) was pro-

posed in [11] as a correction to the NEC which holds true in
quantum field theory. In the QNEC, hTkki at a point p is
bounded from below by a nonlocal quantity constructed
from the von Neumann entropy of a region. Suppose we
divide space into two regions, one of which we callR, with
the dividing boundary Σ passing through p. We compute
the entropy of R, and consider the second variation of the
entropy as Σ is deformed in the null direction ki at p. Call
this second variation S00 (a more careful construction of S00
is given below in Sec. II). Then the QNEC states that

hTkki ≥
ℏ

2π
ffiffiffi
h

p S00; ð1:1Þ

where
ffiffiffi
h

p
is the determinant of the induced metric on Σ at

the location p.1 The QNEC has its origins in quantum

gravity: it arose as a consequence of the Quantum
Focussing Conjecture (QFC), proposed in [11], but is itself
a statement about quantum field theory alone.
In [16], the QNEC was proved for the special case of free

(or superrenormalizable) bosonic field theories for certain
surfaces Σ. Here we will prove the QNEC for a completely
different class of field theories, namely those which have a
good gravity dual, at leading order in the large-N expan-
sion. We will consider any theory obtained from such a
large-N UV CFT by a scalar relevant deformation. We will
also assume that the bulk theory is an Einstein gravity
theory, so that the leading-order part of the entropy is given
by the area of an extremal surface in the bulk in Planck
units:

S ¼ AðmÞ
4GNℏ

; ð1:2Þ

where AðmÞ is the area of a bulk codimension-two surface
m which is homologous to R and is an extremum of the
area functional in the bulk [17–19]. Computing that change
in the extremal area as the surface Σ is deformed is then a
simple task in the calculus of variations.2 A key property
is that the change in area of an extremal surface under
deformations is due entirely to the near-boundary asymp-
totic region, where a general analytic computation is
possible.

*jkoeller@berkeley.edu
†sleichen@berkeley.edu
1In general, there may be ambiguities in the definition of Tkk

because of “improvement terms.” It is plausible that a similar
ambiguity in the definition of S leaves the QNEC unaffected by
these issues [12–15].

2There can be phase transitions in the holographic entangle-
ment entropy where S0 is discontinuous at leading order in N.
This happens when there are two extremal surfaces with areas
that become equal at the phase transition. Since we are instructed
to use the minimum of the two areas to compute the entropy, the
entropy function is always concave in the vicinity of the phase
transition. Therefore S00 ¼ −∞ formally, so the QNEC is sat-
isfied. Thus it is sufficient to assume that no phase transitions are
encountered in the remainder of the paper.
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Our proof method involves tracking the motion ofm as Σ
is deformed. The “entanglement wedge” proposal for the
bulk region dual to R, together with bulk causality,
suggests that m should move in a spacelike way as we
deform Σ in our chosen null direction [20,21], and a
theorem of Wall [9] shows that this is, in fact, correct.3

We construct a bulk vector sμ in the asymptotic bulk region
which points in the direction of the deformation of m, and
since sμ is spacelike we have sμsμ ≥ 0. Holographically,
hTkki is encoded in the near-boundary expansion of the
bulk metric, and therefore enters into the expression for
sμsμ. We will see that the inequality sμsμ ≥ 0 is precisely
the QNEC.4

The remainder of the paper is organized as follows. In
Sec. II, we will give a careful account of the construction of
S00 and the statement of the QNEC. In Sec. III, we prove the
QNEC at leading order in large N using holography. In
Sec. III A, we recall the asymptotic expansions of the bulk
metric and extremal surface embedding functions that we
will use for the rest of our proof. In Sec. III B, we discuss
the fact that null deformations of Σ on the boundary induce
spacelike deformations of m in the bulk and define the
spacelike vector sμ. In Sec. III C, we construct sμ in the
asymptotic region and calculate its norm, thereby proving
the QNEC. Then in Sec. III D, we specialize to CFTs and
examine the QNEC in different conformal frames. Finally,
in Sec. IV, we discuss the outlook on extensions of the
proof and its ideas, as well as possible applications of
the QNEC.
Concerning notation, our conventions follow those

described in footnote 5 of [23]. Letters from the second
half of the Greek alphabet (μ; ν; ρ;…) label directions in the
bulk geometry. Letters from the second half of the Latin
alphabet (i; j; k;…) label directions in the boundary.
Entangling surface directions in the boundary (or on a
cutoff surface) are denoted by letters from the beginning of
the Latin alphabet (a; b; c;…), while directions along the
corresponding bulk extremal surface are labeled with the
beginning of the Greek alphabet (α; β; γ;…). We will
often put an overbar on bulk quantities to distinguish them
from their boundary counterparts, e.g., h̄ðz ¼ 0Þ ¼ h. We
neglect the expectation value brackets when we refer to the
expectation value of the boundary stress tensor, i.e.
Tij ≡ hTiji. Boundary latin indices i; j; k;… are raised
and lowered with the boundary metric ηij. Outside of the
Introduction we set ℏ ¼ 1.

II. STATEMENT OF THE QNEC

In this section, we will give a careful statement of the
QNEC. Consider an arbitrary quantum field theory in
d-dimensional Minkowski space. The QNEC is a
pointwise lower bound on the expectation value of the
null-null component of the energy-momentum tensor,
Tkk ≡ hTijikikj, in any given state. Let us choose a
codimension-two surface Σ which contains the point of
interest, is orthogonal to ki, and divides a Cauchy surface
into two regions. We can assign density matrices to the two
regions of the Cauchy surface and compute their von
Neumann entropies. In a pure state, these two entropies
will be identical, but we do not necessarily have to restrict
ourselves to pure states. So choose one of the two regions,
which we will call R for future reference, and compute its
entropy S. If we parameterize the surface Σ by a set of
embedding functions XiðyÞ (where y represents d − 2
internal coordinates), then we can think of the entropy
as a functional S ¼ S½XiðyÞ�.
Our analysis is centered around how the functional

S½XiðyÞ� changes as the surface Σ (and region R) is
deformed.5 Introducing a deformation δXiðyÞ, we can
define variational derivatives of S through the equation

ΔS ¼
Z

dy
δS

δXiðyÞ δX
iðyÞ

þ 1

2

Z
dydy0

δ2S
δXiðyÞδXjðy0Þ δX

iðyÞδXjðy0Þ

þ…: ð2:1Þ

One might worry that the functional derivatives δS=δXiðyÞ,
δ2S=δXiðyÞδXjðy0Þ, and so on are unphysical by them-
selves because we cannot reasonably consider deforma-
tions of the surface on arbitrarily fine scales. But the
functional derivatives are a useful tool for compactly
writing the QNEC, and we can always integrate our
expressions over some small region in order to get a
physically well-defined statement. Below we will do
precisely that to obtain the global version of the QNEC
from the local version.
The QNEC relates Tkk to the second functional deriva-

tive of the entropy under null deformations, i.e., the second
term in (2.1) in the case where δXiðyÞ ¼ kiðyÞ is an
orthogonal null vector field on Σ. Let λ be an affine
parameter along the geodesics generated by kiðyÞ; it will
serve as our deformation parameter. Then we can isolate the
second variation of the entropy by taking two derivatives
with respect to λ6:

3We would like to thank Zachary Fisher, Mudassir Moosa, and
Raphael Bousso for discussions about the spacelike nature of
these deformations, as well as bringing the theorem of [9] to our
attention.

4Relations between the boundary energy-momentum tensor
and a coarse-grained entropy were studied using holography in
[22]. The entropy we consider in this paper is the fine-grained von
Neumann entropy.

5Deformations of Σ induce appropriate deformations of R [5].
6We use capital D for ordinary derivatives to avoid any

possible confusion with the S00 notation.D derivatives are defined
by (2.2), while S00 is defined by (2.3).
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D2S
Dλ2

¼
Z

dydy0
δ2S

δXiðyÞδXjðy0Þ k
iðyÞkjðy0Þ: ð2:2Þ

It is important that kiðyÞ also satisfies a global monotonicity
condition: the domain of dependence of R must be either
shrinking or growing under the deformation. In other
words, the domain of dependence of the deformed region
must either contain or be contained in the domain of
dependence of the original region. By exchanging the role
played by R and its complement, we can always assume
that the domain of dependence is shrinking. In this case, the
deformation has a nice interpretation in the Hilbert space in
terms of a continuous tracing out of degrees of freedom.
Then consider the following decomposition of the second
variation of S into a “diagonal” part, proportional to a δ
function and an “off-diagonal” part:

δ2S
δXiðyÞδXjðy0Þ k

iðyÞkjðy0Þ ¼ S00ðyÞδðy − y0Þ

þ ðoff-diagonalÞ: ð2:3Þ

Our notation for the diagonal part, S00ðyÞ, suppresses its
dependence on the surface Σ, but it is still a complicated
nonlocal functional of the Xi. Because of the global
monotonicity property of kiðyÞ, one can show using strong
subadditivity of the entropy that the “off-diagonal” terms
are nonpositive [11]. We will make use of this property
below to transition from the local to the global version of
the QNEC.
For a generic point on a generic surface, S00 will contain

cutoff-dependent divergent terms. It is easy to see why: the
cutoff-dependent terms in the entropy are proportional
to local geometric integrals on the entangling surface,
and the second variation of such terms is present in S00.7

By restricting the class of entangling surfaces we consider,
we can guarantee that the cutoff-dependent parts of the
entropy have vanishing second derivative. In the course of
our proof (see Sec. III A), we will find that a sufficient
condition to eliminate all cutoff-dependence in S00 is that
kiKi

ab ¼ 0 in a neighborhood of the location where we wish
to bound Tkk, where Ki

ab is the extrinsic curvature tensor of
Σ (also known as the second fundamental form).8 The
locality of this statement should be emphasized: away from
the point where we wish to bound Tkk, Σ can be arbitrary.
Finally, we can state the QNEC. When kiðyÞ satisfies the

global monotonicity constraint and kiKi
ab ¼ 0 in a neigh-

borhood of y ¼ y0, we have

Tkk ≥
1

2π
ffiffiffi
h

p S00 ð2:4Þ

where
ffiffiffi
h

p
is the surface volume element of Σ and all terms

are evaluated at y ¼ y0. A few remarks are in order. In
d ¼ 2, the requirement kiKi

ab ¼ 0 is trivial. In that case, we
are also able to prove the stronger inequality

Tkk ≥
1

2π

�
S00 þ 6

c
ðS0Þ2

�
: ð2:5Þ

Here S0 ≡ kiδS=δXi and c is the central charge of the UV
fixed point of the theory. This stronger inequality in d ¼ 2
is actually implied by the weaker one in the special case of
a CFT by making use of the conformal transformation
properties of the entropy [24], though here we will prove it
even when the theory contains a relevant deformation. One
can use similar logic in d > 2 to generalize the statement of
the QNECwhen applied to a CFT. ByWeyl transformation,
we can transform a surface that has kiKi

ab ¼ 0 to one where
kiKi

abh
ab ≠ 0, though the trace-free part still vanishes. In

that case, we will find

Tkk −AðTÞ
kk ≥

1

2π
ffiffiffi
h

p
�
ðSfin −AðSÞÞ00 þ 2θ

d − 2
ðSfin −AðSÞÞ0

�

ð2:6Þ

for CFTs in d > 2, where θ≡ −kiKi
abh

ab is the expansion

in the ki direction, and AðTÞ
kk and AðSÞ are anomalous shifts

in Tkk and S, respectively [25]. The two anomalies are both

zero in odd dimensions, and AðTÞ
kk is zero for global

conformal transformations in Minkowski space. AðSÞ is a
local geometric functional of Σ, and may be nonzero even

when AðTÞ
kk vanishes. The finite part of the entropy appears

in this equation because we are starting with the finite
inequality (2.4). The Weyl-transformed surface violates the
condition kiKi

ab ¼ 0, so the divergent parts of the variation
of S do not automatically vanish. We will discuss this
inequality in more detail in Sec. III D.
Before continuing on with the proof of the QNEC, we

should discuss briefly the integrated version. Suppose that
kiKi

ab ¼ 0 on all of Σ (which we can always enforce by
setting ki ¼ 0 on some parts of Σ). Then we can integrate
(2.4) to obtain

2π

Z
dy

ffiffiffi
h

p
Tkk ≥

D2S
Dλ2

: ð2:7Þ

Here we made use of (2.2) and (2.3), and also the fact that
the “off-diagonal” terms in (2.3) are nonpositive [11]. This
is a global version of the QNEC, but it is actually equivalent
to the local version. By considering the limiting case of a

7Although it is the case that all of the cutoff dependence in the
second variation of the entropy is contained in the diagonal part,
which we have called S00, it is still true that S00 contains finite
terms as well. If it did not, the QNEC would be the same as the
NEC.

8Ki
ab is defined as DaDbXi, where Da is the induced covariant

derivative on Σ.
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vector field kiðyÞ with support concentrated around y ¼ y0,
we can obtain (2.4) from (2.7).

III. PROOF OF THE QNEC

A. Setup: Asymptotic expansions

Our proof of the QNEC relies on the form of the bulk
metric and extremal surface near the AdS boundary. In this
section, we review the Fefferman-Graham expansion of the
bulk metric and the analogous expansion of the extremal
embedding functions, recalling the relevant properties
of each.

1. Metric expansion

We are only interested in QFTs formulated on
d-dimensional Minkowski space. Through order zd, the
asymptotic expansion of the metric near the AdS boundary
takes the form

ds2 ¼ L2

z2

�
dz2 þ

�
fðzÞηij þ

16πGN

dLd−1 zdtij

�
dxidxj þ oðzdÞ

�

¼ Gμνdxμdxν: ð3:1Þ

Here L is the AdS length, fðzÞ only contains powers of z
less than d (and possibly a term proportional to zd log z) and
satisfies fð0Þ ¼ 1. The exact form of fðzÞ will depend on
the theory; in a CFT fðzÞ ¼ 1 but we are free to turn on
relevant deformations which can modify it. We are assum-
ing that only Poincare-invariant theories are being consid-
ered; this is why ηij is the only tensor appearing up to
order zd.
The tensor tij, defined by its appearance in (3.1) as the

coefficient of zd, is not necessarily the same as Tij. In a
CFT on Minkowski space they are equal, but in the
presence of a relevant deformation one has to carefully
define the renormalized energy-momentum tensor of the
new theory.9 In particular, tij may not vanish in the vacuum
state of the deformed theory. However, the difference
Tij − tij is proportional to ηij.

10 Therefore tkk ¼ Tkk, which
is all we will need.
The (dþ 1)-dimensional bulk metric is denoted by Gμν,

but we will also find it convenient to define the rescaled
metric

gμν ≡ z2

L2
Gμν: ð3:2Þ

2. Embedding functions

The embedding of the (d − 1)-dimensional extremal
surfacem in the (dþ 1)-dimensional bulk can be described
by specifying the bulk coordinates as a function of z
and (d − 2) intrinsic coordinates ya, X̄μ ¼ X̄μðya; zÞ. These
functions are called the “embedding functions.”11 The
induced metric on m is given by

H̄αβ ≡ ∂αX̄μ∂βX̄νGμν½X̄�; ð3:3Þ

where Gμν is the bulk metric. Instead of H̄αβ, it is often
more convenient to use a rescaled surface metric:

h̄αβ ≡ ∂αX̄μ∂βX̄νgμν½X̄� ¼
z2

L2
H̄αβ; ð3:4Þ

where gμν ¼ ðz2=L2ÞGμν as defined above. Our internal
coordinates for the surface are chosen so that H̄az ¼ h̄az ¼ 0

and X̄z ¼ z [27].
The embedding functions satisfy an equation of motion

coming from extremizing the total area. In terms of this
induced metric, this can be written as [23]

1ffiffiffiffi
H̄

p ∂αð
ffiffiffiffi
H̄

p
H̄αβ∂βX̄μÞ þ H̄αβΓμ

νσ∂αX̄ν∂βX̄σ ¼ 0; ð3:5Þ

where Γμ
νσ is the bulk Christoffel symbol constructed with

the bulk metric (3.1) and H̄ ≡ det H̄αβ. The embedding
functions have an asymptotic expansion near the boundary
with a structure very similar to that of the bulk metric.
There are two solutions, with the state-independent solution
containing lower powers of z than the state-dependent
solution. The state-independent solution only contains
terms of lower order than zd, and only depends on the
state-independent part of the bulk metric (3.1). If we only
include the terms in (3.5) relevant for the terms of lower
order than zd, we find

zd−1∂zðz1−d
ffiffiffī
h

p
h̄zzf∂zX̄iÞ þ ∂aðf

ffiffiffī
h

p
h̄ab∂bX̄iÞ ¼ 0:

ð3:6Þ

where h̄≡ det h̄ab. The solution to this equation can
be found algebraically order-by-order in z up to zd. The
expansion reads

X̄iðya; zÞ ¼ XiðyaÞ þ 1

2ðd − 2Þ z
2KiðyaÞ þ � � �

þ 1

d
zdðViðyaÞ þWiðyaÞ log zÞ þ oðzdÞ:

ð3:7Þ
9See [26] for example.
10The difference should be proportional to the relevant

coupling ϕ0, and dimensional analysis dictates that the only
possibility is ϕ0Oηij where O is the relevant operator.

11Our index conventions are described at the end of the
Introduction.
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Here Ki is the trace of the extrinsic curvature tensor of the
entangling surface Σ. Since the background geometry is
flat, this can be written as

Ki ¼ 1ffiffiffi
h

p ∂að
ffiffiffi
h

p
hab∂bXiÞ: ð3:8Þ

The omitted terms “� � �” contain powers of z between 2 and
d. In a CFT, there would be only even powers, but with a
relevant deformation odd or fractional powers are allowed
depending on the dimension of the relevant operator. These
terms, as well as the logarithmic term Wi, are all state
independent12 and are local functions of geometric invar-
iants of the entangling surface [23]. These geometric
invariants are formed from contractions of the extrinsic
curvature and its derivatives, and will vanish if the surface
is flat: if Ki vanishes in some neighborhood on the surface,
then X̄i ¼ Xi þ Vizd=d satisfies the equation of motion up
to that order in z. The logarithmic coefficient Wi is only
present in when d is even for a CFT, but it may also show
up in odd dimensions if relevant operators of particular
dimensions are turned on.
The state-dependent part of the solution starts at order zd,

and the only term we have shown in (3.7) is Vi. Wewill find
below that this term encodes the variation of the entropy
that enters into the QNEC.

3. Extremal surface area asymptotic expansion

With H̄αβ ¼ ∂αX̄μ∂βX̄νGμν the induced metric on the
extremal surface, the area functional is

A ¼
Z

dzdd−2y
ffiffiffiffiffiffiffiffiffiffi
H̄½X̄�

q
: ð3:9Þ

We are interested in variations of the extremal area when
the entangling surface Σ is deformed. That is, when the
boundary embedding functions Xi are varied. The variation
of the area is not guaranteed to be finite: divergences will be
regulated by a cutoff surface at z ¼ ϵ. A straightforward
exercise in the calculus of variations shows that

δA ¼ −
Ld−1

zd−1

Z
dd−2y

ffiffiffī
h

p gij∂zX̄iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ glm∂zX̄l∂zX̄m

p δX̄j

����
z¼ϵ

:

ð3:10Þ

Each factor in this expression (including δX̄j) should be
expanded in powers of z and evaluated at z ¼ ϵ. Making
use of (3.1) and (3.7), we find

1

Ld−1
ffiffiffi
h

p δA
δXi ¼ −

1

ðd − 2Þϵd−2Ki þ ðpower lawÞ −Wi log ϵ

− Vi þ ðfinite state-independentÞ: ð3:11Þ

The most divergent term goes like ϵ2−d, and is the variation
of the usual area-law term expected in any quantum field
theory. The logarithmically divergent term is directly
determined in terms of the logarithmic term in the expan-
sion of the embedding functions in (3.7). The remaining
terms, including both the lower-order power law divergen-
ces and the state-independent finite terms, are determined
in terms of the “� � �” of (3.7). Their precise form is not
important, but our analysis later will depend on the fact that
they are built out of local geometric data on Σ, and that they
vanish when Ki

ab ¼ 0 locally. That is, if Ki
ab and its

derivatives vanish at a point y, then these terms are zero
at that point.

4. Elimination of divergences

Now we will illustrate that the condition kiKi
ab ¼ 0 in

the neighborhood of a point is enough to remove diver-
gences in S00.13 First we note that the condition kiKi

ab ¼ 0 is
robust under null deformations in the ki direction. That is, if
it is satisfied initially then it remains satisfied for all values
of λ. To see this, we use the identity14

kiKi
ab ¼ ki∂a∂bXi ¼ −∂aki∂bXi ð3:12Þ

and take a λ derivative to get

∂λðkiKi
abÞ ¼ −∂aki∂bki ¼ −ðkiKi

acÞhcdðkjKj
dbÞ: ð3:13Þ

For the last equality we used the fact that ki∂aki ¼ 0, so the
inner product could be evaluated by first projecting onto the
tangent space of Σ. This shows that kiKi

ab remains zero if it
is initially zero, and so all of our remaining results hold
even as we deform Σ.
We claim when kiKi

ab ¼ 0 locally, the expansion (3.7)
reduces to

X̄iðy; zÞ ¼ XiðyÞ þ Bðy; zÞkiðyÞ þ 1

d
ViðyÞzd þ oðzdÞ:

ð3:14Þ

Here Bðy; zÞ is a function which vanishes at z ¼ 0 and
contains powers of z less than d, and possibly a term
proportional to zd log z. The nontrivial claim here is that the

12They are only state-independent if there are no scalar
operators of dimension Δ < d=2. For the case of operators with
d=2 > Δ > ðd − 2Þ=2, see the Appendix.

13In the remainder of the proof, we assume kiðyÞ ≠ 0. That is,
we are only considering regions of the entangling surface which
are actually being deformed.

14The extrinsic curvature is often defined as Ki
ab ¼

∂aXl∂bXm∇lhmi. “Differentiating by parts” and restricting to
Minkowski space gives the first equality of Eq. (3.12).
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leading z terms up to zd are all proportional to ki. We will
now prove this claim.
We know from the equations of motion that the terms of

in the embedding function expansion at orders lower than
zd are determined locally in terms of the geometry of the
entangling surface. This means they can only depend on
ηij, ∂aXi, Ki

ab, and finitely many derivatives of Ki
ab in the

directions tangent to Σ. If Ki
ab is proportional to ki, the

same is true for its derivatives. To see this, we only need to
show that ∂aki is proportional to ki. Since ki is null, we
have ki∂aki ¼ 0. Therefore ∂aki does not have any
components in the null direction opposite to ki (which
we will call li below). We can also compute its components
in the tangent directions:

∂bXi∂aki ¼ −ki∂a∂bXi ¼ −kiKi
ab ¼ 0: ð3:15Þ

Hence ∂aki ∝ ki, and so all of the tangent derivatives of
Ki

ab are proportional to ki.
Now, one can check that if Ki

ab and all of its derivatives
are zero then (3.14) with B ¼ 0 solves the equation of
motion up to order zd. This means that at least one power of
Ki

ab (or its derivatives) must appear in each of the terms in
the expansion of X̄i of lower order than zd beyond zeroth
order. But this means that at least one power of ki appears,
and there are no tensors available to give nonzero con-
tractions with ki. Hence each of these terms must be
proportional to ki, and this is the claim of (3.14). We
emphasize that this expansion is valid in any state of the
theory, even in the presence of a relevant deformation.
An analogous result holds for the expansion of the

entropy variation, which means that (3.11) reduces to

δA
δXiðyÞ ¼ Cðy; ϵÞkiðyÞ − Ld−1

ffiffiffiffiffiffiffiffiffi
hðyÞ

p
ViðyÞ; ð3:16Þ

where Cðy; ϵÞkiðyÞ represents the local terms (both diver-
gent and finite) in (3.11). But now we see that all divergent
terms are absent in null variations of the area: by con-
tracting (3.16) with ki we see that the only nonzero
contribution is the finite state-dependent term kiVi.

B. Proof strategy: Extremal surfaces
are not causally related

The QNEC involves the change in the von Neumann
entropy of a regionR under the local transport of a portion
of the entangling surface Σ along null geodesics (see
Fig. 1). The entropy SðRÞ is computed as the area of
the extremal surface mðRÞ in the bulk, and so we need to
analyze the behavior of extremal surfaces under boundary
deformations. Our analysis is rooted in the following fact:
for any two boundary regions A and B with domain of
dependenceDðAÞ andDðBÞ such thatDðAÞ ⊂ DðBÞ,mðBÞ
is spacelike or null separated from mðAÞ. This result is
proved as theorem 17 in [9] and relies on the null curvature
condition in the bulk, which in Einstein gravity is equiv-
alent to the bulk (classical) NEC.15

Even though this Fact can be proved based on properties
of extremal area surfaces, it is useful to understand the
intuition behind why it should be true. The idea, first
advocated in [20], is that associated to the domain of
dependenceDðAÞ of any region A in the field theory should
be a region wðAÞ of the bulk, which in [21] was dubbed the
“entanglement wedge.” The extremal surface mðAÞ is the
boundary of the entanglement wedge. Consider two regions
A and B satisfying DðAÞ ⊂ DðBÞ, and consider also the
complement of region B, B̄. Assume for simplicity that
mðBÞ ¼ mðB̄Þ. If some part of mðAÞ were timelike sepa-
rated from some part ofmðBÞ, then that part ofmðAÞwould
also be timelike separated from wðB̄Þ. But the entanglement
wedge proposal dictates that (unitary) field theory operators
acting in B̄ can influence the bulk state anywhere in wðB̄Þ,
and so by bulk causality could influence the extremal
surface mðAÞ and thereby alter the entropy SðAÞ. But a
unitary operator acting on B̄ leaves the density matrix of B
invariant, and therefore also the density matrix of A, and
therefore also SðAÞ.

FIG. 1. Here we show the regionR (shaded cyan) and the boundary Σ (black border) before and after the null deformation. The arrow
indicates the direction ki, and hTkki is being evaluated at the location of the deformation. The dashed line indicates the support of the
deformation.

15Strictly speaking, theorem 17 in [9] concludes that mðAÞ and
mðBÞ are spacelike separated, because the bulk null generic
condition is assumed. However, special regions and special states
will have null separation. For example, in the vacuum any region
in d ¼ 2 as well as spherical regions and half-spaces in arbitrary
dimension have this property. This observation is used for
spherical regions in Sec. III D.
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Based on this heuristic argument, one expects that a
similar spacelike-separation property should exist for the
boundaries of the entanglement wedges of DðAÞ and DðBÞ
in any holographic theory, not just one where those
boundaries are given by extremal area surfaces. For this
reason, we are optimistic about the prospects for proving
the QNEC using the present method beyond Einstein
gravity, though we leave the details for future work.
Let Σ be the boundary of the region R. We consider

deformations of Σ by transporting it along orthogonal null
geodesics generated by the orthogonal vector field ki on Σ,
thus giving us a one-parameter family of entangling
surfaces ΣðλÞ which bound the regions RðλÞ, where λ is
an affine parameter of the deformation. We also obtain a
one-parameter family of extremal surfaces mðRðλÞÞ in the
bulk whose areas compute the entropies of the regions.
Recall the global monotonicity constraint on ki: we demand
that the domain of dependence of RðλÞ is either shrinking
or growing as a function of λ. In other words, we have either
DðRðλ1ÞÞ ⊂ DðRðλ2ÞÞ or DðRðλ2ÞÞ ⊂ DðRðλ1ÞÞ for
every λ1 < λ2. Then, by the Fact quoted above, the union
M of all of the mðRðλÞÞ is an achronal hypersurface in the
bulk (see Fig. 2). That is, all tangent vectors on M are
either spacelike or null.16 We will see that the QNEC is
simply the non-negativity of the norm of a certain vector sμ

tangent to M: gμνsμsν ≥ 0.
Since M is constructed as a one-parameter family of

extremal surfaces (indexed by λ), we can take as a basis for
its tangents space the vectors ∂aX̄μ, ∂zX̄μ, and ∂λX̄μ. The
first two are tangent to the extremal surface at each value of
λ, while the third points in the direction of the deformation.
One can check that the optimal inequality is given by
choosing sμ to be normal to the extremal surface mðRÞ.
Thus we can simply define sμ as the normal part of ∂λX̄μ.
It turns out to be algebraically simplest to construct a null

basis of vectors normal to the extremal surface at fixed λ

and then find the linear combination of them which is
tangent to M. We begin with the null vectors ki, li on the
boundary which are orthogonal to the entangling surface. ki

is the null vector which generates our deformation, and li

is the other linearly-independent orthogonal null vector,
normalized so that liki ¼ 1. We now define the null vectors
k̄μ and l̄μ in the bulk which are orthogonal to the extremal
surface and limit to ki and li, respectively, as z → 0. k̄μ and
l̄μ can be expanded in z just like X̄μ, and the expansion
coefficients for k̄μ and l̄μ can be solved for in terms of those
for X̄μ. We will perform this expansion explicitly in the next
section.
Once we have constructed k̄μ and l̄μ, we write

sμ ¼ αk̄μ þ βl̄μ: ð3:17Þ

The coefficients α and β are determined by the requirement
that sμ be tangent to M. This is achieved by setting

α ¼ gμνl̄μ∂λX̄ν; β ¼ gμνk̄μ∂λX̄ν: ð3:18Þ

Then the inequality gμνsμsν ≥ 0 becomes

αβ ≥ 0: ð3:19Þ

Now, ∂λX̄μ → δμi k
i as z → 0, which implies that α → 1 and

β → 0 in that limit. This means that the coefficient of
the most slowly-decaying term of β is non-negative. Below
we will compute gμνk̄μ∂λX̄ν perturbatively in z to derive
the QNEC.

C. Derivation of the QNEC

In this section, we derive the QNEC by explicitly
constructing a perturbative expansion for the null vector
field k̄μ orthogonal to the extremal surface and compute
gμνk̄μ∂λX̄ν. This requires knowledge of the asymptotic
expansion of the embedding functions X̄μðy; zÞ and
the metric gμν up to the order zd. Using the assumption
kiKi

ab ¼ 0, which we imposed to eliminate divergences in
the entropy, we have the simple expression (3.14) for X̄i,
which we reproduce here,

X̄iðy; zÞ ¼ XiðyÞ þ Bðy; zÞkiðyÞ þ 1

d
ViðyÞzd þ oðzdÞ;

ð3:20Þ

it is straightforward to construct the vector k̄μ. We use the
ansatz

k̄μðya; zÞ ¼ δμzkzðya; zÞ þ δμi ðkiðyaÞ þ zdΔkiðyaÞÞ; ð3:21Þ

where

FIG. 2. The surfaceM in the bulk (shaded green) is the union
of all of the extremal surfaces anchored to the boundary that are
generated as we deform the entangling surface. The null vector
ki (solid arrow) on the boundary determines the deformation,
and the spacelike vector sμ (dashed arrow) tangent to M is the
one we construct in our proof. The QNEC arises from the
inequality sμsμ ≥ 0.

16Part of theorem 17 in [9] is that the extremal surfaces
associated to all theRðλÞ lie on a single bulk Cauchy surface.M
is just a portion of that Cauchy surface.
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ðkzÞ2 þ
�
16πGN

dLd−1 Tkk þ 2kiΔki
�
zd ¼ oðzdÞ ð3:22Þ

ensures that k̄μ is null to the required order. We demand that
k̄μ is orthogonal to both ∂aX̄μ and ∂zX̄μ, which for d > 2
results in the two conditions

0 ¼ ∂aXiΔki þ
1

d
ki∂aVi þ 16πGN

dLd−1 tij∂aXikj; ð3:23Þ

0 ¼ kiΔki þ
8πGN

dLd−1 Tkk: ð3:24Þ

For d ¼ 2 we instead have

0 ¼ kiΔki þ
1

2
ðkiViÞ2 þ 4πGN

L
Tkk: ð3:25Þ

Together these equations determine Δki up to the addition
of a term proportional to ki. This freedom in Δki is an
expected consequence of the nonuniqueness of k̄μ, but the
inequality we derive is independent of this freedom. Notice
that the function B plays no role in defining k̄μ. This is
because we are only ever evaluating our expressions up to
order zd, and since ki is null and orthogonal to Σ there are
no available vectors at low enough order to contract with
Bki which could give a nonzero contribution.
Now we take the inner product of k̄μ with ∂λX̄μ to get

gμνk̄μ∂λX̄ν¼
�
kiΔkiþ

1

d
ki∂λViþ16πGN

dLd−1 Tkk

�
zdþoðzdÞ:

ð3:26Þ

Here we used the geodesic equation, ∂λki ¼ 0, in order to
find once more that the Bki term in (3.20) drops out. Using
our constraint on Δki and the inequality (3.19) gives us the
inequality

8πGN

Ld−1 Tkk ≥ −ki∂λVi ð3:27Þ

for d > 2 and the inequality

8πGN

L
Tkk ≥ −ki∂λVi þ ðkiViÞ2 ð3:28Þ

for d ¼ 2.
The rhs of these equations can be related to variations of

the entropy using (3.16), which we reproduce here:

δA
δXiðyÞ ¼ Cðy; ϵÞkiðyÞ − Ld−1

ffiffiffiffiffiffiffiffiffi
hðyÞ

p
ViðyÞ:

To convert from extremal surface area to the entropy we
only need to divide by 4GN. Then applying (3.16) to (3.27)
and (3.28) immediately yields

Tkk ≥
1

2π
ffiffiffi
h

p ki
D
Dλ

δS
δXi ð3:29Þ

for d > 2 and

Tkk ≥
1

2π

�
ki

D
Dλ

δS
δXi þ

4GN

L

�
ki

δS
δXi

�
2
�

ð3:30Þ

for d ¼ 2. The explicit factor 4GN=L should be re-inter-
preted in the field theory language in terms of the number
of degrees of freedom. For a CFT, we have 4GN=L ¼ 6=c.
When a relevant deformation is turned on, we have to use
the central charge associated with the ultraviolet fixed
point, cUV. This is the appropriate quantity because our
derivation takes place in the asymptotic near-boundary
geometry, which is dual to the UV of the theory. In other
words, L here refers to the effective AdS length in the near-
boundary region.
To complete the proof, we can simply restrict the support

of ki to an infinitesimal neighborhood of the point y, in
which case we have

kiðyÞ D
Dλ

δS
δXiðyÞ → S00ðyÞ; ð3:31Þ

where we recall the definition (2.3) of S00. Then (3.29) and
(3.30) imply the advertised forms of the QNEC, (2.4):

Tkk ≥
1

2π
ffiffiffi
h

p S00

in d > 2 and (2.5):

Tkk ≥
1

2π

�
S00 þ 6

c
ðS0Þ2

�

in d ¼ 2 dimensions. Following the arguments given in
Sec. II, we also have the integrated form of the QNEC, (2.7):

2π

Z
dy

ffiffiffi
h

p
Tkk ≥

Z
dyS00 ≥

D2S
Dλ2

;

as well as the analogous integrated version of (2.5).

D. Generalizations for CFTs

In this section, we turn off our relevant deformation,
restricting to a CFT in d > 2. Suppose we perform a
Weyl transformation, sending ηij → ĝij ¼ e2ϒηij. To find a
new inequality valid for the new conformal frame, we can
simply take the QNEC, (2.4),
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Tkk ≥
1

2π
ffiffiffi
h

p S00;

and apply the Weyl transformation laws to Tkk and S00.
The effect of the Weyl transformation on Tij is well

known. In odd dimensions, it transforms covariantly with
weight d − 2, while in even dimensions there is an
anomalous additive shift for Weyl transformations that
are not part of the global conformal group. In general then,

Tij ¼ eðd−2ÞϒðT̂ij −AðTÞ
ij Þ; ð3:32Þ

where AðTÞ
ij is the anomaly which depends on ϒ [28].

The effect of the Weyl transformation on the entropy is
entirely encoded in the cutoff dependence of the divergent
terms. This is especially clear in the holographic context: a
Weyl transformation is simply a change of coordinates in
the bulk, so the extremal surface m is the same before and
after. The only difference is that we now regulate the IR
divergences by terminating the surface on ẑ ¼ ϵ with a
new coordinate ẑ. Graham and Witten considered the
transformation of such surface variables under Weyl trans-
formations [25]. The divergent parts all transform with
different weights (and shifts), so the transformation of S as
a whole is complicated. But the QNEC already isolates the
finite part of the entropy, Sfin, so we need only ask how it
transforms. Graham and Witten have shown that Sfin is
invariant when d is odd and has an anomalous shift when d
is even [25]:

Sfin ¼ Ŝfin −AðSÞ: ð3:33Þ

The anomalous shift AðSÞ depends on the surface Σ as well

as ϒ, and will generically be nonzero even when AðTÞ
ij

vanishes. For a surface with kiKi
ab ¼ 0 prior to the Weyl

transformation, the anomaly is [25]

AðSÞ ¼ 1

8

Z
dy

ffiffiffi
h

p
½K̂iK̂i þ 2∂aϒ∂aϒ�: ð3:34Þ

Finally, we must say how S00fin transforms. These deriv-
atives are with respect to the affine parameter λwhich labels
the flow along the geodesics generated by ki. The vector
tangent to the same geodesic but affinely parametrized with
respect to the new metric is k̂i ¼ e−2ϒki. Acting on a scalar
function S, the second derivative operator becomes

ki∂iðkj∂jSÞ ¼ e2ϒk̂i∂iðe2ϒk̂j∂jSÞ
¼ e4ϒðk̂i∂iðk̂j∂jSÞ þ 2ðk̂i∂iϒÞðk̂j∂jSÞÞ

ð3:35Þ

Then we have, in total,

S00fin ¼ e4ϒ½ðŜfin −AðSÞÞ00 þ 2ðk̂i∂iϒÞðŜfin −AðSÞÞ0�;
ð3:36Þ

where on the right-hand side we are careful to compute
derivatives using the correctly normalized k̂i. We also note
that the expansion in the k̂i direction is no longer zero after
Weyl transformation, and is instead given by

θ̂ ¼ k̂i∂i log
ffiffiffî
h

p
¼ ðd − 2Þk̂i∂iϒ: ð3:37Þ

Putting these equations together, and dropping hats on the
variables, we find that for metrics of the form e2ϒηij, we
have a “conformal QNEC”:

Tkk−AðTÞ
kk ¼ 1

2π
ffiffiffi
h

p
�
ðSfin−AðSÞÞ00 þ 2

d− 2
θðSfin−AðSÞÞ0

�
:

ð3:38Þ

This is a local inequality that applies to all surfaces Σwhich
are shearless in the ki direction. This bound can of course
be integrated to yield an inequality corresponding to finite
deformations.

1. Special case: spherical entangling regions

The entanglement entropy across spheres has special
properties compared to regions with less symmetry.
Spheres minimize the entanglement entropy among all
continuously connected shapes with the same entangling
surface area [29,30], which has led to the entropy of a
sphere being used as a c function [6,31–33]. Spheres also
play a special role because the form of their modular
Hamiltonian is known explicitly [34–36].
Spheres are special in the context of our analysis as well.

Consider the integrated version of the conformal QNEC
(3.38) specialized to the case where Σ is a sphere in flat
space. This can be obtained by a special conformal trans-

formation from a planar entangling region (so AðTÞ
kk ¼ 0).

We will also choose ki to be uniform and directed radially
inward around the sphere, so that θ ¼ −ðd − 2Þ=R, where
R is the sphere radius. Then we have the inequality

2πRd−2
Z

dΩTkkðΩÞ ≥
D2

Dλ2
ðSfin −AðSÞÞ

−
2

R
D
Dλ

ðSfin −AðSÞÞ: ð3:39Þ

For this setup, we also know that the QNEC should be
exactly saturated in the vacuum state. This is because the
extremal surface corresponding to a sphere on the boundary
in vacuum AdS is just the boundary of the causal wedge,
and uniformly transporting the sphere inward in a null
direction just transports the extremal surface along the
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causal wedge. In other words, we know that sμ is null,
implying saturation of the inequality (3.39)17:

0 ¼ D2

Dλ2
ðSfin;vac −AðSÞÞ − 2

R
D
Dλ

ðSfin;vac −AðSÞÞ; ð3:40Þ

where we used Tkk ¼ 0 in the vacuum. We could use this to
compute AðSÞ given the known result for Sfin;vac. But we
could just as easily subtract this equation from the previous
inequality to obtain

2πRd−2
Z

dΩTkkðΩÞ ≥
D2

Dλ2
ðS − SvacÞ −

2

R
D
Dλ

ðS − SvacÞ;

ð3:41Þ

which is an inequality involving the vacuum-subtracted
entropy of a sphere in an excited state of a CFT. Note that
we no longer have to specify the finite piece of S because
the vacuum subtraction automatically cancels the divergent
pieces.

IV. DISCUSSION

A. Potential extensions

The structure of our proof was very simple, and we
expect that a similar proof could extend the results beyond
the regime of validity presented here. Let us review the key
ingredients:

(i) It was important that the entropy was computable in
terms of a surface observable which was an extremal
value, in this case the area. This allowed us to focus
on the near-boundary behavior of the surfaces as we
made deformations of Σ, which is the only way we
were able to have analytic control of the problem.

(ii) We had to know that the extremal surfaces moved in
a spacelike way in the bulk as Σ was deformed. In
our specific case, theorem 17 of [9] provided the
rigorous proof of this fact, but as discussed in
Sec. III B, this should be a general property of the
bulk entanglement wedge that is enforced by cau-
sality. Thus, we expect that an analogous theorem
can be proved in other contexts.

(iii) When we performed our near-boundary expansions
of sμ and S, we needed to find the appropriate
cancellations down to order zd, where the energy-
momentum tensor of the field theory appeared. This
cancellation was enforced by a simple geometric
requirement on Σ, namely kiKi

ab ¼ 0. It may have

seemed miraculous that this happened in our holo-
graphic calculation, since it seemed to rely on
special properties of the asymptotic expansions of
the bulk metric and embedding functions. But
cancellation of this type was expected and predicted
from field theory arguments alone. Namely, these
lower-order terms are the ones that determine the
divergent parts of the entropy, and in general the
divergent parts of the entropy are local geometric
functionals which are state-independent. This means
that a local geometric condition on Σ should be
enough to eliminate them, and all of the “miracu-
lous” properties we found stemmed from that.

1. Higher-curvature theories

The proof given in this paper was set in the context of
boundary theories dual to Einstein gravity. From the
boundary theory point of view there is nothing particularly
special about these theories, and thus if the QNEC is at all
universal one would expect that the current proof could be
modified to include higher-curvature theories in the bulk.
Of the three points discussed above, the first is the most

troubling. It is not known in general if the field theory
entropy in an arbitrary higher-derivative theory of gravity is
obtained by extremization of a local functional on a surface,
though it has been shown for Lovelock and four-derivative
gravity theories [37]. If this is not the case in general, then
the proof of the QNEC would have to change dramatically
for these other theories.

2. Next order in 1=N

It will likely be much more difficult to extend the proof
to include finite-N corrections. Finite-N corresponds to
quantum effects in the bulk. At the next order, N0, the
inclusion of quantum effects require the addition of the bulk
entanglement entropy across the extremal area surface m to
the area of m when computing the boundary entropy [38].
It has been suggested that the correct procedure to all orders
is to extremize the bulk generalized entropy (Aþ Sbulk)
instead of the area [39], but for the first correction we can
continue to determine m by extremizing the area alone.
The difficulty in extending our proof to the next order is

that, while the surface m is still determined by extremizing
a local functional, the entropy itself is not given by the
value of that functional. So while we still have (3.27),
which is an inequality involving Vi, the coefficient of the zd

term in the expansion of the embedding functions, we
cannot identify Vi with the variation of the entropy. Instead,
the variation of the entropy is given by

ki
δS
δXi ¼

1

4GN
ki

δA
δXi þ ki

δSbulk
δXi ¼

ffiffiffi
h

p

4GN
kiVi þ ki

δSbulk
δXi :

ð4:1Þ

17If the QNEC is saturated for a particular entangling surface,
the conformal QNEC will be saturated for the conformally
transformed surface. We can always think of this transformation
as a passive Weyl transformation, which doesn’t change the bulk
geometry; sμsμ is the same in all boundary conformal frames. So
saturation of the conformal QNEC for a sphere in the vacuum is
equivalent to saturation of the QNEC for a plane in the vacuum.
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Applying this result to (3.27), we find that a sufficient
(but not necessary) condition for the QNEC to hold at order
N0 is

D
Dλ

δSbulk
δXi ki ≤ 0: ð4:2Þ

Intriguingly, this is almost the QNEC applied in the bulk,
except for two things. Notice that the variation δSbulk=δXi is
a global variation of Sbulk, not a local one. We could re-
expand it in terms of a local variation integrated over all
of m. But the variation of m is spacelike over most of the
surface, even though it becomes null at infinity. The
integrated QNEC does not apply when the variation is
spacelike in some places. We would also expect that the
bulk stress tensor should play some role in any bulk entropy
inequality.

3. Curved backgrounds

A straightforward generalization of this proof is the
extension to field theories on a curved background. The
main problem is that the state-independent terms in
the asymptotic metric expansion would not be proportional
to the metric and thus would not vanish when contracted
with the deforming null vector ki. For example, for arbitrary
bulk gravity theories dual to d ¼ 4 CFTs the first two terms
in the metric expansion read [40]

gijðx; zÞ ¼ gð0Þij þ
z2

2

�
Rij −

1

2ðd − 1ÞRgð0Þij
�
þ…;

ð4:3Þ

where gð0Þij is the boundary metric. The Rij term will
interfere with the proof if Rkk ≠ 0. But there is another
aspect of the curved-background setup which may help: the
geometrical condition we have to impose on Σ to eliminate
divergences is not just kiKi ¼ 0. The second variation of
the area law term in the entropy, for instance, is propor-
tional to the derivative of the geometric expansion of a null
geodesic congruence, _θ, and by Raychaudhuri’s equation
this depends on Rkk. So it may be that the condition which
guarantees the absence of divergences in the QNEC in a
curved-background is also strong enough to deal with all
the background geometric terms which can show up to ruin
the proof.18

4. Quantum focusing conjecture

We have discussed at length the restriction to surfaces
satisfying kiKi

ab ¼ 0 as a way to eliminate divergences in

the variation of the von Neumann entropy. But the original
motivation for the QNEC, the Quantum Focussing
Conjecture (QFC), was made in the context of quantum
gravity, where the von Neumann entropy is finite (and is
usually referred to as the generalized entropy). Instead of an
area law divergence, the generalized entropy contains a
term A=4GN , and instead of subleading divergences there
are terms involving (properly renormalized) higher curva-
ture couplings. The QFC is an analogue of the QNEC for
the generalized entropy, and simply states S00gen ≤ 0. When
applied to a surface satisfying kiKi

ab ¼ 0 it reduces to the
QNEC, but when applied to a surface where kiKi

ab ≠ 0, it
has additional terms involving the gravitational coupling
constants of the theory.
Using out present method of proof, we could potentially

study these additional gravitational terms, and hence prove
some version of the QFC. The idea is to consider an
induced gravity setup in AdS=CFT, where the field
theory lives not on the asymptotic boundary but on a
brane located at some finite position. As is well known, the
CFT becomes coupled to a d-dimensional graviton in this
setup [42,43]. Furthermore, it has been shown that the area
of an extremal surface anchored to the brane and extending
into the bulk computes Sgen for the CFTþ gravity theory
on the brane [44,45].
For a brane which is close to the boundary, we can

essentially apply all of the methodology of our current
proof to this situation. The only difference is that, since we
are not taking z → 0, we do not have to worry about setting
kiKi

ab ¼ 0 to kill the divergences. And when we compute
sμsμ without the condition kiKi

ab ¼ 0, there will be addi-
tional terms that would have dominated in the z → 0 limit.
Schematically, we will have

0 ≤ sμsμ ¼ z2ðnonvanishing when kiKi
ab ≠ 0Þ þ � � �

þ zdðTkk − S00Þ: ð4:4Þ

Since z is left finite and is related to the finite gravitational
constant of the braneworld gravity, these terms have exactly
the expected form of terms in the QFC. It remains to be
seen if the QFC as conjectured is correct, or if there are
other corrections to it. This method should tell us the
answer either way, and we will investigate it in future work.

B. Connections to other work

1. Relation to studies of shape-dependence
of entanglement entropy

The shape-dependence of entanglement entropy in the
vacuum state of a quantum field theory has recently been an
active area of research.19 Recent studies have focused on
the explicit calculation of the “off-diagonal” parts of the

18Update in version 2: Using a generalization of the method
used in this paper, one can show that the QNEC holds when
applied to Killing horizons of boundary theories living on
arbitrary curved geometries [41]. 19See e.g. [30,46–49].
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second variation of the entropy, sometimes known as the
“entanglement density” [50–52]. These terms play no role
in the local version of the QNEC, which only involves the
diagonal part. For an integrated version of the QNEC, it is
sufficient that the off-diagonal terms are negative, a result
which can be proven via strong subadditivity alone, as
discussed above [11,52]. It would be interesting to see if
any of the methods applied to the study of the entanglement
density could be applied to the diagonal part of the second
variation to study the QNEC for interacting theories with-
out using holography.

2. Other energy conditions

A number of nonlocal conditions on the stress tensor in
quantum field theory have been suggested over the years,
some more exotic than others. These include the average
null energy condition (ANEC) [2], as well as the more
recent “quantum inequalities” (QIs) [53,54] which imply
the “quantum interest conjecture” [55]. The motivation for
nonlocal energy conditions in quantum field theory natu-
rally comes from the fact that quantum fields violate all
local energy conditions defined at a single point [10].
It would be interesting to understand the relation

between these inequalities, and to see which ones imply
or are implied by the others. It was pointed out in [53] that
the QIs imply the ANEC in Minkowski space, and by
integrating the QNEC along a null generator one can obtain
the ANEC in situations where the boundary term S0
vanishes at early and late times [16]. But does the
QNEC imply a null limit of the QI?20 Or can the QI be
shown to imply the QNEC? One might expect that the
QNEC should be the more general statement, simply
because of the huge freedom in the choice of region used
to define the entropy.

3. Semiclassical generalizations of classical proofs
from NEC → QNEC

Many proofs of theorems in classical gravity rely on
the assumption of the null energy condition (NEC)
[1–5,56–64]. In the context of AdS=CFT, the large-N limit
of the boundary theory is dual to classical gravity in the
bulk, and thus the NEC can be used to derive theorems
about the AdS=CFT correspondence in this regime (e.g.
[6,7,9,21,22,64], as well as many others). One wonders
about the fate of these results away from the strictly
classical limit, because the NEC is known to be violated
by quantum fields [10].
As shown in this paper and [16], the QNEC is a

generalization of the NEC which holds in several nontrivial
examples of fully quantum theories. It would be interesting
to try to replace the assumption of the NEC with the

assumption of the QNEC to generalize classical proofs in
gravity to the semi-classical regime. While the introduction
of entropy into gravitational theorems may be a nontrivial
modification, a similar program of replacing the NEC
with the GSL for causal horizons [65,66] has already
had success in various cases [39,67]. Replacing the NEC
with the QNEC could potentially be even more powerful, as
the QNEC holds at any point in spacetime without the need
for a causal horizon.
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APPENDIX: DETAILS OF THE
ASYMPTOTIC EXPANSIONS

In this appendix, we will provide a few more details
about the asymptotic expansions appearing in Sec. III A.
Consider an Einstein-scalar field system where the scalar
field Φ has mass m2 ¼ ΔðΔ − dÞ, and Δ is the dimension
of the relevant boundary operator O. It is useful to also
define α ¼ d − Δ. Let us assume first that Δ ≥ d=2, so that
α < Δ. This is the case for the standard quantization of
the scalar field. Near z ¼ 0, the leading part of the field is
thenΦ ∼ ϕ0zα, where ϕ0 is a constant which is proportional
to the coupling constant of the relevant operator. Then
the Einstein equations have a solution of the form given
by (3.1),

ds2¼L2

z2

�
dz2þ

�
fðzÞηijþ

16πGN

dLd−1 z
dtij

�
dxidxjþoðzdÞ

�
;

ðA1Þ

where fðzÞ is state independent and has an expansion

fðzÞ ¼ 1þ
Xmα≤d

m¼2

fðmαÞzmα: ðA2Þ

Here fðmαÞ is proportional to ϕm
0 . The minimal valuem ¼ 2

corresponds to the fact that, in Einstein gravity, the metric
couples quadratically to Φ.
It is important for the this proof that all terms in the

expansion of the metric and embedding functions of lower
order than zd are proportional to ηij and ki, respectively. For
the metric, we can see this immediately from (A1) for
operators with Δ ≥ d=2. One has to be more careful in the

20In [53], it is mentioned that a QI can be derived for null
geodesics for 1þ 1-dimensional Minkowski space, but that it is
not known if an analogous statement holds in higher dimensions.
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case where d=2 > Δ > ðd − 2Þ=2. The lower bound here
represents the unitarity bound. Treatment of this case
requires the alternative quantization, which means that
the roles of α and Δ are switched [68]. In particular, it
means that when we solve Einstein’s equations there will be
terms of order less than zd which are state-dependent:

ds2 ¼ L2

z2

�
dz2 þ

��
ηij þ

X2nþmΔ≤d

m¼2;n¼0

gð2nþmΔÞ
ij z2nþmΔ

�

þ 16πGN

dLd−1 zdtij

�
dxidxj þ oðzdÞ

�
: ðA3Þ

Here the gð2nþmαÞ
ij are built out of the expectation value of

the relevant operator, hOi, rather than its coupling constant.

However, all is not lost. Because Δ > ðd − 2Þ=2, only the
coefficients with n ¼ 0 actually appear in this sum because

the others are oðzdÞ.21 But gðmΔÞ
ij depends only on hOim and

not any of its derivatives (this follows from a scaling

argument [23]). So gðmΔÞ
ij ∝ ηij, which is what we need for

the argument in the main text.
We also have to make sure that derivatives of hOi do not

contaminate the expansion of the embedding functions X̄i.
From the equation of motion, we see that the lowest order at
which ∂ahOi enters the expansion of X̄i is z2þ2Δ, but 2þ
2Δ > d for Δ > ðd − 2Þ=2.
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