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We present a general formula for the topological part of the effective action for integer quantum Hall
systems in higher dimensions, including fluctuations of the gauge field and metric around background
fields of a specified topological class. The result is based on a procedure of integrating up from the
Dolbeault index density which applies for the degeneracies of Landau levels, combined with some input
from the standard descent procedure for anomalies. Features of the topological action in (2þ 1), (4þ 1),
(6þ 1) dimensions, including the contribution due to gravitational anomalies, are discussed in some detail.
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I. INTRODUCTION

The quantum Hall effect (QHE) has long been a
fascinating phenomenon, both experimentally and theo-
retically [1]. On the theoretical side, there has been the
immensely successful description based on wave functions.
It was also realized fairly early that the Chern-Simons
action provides an effective description of many of the
features of the quantum Hall effect. For a quantum Hall
droplet, i.e., for a finite system with boundary, the effective
description must also include the action for a chiral boson
theory. This is needed to render the Chern-Simons action
fully gauge invariant and provides a description for the
edge excitations of the droplet. The Chern-Simons action
involves the electromagnetic vector potential and hence
pertains to the electromagnetic response of the QHE
system; in fact, the effective action incorporates the relevant
transport coefficient, namely, the Hall conductivity. Some
of the other transport coefficients of interest, such as the
Hall viscosity, correspond to the response of the Hall
system to perturbations of the background metric [2,3].
Further, considerations of the quantum Hall effect on
spaces of nontrivial topology can give insights into the
physics of the problem, even though experimentally we
may only be interested in spaces of trivial topology [4,5].
As a result, the response of QHE systems to changes in the
background metric, captured via an effective action on
spaces of different geometry and topology, has become the
focus of many recent studies [6–15]. The mathematical
structures underlying the quantum Hall effect have also
generated much interest in their own right, giving further
impetus to such studies.
Another branch of interesting generalizations of the

QHE has been to higher dimensions [16–26]. The
Landau problem has been analyzed and the wave functions
and effective actions have been obtained for a number of

different spaces such as the four-sphere, complex projective
spaces, etc. In higher dimensions, the background gauge
field can be Abelian or non-Abelian. As in the (2þ 1)-
dimensional case, one can consider a bulk effective action
which captures the response to fluctuations of the gauge
field. The topological part of this effective action is a
generalization of the Chern-Simons action to higher
dimensions [24–26]. Also in analogy with the lower
dimensional case, one can consider a quantum Hall droplet
which would then allow for edge excitations, even when the
background gauge field is fixed, i.e., nonfluctuating. The
effective action for this has also been obtained in the case of
integer filling fraction ν ¼ 1; it is a generalization of the
Wess-Zumino-Witten action [18–20,23]. Once fluctuations
in the gauge field are also introduced, the calculated bulk
and boundary actions were shown to be consistent with the
mutual cancellation of anomalies in the gauge symmetry
[24].1 The complete effective action captures the response
of the system to various gauge field perturbations and edge
fluctuations of the droplet.
The natural question which arises from the juxtaposition

of the two lines of development outlined above would be:
What is the effective action for QHE systems in higher
dimensions, including the response to gravitational fields?
This is the subject of the present paper. Wewill start with an
index theorem for the degeneracy of the quantum Hall
states at various Landau levels on a Kähler manifold. This
degeneracy is also the total charge (for the relevant gauge
field) of the fully occupied Landau level and hence the
response of the system to changes in the electrostatic-type
component (or time component) of the corresponding
vector potential. The effective action can then be con-
structed, in essence, by integrating this response with
respect to the vector potential and making the result
covariant. We will use complex projective spaces to
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1This is a generalization of the well-known similar structure in
two dimensions [27]; the cancellation of anomalies between the
bulk and boundary terms is traceable to [28].

PHYSICAL REVIEW D 94, 024022 (2016)

2470-0010=2016=94(2)=024022(20) 024022-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.024022
http://dx.doi.org/10.1103/PhysRevD.94.024022
http://dx.doi.org/10.1103/PhysRevD.94.024022
http://dx.doi.org/10.1103/PhysRevD.94.024022


illustrate various aspects of these considerations, but the
result is general and applies to any Kähler manifold.
As mentioned above, many aspects of the effective

action in (2þ 1)-dimensions with nontrivial geometry and
topology have been considered by several authors. In [8],
local Galilean invariance is used to elucidate features of
the effective action. Effective actions, including gravita-
tional contributions, are obtained in [9,11] from micro-
scopic dynamics. Geometric adiabatic transport has been
considered in [12–14]. In [14], the effective action is
discussed from the point of view of an index density.
There are many points of concordance with these papers,
when we specialize our general effective action to (2þ 1)
dimensions; these will be referred to as the occasion
arises.
This paper is organized as follows. In the next section,

we start with the Landau problem on complex projective
spaces and the degeneracy of the quantum Hall states
at various Landau levels. In Sec. III, we consider the
degeneracy in terms of the relevant index theorem. The
index density can be identified as the charge density or
the response to the time component of an Abelian gauge
field. We can then write down the gauge-field dependent
terms of the topological part of the effective action. This is
the action which would correspond to what is obtained by
integrating out the fermions occupying the lowest Landau
levels. Generalization to higher Landau levels is taken
up in Sec. IV. In Sec. V, we consider general gauge and
gravitational fields and write down the effective action for
higher dimensions. This action, given in (41), is the main
result of this paper. The gauge-field dependent terms in this
action are simplified in Sec. VI for (4þ 1) dimensions,
working out special cases in some detail; Sec. VII addresses
the same in (6þ 1) dimensions. The contribution from the
terms related to the gravitational anomaly is considered in
Sec. VIII, with details worked out for (2þ 1), (4þ 1) and
(6þ 1) dimensions explicitly. A discussion section com-
pares our results with the existing literature. There is a short
Appendix on some basic features and geometry of CPk

spaces.
For clarification we emphasize that, in this paper, we

consider fully filled Landau levels (integer QHE) on
manifolds without a boundary. What is obtained is the
topological part of the bulk effective action. Fully filled
Landau levels on manifolds with a boundary, droplets of
finite size (with possible edge excitations) and the corre-
sponding bulk and boundary actions are important issues.
These will be left to future work.

II. LANDAU LEVELS AND DEGENERACY

As mentioned in the Introduction, we will be concerned
with the QHE and Landau levels on spacetimes of the form
R × K, where the spatial manifold K is a complex mani-
fold. We will consider the case of K being Kähler to begin
with, where the background magnetic field can be taken as

the Kähler two-form, up to a constant of proportionality,
with the Hamiltonian being proportional to the Laplace
operator. The states of the lowest Landau level (LLL)
correspond to wave functions which satisfy a holomor-
phicity condition. More precisely, the wave functions will
be sections of an appropriate power of the line bundle with
the background field as the curvature. In higher dimen-
sions, non-Abelian background fields are possible, so a
slight generalization is needed. Further, wave functions for
the higher Landau levels can be considered as the wave
functions of the lowest Landau level of an equivalent
problem where the charged particles carry an appropriate
amount of spin. These statements are somewhat abstract
and it is illuminating to have an explicit construction. For
most of the explicit examples, we will consider the case of
K being a complex projective space of complex dimension
k, i.e, K ¼ CPk. So we start by setting up the framework
for QHE on CPk.
Since CPk is the coset space SUðkþ 1Þ=UðkÞ, the

discussion is most easily carried out following the group
theoretic analysis given in [17–19]. The group SUðkþ 1Þ is
the full group of continuous isometries of CPk, with UðkÞ
as the isotropy group at each point. Thus the representation
of UðkÞ for any field is the specification of its spin. Further,
the curvatures on the manifold take values in the Lie
algebra of UðkÞ. In particular, they are constant in the
tangent frame basis. (Explicit formulas for the curvatures
on CPk are given in the Appendix.) It is then possible to
consider additional “constant” gauge background fields
which are proportional to these curvatures; more explicitly,
we can have an Abelian background corresponding to the
Uð1Þ part of UðkÞ ∼ Uð1Þ × SUðkÞ and a non-Abelian
background corresponding to the SUðkÞ part. This gives a
well-posed Landau problem of particle motion in a constant
background field.
Let tA, A ¼ 1; 2;…; k2 þ 2k, denote a basis of Hermitian

ðkþ 1Þ × ðkþ 1Þ-matrices viewed as the fundamental
representation of the Lie algebra of SUðkþ 1Þ. We choose
the normalization by TrðtAtBÞ ¼ 1

2
δAB. The Lie algebra

commutation rules, when needed, will be taken to be of the
form ½tA; tB� ¼ ifABCtC, with structure constants fABC. The
generators corresponding to the SUðkÞ part of UðkÞ ⊂
SUðkþ 1Þ will be denoted by ta, a ¼ 1; 2;…; k2 − 1 and
the generator for the Uð1Þ direction of the subgroup UðkÞ
will be denoted by tk2þ2k.
The Landau level wave functions can be considered as

functions on SUðkþ 1Þ which have a specific trans-
formation property under the UðkÞ ⊂ SUðkþ 1Þ. A basis
of functions on the group SUðkþ 1Þ is given by the
matrices corresponding to the group elements in a repre-
sentation, or the so-called Wigner D-functions, which are
defined as

DðJÞ
l;r ðgÞ ¼ hJ; ljgjJ; ri; ð1Þ
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where l, r stand for two sets of quantum numbers
specifying the states within the representation. There is
a natural left and right action on an element
g ∈ SUðkþ 1Þ, defined by

L̂Ag ¼ TAg; R̂Ag ¼ gTA; ð2Þ

where TA are the SUðkþ 1Þ generators in the representa-
tion to which g belongs.
There are 2k right generators of SUðkþ 1Þwhich are not

in the algebra ofUðkÞ ⊂ SUðkþ 1Þ; these can be separated
into Tþi, i ¼ 1; 2;…; k, which are of the raising type and
T−i which are of the lowering type. These generate trans-
lations while UðkÞ generates rotations at a point. We can
thus define the covariant derivatives on CPk in terms of the
right translation operators on g as

D�i ¼ i
R̂�i

r
; ð3Þ

where r is a parameter with the dimensions of length. (The
volume of the manifold will be proportional to r2k.) Since
the strength of the gauge field is given by the commutator
of covariant derivatives, we can then specify the back-
ground magnetic field for our problem by specifying the
action of UðkÞ on the wave functions; this is so because
the commutators of R̂þi and R̂−i are in the Lie algebra of
UðkÞ. The constant background field is given by the
conditions

R̂aΨJ
m;αðgÞ ¼ ðTaÞαβΨJ

m;βðgÞ ð4Þ

R̂k2þ2kΨ
J
m;αðgÞ ¼ −

nkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðkþ 1Þp ΨJ

m;αðgÞ; ð5Þ

where m ¼ 1;…; dim J counts the degeneracy of the
Landau level. Equation (4) shows that the wave functions
ΨJ

m;α transform, under right rotations, as a representation ~J
of SUðkÞ. Here ðTaÞαβ are the representation matrices for
the generators of SUðkÞ in the representation ~J, and n is an
integer characterizing the Abelian part of the background
field. α, β label states within the SUðkÞ representation ~J
[which is itself contained in the representation J of
SUðkþ 1Þ]. The index α carried by the wave functions
ΨJ

m;αðgÞ is basically the gauge index. The wave functions
are sections of a UðkÞ bundle on CPk.
The Hamiltonian H for the Landau problem is propor-

tional to the covariant Laplacian on CPk; explicitly the
action of H on wave functions is given by

HΨ ¼ −
1

4m
ðDþiD−i þD−iDþiÞΨ

¼ 1

2mr2

�
R̂þiR̂−i þ

1

2
ðif−i;þi;aR̂a

þ if−i;þi;k2þ2kR̂k2þ2kÞ
�
Ψ

¼ 1

2mr2

�
R̂þiR̂−i þ

i
2
f−i;þi;aTa

þ i
2
f−i;þi;k2þ2k

�
−

nkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðkþ 1Þp

��
Ψ: ð6Þ

We see that H is proportional to
P

iR̂þiR̂−i, apart from
additive constants. Thus the lowest Landau level should
satisfy, in addition to the requirements (4) and (5), the
condition

R̂−iΨ ¼ 0: ð7Þ

This is the holomorphicity condition on the lowest Landau
level wave functions. Thus the values of the background
fields are specified or chosen by (4) and (5), which
correspondingly set the choice of the states jJ; ri≡
jJ; α; wi in (1), where w ¼ −nk=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðkþ 1Þp

is the eigen-
value of R̂k2þ2k, and the lowest Landau level wave
functions are holomorphic as in (7).
The degeneracy of the lowest Landau level for CPk may

be obtained easily from group theory. The relevant con-
ditions are (4), (5), and (7), or in terms of the state jJ; α; wi,

R̂−ijJ; α; wi ¼ 0 ð8Þ

R̂ajJ; α; wi ¼ ðTaÞαβjJ; β; wi;

R̂k2þ2kjJ; α; wi ¼ −
nkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kðkþ 1Þp jJ; α; wi: ð9Þ

The state jJ; α; wi must be a lowest weight state in the
representation J according to (8). The weight vector of this
state itself is specified by (9). Thus the representation J is
fixed by (8), (9), and its dimension will give the degen-
eracy. Explicit formulas for the degeneracy of the quantum
Hall states on CPk for arbitrary Landau levels have been
derived in [19].

III. THE INDEX THEOREM AND THE EFFECTIVE
ACTION FOR LLL

There is another way to think about the degeneracy. The
holomorphicity condition (8) shows that the degeneracy,
which is the number of normalizable solutions to (8), may
be obtained from the index theorem for the Dolbeault
complex [29]. Since the wave functions respond to the
background gauge fields as in (9), we need a version of the
index theorem in the presence of gauge fields; this is given
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by the twisted Dolbeault complex [29]. This index theorem
is given as

Indexð∂̄VÞ ¼
Z
K
tdðTcKÞ∧ chðVÞ; ð10Þ

where tdðTcKÞ is the Todd class on the complex tangent
space of K and chðVÞ is the Chern character of the vector
bundle V (given in terms of traces of powers of the
curvature of the vector bundle which is also referred to
as the field strength of the gauge field). Explicitly, the Todd
class has the expansion

td¼ 1þ 1

2
c1þ

1

12
ðc21þ c2Þþ

1

24
c1c2

þ 1

720
ð−c4þ c1c3þ 3c22þ 4c21c2− c41Þþ � � � ; ð11Þ

where ci are the Chern classes. For any vector bundle with
curvature F , these are given by

det

�
1þ iF

2π
t

�
¼

X
i

citi: ð12Þ

The Todd class may also be represented, via the splitting
principle, in terms of a generating function as

td ¼
Y
i

xi
1 − e−xi

; ð13Þ

where xi represent the “eigenvalues” of the curvature in a
suitable canonical form (diagonal or the canonical anti-
symmetric form for real antisymmetric iF ).
The first few Chern classes for the complex tangent

space can be explicitly written, using (12), as

c1ðTcKÞ ¼ Tr
iR
2π

c2ðTcKÞ ¼
1

2

��
Tr

iR
2π

�
2

− Tr

�
iR
2π

�
2
�

c3ðTcKÞ ¼
1

3!

��
Tr

iR
2π

�
3

− 3Tr
iR
2π

Tr

�
iR
2π

�
2

þ 2Tr

�
iR
2π

�
3
�

c4ðTcKÞ ¼
1

4!

��
Tr

iR
2π

�
4

− 6

�
Tr

iR
2π

�
2

Tr

�
iR
2π

�
2

þ 8Tr
iR
2π

Tr

�
iR
2π

�
3

þ 3Tr

�
iR
2π

�
2

Tr

�
iR
2π

�
2

− 6Tr

�
iR
2π

�
4
�
; ð14Þ

where R is the curvature for TcK. The Chern character,
which is needed in (10), is defined by

chðVÞ ¼ TrðeiF=2πÞ

¼ dimV þ Tr
iF
2π

þ 1

2!
Tr

iF∧iF
ð2πÞ2 þ � � � ; ð15Þ

where dimV is the dimension of the bundle V. (For now, F
can be taken as F, the field strength due to the external
gauge field. Later, we will include the curvature of the spin
bundle in F as well).
Since these classes are expressed in terms of the

curvatures R and F, the index theorem gives a more
general counting of states. The curvatures do not have to
be the fixed, background values used in the group theoretic
analysis, fluctuations of the metric and gauge fields are
automatically included. For example, when K is two
dimensional, the index reduces to

Indexð∂̄VÞ ¼
Z
K

�
Tr

iF
2π

þ dimV
c1ðTcKÞ

2

�

¼
Z
K

�
iF
2π

þ iR
4π

�
: ð16Þ

For CP1 ¼ SUð2Þ=Uð1Þ ∼ S2, only Abelian gauge fields
are allowed, so dimðVÞ ¼ 1. Further the corresponding
background curvatures are (see the Appendix)

F̄ ¼ −inΩ; R̄jTcK ¼ −i2Ω; ð17Þ

where Ω is the Kähler two-form on CP1. From now on we
will denote the constant background fields by an overbar,
while the unbarred quantities include fluctuations. Further,
we take all connections and curvatures to be anti-
Hermitian.
For spinless charged fields (i.e., dimV ¼ 1) and small

fluctuations around the background fields given in (17) the
index works out to be

Indexð∂̄VÞ ¼ ðnþ 1Þ
Z

Ω
2π

¼ nþ 1: ð18Þ

From the point of view of group theory, the conditions (8)
and (9) tell us that the lowest Landau level states form an
SUð2Þ representation with spin j ¼ 1

2
n, giving the degen-

eracy 2jþ 1 ¼ nþ 1, in agreement with (18).
The index theorem, however, gives the degeneracy for

any general choice of curvatures, of which (17) are only a
special case. We can therefore use the index density to
construct an effective action with an arbitrary metric and
gauge field. This will be our basic strategy. (But K should
still remain a complex manifold for us to be able to use the
Dolbeault index).
Continuing with the two-dimensional case, for a fully

filled Landau level, the number of states is identical to the
total charge if we assign a unit charge to each particle.
Since the degeneracy of the lowest Landau level is given by
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the Dolbeault index, we can identify the corresponding
index density with the charge density J0 up to a total
derivative term, i.e.,

J0 ¼
iF
2π

þ iR
4π

þ dM; ð19Þ

where M is one-form. [It will be a ð2k − 1Þ-form in
general.] Further, the charge density J0 is also the func-
tional derivative of the effective action with respect to the
time component (A0) of the Uð1Þ gauge field,

δSeff
δA0

¼ J0: ð20Þ

Thus the effective action involving gauge fields can be
obtained by “integrating” the index density with respect to
A0, in other words, finding an Seff such that

δSeff ¼
Z

ðiδA0dx0Þ∧
�
iF
2π

þ iR
4π

�
þ idðδA0dx0Þ∧M

¼ δ

�
i2

4π

Z
AðF þ RÞ

�
þ δ ~S: ð21Þ

[We use anti-Hermitian components for the gauge fields,
including the time component, which explains the addi-
tional factors of i in (21).] The effective action can thus be
taken to be

SLLL3d ¼ i2

4π

Z
AðF þ RÞ þ Sgrav þ ~S: ð22Þ

There is some explanation needed for the steps leading to
(22). First of all, the Chern-Simons form involves terms
with the time derivatives of the spatial components of the
gauge potential, such as, for example, A∂0A. Our argument
does not directly give these terms since there is no A0 in
such terms. For the topological part of the action, our
strategy is to complete by covariance the result obtained
from (21) to arrive at (22). Second, there could be purely
gravitational terms which cannot be determined from (21)
since they are not A0-dependent. The most important such
terms have to do with possible gravitational anomalies.
These will be taken up later; for the moment, Sgrav in (22)
signifies such terms. Finally, since the charge density is
specified as the index density only up to an additive total
derivative, as in (19), there can be additional terms of the
form ~S in (22) whose variation gives iðδA0dx0MÞ. The term
dM in (19) integrates to zero since we consider manifolds
without boundary. Thus the physics of a term like ~S will
involve dipole and higher moments of the charge distri-
bution of the filled Landau level. Therefore, we can expect
them to be subdominant in a derivative expansion of the
effective action. Generically, they will also involve the
metric and hence would not qualify as topological terms. In

(2þ 1) dimensions such terms have been derived under the
assumption of local Galilean invariance [8] and explicitly
calculated from the microscopic theory [9,11,14].
We can now easily generalize these results to write down

the topological bulk effective action describing the dynam-
ics of the lowest Landau level with Abelian gauge fields for
a complex space of arbitrary even spatial dimensions 2k:

SLLL2kþ1¼
Z ��

1þ1

2
c1þ

1

12
ðc21þc2Þþ

1

24
c1c2þ���

�
TcK

∧

×

�
iAþ i2

2ð2πÞAFþ���þ ilþ1

ðlþ1Þ!ð2πÞlAF
lþ���

��
2kþ1

þSgravþ ~S; ð23Þ

where the differential form of dimension 2kþ 1 should be
picked up in the integrand. Expression (23) can be further
generalized to include non-Abelian gauge fields.
The general expression for the ð2kþ 1Þ-dimensional

Chern-Simons term (including Abelian and non-Abelian
connections) can be written in the form

ðCSÞ2kþ1ðAÞ ¼
i
k!

Z
1

0

dτTr

�
A

�
iFτ

2π

�
k
�
;

Fτ ¼ τdAþ τ2A2: ð24Þ

One can check that its variation is of the form

δðCSÞ2kþ1 ¼
i
k!
Tr

�
δA

�
iF
2π

�
k
�
: ð25Þ

Following similar reasoning as before, we can now write
down the general bulk effective action for the lowest
Landau level for any odd dimensional spacetime, for which
the spatial part admits a complex structure:

SLLL2kþ1 ¼
Z �

tdðTcKÞ∧X
p

ðCSÞ2pþ1ðAÞ
�
2kþ1

þ Sgrav þ ~S:

ð26Þ

IV. EFFECTIVE ACTIONS FOR HIGHER
LANDAU LEVELS

So far we have considered the lowest Landau level. The
wave functions for the higher Landau levels do not satisfy a
holomorphicity condition like (8), so we cannot directly use
the Dolbeault index. However, we can use a simple trick to
transform this to a lowest Landau problem for a charged
particle carrying an appropriate amount of spin. For this, let
us first consider the sth Landau level on CP1. The wave
functions are given by
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ΨmðgÞ ∼
	
J;mjgjJ;− 1

2
n



; J ¼ 1

2
nþ s ð27Þ

which has R3Ψ ¼ − 1
2
nΨ as required by (9) but does not

satisfy the holomorphicity condition (7). The states (27) are
however in the same representation as

~ΨmðgÞ ∼
	
J;mjgjJ;− 1

2
n − s



ð28Þ

for which the holomorphicity condition is satisfied,
R− ~Ψ ¼ 0. We now consider a field ϕ which has Uð1Þ
charge equal to 1 and which has Uð1Þ spin s. Such a field
couples to the background field

F̄ ¼ −iðnþ 2sÞΩ ¼ F̄ þ sR̄ ¼ F̄ þ R̄s: ð29Þ

This comes about because the chosen background Uð1Þ
gauge field is proportional to the spin connection on CP1

(see the Appendix). The lowest Landau level for this field
will obey a holomorphicity condition and, in fact, the wave
functions are given by ~ΨmðgÞ. So the degeneracy for LLL of
the field ϕ is the same as the degeneracy for the sth Landau
level for a spinless field withUð1Þ gauge charge 1, which is
the original field of interest. Thus for the counting of states,
we can now use the Dolbeault index for the lowest Landau
level for ϕ (which is possible by virtue of the holomor-
phicity condition). Our strategy is to use this equality of
degeneracies to formulate the effective action in terms of
the index density for ϕ.
The Dolbeault index is now written as

Indexð∂̄VÞ ¼
Z
K

�
Tr

iðF þRsÞ
2π

þ dimV
c1ðTcKÞ

2

�

¼
Z
K

�
iF
2π

þ
�
sþ 1

2

�
iR
2π

�
: ð30Þ

For the particular values of F, R as in (29), this index counts
correctly the degeneracy of the states in the sth Landau
level to be nþ 1þ 2s. In (30), we can allow fluctuations in
the fields, so that F is the Uð1Þ magnetic field, R is the
curvature and Rs ¼ sR is the curvature of the spin bundle,
all including fluctuations. [The choice of specific back-
ground values, as in (29), will be indicated by barred
quantities].
Using (30) and repeating the steps going from (16) to

(22), we find the bulk effective action for the filled sth
Landau level as

SðsÞ3d ¼ i2

4π

Z
A½F þ ð2sþ 1ÞR� þ Sgrav þ ~S: ð31Þ

The second term in (31) arises from the coupling to gravity
as discussed by [6] and [7] and is often referred to as the
Wen-Zee term. For us, s ¼ 0 corresponds to the lowest

Landau level, so if we have N filled Landau levels, the
result would be

S ¼
XN−1

s¼0

SðsÞ: ð32Þ

It is worth recapitulating the basic argument we have
used. Instead of dealing directly with the quantum Hall
system in a higher Landau level, which we cannot do
because of the lack of holomorphicity, we consider a mock
system made of particles with a suitably chosen value of
spin, such that the lowest Landau level of the mock system
has wave functions in the same multiplet as the original
system at the required higher Landau level. Since the
degeneracies of the two systems are the same, and since, at
least for the (2þ 1)-dimensional case, the topological part
of the response of the Hall system depends only on the
degeneracies or the index density, we can use the mock
system to obtain the topological part of the effective action.
This is the basic strategy we are using.

V. GENERAL FIELDS AND HIGHER DIMENSIONS

We can now extend these results to higher dimensional
cases with UðkÞ gauge fields and higher Landau levels, and
gravitational fields, guided by the discussion of the CP1

case. For CPk, the field ϕ, mentioned after (28), couples to
the constant background field,

F̄ ¼ −iðnΩ1þ sR̄01þ R̄aTaÞ ¼ F̄ þ R̄s; ð33Þ

where R̄0, R̄a are the curvature components defined in
(A11) and Ta, 1 are UðkÞ matrices in the appropriate spin
representation. With the addition of spin, the vector bundle
whose Chern character enters the definition of the index in
(10) is the tensor product of the spin bundle and the vector
bundle for the internal gauge field. (By spin bundle, we do
not necessarily mean the spinor bundle, but rather the
bundle carrying a representation of the isotropy group of
the manifold. Also, for many examples, we will use the spin
as a trick to get the action for higher Landau levels, but we
emphasize that this is not the only case of interest. One may
also consider the Hall effect for the lowest Landau level for
particles of higher intrinsic spin. Our considerations apply
to such cases as well, with the suitable identification of the
various gauge fields and spin connections involved.) Thus
V → S ⊗ V. The Chern character obviously splits into a
product chðSÞ∧chðVÞ,

chðS ⊗ VÞ ¼ TrðeiðRsþFÞ=2πÞ ¼ chðSÞ∧chðVÞ: ð34Þ

In (34), Rs is the curvature R in the representation
appropriate to the chosen spin and the trace is over the
spin module. and F is in the representation for the (gauge)
charge rotations of the field ϕ. The spin connection which
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leads to Rs will be denoted by ωs which will be valued in
the Lie algebra of UðkÞ. The connection for the bundle
S ⊗ V is thus ωs ⊗ 1þ 1 ⊗ A which we will often
abbreviate as ωs þ A.
The index theorem now becomes2

Indexð∂̄VÞ ¼
Z
K
tdðTcKÞ∧chðS ⊗ VÞ: ð35Þ

Upon taking the index density and following the steps
which led from (19) to (22), we can obtain an effective
action in ð2kþ 1Þ dimensions. More directly, we can now
introduce the Chern-Simons forms by noting that

δ

�X
p

fðCSÞ2pþ1ðωs þ AÞ − ðCSÞ2pþ1ðωsÞg
�

¼ δA∧chðS ⊗ VÞ; ð36Þ
where δA is the variation of the AbelianUð1Þ component of
the gauge field. Since the term involving only ωs in the
expansion of ðCSÞðωs þ AÞ does not contribute in the
variation, we have subtracted it out on the left-hand side of
(36). Such a term will contribute to the gravitational
anomaly and will be discussed shortly. The effective action
can now be written as

SðsÞ2kþ1 ¼
Z �

tdðTcKÞ∧
X
p

½ðCSÞ2pþ1ðωs þ AÞ

− ðCSÞ2pþ1ðωsÞ�
�
2kþ1

þ Sgrav þ ~S

¼
Z �

tdðTcKÞ∧
X
p

ðCSÞ2pþ1ðωs þ AÞ
�
2kþ1

−
Z �

tdðTcKÞ∧
X
p

ðCSÞ2pþ1ðωsÞ
�
2kþ1

þ Sgrav þ ~S: ð37Þ
There are several observations to be made about this action.
This action is in agreement with the well-known descent

method used for anomalies [30]. Focusing first on just the
gauge field dependent terms, and using

1

2π
dðCSÞ2pþ1 ¼

1

ðpþ 1Þ!Tr
�
iF
2π

�
pþ1

; ð38Þ

we see that the purely gauge field dependent part of the
action (37) may be considered as arising from the index
density in ð2kþ 2Þ dimensions as

S ¼ 2π

Z
Ω2kþ1 þ � � � ; ½index density�2kþ2 ¼ dΩ2kþ1:

ð39Þ

This relates our bottom-up approach of starting in 2k spatial
dimensions to the descent approach used for the (2þ 1)-
dimensional case in [14]. If we restrict the integration region
in (37), i.e., to a droplet, the action (37) will not be gauge
invariant; the lack of gauge invariance is expressed as a
boundary term. This boundary term will be canceled by the
anomaly of the ð2k − 1; 1Þ-dimensional theory of the edge
excitations. The anomaly of this ð2k − 1; 1Þ-dimensional
theory is related to the index density in ð2kþ 2Þ dimensions
in the standard descent procedure for anomalies. The action
(37) is in accord with these expectations.
Such a descentmethod is known to apply to all anomalies,

including the gravitational ones [31] as well as the mixed
gauge-gravity anomalies. The mixed terms are already
apparent in (37). To include the purely gravitational part
and identify Sgrav in (37), we note that the gravitational
anomaly can be obtained from the index density in ð2kþ 2Þ
dimensions from the appropriate terms in tdðTcKÞ∧chðSÞ
[31]. Using the definition of the Chern character in (15),
Eq. (38) and the fact that d½tdðTcKÞ� ¼ 0, we can write
tdðTcKÞ∧chðSÞ as the exterior derivative of a ð2kþ 1Þ-form
as follows:

½tdðTcKÞ∧chðSÞ�2kþ2

¼ dΩgrav
2kþ1 þ

1

2π
d

�
tdðTcKÞ∧X

p

ðCSÞ2pþ1ðωsÞ
�
2kþ1

:

ð40Þ

Here dΩgrav
2kþ1 gives the ð2kþ 2Þ-form in tdðTcKÞ, namely

½tdðTcKÞ�2kþ2 ¼ dΩgrav
2kþ1. Adding this term to (37), we see

that the effective action becomes

SðsÞ2kþ1 ¼
Z �

tdðTcKÞ∧X
p

ðCSÞ2pþ1ðωs þ AÞ
�
2kþ1

þ 2π

Z
Ωgrav

2kþ1 þ ~S: ð41Þ

In this action we have gathered together the contributions
from both gauge and gravitational fields. This result gives all

2The zero modes of the ∂̄V operator are also the lowest Landau
levels as in (6) and (7). Thus the Dolbeault index is what is
relevant for us. In [22], the zero modes of the Laplacian were
analyzed by relating them to the zero modes of the Dirac operator
for a specific choice of the gauge potential being proportional to
the spin connection. For this choice, the index theorem for the
Dirac operator can be written entirely in terms of the Chern
classes for the gauge field. While this is adequate for evaluating
the degeneracy, and response of the system to a limited variation
in the fields which preserves the proportionality of gauge
potential and spin connection, we are interested in considering
arbitrary and independent fluctuations for the gauge and gravi-
tational fields, so that an effective action for the response of the
system to either or both can be obtained. So a more general setup
is needed.
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the topological terms in the bulk effective action, encoding
the response of the system to gauge and gravitational
fluctuations in arbitrary dimensions.
Finally, we note that in starting with the index density in

2k dimensions and interpreting it as the charge density for
the Abelian field, there is an ambiguity in writing down the
effective action. This is because several terms which only
involve non-Abelian fields, such as, for example,
ðCSÞ2pþ1ðAÞ where A is in SUðkÞ do not contribute to
the index and hence the question of whether they are to be
included in the effective action or not is not settled by the
index in 2k dimensions. [The underlining of SUðkÞ denotes
the Lie algebra of the group.] However, we know that there
should be terms like ðCSÞðωsÞ in the contribution due to the
gravitational anomaly. Further, it is the S ⊗ V bundle
which is relevant and hence there is some equivalence
between the A’s and the ω’s once we restrict to the
background fields. For this reason, we should also
have the purely non-Abelian A-dependent terms in (37)
and (41).
To recapitulate, (41) gives the bulk effective action for

the sth higher Landau level for any odd dimensional
spacetime, for which the spatial part admits a complex

structure, with UðkÞ gauge fields. (As mentioned, it can
also be used for the Hall effect in the lowest Landau level
for particles of arbitrary spin, with the suitable identifica-
tion of the fields.) As always, for the topological terms, the
differential form of the appropriate dimension, namely
ð2kþ 1Þ, must be picked out from the integrand in (37) or
(41); this is indicated by the subscript. While the topo-
logical terms follow from the index theorem, there can be
nonuniversal, metric dependent corrections which are
indicated by ~S in (37) and (41).
The effective action (41) is the main result of this paper.

Since it is still in rather cryptic form, we will now consider
working out the details of this action for some special cases
and for certain choices of dimensions. Wewill first consider
the gauge-field dependent terms, since these are the ones
relevant for the counting of states. The terms which depend
only on the gravitational fields will be taken up in Sec. VIII.

VI. 4þ 1 DIMENSIONS: GAUGE FIELD
DEPENDENT TERMS

In the (4þ 1)-dimensional case, the part of the effective
action depending on the gauge fields reduces to

Sgauge ¼
Z �

dim S
12

ðc21 þ c2ÞðTcKÞ þ
1

2
c1ðTcKÞ∧Tr

�
iRs

2π

�
þ 1

2
Tr

�
iRs

2π
∧ iRs

2π

��
∧ðCSÞ1ðAÞ

þ
Z �

dim S
2

c1ðTcKÞ þ Tr
iRs

2π

�
∧ðCSÞ3ðAÞ þ dim S

Z
ðCSÞ5ðAÞ

¼ i2

ð2πÞ2
Z �

dimS
24

ð3ðTrRÞ2 − TrðR2ÞÞ þ 1

2
ðTrRÞ∧ðTrRsÞ þ

1

2
TrðRsÞ2

�
∧ðCSÞ1ðAÞ

þ i
2π

Z �
dim S
2

TrRþ TrRs

�
∧ðCSÞ3ðAÞ þ dim S

Z
ðCSÞ5ðAÞ; ð42Þ

where, in the second expression, we have written out
the characteristic classes explicitly. The Chern-Simons
terms are

ðCSÞ1 ¼ iTrðAÞ; ðCSÞ3 ¼
i2

4π
Tr

�
AdAþ 2

3
A3

�

ðCSÞ5 ¼
i3

3!ð2πÞ2 Tr
�
AdAdAþ 3

2
A3dAþ 3

5
A5

�
ð43Þ

and

R ¼ −i½R01þ Rata� Rs ¼ −i½sR01þ RaTa� ð44Þ

with ta, Ta being SUð2Þ matrices in the fundamental and
j ¼ s=2 representation, respectively. The action (42) is
general, just restricting (41) to 4þ 1 dimensions. The rest

of this section will be devoted to verifying that this is
consistent with the expected degeneracies for various
special cases.
The index theorem which is associated with the action

(42) is

Indexð∂̄VÞ ¼
Z
K
dimV

�
dimS
12

ðc21þ c2ÞTcK

þ 1

2
c1ðTcKÞ∧Tr

�
iRs

2π

�
þ 1

2
Tr

�
iRs

2π
∧ iRs

2π

��

þ
�
dimS
2

c1ðTcKÞþTr

�
iRs

2π

��
∧Tr iF

2π

þ dimS
2

Tr

�
iF
2π

∧ iF
2π

�
: ð45Þ

Our purpose will be to consider the index theorem for some
special cases to show that the counting agrees with what is
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obtained by explicit calculation of wave functions. This
will justify the use of the index density as the charge
density for a Uð1Þ background and hence justify the
effective action (42).

A. CP2 with Uð1Þ gauge fields, lowest Landau level

As the first special case, we take K to be
CP2 ¼ SUð3Þ=Uð2Þ. In this case, uniform background
magnetic fields taking values in the Lie algebra of Uð2Þ ∼
SUð2Þ × Uð1Þ are possible. As a first example then, we
take the case of a magnetic field which is Abelian,
corresponding to the Uð1Þ subgroup of Uð2Þ ⊂ SUð3Þ.
Further, we will consider a spinless field in the lowest
Landau level, so that c1ðSÞ ¼ 0, c2ðSÞ ¼ 0. The vector
bundle is one dimensional, so dimV ¼ 1. Using the
specific values of constant background fields for CP2 from
(A7)–(A17), we find

Tr
iR̄
2π

¼ 3
Ω
2π

Tr

�
iR̄
2π

∧ iR̄
2π

�
¼ 3

�
Ω
2π

�
2

Z
CP2

1

12
ðc21 þ c2ÞjTcK ¼ 1: ð46Þ

The last line in (46) holds, of course, even when fluctua-
tions around the constant background values are included.
The background magnetic field is given by

F̄ ¼ −inΩ: ð47Þ

The index theorem now gives

Indexð∂̄VÞ ¼
1

12

Z
ðc21 þ c2ÞjTcK þ 1

2

Z
c1ðTcKÞ∧ iF

2π

þ 1

2

Z
iF∧iF
ð2πÞ2

¼ 1þ 3n
2
þ n2

2
¼ ðnþ 1Þðnþ 2Þ

2
: ð48Þ

We can check this against the group theoretic derivation
of the wave functions, which are proportional to
hJ; ljgjJ; ri. A representation of SUð3Þ may be taken to
be of the ðp; qÞ-type corresponding to states of the form
jJ;j1j2���jpi1i2���iq i where each index (each of the i’s and the j’s)
can take values 1,2,3. The upper indices transform as the
3�-representation, while the lower ones correspond to the
3-representation. The states jJ;j1j2���jpi1i2���iq i are symmetric in all
p indices i1 � � � ip, symmetric in all q indices j1 � � � jq and
traceless. The state jJ; rimust be a lowest weight state with
R̂8jJ; ri ¼ −ðn= ffiffiffi

3
p ÞjJ; ri, R̂−ijJ; ri ¼ 0. This identifies

the required representation as ðn; 0Þ with the state jJ; ri ¼
jJ;33���3 i [19]. The dimension of the representation is thus
1
2
ðnþ 1Þðnþ 2Þ, verifying (48).

B. CP2 with Uð1Þ gauge fields, sth Landau level

Consider now the higher Landau levels, say, the sth
level, taking s ¼ 0 as the lowest level. In this case, the
required state is of the ðnþ s; sÞ type with jJ; ri ¼
jJ;3���333���3 i. This is not the lowest weight state; the lowest
weight state in the same representation is of the form
jJ;i1i2���is33���3 i where the upper indices take values 1,2. We can
view this as the lowest Landau level of a field with spin,
specifically, with SUð2Þ spin j ¼ 1

2
s (hence dim S ¼

2jþ 1 ¼ sþ 1), Uð1Þ spin equal to s, and electric charge
1, coupling to the background field

F̄ ¼ −iðnΩ1þ sR̄01þ R̄aTaÞ ¼ −iðF̄1þ R̄sÞ: ð49Þ

For such a field, jJ;i1i2���is33���3 i would be the lowest Landau
level, satisfying the holomorphicity condition. With these
spin assignments, in addition to the Chern classes in (46)
and (47), we find

Tr
�
iR̄s

2π

�
¼ 3sðsþ 1Þ

2

Ω
2π

Tr
iR̄s∧iR̄s

ð2πÞ2 ¼ sðsþ 1Þ
�
2s −

1

2

��
Ω
2π

�
2

: ð50Þ

It is now easy to check that the index becomes

Indexð∂̄VÞ ¼ ðsþ 1Þ
�
n2

2
þ 3n

2
ðsþ 1Þ þ ðsþ 1Þ2

�

¼ ðsþ 1Þðnþ sþ 1Þðnþ 2sþ 2Þ
2

: ð51Þ

Group theoretically, the dimension of the SUð3Þ ðnþ s; sÞ
representation is the same as (51) [19], justifying the use of
the index density (45) in constructing the effective
action (42).

C. CP2 with non-Abelian gauge fields,
lowest Landau level

As we mentioned before in the case of CPk, k ≥ 2, there
is a possibility of non-Abelian background gauge fields. In
the case of CP2, the lowest Landau level states belong to a
representation of SUð3Þ with a lowest weight state which
transforms nontrivially under SUð2Þ, as a representation ~J,
as in (4). It was further shown in [19] that allowed ~J’s must
correspond to integer values of the spin ~j.
The background field is now purely of gauge nature (no

coupling to spin connection), given by

F̄ ¼ −iðnΩ1þ R̄aTaÞ; ð52Þ
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where Ta are ð2~jþ 1Þ × ð2~jþ 1Þ matrices. Since there is
no coupling to the spin connection,Rs can be set to zero in
(42). The index theorem (45) now gives

Indexð∂̄VÞ ¼
dimV
12

Z
ðc21 þ c2ÞjTcK

þ 1

2

Z
c1ðTcKÞ∧Tr iF

2π
þ 1

2

Z
Tr

iF∧iF
ð2πÞ2

¼ ð2~jþ 1Þ
�
1þ 3

2
nþ 1

2
n2 −

1

2
~jð~jþ 1Þ

�

¼ ð2~jþ 1Þðnþ ~jþ 2Þðn − ~jþ 1Þ
2

: ð53Þ

This again agrees with the degeneracy of the lowest
Landau level which is the dimension of the SUð3Þ
representation of the type ðp ¼ n − ~j; q ¼ 2~jÞ [19].

D. CP2 with non-Abelian gauge fields
and higher Landau levels

There are some intricacies when we consider a
non-Abelian background gauge field and higher Landau
levels.
The wave functions at the sth Landau level form an

SUð3Þ representation of the ðp; qÞ type with J ¼ ðp; qÞ ¼
ðnþ s − ~j; sþ 2~jÞ. They are of the form hJ; ljgjJ; ri, with

jJ; ri ¼ jJ;33���3;l1l2���l2~j33���3 i: ð54Þ

There are s upper 3’s and nþ s − ~j lower 3’s here. The l
indices indicate the non-Abelian gauge degrees of freedom.
This corresponds to a state with an eigenvalue of R̂8 equal
to −n=

ffiffiffi
3

p
(as required) and transforming as the spin-~j

representation of SUð2Þ. (We also need ~j to be an integer
[17,19]; this is related to the fact that CP2 does not admit
spinors.) The dimension of the representation is given by

dim J ¼ 1

2
ðnþ 2sþ ~jþ 2Þðnþ s − ~jþ 1Þð2~jþ sþ 1Þ:

ð55Þ

As mentioned earlier these wave functions do not satisfy
the holomorphicity condition. In order to be able to use the
Dolbeault index as before, we convert this to a problem of
lowest Landau level of a higher spin field. We consider the
states ~Ψ ¼ hJ; ljgjJ; r̂i where

jJ; r̂i ¼ jJ;i1i2���is;l1l2���l2~j33���3 i; ð56Þ

where there are nþ s − ~j lower 3’s. The indices i now
indicate the spin and l the gauge degrees of freedom. This
state has R̂8 equal to −n=

ffiffiffi
3

p
(as required) and it is a lowest

weight state. The representation it belongs to has dimension

equal to (55) assuming that the indices i, l in (56) are fully
symmetrized.
The corresponding field ϕ couples to the constant

background field,

F̄ ¼ −iðnΩ1þ sR̄01þ R̄aTaÞ; ð57Þ

where Ta are ð2jþ sþ 1Þ × ð2jþ sþ 1Þ matrices.
Fluctuations are then introduced as

F ¼ −iððnΩþ δFÞ1þ sðR̄0 þ δR0Þ1þ ðR̄a þ δRaÞTaÞ:
ð58Þ

There is an ambiguity though of how to interpret the
fluctuations δRa. These can be thought of as either
fluctuations of the non-Abelian gauge field or fluctuations
of the non-Abelian spin curvature. In other words one can
think of the field ϕ coupling to an Abelian gauge field and
a Uð2Þ spin connection ðs; ~jþ s=2Þ or coupling to a Uð2Þ
non-Abelian gauge field and a Uð1Þ spin connection with
spin s. Depending on the choice though, the effective
action (42) will have a different field content. In particular
the response to the metric will be different. On the
other hand, the index (45) evaluated for the background
(57) will be exactly the same in both cases and equal
to (55).
This ambiguity in constructing an effective action

for a quantum Hall system with non-Abelian gauge fields
at higher Landau levels has to do with the following.
For the case of CP2, for example, recall that, for a field
with spin which carries a nontrivial SUð2Þ gauge
charge, the commutator of the covariant derivatives has
the form

½Dμ; Dν�ϕ ¼ −iðFμν1þ sR0
μν1þ Fa

μνta ⊗ 1

þ Ra
μν1 ⊗ TaÞϕ; ð59Þ

where Fμν is the Uð1Þ gauge field, R0
μν is the Uð1Þ spin

curvature, ftag are in the representation of ϕ correspond-
ing to the gauge group action (say, ~j), fTag are in the
representation corresponding to the spin of ϕ [say, s=2 of
SUð2Þ]. In the Landau problem, we choose the back-
ground value for the gauge field as F̄a

μν ¼ R̄a
μν, where R̄a

μν

is the standard curvature of CP2. Thus, on the right-
hand side of (59), we have the combination
R̄a
μνðta ⊗ 1þ 1 ⊗ TaÞ. The group transformations gener-

ated separately by the ta and Ta are not important, only the
group action corresponding to the combination ðta ⊗ 1þ
1 ⊗ TaÞ is relevant. The wave functions which transform
under the product of the two SUð2Þ’s corresponding
to the gauge group and spin, namely, as ~j ⊗ s=2, can
be reduced to irreducible components for the action of the
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combination ðta ⊗ 1þ 1 ⊗ TaÞ. The sth Landau level
problem corresponds to a particular irreducible represen-
tation (~jþ s=2), in the reduction of ~j ⊗ s=2. [This
corresponds to the full symmetrization of the indices
i1 � � � is; l1 � � � j2~j in (56)].
When we consider perturbations of the metric and the

gauge field, we then have two cases worthy of being
distinguished. If we consider perturbations which preserve
the combination ðta ⊗ 1þ 1 ⊗ TaÞ, then the effective
action can be obtained as the action with an Abelian
gauge field and a curvature coupling for a spin corre-
sponding to the representation ~jþ s=2, or as the effective
action with an Abelian gauge field and Abelian spin
curvature and a non-Abelian gauge field of strength given
by the representation ~jþ s=2. These two actions are not
equivalent to each other although they give rise to the same
index. However, such perturbations are not the most
general perturbations of the metric and the gauge field.
A general perturbation would consider independent values
for Fa

μν ¼ F̄a
μν þ δFa

μν and Ra
μν ¼ R̄a

μν þ δRa
μν. In this case,

we can no longer classify wave functions under the
combined SUð2Þ. The perturbations couple different
irreducible representations of the combined SUð2Þ. In
this case, we cannot sensibly consider integrating out one
Landau level (i.e. one irreducible representation in the
reduction of ~j ⊗ s=2) to obtain an effective action. One
must consider all irreducible representations resulting
from a given spin and given gauge group representation.
This corresponds to the case of lowest Landau level for a
field with intrinsic spin and gauge degrees of freedom with
a Hamiltonian proportional to the covariant ∂̄ operator.
Such a field would couple to

F ¼ −iððnΩþ δFÞ1þ sðR̄0 þ δR0Þ1
þ ðR̄a þ δFaÞta þ ðR̄a þ δRaÞTaÞ; ð60Þ

where ta is in the ~j and Ta in the s=2 representation. We
can now evaluate the index (53) for this background and
we find it to be

Index ¼ ð2jþ 1Þðsþ 1Þ
�
n2

2
þ 3n

2
ðsþ 1Þ

þ ðsþ 1Þ2 − 1

2
jðjþ 1Þ

�
: ð61Þ

As mentioned earlier when δFa ¼ δRa, the states can be
classified into multiplets corresponding to irreducible
representations of the combined SUð2Þ (of ta and Ta).
These have spin values given by Ji ¼ ~jþ s

2
− i,

i ¼ 1;…; s. The dimension for each of these multiplets
is given by (55), where ~j → ~j − i,

dim Ji ¼
1

2
ðnþ 2sþ ~j − iþ 2Þðnþ s − ~jþ iþ 1Þ

× ð2~j − 2iþ sþ 1Þ: ð62Þ

It is straightforward to verify that summing over all these
representations will produce the index in (61),

dim ¼
Xs
i¼0

ð2Ji þ 1Þ
�
1þ 3

2

�
nþ 3

2
s

�
þ 1

2

�
nþ 3

2
s

�
2

−
1

2
JiðJi þ 1Þ

�

¼ ð2jþ 1Þðsþ 1Þ
�
n2

2
þ 3n

2
ðsþ 1Þ þ ðsþ 1Þ2

−
1

2
jðjþ 1Þ

�
: ð63Þ

To briefly recapitulate the discussion in this subsection,
when we have a higher Landau level for, say, a spinless
field, but with a non-Abelian gauge field background, we
cannot directly use the index theorem as we do not have
holomorphicity for the wave functions. Translating the
problem to a lowest Landau level problem for a field with
spin, we get fields of a certain spin as well as the non-
Abelian charges. The original Landau level of interest is
one representation in the reduction of the product of the
spin representation and the gauge group representation of
the field. However, if we allow arbitrary fluctuations of the
gauge field and the spin connection, all representations in
the reduction of the product mentioned above can occur.
Hence it is not possible to obtain an effective action for the
original problem, i.e., just for the higher Landau level of
interest, by this method. However, one can consider
different but related physical situations. One can write
the action for the field with spin and gauge charges (in the
lowest Landau level), from which we can obtain the
response of such a system to arbitrary independent varia-
tions of the gauge field and the gravitational fields. Or one
can write an action for the restricted case of identical
fluctuations for the non-Abelian gauge field and the spin
connection. In this case, the response functions are also
thus restricted.

E. S2 × S2, arbitrary Landau levels

As another example, consider K ¼ S2 × S2. In this
case,

RðTcKÞ ¼
�
R 0

0 ~R

�
; ð64Þ

where R refers to the (anti-Hermitian) curvature of the first
S2 and ~R to the second. Notice that TrðR∧RÞ ¼ 0 for
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dimensional reasons, so that c2ðTcKÞ ¼ 1
2
c21. Considering

Landau levels ðs1; s2Þ corresponding to the two S2’s, we
have

iR̄s

2π
¼ s1R̄þ s2 ~̄R

2π
¼ 2

s1Ωþ s2 ~Ω
2π

iF̄
2π

¼ n1Ωþ n2 ~Ω
2π

: ð65Þ

The index theorem can now be verified to be

Index ¼ ðn1 þ 2s1 þ 1Þðn2 þ 2s2 þ 1Þ: ð66Þ

In all these cases, namely the CP2 examples and the
S2 × S2 example, we see that the index density from (45)
does indeed reproduce the correct counting of states and
hence we can use it to construct the effective action, which,
of course, agrees with (42).
We close this section with a note about the normalization

of the gauge fields. We have taken the charge carried by the
matter fields for the Abelian gauge fields as unity, so that

the number of states (which is what the index theorem gives
us) is equal to the integral of the charge density. But in
writing the action, it is possible to use other normalizations.
For example, one might consider the Chern-Simons action
for the UðkÞ gauge fields with the normalization of the
UðkÞ Lie algebra matrices fixed by their embedding in
SUðkþ 1Þ. While there is no particular motivation to do so,
it may be useful if one considers dimensional reduction of
effective actions from a higher dimension to a lower
dimension. The Uð1Þ charges in such a choice would
not be unity, so the normalization of the Chern-Simons
term would be different from what is given in (37) or (42).
The appropriate normalization will follow from tracking
the Uð1Þ charges of the relevant matter fields of the Landau
problem.

VII. 6þ 1 DIMENSIONS: GAUGE FIELD
DEPENDENT TERMS

In (6þ 1) dimensions, the part of the effective action
which depends on the gauge fields is

Sgauge ¼
Z �

dim S
24

c1c2 þ
ðc21 þ c2Þ

12
∧Tr iRs

2π
þ c1

2
∧ 1

2
Tr

�
iRs

2π

�
2

þ 1

3!
Tr

�
iRs

2π

�
2
�
∧ðCSÞ1ðAÞ

þ
Z �

dim S
12

ðc21 þ c2Þ þ
1

2
c1∧Tr iRs

2π
þ 1

2
Tr

�
iRs

2π

�
2
�
∧ðCSÞ3ðAÞ

þ
Z �

dim S
2

c1 þ Tr
iRs

2π

�
∧ðCSÞ5ðAÞ þ dimS

Z
ðCSÞ7ðAÞ þ Sgrav þ ~S: ð67Þ

Using the formulas for the Chern classes, this can be written more explicitly as

Sgauge ¼
i3

ð2πÞ3
Z �

dim S
48

ððTrRÞ3 − TrRTrðR2ÞÞ þ 1

24
ð3ðTrRÞ2 − TrðR2ÞÞ∧ðTrRsÞ

þ 1

4
TrR∧TrðRsÞ2 þ

1

3!
TrðRsÞ3

�
∧ðCSÞ1ðAÞ

þ i2

ð2πÞ2
Z �

dim S
24

ð3ðTrRÞ2 − TrðR2ÞÞ þ 1

2
TrR∧ðTrRsÞ þ

1

2
TrðRsÞ2

�
∧ðCSÞ3ðAÞ

þ i
2π

Z �
dim S
2

TrRþ TrRs

�
∧ðCSÞ5ðAÞ þ dim S

Z
ðCSÞ7ðAÞ þ Sgrav þ ~S; ð68Þ

where

R ¼ −i½R01þ Rata� Rs ¼ −i½sR01þ RaTa� ð69Þ

with ta, Ta being SUð3Þmatrices in the fundamental and appropriate spin representation respectively. The index associated
with this action is
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Indexð∂̄VÞ6d ¼
Z

dimV

�
dim S
24

c1c2 þ
1

12
ðc21 þ c2Þ∧Tr iRs

2π
þ 1

2
c1∧ 1

2
Tr

�
iRs

2π

�
2

þ 1

3!
Tr

�
iRs

2π

�
2
�

þ
Z �

dim S
12

ðc21 þ c2Þ þ
1

2
c1∧Tr iRs

2π
þ 1

2
Tr

�
iRs

2π

�
2
�
∧Tr iF

2π

þ
Z �

dim S
2

c1 þ Tr
iRs

2π

�
∧ 1

2
Tr

�
iF
2π

�
2

þ dim S
3!

Z
Tr

�
iF
2π

�
3

: ð70Þ

As a check on the effective action, we can evaluate the index for a case for which the degeneracy of the Landau
level is known. Specifically, we will consider the special case corresponding to the QHE on CP3 with Abelian magnetic
field at Landau level s (s ¼ 0 corresponds to the lowest Landau level). The following relations are useful in evaluating the
index:

dim S ¼ ðsþ 1Þðsþ 2Þ
2

F̄ ¼ −inΩ; Tr
iR̄
2π

¼ 4
Ω
2π

; Tr
�
iR̄
2π

�
2

¼ 4

�
Ω
2π

�
2

Tr
iR̄s

2π
¼ sðsþ 1Þðsþ 2Þ

2

4

3

Ω
2π

Tr

�
iR̄s

2π

�
2

¼ ðsþ 1Þðsþ 2Þ
2

ð5s2 − 1Þ
3

�
Ω
2π

�
2

Tr

�
iR̄s

2π

�
3

¼ ðsþ 1Þðsþ 2Þ
2

�
2s3 − s2 þ s

3

��
Ω
2π

�
3

: ð71Þ

Using (71) we find that the index can be written as

Indexð∂̄VÞ6d ¼
ðsþ 1Þðsþ 2Þ

2

ðnþ 2sþ 3Þðnþ sþ 1Þðnþ sþ 2Þ
3!

: ð72Þ

This is exactly the dimension of the ðnþ s; sÞ SUð4Þ
representation which gives the degeneracy of the sth
Landau level for the Abelian CP3 QH states [19].

VIII. FULL EFFECTIVE ACTION INCLUDING
GRAVITATIONAL TERMS

We now turn to the details of the terms in the effective
action related to the gravitational anomaly in (2þ 1),
(4þ 1) and (6þ 1) dimensions. We will first consider
these terms separately, then combine them with the gauge
field dependent terms discussed in the previous sections to
obtain the full effective action. The result will, of course,
correspond to the expansion of the full action (41) for the
appropriate dimension.

A. (2þ 1)-dimensional case

In this case, we need those terms in the index density in
four dimensions which involve only the gravitational fields.
This is given by

Index densityð∂̄Þ ¼ dim S
12

ðc21 þ c2ÞðTcKÞ

þ 1

2
c1ðTcKÞ∧Tr iRs

2π
þ 1

2
Tr

�
iRs

2π

�
2

:

ð73Þ

This follows from (45) upon setting dimV ¼ 1 and F ¼ 0.
Also, although we have spin s, since we are interested in
two dimensions eventually, we should keep in mind that the
fields have only one component; thus we can set dim S ¼ 1.
The various characteristic classes are

ðc21 þ c2ÞðTcKÞ ¼ i2

ð2πÞ2 ðdωÞ
2

Tr

�
iRs

2π

�
2

¼ i2

ð2πÞ2 s
2ðdωÞ2

c1ðTcKÞ∧Tr iRs

2π
¼ i2

ð2πÞ2 sðdωÞ
2; ð74Þ
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where ω is the spin connection, R ¼ dω. The index density
(73) reduces to

Index densityð∂̄Þ ¼ i2

2ð2πÞ2
�
s2 þ sþ 1

6

�
dðωdωÞ: ð75Þ

The purely gravitational part of the topological effective
action in (31) for (2þ 1) dimensions is thus given by

Sgrav ¼
i2

4π

��
sþ 1

2

�
2

−
1

12

� Z
ωdω: ð76Þ

Combining with the gauge-field part in (31), the full
topological bulk effective action for the sth Landau level
in (2þ 1) dimensions is

SðsÞ3d ¼ i2

4π

�Z
A

�
dAþ 2

�
sþ 1

2

�
dω

�

þ
��

sþ 1

2

�
2

−
1

12

�Z
ωdω

�

¼ i2

4π

Z ��
Aþ

�
sþ 1

2

�
ω

�
d

�
Aþ

�
sþ 1

2

�
ω

�

−
1

12
ωdω

�
: ð77Þ

This result agrees with [9] and [14]. (In our case s ¼ 0
corresponds to the lowest Landau level).

B. (4þ 1)-dimensional case

We now turn to the case of (4þ 1) dimensions. The six-
form index density for the gravitational fields is easily
worked out from (35) as

Index densityð∂̄Þ ¼ dimV

�
dim S
24

c1c2 þ
c21 þ c2
12

ch1ðSÞ

þ c1
2
ch2ðSÞ þ ch3ðSÞ

�

chkðSÞ ¼
1

k!
Tr
�
iRs

2π

�
k
: ð78Þ

For the four-dimensional K, the holonomy group being
Uð2Þ, the curvatures take values in the Lie algebra of Uð2Þ,
so R is of the form

RðTcKÞ ¼ −iðR01þ taRaÞ≡ dω0 þ ~R; ð79Þ

where ta are the SUð2Þ generators in the fundamental
representation, 1 is the 2 × 2 identity matrix, ω0 is theUð1Þ
connection and ~R is the SUð2Þ curvature. The curvature for
the spin bundle is

Rs ¼ −iðsR01þ RaTaÞ; ð80Þ

where Ta is in some spin j representation of SUð2Þ and 1 is
the ð2jþ 1Þ × ð2jþ 1Þ identity matrix. For generality we
can keep s, j independent from each other. In the particular
case where we want to write down the effective action for
spinless charged particles for the sth Landau level of
K ¼ CP2, we need to identify j ¼ 1

2
s.

The index density works out to be

Index densityð∂̄Þ ¼ i3

ð2πÞ3
ðdimVÞð2jþ 1Þðsþ 1Þ

12

×

�
ð2s2þ 4sþ 1Þðdω0Þ3

þ 8jðjþ 1Þ− 1

4
dω0∧ð−iRaÞ∧ð−iRaÞ

�
:

ð81Þ

We then identify the gravitational contribution to the
effective action as

Sgrav ¼
i3

ð2πÞ2 ðdimVÞð2jþ 1Þðsþ 1Þ

×

�
1

6

��
sþ 1

�
2

−
1

2

�Z
ω0ðdω0Þ2

þ
�
1

3
jðjþ 1Þ − 1

24

�Z
ω0Trð ~R∧ ~RÞ

�
; ð82Þ

where ~R indicates the SUð2Þ curvature and Trð ~R∧ ~RÞ ¼
1
2
ð−iRaÞ∧ð−iRaÞ. There are alternate ways to write this.

For example, in the last term, we can replace the integral by
a partial integration as

Z
ω0Trð ~R∧ ~RÞ ¼

Z
dω0Tr

�
~ωd ~ωþ 2

3
~ω3

�
; ð83Þ

where ω0, ~ω are the connections for the Uð1Þ and SUð2Þ
curvatures. Since we are considering manifolds without
boundary, these different forms are equivalent. (The boun-
dary at the limits of the time integration is not null, and so
these different ways would correspond to different ways of
writing the symplectic form, if one proposes to set up a
Hamiltonian version of the effective action).
One can now combine (42) and (82) to write down the

full topological action in (4þ 1) dimensions. [This is, of
course, equivalent to the (4þ 1)-form from the action (41).]
For simplicity, we will only consider an Abelian gauge field
now. The gauge part of the action in (42) can then be
written as
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Sgauge ¼
i3ð2jþ 1Þ
ð2πÞ2

Z �
1

2

�
ðsþ 1Þ2 − 1

6

�
Aðdω0Þ2

þ
�
1

3
jðjþ 1Þ − 1

24

�
ATrð ~R∧ ~RÞ

þ ðsþ 1Þ
2

AdAdω0 þ 1

3!
AðdAÞ2

�
ð84Þ

¼ i3ð2jþ 1Þ
ð2πÞ2

Z �
1

3!
ðAþ ðsþ 1Þω0Þ½dðAþ ðsþ 1Þω0Þ�2

−
ðsþ 1Þ3

3!
ω0ðdω0Þ2 − 1

12
Aðdω0Þ2

þ
�
1

3
jðjþ 1Þ − 1

24

�
ATrð ~R∧ ~RÞ

�
: ð85Þ

The first four terms in (84) constitute the analog of the
Wen-Zee term in (4þ 1) dimensions while the last term is
the gauge Chern-Simons term. Combining (85) and (82)
and setting dimV ¼ 1 we find the full topological action

SðsÞ5d ¼ i3ð2jþ 1Þ
ð2πÞ2

Z �
1

3!
ðAþðsþ 1Þω0Þ½dðAþðsþ 1Þω0Þ�

−
1

12
ðAþðsþ 1Þω0Þ

�
ðdω0Þ2

−
�
ð4jðjþ 1Þ− 1

2

�
Trð ~R∧ ~RÞ

��
: ð86Þ

Further setting j ¼ s=2 in (86) will give the bulk topo-
logical action for the sth Landau level QHE on CP2 with
Abelian magnetic fields. Notice that an interesting effect of
the gravitational interaction is to replace A→Aþðsþ1Þω0

in (86). The analog effect in the case of CP1 was A →
Aþ ðsþ 1

2
Þω as in (77).

C. (6þ 1)-dimensional case

In (6þ 1) dimensions we need to evaluate the eight-form
index density. Again, for simplicity we will consider the
case of Abelian magnetic fields (dimV ¼ 1); we will also
consider only the case of spin zero fields, s ¼ 0, Rs ¼ 0,
dim S ¼ 1 (lowest Landau level). The corresponding index
density involving gravitational fields is

Index Densityð∂̄Þ ¼ 1

720
ð−c4 þ c1c3 þ 3c22

þ 4c21c2 − c41Þ: ð87Þ

Using the expressions for the characteristic classes in (15)
we find

Index densityð∂̄Þ ¼ 1

720

�
15

8

�
Tr

iR
2π

�
4

−
15

4

�
Tr

iR
2π

�
2

Tr

�
iR
2π

�
2

þ 5

8

�
Tr

�
iR
2π

�
2
�
2

þ 1

4
Tr

�
iR
2π

�
4
�
;

ð88Þ

where

R ¼ −iðR01þ RataÞ≡ dω0 þ ~R; ð89Þ

where ta are the SUð3Þ generators in the fundamental
representation, 1 is the 3 × 3 identity matrix, ω0 is theUð1Þ
spin connection and ~R is the SUð3Þ curvature.
From (89) we find that the purely gravitational contri-

bution to the topological action in (6þ 1) dimensions is

Sgrav ¼
1

ð2πÞ3
1

720

Z �
57ω0dω0

�
ðdω0Þ2 − 1

2
Trð ~R∧ ~RÞ

�

þ ω0Trð ~R∧ ~R∧ ~RÞ
�
þ 1

120

Z
ðCSÞ7ð ~ωÞ; ð90Þ

where ~ω is the SUð3Þ spin connection and

CS7ð ~ωÞ ¼
1

4!ð2πÞ3 Tr
�
~ωðd ~ωÞ3 þ 12

5
~ω3ðd ~ωÞ2

þ 2 ~ω5ðd ~ωÞ þ 4

7
~ω7

�
: ð91Þ

The gauge contribution to the topological action (68) for an
Abelian magnetic field and spin zero fields (LLL) is

Sgauge ¼
1

ð2πÞ3
Z �

1

4!

�
Aþ 3

2
ω0

��
d

�
Aþ 3

2
ω0

��
3

−
1

16

�
Aþ 3

2
ω0

�
d

�
Aþ 3

2
ω0

�

×

�
ðdω0Þ2 þ 1

3
Trð ~R∧ ~RÞ

�

−
9

128
ω0dω0

�
ðdω0Þ2 − 2

3
Trð ~R∧ ~RÞ

��
: ð92Þ

Adding (90) and (92) we get the bulk topological action for
the lowest Landau level of CP3 with Abelian magnetic
fields. The full action is
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SLLL7d ¼ 1

ð2πÞ3
Z �

1

4!

�
Aþ 3

2
ω0

��
d

�
Aþ 3

2
ω0

��
3

−
1

16

�
Aþ 3

2
ω0

�
d

�
Aþ 3

2
ω0

��
ðdω0Þ2

þ 1

3
Trð ~R∧ ~RÞ

�
þ 1

1920
ω0dω0½17ðdω0Þ2

þ 14Trð ~R∧ ~RÞ� þ 1

720
ω0Trð ~R∧ ~R∧ ~RÞ

�

þ 1

120

Z
ðCSÞ7ð ~ωÞ: ð93Þ

Again, this corresponds to the appropriate simplification
of the general action (41). In (93) we see again the shift
A → Aþ 3

2
ω0 in the presence of gravitational interactions.

D. Comments

It is worth pointing out a couple of interesting features of
the gravitational contributions. First of all, we notice that
the Uð1Þ part of the spin connection combines with the
Uð1Þ gauge field, as Aþ ðsþ 1

2
kÞω0, for CPk. This is

explicitly seen for the cases we have considered, namely,
for k ¼ 1, 2 for arbitrary s and for k ¼ 3 with s ¼ 0. We
expect this to be true in general. This is seemingly related to
the metaplectic correction in geometric quantization, some-
thing we plan to address in more detail in a future
publication.
Second, if we consider 2n-manifolds with the full

SOð2nÞ holonomy, we do not expect purely gravitational
anomalies except for 2n ¼ 4kþ 2, k ¼ 0, 1, 2, etc. This is
because the index density from which the anomaly is
descended, namely, TrRnþ1 vanishes by virtue of the
antisymmetry of R as an element of the algebra of
SOð2nÞ. In our case, we consider the restriction to
holonomies in UðkÞ ⊂ SOð2kÞ, so we do not have the
transformations which can combine the UðkÞ-valued cur-
vatures into a real antisymmetric matrix in SOð2kÞ.
The existence of the purely gravitational contributions is

related to the fact that the Dolbeault index is nonzero for
even dimensions, in a way similar to the argument given in
[31] for fermions. For the gravitational anomaly for
fermions in a general dimension 2n, one can consider
the compactification of the manifold asM2 ×M2n−2, where
M2 is two dimensional and M2n−2 is taken to be compact.
One can then consider the anomaly for Lorentz trans-
formations (or diffeomorphisms) on M2. The effect of the
remaining ð2n − 2Þ dimensions is a multiplicative factor
corresponding to the number of zero modes of the relevant
kinetic operator, i.e., the Dirac operator, on M2n−2. The
anomaly in two dimensions, namely on M2, then implies a
nonzero anomaly on M2n if the Dirac operator has a
nonzero index on M2n−2. This is possible for fermions
only if 2n − 2 ¼ 4k. This reasoning works because the
anomaly may be viewed as a short distance effect arising

from issues of regularization and hence the compactifica-
tion does not affect the final answer. For the case of interest
to us, the Dolbeault operator has a nonzero index generi-
cally for any even dimension, in particular on M2k−2. Thus
we should expect a gravitational anomaly with the
Dolbeault index density in 2kþ 2 dimensions as the
starting point for the descent procedure.
However, we may note that, although we do have a

nonzero gravitational contribution, there is a remnant in the
final expressions from the vanishing of TrRnþ1 due to the
antisymmetry property of R (if it has values in SOð2kÞ.
Once we have combined A with ω0 as in Aþ ðsþ 1

2
kÞω0,

there is a left-over purely gravitational piece in some cases.
In (2þ 1) dimensions, this is given by the last term in the
braces in (77). This has been interpreted as what is needed
to cancel the gravitational anomaly due to the chiral field on
the edge in the case of a finite droplet. In (2þ 1)
dimensions, the chiral field on the edge lives in 1þ 1

dimensions, and produces an anomaly for the Lorentz
connection ω. For the (4þ 1)-dimensional case, the edge
field is in 3þ 1 dimensions. The gravitational fields are
valued in SOð3; 1Þ or SOð4Þ after a Euclidean continuation.
A chiral field would couple to one of the chiral components
in the splitting SOð4Þ ∼ SOð3ÞL ⊗ SOð3ÞR. In this case,
there is no Lorentz anomaly by the same reasoning as
related to the antisymmetry of R with values in the algebra
of the orthogonal group. Thus we should expect no purely
non-Abelian gravitational part in the action. This is in
agreement with what we find in (86), where there is no
purely non-Abelian gravitational term.

IX. DISCUSSION

In this paper, we have given a general expression (41) for
the topological part of the bulk effective action for quantum
Hall systems in arbitrary even spatial dimensions. Explicit
detailed formulas for the action are given in (2þ 1), (4þ 1)
and (6þ 1) dimensions. The background metric and gauge
field can be arbitrary in the sense that fluctuations of the
metric and the gauge field around a given background, but
which do not change the topological class of the back-
ground, are included. This action thus yields the topologi-
cal terms in the response of the system (or correlation
functions of the source currents) to changes in the gauge
and gravitational fields. The terms which involve only the
gauge field had been obtained earlier for the lowest Landau
level in a large N simplification, where N denotes the
degeneracy of the Landau level [24–26]. Terms which
involve both the gauge and the gravitational fields provide a
generalization of the well-known Wen-Zee term in the
(2þ 1)-dimensional case. Since these are subdominant
in N, they were not evident in the leading large N
calculations. (Some metric-dependent subdominant terms,
including some gauge-gravity mixing terms, were already
in [24–26], but they were not explicitly stated in terms of
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the curvatures, since a fixed gravitational background
was used.)
The main justification for the effective action (41) is that

the current densities obtained from it correctly reproduce
the degeneracies of the Landau levels via the Dolbeault
index theorem. In (2þ 1) dimensions, our results agree
with the effective action which has been obtained by other
authors by different techniques. The approach in [14] uses a
Dolbeault index density as well. However, the starting point
there is the index density in four dimensions. A path in this
space is considered as the time direction and a descent
procedure from four dimensions to the (2þ 1)-dimensional
world of this line and the two-dimensional transverse space
is used. There are other important considerations in [14],
including going beyond the topological terms, but on
questions for which our work has overlap with this paper,
the results agree.
More generally, for the effective action in ð2kþ 1Þ

dimensions, there are two index densities we can consider,
in 2k dimensions and in ð2kþ 2Þ dimensions. The first one
is relevant for the degeneracy and can be used to obtain
many of the terms in the effective action. However, as
explained after (37), we may think of the action as also
obtained via the descent procedure from the Dolbeault
index density in ð2kþ 2Þ dimensions. The latter can be
used to identify the purely gravitational terms related to
gravitational anomalies and to clarify terms involving non-
Abelian gauge fields. It is useful to consider both index
densities together as they highlight complementary aspects
of the problem.
We have considered only fully filled Landau levels on

manifolds without boundary. The case of quantum Hall
droplets, the action for the edge excitations which exist in
such cases and the interplay between the bulk and boundary
actions are clearly the next set of interesting questions, to be
taken up in the future. Also, beyond the milieu of exploring
the geometry of the quantum Hall effect in arbitrary
dimensions, geometry and topology, we may note that
quantum Hall effect in higher dimensions has been of
interest for spin Hall effect and for considerations on
gravity. The results of this paper may therefore be of
specific interest in such contexts as well.
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APPENDIX: BASIC FEATURES AND GEOMETRY
OF CPk SPACES

Let tA denote the generators of SUðkþ 1Þ as matrices
in the fundamental representation, normalized so that
TrðtAtBÞ ¼ 1

2
δAB. These generators are classified into three

groups. The ones corresponding to the SUðkÞ part of

UðkÞ⊂SUðkþ1Þ will be denoted by ta, a ¼ 1; 2;…; k2 −
1while the generator for theUð1Þ direction of the subgroup
UðkÞ will be denoted by tk2þ2k. The 2k remaining gen-
erators of SUðkþ 1Þ which are not in UðkÞ are the coset
generators, denoted by tα, α ¼ k2;…; k2 þ 2k − 1. The
coset generators can be further separated into the raising
and lowering type t�i ¼ tk2þ2i−2 � itk2þ2i−1; i ¼ 1;…; k.
We can now use a ðkþ 1Þ × ðkþ 1Þ matrix g in the

fundamental representation of SUðkþ 1Þ to parametrize
CPk, by making the identification g ∼ gh, where h ∈ UðkÞ.
We can use the freedom of h transformations to write g as a
function of the real coset coordinates xI , I ¼ 1;…; 2k. The
relation between the complex coordinates zi; z̄i in (16) and
xI is the usual one,

zi ¼ x2i−1 þ ix2i; z̄i ¼ x2i−1 − ix2i; i ¼ 1;…; k:

ðA1Þ

We can write

g−1dg ¼ ð−iEk2þ2ktk2þ2k − iEata − iEαtαÞ: ðA2Þ

Eα are one-forms corresponding to the frame fields in terms
of which the Cartan-Killing metric on CPk is given by

ds2 ¼ gijdxidxj ¼ Eα
i E

α
j dx

idxj: ðA3Þ

The Kähler two-form on CPk is written as

Ω ¼ −i
ffiffiffiffiffiffiffiffiffiffiffi
2k

kþ 1

r
trðtk2þ2kg

−1dg∧g−1dgÞ

¼ −
1

4

ffiffiffiffiffiffiffiffiffiffiffi
2k

kþ 1

r
fðk2þ2kÞαβEα∧Eβ ¼ −

1

4
ϵαβEα∧Eβ ðA4Þ

fABC are the SUðkþ 1Þ structure constants, where
½tA; tB� ¼ ifABCtC. In deriving the last line we used the

fact that fðk2þ2kÞαβ ¼
ffiffiffiffiffiffi
kþ1
2k

q
ϵαβ, where ϵαβ ¼ 1 if α ¼

2i − 1; β ¼ 2i; i ¼ 1;…; k.
The Kähler two-form Ω can also be written in terms of

the local complex coordinates in the more familiar form

Ω ¼ i

�
dz · dz̄
1þ z · z̄

−
z̄ · dzz · dz̄
ð1þ z · z̄Þ2

�
; ðA5Þ

where

gi;kþ1 ¼
ziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z · z̄
p ; i ¼ 1;…; k

gkþ1;kþ1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z · z̄
p ðA6Þ

was used in (A4).
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The volume of CPk is normalized so that

Z
CPk

�
Ω
2π

�
k
¼ 1: ðA7Þ

The Maurer-Cartan identity along with (A2) leads to

dEk2þ2k ¼ −
1

2
fðk2þ2kÞαβEα∧Eβ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

2k

r
Ω

dEa þ 1

2
fabcEb∧Ec ¼ −

1

2
faαβEα∧Eβ

dEα ¼ −fαAβEA∧Eβ: ðA8Þ

Combining the 2k frame fields Eα into holomorphic
combinations and using (A8) we can identify the spin
connection for the complex cotangent space T�

cK,

EI ≡ E2I−1 þ iE2I; dEI þ ωIJ� EJ ¼ 0; I ¼ 1;…; k

ω� ¼ −i
� ffiffiffiffiffiffiffiffiffiffiffi

kþ 1

2k

r
Ek2þ2kð−1Þ þ Eað−taÞT

�
; ðA9Þ

where 1 is the k × k identity matrix and ta are the SUðkÞ
matrices in the fundamental representation and the super-
script T on ta indicates the transpose. A basis for the
tangent space TcK is given by vector fields dual to EI. By
differentiating the relation EI

aðE−1ÞbI ¼ δba, we can identify
the spin connection for TcK as

ω ¼ −i
� ffiffiffiffiffiffiffiffiffiffiffi

kþ 1

2k

r
Ek2þ2k1þ Eata

�
: ðA10Þ

Notice that 1 → ð−1Þ and ta → ð−taÞT appearing in (A9)
correspond to the conjugation operation for the Lie algebra.
Thus the Lie algebra conjugation operation ingoing from
the cotangent space to the tangent space is exactly as
expected.
Using (A8) we can also derive the curvature two-form as

R ¼ dωþ ω∧ω
¼ −i

�
kþ 1

k
Ω1 −

1

2
faαβEα∧Eβta

�

¼ −iðR01þ RataÞ; ðA11Þ

where R0 ¼ kþ1
k Ω and Ra ¼ − 1

2
faαβEα∧Eβ.

For CPk spaces

Z
CPk

tdðTcKÞj2k ¼ 1; ðA12Þ

where tdðTcKÞ is the Todd class in the complex tangent
space and in (A12) the 2k-form is selected as the integrand.
Explicitly, the Todd class has the expansion given in (11) as

td ¼ 1þ 1

2
c1 þ

1

12
ðc21 þ c2Þ þ

1

24
c1c2

þ 1

720
ð−c4 þ c1c3 þ 3c22 þ 4c21c2 − c41Þ þ � � � ;

ðA13Þ

where ci are the Chern classes. The first few Chern classes
can be easily evaluated using (12) as

c1 ¼ Tr
iR
2π

¼ ðkþ 1Þ Ω
2π

c2 ¼
1

2

��
Tr

iR
2π

�
2

− Tr

�
iR
2π

�
2
�
¼ 1

2
kðkþ 1Þ

�
Ω
2π

�
2

:

ðA14Þ

In deriving the expression for c2 we used the fact that

Ra∧Ra ¼ 1

4
faαβfaγδEαEβEγEδ ¼ −2

kþ 1

k
Ω2

Tr½iR∧iR� ¼ kðR0Þ2 þ 1

2
ðRaÞ2 ¼ ðkþ 1ÞΩ2: ðA15Þ

More generally the Chern classes for CPk can be written as

ci ¼
k!

i!ðk − iÞ!
�
Ω
2π

�
i
: ðA16Þ

Using (A7) and (A14), we can easily check the validity of
(A12) for CP1, CP2 and CP3, the needed integrals being

Z
CP1

c1 ¼ 2

Z
Ω
2π

¼ 2

Z
CP2

c21 þ c2 ¼ ð32 þ 3Þ
Z �

Ω
2π

�
2

¼ 12

Z
CP3

c1c2 ¼ 4 × 6

Z �
Ω
2π

�
3

¼ 24: ðA17Þ

In formulating QHE onCPk, we chooseUð1Þ and SUðkÞ
background gauge fields proportional to Ek2þ2k

i and Ea
i . In

particular

Ak2þ2k ¼ −in
ffiffiffiffiffiffiffiffiffiffiffi
2k

kþ 1

r
trðtk2þ2kg

−1dgÞ ¼ n
2

ffiffiffiffiffiffiffiffiffiffiffi
2k

kþ 1

r
Ek2þ2k

Aa ¼ Ea ¼ 2iTrðtag−1dgÞ: ðA18Þ

The corresponding Uð1Þ and SUðkÞ background field
strengths are

F ¼ nΩ ¼ −
n
4

ffiffiffiffiffiffiffiffiffiffiffi
2k

kþ 1

r
fðk2þ2kÞαβEα∧Eβ

Fa ¼ −faαβEα∧Eβ: ðA19Þ
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Notice that Fa in (A19) does not depend on n, while the
Abelian field is proportional to n. We see from (A19) that
the background field strengths are constant in the appro-
priate frame basis, proportional to the UðkÞ structure

constants. It is in this sense that the field strengths in
(A19) correspond to uniform magnetic fields appropriate in
defining QHE.
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