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We investigate for order and chaos the dynamical system of a spinning test particle of massmmoving in
the spacetime background of a Kerr black hole of massM. This system is approximated in our investigation
by the linear in spin Hamiltonian function [E. Barausse and A. Buonanno, Phys. Rev. D 81, 084024
(2010)]. We study the corresponding phase space by using 2D projections on a surface of section and the
method of color and rotation on a 4D Poincaré section. Various topological structures coming from the
nonintegrability of the linear in spin Hamiltonian are found and discussed. Moreover, an interesting result is
that from the value of the dimensionless spin S=ðmMÞ ¼ 10−4 of the particle and below, the impact of the
nonintegrability of the system on the motion of the particle seems to be negligible.
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I. INTRODUCTION

Mathisson [1] and Papapetrou [2] provided the equations
of motion for a spinning particle in a curved spacetime.
The equations of motion of a spinning test particle are
interesting from the astrophysical point of view, because
they approximate the motion of a stellar compact object in
the spacetime background of a supermassive black hole.
Such a binary system is called an extreme mass ratio
inspiral (EMRI). EMRIs are among the most promising
sources of gravitational waves expected to be detected
by space interferometer antennas like LISA (see, e.g., [3]).
However, in this work we focus rather on the dynamics of a
spinning particle system than on astrophysical aspects.
The number of Mathisson-Papapetrou (MP) equations

is smaller than the number of variables which the MP
equations intend to evolve. The above fact can be inter-
preted as a freedom of choosing different worldlines for
evolving the equation of motion of the same extended
object described by the pole-dipole approximation [4].
To choose a worldline we use a supplementary condition
that is known in the literature as the spin supplementary
condition (SSC). There is a variety of SSCs (for a review,
see, e.g., [5–7]), but all are physically acceptable. The most
renown are the Pirani (P) [8] and the Tulczyjew (T) [9]
SSCs. For many years the P SSC was considered unphys-
ical, because the test particle exhibited helical motion in the
flat spacetime limit. However, in [10] it has been shown that

this helical motion results from a hidden momentum and
the P SSC is physically valid as well.
The aspect of the spinning particle dynamics we are

interested in is the issue of the integrability of the
corresponding system. It has been shown that for the
Schwarzschild background the MP equations with T
SSC give chaotic orbits [11], and the same holds for the
Kerr background, see, e.g., [12–14]. Hence, one can claim
that the MP equations with T SSC correspond to a non-
integrable system. However, in the linear in spin approxi-
mation of the MP equations, it has been proved that for the
T SSC a Killing-Yano tensor provides a Carter-like con-
stant of motion for the Kerr background [15]. The existence
of a Carter-like constant and the fact that the T and P SSCs
are the same in the linear regime led to the impression that
in the linear in spin approximation the spinning particle
dynamics corresponds to an integrable system (see, e.g.,
[16]). For geodesic orbits in a Kerr spacetime the existence
of the Carter constant ensures integrability, since it is the
fourth constant of motion (the others being the energy,
the angular momentum along the symmetry axis and the
contraction of the four-momentum) in a Hamiltonian
system of 4 degrees of freedom. Nevertheless, when the
particle is spinning we have extra degrees of freedom, and
it is questionable even if the existence of a Carter-like
constant can ensure the integrability of the system.
When examining whether a system is integrable or not, it

is useful to have a canonical Hamiltonian formalism which
provides symplecticity. In a nonsymplectic system we need
as many constants of motion as the dimensionality of the
phase space. On the other hand, in a canonical Hamiltonian
system two dimensions of the phase space correspond to
1 degree of freedom. Therefore, we need half the number of
constants of motion in order to have integrability with
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respect to a noncanonical system of the same phase space
dimensionality. Moreover, by having a canonical
Hamiltonian system, tools like Poincaré sections can be
properly used. When a system is not symplectic, then a
surface of section is ambiguous. A canonical Hamiltonian
formalism has not been found yet for the MP equations with
the T SSC. However, such canonical Hamiltonian formalism
has been provided in [17] for the Newton-Wigner (NW) SSC
[18] in the linearized in spin approximation.
A Hamiltonian for a spinning particle moving in a

Kerr spacetime background has been first provided in
[17]. However, due to the approximative procedure which
leads from the MP equations to the linearized in spin
Hamiltonian function, the resulting Hamiltonian equations
are not equivalent to the corresponding MP equations, e.g.,
starting the Hamiltonian equations and the MP equations
with the same initial conditions lead to two different
orbits [19]. It might even occur that the final linearized
Hamiltonian systemmay not even respect some symmetries
that the corresponding MP equations respect. For example,
the Hamiltonian function provided in [17] for the Kerr
spacetime in Boyer-Lindquist coordinates did not respect in
the Schwarzschild limit a ¼ 0 the spherical background
symmetry. Namely, the total angular momentum was not
preserved as it should be. Absence of integrals of motions
could lead to the misleading impression that for the
Schwarzschild background the Hamiltonian corresponds
to a nonintegrable system (see, e.g., Fig. 2 in [20]). The
problem with the Hamiltonian in [17] was the specific tetrad
field choice on which the Hamiltonian function was built.
Even in [17], it was found that the resulting Hamiltonian
would evolve the spin in the flat spacetime limit [17].
However, since the helical motion in the case of the MP
equations with P SSC could result from a hidden momen-
tum, the same could hold for the Hamiltonian approximation
coming from the NWSSC. Thus, a more solid reasoning was
needed to show the drawbacks of the tetrad field chosen in
[17]. In [20] it was shown that if the resulting Hamiltonian
should respect the symmetries of the Schwarzschild back-
ground, then the corresponding tetrad field should obey a
certain prescription [Eq. (44) in [20]]. The tetrad field of [17]
is not complying with this prescription.
On the other hand, a different tetrad field choice

provided in [21] led to a revised Hamiltonian for the
Kerr background. This tetrad field is obeying the prescrip-
tion given in [20]. In particular, for the Schwarzschild limit
the revised Hamiltonian [21] was conserving not only the
total angular momentum as it should be, but it was shown
in [20] that the magnitude of the orbital momentum was
preserved as well. The latter implies that in the
Schwarzschild limit the revised Hamiltonian of [21] cor-
responds to an integrable system, since for a five degrees of
freedom system we have five constants of motion [20,22].
The revised Hamiltonian ceases to be integrable when the
spin of the central black hole is nonzero [20], i.e., in the

Kerr spacetime background. A thorough study of the
nonintegrability of the revised Hamiltonian is the subject
of our article.
The study of chaotic motion around black holes probably

starts with [23], where a method based on Cantor sets was
applied to prove the chaotic nature of the system. Since
then many methods have been applied to detect chaos in the
vicinity of black holes, but the most common is the 2D
Poincaré section. It is a fact that in order to study the
nonintegrability of a two degrees of freedom Hamiltonian
system a 2D Poincaré section is a standard tool. However,
since the Hamiltonian provided in [21] corresponds to a
system with 3 degrees of freedom, we have to deal with 4D
Poincaré sections [24]. In order to detect order and chaos
in the 4D Poincaré spaces of section, we must first of all
have a way to visualize them. In the past, several methods
have been proposed for the visualization of the 4D surfaces
of section in a 6D phase space of a 3D autonomus
Hamiltonian system: ordinary 2D projections [25], 3D
projections [26], stereoscopic projections [27–29], or 2D
slices of 3D subspaces ([27,30], and recently a more
sophisticated version in [31,32] (see the Appendix).
In the present work we use the method of color and

rotation, introduced by Patsis and Zachilas [33]. This
method is extensively described for the case of 3D rotating
galactic potentials in a series of papers [34–39]. These
papers investigate portraits of the 4D spaces of section in
the neighborhood of periodic orbits exhibiting all kinds of
instabilities encountered in 3D Hamiltonian systems (see,
e.g., [24]). The method has also been applied in the study of
the structure of the phase space close to fixed points in a 4D
symplectic map [40], and to design spacecraft orbits [41].
The method consists in plotting the points (the conse-

quents) of an orbit in a 3D subspace as they cross the space
of section in a given direction, rotate them by means of
standard 3D graphic tools to get a good insight of their
distribution in the 3D subspace, and finally color them
according to their value in the fourth dimension (the one not
used in the 3D spatial representation of the orbit). Color
allows the estimation of the smoothness in the fourth
dimension of geometrical structures appearing in the 3D
projections and the distinction of pseudo- from true inter-
sections in the 4D space. Thus, one can establish criteria for
the regular, weak chaotic or strong chaotic character of a
given orbit [33–40]. In the latter papers, specific patterns in
phase space are associated with the various kinds of
instability or with stability. In our paper this method is used
in the study of the dynamics of a spinning particle in the
Hamiltonian approach in an effort to trace regular and
chaotic motion in the phase space of our system.
The paper is organized as follows. Section II introduces

the Hamiltonian function of [21], which we use for our
study. Section III discusses the nonintegrability of the
Hamiltonian, briefly describes the setting up of the
numerics, and provides a detailed account of our numerical
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findings. Section IV sums up our findings, and discusses
the possible astrophysical implications. The Appendix lists
techniques used for visualizing 4D spaces of section.
We use geometric units, i.e., G ¼ c ¼ 1, and the

signature of the metric is ð−;þ;þ;þÞ. Greek letters
denote the indices corresponding to spacetime (running
from 0 to 3), while Latin letters denote indices correspond-
ing only to space (running from 1 to 3).

II. THE HAMILTONIAN OF A
SPINNING PARTICLE

The canonical Hamiltonian formalism of a spinning
particle in [17] has been achieved by linearizing the MP
equations of motion for the NW SSC. In this formalism the
mass of the test particle m is considered a constant of
motion [17], and the spin of the particle is given by a three
vector SI. The corresponding Hamiltonian functionH splits
in two main parts, the nonspinning HNS, which describes
basically the geodesic motion, and the spinning part HS,
which incorporates the spinning of the particle, i.e.,

H ¼ HNS þHS: ð1Þ

The nonspinning part of the Hamiltonian HNS reads

HNS ¼ βiPi þ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ γijPiPj

q

; ð2Þ

where Pi are the canonical momenta conjugate to the
coordinates xi of the Hamiltonian (1) [17], and

α ¼ 1
ffiffiffiffiffiffiffiffiffiffi

−g00
p ;

βi ¼ g0i

g00
;

γij ¼ gij −
g0ig0j

g00
: ð3Þ

gκλ is the contravariant form of the metric tensor of the
background spacetime in which the test particle moves. We
are interested in the Kerr spacetime background describing
the spacetime around a black hole of mass M with spin
parameter a. In Boyer-Lindquist coordinates t is the
coordinate time, ϕ is the azimuthal angle, θ is the polar
angle, and r is the radial distance, and the Kerr metric reads

gtt ¼ −1þ 2Mr
Σ

;

gtϕ ¼ −
2aMrsin2θ

Σ
;

gϕϕ ¼ Λsin2θ
Σ

;

grr ¼
Σ
Δ
;

gθθ ¼ Σ; ð4Þ

where

Σ ¼ r2 þ a2cos2θ;

Δ ¼ ϖ2 − 2Mr;

ϖ2 ¼ r2 þ a2;

Λ ¼ ϖ4 − a2Δsin2θ: ð5Þ

The spinning part of the Hamiltonian HS for the Kerr
spacetime in Boyer-Lindquist coordinates as given in [21]
can be split in two parts as well, i.e.,

HS ¼ HSO þHSS; ð6Þ

where the Hamiltonian providing the spin orbit cou-
pling reads

HSO ¼
ffiffiffiffiffiffiffi

ΔΣ
p

PϕSz
mΛ

ffiffiffiffi

Q
p

sin2θ

�

Σ
ffiffiffiffi

Λ
p − 1

�

þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔΣΛQ
p ð1þ ffiffiffiffi

Q
p Þsin2θ

�

sin2θðSy cosϕ − Sx sinϕÞΔ3=2

�

−
∂μ
∂r ð

ffiffiffiffi

Q
p

þ 1ÞPθ

m

−
∂μ

∂ cos θ
Pr

m
sin θ þ

ffiffiffiffi

Q
p

�∂ν
∂r

Pθ

m
þ sin θ

� ∂ν
∂ cos θ −

∂μ
∂ cos θ

�

Pr

m

��

þ ΔΣð2 ffiffiffiffi

Q
p þ 1Þ sin θPϕ

m
ffiffiffiffi

Λ
p

�

ffiffiffiffi

Δ
p ∂ν

∂r ð− cos θðSx cosϕþ Sy sinϕÞ þ Sz sin θÞ

−
∂ν

∂ cos θ ðSx sin θ cosϕþ Sy sin θ sinϕþ Sz cos θÞ sin θ
�

þ Σ
ffiffiffiffi

Δ
Λ

r

ðr −M −
ffiffiffiffi

Δ
p

Þð
ffiffiffiffi

Q
p

þ 1Þ sin θPϕ

m
½cos θðSx cosϕþ Sy sinϕÞ − Sz sin θ�

�

; ð7Þ

and the Hamiltonian providing the spin–spin coupling reads
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HSS ¼ ωSz þ
ffiffiffiffi

Λ
Δ

r ∂ω
∂r

1

2Σ2
ffiffiffiffi

Q
p ð1þ ffiffiffiffi

Q
p Þsin2θ

�

ΣΔ
ffiffiffiffi

Λ
p sin2θðSy cosϕ − Sx sinϕÞ

PϕPθ

m2

þ ΔΣ2

Λ
sin θ½− cos θðSx cosϕþ Sy sinϕÞ þ Sz sin θ�

Pϕ
2

m2

þ ΣΔ
ffiffiffiffi

Q
p

ð1þ
ffiffiffiffi

Q
p

Þsin3θ½− cos θðSx cosϕþ Sy sinϕÞ þ Sz sin θ�

þ Δ3=2sin3θ
Pr

m2
f

ffiffiffiffi

Δ
p

½cos θðSx cosϕþ Sy sinϕÞ − Sz sin θ�Pr − ðSx sin θ cosϕþ Sy sin θ sinϕþ Sz cos θÞPθg
�

þ
ffiffiffiffi

Λ
p

2Σ2Δ
ffiffiffiffi

Q
p ð1þ ffiffiffiffi

Q
p Þ

∂ω
∂ cos θ

�

−
ΔΣ2

Λ

Pϕ
2

m2
ðSx sin θ cosϕþ Sy sin θ sinϕþ Sz cos θÞ

þ ΣΔ3=2

ffiffiffiffi

Λ
p PrPϕ

m2
sin θðSy cosϕ − Sx sinϕÞ þ sin2θΔ

�

ðSx sin θ cosϕþ Sy sin θ sinϕþ Sz cos θÞ

×

�

P2
θ

m2
− Σ

ffiffiffiffi

Q
p

ð1þ
ffiffiffiffi

Q
p

Þ
�

þ
ffiffiffiffi

Δ
p PθPr

m2
½− cos θðSx cosϕþ Sy sinϕÞ þ Sz sin θ�

��

; ð8Þ

where the SI is written in the corresponding Cartesian
coordinates, i.e.,

x ¼ r sin θ cosϕ;

y ¼ r sin θ sinϕ;

z ¼ r cos θ; ð9Þ

and ω, μ, ν, Q are the following functions:

ω ¼ 2aMr
Λ

;

e2ν ¼ ΔΣ
Λ

;

e2μ ¼ 4Σ
ðr −M þ ffiffiffiffi

Δ
p Þ2 ;

Q ¼ 1þ γij

m2
PiPj: ð10Þ

For more about the canonical Hamiltonian formalism and
the derivation of the above Hamiltonian function see [17]
and [21] respectively.
The equations of motion for the canonical variables as a

function of the coordinate time t read

dxi

dt
¼ ∂H

∂Pi
;

dPi

dt
¼ −

∂H
∂xi ;

dSI
dt

¼ ϵIJC
∂H
∂SJ S

C; ð11Þ

where ϵIJL is the Levi-Civita symbol.

III. 2D AND 4D POINCARÉ SECTIONS

A. The issue of integrability

The canonical Hamiltonian approximation provided in
[17] has five degrees of freedom. Three degrees of freedom
come from the coordinates, and two degrees from the
spin vector [20]. In [20] it has been shown that for the
Schwarzschild spacetime background the Hamiltonian
approximation possesses five integrals of motion. The
spherically symmetric background corresponds to the
preservation of the total angular momentum, thus, two
independent and in involution integrals come from the
spherical symmetry; since the Hamiltonian is autonomous,
the Hamiltonian function is a constant of motion, repre-
senting the energy; the measure of the particle’s spin is
conserved, and the measure of the orbital angular momen-
tum is a constant as well. Hence, since we have five
independent and in involution integrals for five degrees of
freedom, the Hamiltonian of a spinning particle for a
Schwarzschild background is integrable [20].
For nonzero spin of the central black hole, however,

chaotic motion appears (see Fig. 3 of [20]). This means that
for the Kerr background the revised Hamiltonian of [21] is
nonintegrable. Actually, Fig. 3 of [20] is a projection of a
4D Poincaré map on a 2D surface of section. The 2D
projections of a 4D Poincaré map is an old technique to
visualize the dynamics of a chaotic system (method 1 in the
Appendix). Similar techniques have been employed in
previous studies [11–14] when the question of chaos
was examined for spinning particles using MP equations.
However, since the MP equations are not symplectic, the
use of the surface of sections for studying their dynamics is
ambiguous. On the other hand, the canonical Hamiltonian
formalism of [17] is symplectic (see, e.g., Appendix A in
[20]), and, hence, the subsequent study of Poincaré sections
stands on solid ground from this point of view.
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B. Setting up the numerics

To evolve the Hamiltonian equation of motion (11) we
need to set up the initial conditions of our system. We have
nine variables, i.e., three variables for the position, three for
the momentum, and three for the spin. In the case of the
Kerr background we have two integrals of motion apart
from the Hamiltonian function H (1). Namely, the azimu-
thal component of the total angular momentum [20,21]

Jz ¼ Pϕ þ Sz; ð12Þ

and the measure of the particle’s spin [17]

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2x þ S2y þ S2z
q

; ð13Þ

are preserved. For a group of orbits to belong to the same
surface of section they have to share the same values of Jz,
S and H. Thus, we are going to use the above three
constants to fix the initial conditions.
Since the Kerr background is axisymmetric, the initial

value of the azimuthal angle ϕ can be set to 0 without loss
of generality. The equatorial plane θ ¼ π=2 seems to define
the appropriate surface of section, due to reflection sym-
metry along the equatorial plane of the Kerr spacetime.
The equatorial plane was also chosen as the surface of
section by previous studies of the spinning particle dynam-
ics [11–14]. On the equatorial plane we choose initial
conditions along the radial direction r and for each orbit we
set the initial radial momentum to Pr ¼ 0. The spin
components Sx, Sy are chosen to be set to 0, and, thus,
the measure of the component Sz is defined by the spin’s
magnitude. The sign of Sz shows if the particle’s spin is
initially aligned with the spin of the central object (positive
sign) or antialigned (negative sign). From (12), with given
Sz, we can get Pϕ, while Pθ is found through a Newton
iteration for a given value of the Hamiltonian function H
[42]. Obviously the above initial condition setting is not
unique, but we found it convenient for our investigation.
The equations of motion (11) are evolved by a Gauss

Runge–Kutta integration scheme which has very good
conservation properties for symplectic systems (see, e.g.,
Appendix B in [19]). On the surface of section we record
crossings with Pθ > 0. In order to calculate the phase space
points on the sections very precisely, we take use of the
integration scheme’s interpolation property as described in
Appendix of [20].
In our visualization we are going to use only the

variables r, Pr, PθPϕ, since by using the constants of
motion (12) and (13) we can reduce our phase space to
the positions, and the momenta. Above we have chosen
θ ¼ π=2 for our surface of section due to the reflection
symmetry. Moreover, even if ϕ evolves in time, we do not
use it for the 4D Poincaré sections, because the Kerr
spacetime is axially symmetric and, therefore, the variable

ϕ should not carry any useful information. Thus, in our
4D Poincaré sections we are using r, Pr, Pθ for the 3D
projection, while Pϕ is represented by the color. However,
note that due to the constant Jz (12), the use of Pϕ to color
the consequents is equivalent to the use of Sz, i.e., the
maxima of the one quantity correspond to the minima of the
other one.
The spin is measured in mM units, namely S=ðmMÞ is

dimensionless. By setting m ¼ M ¼ 1 the spin is dimen-
sionless, and all the other quantities as well. In some of our
numerical examples we are using unrealistic high values for
the particle’s spin measure, e.g. S ≈ 1. However, these
values are dynamically valid even for the linearized in spin
Hamiltonian formulation we are using, because once the
Hamiltonian function is explicitly written the Hamiltonian
system is self-consistent. Namely, the Hamiltonian function
itself depends just linearly on the spin components, and the
Hamiltonian equations (11) are just linearly dependent on
the spin as well. The only limitation is the astrophysical.
The dimensionless spin value becomes astrophysically
relevant for EMRI when S < 10−4 (for more details see
Sec. II. B in [12]). However, one has to keep in mind that
the aim of this work is basically a dynamical investigation
of the system, not an astrophysical one.
As far as the Kerr parameter is concerned, we have

chosen the value a ¼ 0.9 in our study. The reason is the
following. In order to have integrability we can go either to
the geodesic limit (S ¼ 0), or to the Schwarzschild limit
(a ¼ 0). Thus, in order to have the most pronounced
nonintegrability effects, we have to go away from both
above limits, which is the case with a ¼ 0.9. This does not
mean that for smaller Kerr parameters we cannot find signs
of chaos. Actually, the nonintegrability of the linear in spin
Hamiltonian approximation for the Kerr background was
found for a ¼ 0.1 (Fig. 3 in [20]).

C. Examples for S= 1

In order to find chaos we use the extreme case of S ¼ 1
in our first example. Figure 1 shows a two dimensional
projection of a Poincaré section. We can observe a chaotic
region (scattered points) encircling an island of stability.
The chaotic sea is confined between two surfaces. The
inner one, which defines the limit of the island of stability,
is a KAM (Kolmogorov-Arnold-Moser) torus, while the
outer one is the boundary of the allowed motion. The outer
boundary is indicated by the outer limit of the chaotic orbit.
The boundary of the allowed motion has an opening around
r ¼ 2, Pr ¼ 0 from which the chaotic orbits are plunging
towards the central black hole (r ¼ 0). However, our
observations are not unambiguous, since we do not see a
Poincaré section in Fig. 1, but a projection. A 2D Poincaré
section is accurate only for a Hamiltonian system of two
degrees of freedom. In a two degrees of freedom system the
KAM curves have zero width, and chaotic regions are
represented by scattered dots covering a nonzero width
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region. In Fig. 1 we see KAM tori projected on a 2D plane,
so the width of the KAMs is nonzero. Thus, a 2D Poincaré
projection does not offer an unambiguous criterion to
distinguish chaos from order. In order to drive safe
conclusions we have to use 4D Poincaré sections.
Using the technique of color and rotation on a 4D

Poincaré section, the regularity of an orbit in the neighbor-
hood of a stable periodic orbit is indicated in the topology
of the three-dimensional projection by the presence of a
torus, with a smooth color variation on its surface. This is
determined by the distribution of the consequents in the
fourth dimension [33]. We use the orbit starting from
r ¼ 7.5 in Fig. 1 to give our first example of a regular orbit
on a 4D Poincaré section (Fig. 2). In Fig. 2 we observe that
as the orbit evolves on the rotational torus projected on the
r, Pr, Pθ surface, the colors representing Pϕ vary smoothly
[34]. This means that the orbit is regular. We use the
software package “GNUPLOT” to visualize our results. We
give the viewing angles of the 3D projections for Fig. 2 and
all the subsequent similar figures of our paper in Table I.

On a 4D Poincaré section the chaotic nature of an orbit is
demonstrated by its irregular behavior on the three-
dimensional projection or/and by the mixing of colors
representing the fourth dimension. In Fig. 3 we consider the
chaotic orbit starting from r ¼ 3 on the 2D projection in
Fig. 1. Initially the orbit sticks around a KAM lying on the
border of the island of stability (this is given in the left plot
of Fig. 3). By sticking around the torus it mimics a regular
orbit (the color variation is smooth), but as the orbit evolves
it departs from the KAM torus and sticks on the surface that
defines the space for the allowed motion. The consequents
of the orbit exhibit a smooth color variation. This is typical
of the phenomenon of stickiness and it is quite common
for weakly chaotic orbits, which are called sticky, see, e.g.,
[34]. The arrows in the right plot of Fig. 3 show points that
stick in this case on the outer boundary. The chaotic nature
of the orbit is defined by its irregular behavior, and not by
the color mixing. The orbit, after 1500 consequents, does
not form a torus with small color variation on it like in
Fig. 2, but it has a double loop structure. The fact that we
do not have color mixing indicates stickiness [37]. This
behavior is similar to a weakly chaotic orbit that is trapped
between two invariant curves in the case of a 2D
Hamiltonian system.

D. Examples for S=
ffiffiffiffiffiffiffi

0.1
p

We keep the same energy and angular momentum as in
Sec. III C, but we reduce the spin measure to S ¼ ffiffiffiffiffiffiffi

0.1
p

. In
this case a 2D projection of the whole phase space like the
one in Fig. 1 is hardly discernible from a proper Poincaré
map coming from a system with two degrees of freedom.
One has to focus on a small region of the phase space to see
the real structure (Fig. 4). In Fig. 4 we observe that there is
still a chaotic region surrounding the main island of
stability (scattered points on the left side of the plot),
and that the KAM tori have nonzero width. It is worth
mentioning that in a system of three degrees of freedom
the chaotic regions communicate even if we see KAMs
between them in the 3D projections of the 4D space of
section. On the contrary in two degrees of freedom systems,
when a KAM is lying between two chaotic regions in
the 2D surface of section it does not allow them to

-0.06 -0.03  0  0.03  0.06 7
 8

 9
 10

 11

 2
 2.3
 2.6
 2.9
 3.2

Pθ

Pr

r

P

 1

 1.4

 1.8

 2.2

 2.6

P φ

FIG. 2. A regular torus from Fig. 1 with initial r ¼ 7.5 on a 4D
Poincaré section.

TABLE I. The view points of the figures, which are depicting
4D Poincaré section, are given in spherical coordinates ðθ;ϕÞ as
defined in the GNUPLOT software package.

Figure θ ϕ

2 47° 349°
3 (left panel) 36° 144°
3 (right panel) 136° 84°
5 46° 66°
6 44° 148°
7 60° 88°

FIG. 1. A 2D projection of a Poincaré section on the r; Pr plane
for spins a ¼ 0.9, S ¼ 1 and H ¼ 0.95, Jz ¼ 2.
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communicate [43]. A case where the two chaotic regions
communicate is given in Fig. 4. Apart from the outer
chaotic region there is a chaotic region lying on the interval
2.35≲ r≲ 2.37. This region is inside the KAM tori that are
lying on the interval 2.24≲ r≲ 2.25 on the Pr ¼ 0 line in
Fig. 4. By starting integrating an orbit in the inner chaotic
region we soon end up in the outer one, since the two
regions communicate.
Actually the structure of the phase space is far more

complicated. An example is a regular orbit, starting from
r ¼ 2.4 which is represented by a structure that looks like
nooses in a row in the 2D subspace ðr; PrÞ of the 4D
Poincaré section (Fig. 4). This regular orbit is represented
by a warped rotational torus on the 4D Poincaré section
(see, e.g., [26,34]). In Fig. 5 we see the real structure of
the warped rotational torus. The regular orbit follows the
warping of the torus while the color varies smoothly during
the time of integration. On the other hand, weakly chaotic
orbits lie in the region which is apparently dominated by
KAM tori (2.24≲ r≲ 2.25 in Fig. 4). In Fig. 6 we plot such
a weakly chaotic orbit. It is represented by a 3D filamentary

structure with self-intersections in the 3D subspace
ðr; Pr; PθÞ of the 4D space of section. We observe that
this structure has smooth color variation and that we have
the same color (the same value in the fourth dimension) at
the regions of the self-intersections.
We underline the fact that in Fig. 6 we observe two self-

intersections that do not have the same color. If we rotate
the figure, we can see these self-intersections from different
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FIG. 3. A chaotic orbit with initial r ¼ 3, Pr ¼ 0 in Fig. 1 depicted in a 4D Poincaré section. The left plot shows the initial 300
crossings of the orbit through the Poincaré section, while the right shows a detail from the Poincaré section when 1500 crossings have
been reached. The arrows indicate consequents almost on the surface that separates the allowed from the nonallowed space for the
motion of the particle. For further explanations see the text.
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FIG. 4. A detail from a 2D projection of a Poincaré section on the
r, Pr plane for spins a ¼ 0.9, S ¼ ffiffiffiffiffiffi

0.1
p

and H ¼ 0.95, Jz ¼ 2.
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FIG. 5. A regular torus from Fig. 4 with initial r ¼ 2.4 on a 4D
Poincaré section.
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FIG. 6. Filament corresponding to a chaotic orbit from Fig. 4
with initial r ¼ 2.32 on a 4D Poincaré section. The consequents
after long integration time diffuse in phase space.
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viewing angles and we can observe very easily that these
self-intersections do not exist in the 3D subspace. This
means that these self-intersections are due to the viewing
angles and they do not really exist. The smooth color
variation of the 3D filamentary shows that the fourth
dimension supports the geometry of this structure in the
4D space of section. This also gives us the dynamical
information that these self-intersections occur in the 4D
space. Such 4D filamentary structures have been encoun-
tered for the first time in a 3D galactic Hamiltonian system
in [36] and they are found at the neighborhood of unstable
periodic orbits with high multiplicity [36]. The orbits that
are represented by these structures are sticky chaotic orbits.
Such weakly chaotic orbits have as a 2D counterpart the

chaotic orbits that can be found in chains of elliptic and
hyperbolic points in resonance zones. These chaotic orbits
connect the hyperbolic points and surround the islands of
stability of the elliptic ones. In the case we study here, these
weakly chaotic orbits extend into the 3D space of the
projection, while they have a smooth color variation along
the filament they form. However, if we continue the
integration for long times, the orbit will diffuse in the
4D space, something that will be demonstrated clearly in
the next example.

E. Examples for S ≤ 0.1

If we reduce the spin measure to S ¼ 10−1 and S ¼ 10−2,
we encounter again 4D tori and 4D filamentary structures
in the 4D space of section that correspond to regular
orbits and sticky chaotic orbits respectively. In Fig. 7 (for
S ¼ 0.1) we observe a 4D filamentary structure. Despite
the fact that we have smooth color variation for the fourth
dimension Pϕ the consequents depart from this filamentary
structure through the 3D subspace (r, Pr, Pθ), and they
occupy larger volumes in the phase space (before the final
plunge towards the black hole). These consequents can be
observed at the left side of Fig. 7. The departure of these
points from the filamentary structure happens earlier than in
the case described in Fig. 6. However, in both cases we
observe stickiness on 4D Poincaré sections in structures

that correspond to chaotic zones around unstable periodic
orbits with high multiplicity for the first time in a
relativistic system.
The last significant imprints of chaos are found for

S ¼ 10−3. For such low value of spin the 2D projection of a
Poincaré section shown in Fig. 8 is very close to what one
would expect to see in a case of a system with two degrees
of freedom. In Fig. 8, we see a chaotic zone (scattered
points on the left side), and a KAM torus (orbit on the right
side of the plot). We have to focus significantly on the
surface of section in order to make apparent the chaotic
zone and the width of the torus.
For spins S ≤ 10−4 the presence of chaos appears to be

negligible, and if this is the case it can be practically
ignored. Even nonintegrability effects like the existence of
islands of stability near resonances can be neglected for any
practical reason as well. In few words the system is nearly
integrable, in agreement with the recent findings of [44],
where no traces of resonant orbits were found in a study of
the linearized in spin MP equations. It is worth reminding
that S ≤ 10−4 is the upper limit for the EMRIs, and it is
interesting to notice that this value is also the upper limit for
which the orbits produced by the Hamiltonian approxima-
tion start to match the orbits produced by the MP equations
with NW SSC [19].

IV. DISCUSSION AND CONCLUSIONS

The method of color and rotation [33] is used for the first
time in a relativistic system. Until now this method was
used in 3D galactic Hamiltonian systems ([34–36,38,39],
the 3D circular restricted three body problem [41] and a 4D
symplectic map [40]. We encountered three types of orbits
in our study, which, though studied in detail in a 3D
galactic system [34,36], have never been investigated in
other 3D systems in the framework of general relativity.
These three types of orbits are:
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 1.94
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 2.02
 2.06
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 2
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FIG. 7. A detail from a 4D Poincaré section of a filamentary
chaotic orbit with S ¼ 0.1 starting from r ¼ 2.225.
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FIG. 8. A detail from a 2D projection of a Poincaré section on the
r, Pr plane for spins a ¼ 0.9, S ¼ 0.001 and H ¼ 0.95, Jz ¼ 2.
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(a) The first type of orbits is the regular orbits. These
orbits are represented on the 4D Poincaré spaces of
section by 4D rotational tori [26,34]. These tori have
the topology of a regular torus in the 3D projections of
the 4D Poincaré space of section. Some of them are
smooth regular tori and few of them are warped.
Nevertheless, all of them manifest smooth color
variation on them.

(b) The second type of orbits is chaotic orbits that initially
stick on 4D rotational tori (on the 4D Poincaré
section), before they diffuse in the phase space.

(c) The third type of orbits is a special case of chaotic
orbits. They are represented by 4D filamentary struc-
tures on the 4D Poincaré sections as in [36]. These
structures are in the neighborhood of unstable periodic
orbits with high multiplicity. Such orbits are sticky
chaotic orbits since their consequents leave the
4D filamentary structures after a longer time of
integration.

In general we did not encounter strong chaos in the
system, which would be manifested by color mixing on the
4D Poincaré sections. We encountered only weakly chaotic
and sticky orbits. Moreover, we observe that chaotic motion
seems to be insignificant, and its contribution to the overall
dynamics can probably be neglected, when the dimension-
less spin becomes smaller than S ¼ 10−4, i.e. when the
value of the spin is in the astrophysical relevant interval for
extreme mass ratio inspirals. However, from a dynamical
point of view the inclusion of the particle’s spin in the
motion of a small compact object is just one way to go from
the integrable case of geodesic motion on a Kerr black hole
background to a nonintegrable system. For example, it is
well known that rings and halos around black holes can
induce chaotic motion (see, e.g., [45]). The same effect
takes place when the spacetime around the central super-
massive object is described by a non-Kerr black hole (see,
e.g., [46]). Nonintegrability can also originate from the
self-force or from the inclusion of the quadrupole momen-
tum to the Mathisson-Papapetrou equations. In few words,
there are many reasons for a extreme mass ratio binary to be
described by a nonintegrable system. However, it is unclear
to which extent the effects coming from the nonintegr-
ability can affect the motion of the small body.
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APPENDIX: VISUALIZING 4D
POINCARÉ SECTIONS

Several methods have been used for visualizing the 4D
spaces of section:
(a) 2D and 3D projections.—In this method the points of

an orbit are plotted in a 2D subspace [25,47],
Sec. 2.11.11 in [24] or in a 3D subspace [26,48] of
the 4D Poincaré space of section. This method has the
disadvantage that the distribution of the points in the
four-dimensional space is lost. However, in many
cases, thin structures resembling invariant curves in
the 2D case indicate the presence of tori.

(b) Stereoscopic views.—Stereoscopic views of a 3D
subspace of the 4D Poincaré space of section are
used in order to understand the topology of the 3D
projections [27–29] of the figures. For this reason, two
figures are needed, one for each eye of the observer.
However, this method cannot give any information
about the behavior of the orbit in the fourth dimension.

(c) The method of slices.—In this method [27,30] 2D
slices for different values of the third dimension of a
4D Poincaré space of section are produced. The
successive 2D figures help one to see the distribution
of the points of an orbit in the 3D subspace of the 4D
space of section. By using this method many figures
are needed in order to understand the third dimension
and the fourth dimension in the 4D space of section is
absolutely lost. An improved version of this method
has been demonstrated recently in [31,32]. In this case
3D are used, instead of 2D slices of the space of
section and they can be rotated by using standard 3D
graphics software. By doing so, one can better see the
third dimension and “visualize” the fourth dimension
of the 4D Poincaré space of section as well. The
disadvantage of this version of the slices method is that
the 3D slices can be very complicated and sometimes
it is difficult to see directly the topology of the orbits in
the 4D Poincaré space of section.

(d) The method of color and rotation.—This method was
introduced in [33] and is applied in the present paper
(see also our Introduction). The method has the
advantage that we can observe the 4D distribution
of the points of an orbit without any change of the 3D
geometry or the 3D topology of the orbit in the 4D
Poincaré space of section.
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