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It is known that the metric and Palatini formalisms of gravity theories have their own interesting features
but also suffer from some different drawbacks. Recently, a novel gravity theory called hybrid metric-
Palatini gravity was put forward to cure or improve their individual deficiencies. The action of this gravity
theory is a hybrid combination of the usual Einstein-Hilbert action and a fðRÞ term constructed by the
Palatini formalism. Interestingly, it seems that the existence of a light and long-range scalar field in this
gravity may modify the cosmological and galactic dynamics without conflicting with the laboratory and
Solar System tests. In this paper, we focus on the tensor and scalar perturbations of the thick branes in this
novel gravity theory. We consider two models as examples, namely, the thick branes constructed by a
background scalar field and by pure gravity. The thick branes in both models have no inner structure.
However, affected by the hybrid combination of the metric and Palatini formalisms, the graviton zero mode
in the first model has inner structure when the parameter in this model is larger than its critical value, which
is different from the cases of general relativity and Palatini fðRÞ gravity. We find that the effective four-
dimensional gravity can be reproduced on the brane for both models and the scalar zero mode in the model
without a background scalar field cannot be localized on the brane, which avoids a fifth force. Moreover,
the stability of both brane systems against the linear perturbations can also be ensured.
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I. INTRODUCTION

General relativity is a successful gravitational theory at
the scale of the Solar System. However, it does not work
well at larger scales. Thus, many modified theories of
gravity have been put forward to describe cosmological
behaviors such as cosmic acceleration and galactic dynam-
ics [1–5]. In general, there are three kinds of formalisms for
modified gravity theories, namely, the metric formalism,
Palatini formalism (matters do not couple with the priori
metric-independent connection), and metric-affine formal-
ism (matters couple with the metric and a priori metric-
independent connection) [1]. They all have their own
interesting properties and, at the same time, suffer from
different drawbacks. Recently, the so-called C theories
were proposed in Refs. [6–8] and establish a bridge
between the first and second formalisms in order to find
ways to cure or improve their individual deficiencies. In C
theories, the Levi-Civitá connection Γ̂ of the metric ĝμν is
conformally related to the spacetime metric gμν, namely,
ĝμν ¼ CðRÞgμν, where C is an arbitrary function of the Ricci
curvature scalar R ¼ R½g; Γ̂� ¼ gμνRμν½Γ̂� only.

Alternatively, another novel modified gravity was
presented in Ref. [9], the action of which is a hybrid
combination of the usual Einstein-Hilbert action and a
fðRÞ term constructed by the Palatini formalism. It has a
dynamically equivalent scalar-tensor representation like the
pure metric and pure Palatini cases [9–12]. It also shares the
properties of both the metric and Palatini formalisms like C
theories. The new feature of such hybrid gravity theory is
that it predicts the existence of a light long-range scalar
field, which can be used to explain the late-time cosmic
acceleration [9].
Considering the characteristics of light and long range,

there is a possibility that this scalar field may modify the
cosmological and galactic dynamics [9–12] without con-
flicting with the laboratory and Solar System tests. In
Ref. [11], the authors analyzed the criteria for obtaining
cosmic acceleration and obtained several cosmological
solutions, which describe both accelerating and decelerat-
ing universes, depending on the form of the effective scalar
potential. The virial theorem was studied in the context of
the galaxy cluster, where the mass dispersion relation was
modified by a term related to the new scalar field predicted
by hybrid metric-Palatini gravity [12]. The stability of the
Einstein static Universe was also analyzed in Ref. [13], and
a large class of stable solutions was found. In Ref. [14], the
authors considered the possibility that wormhole solutions
may be supported by hybrid metric-Palatini gravity accord-
ing to the null energy conditions at the throat and found
some specific examples. In Ref. [15], the authors showed
that the initial value problem can be well formulated and
well posed. Moreover, the dynamics of linear perturbation
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and thermodynamics in hybrid metric-Palatini gravity were
also investigated in Refs. [16] and [17], respectively. For a
detailed introduction, see the recent review [18].
On the other hand, it has been extensively considered in

the past two decades that our four-dimensional world might
be just a brane embedded in a higher-dimensional space-
time. This idea provides new insights into solving some
long-existing problems, such as the gauge hierarchy and
cosmological constant problems [19–24]. Dating back to
the original Kaluza-Klein (KK) theory, the extra dimension
is compacted into a circle with the Planck scale radius. This
makes detecting the extra dimension hopeless, while in
brane scenarios, the sizes of the extra dimensions can be the
order of submillimeter [21] or infinite [23].
In the Randall-Sundrum-II (RS-II) brane scenario [23],

the thickness of the brane is neglected. In more realistic
thick brane models, the original singular brane is replaced
by a smooth domain wall generated by matter fields. The
thick brane models have been extensively studied in the
context of higher-dimensional gravity theories [25–40].
The linearization of a brane system is one of the most
important issues in the brane models [41–53]. First, it is a
key procedure to investigate the stability of the brane
solution against the linear perturbations. Second, to repro-
duce the effective four-dimensional gravity, we need also to
study the linear perturbation of the brane system. The
localized graviton zero mode produces the Newtonian
gravity, and the nonlocalized scalar zero mode avoids a
large correction to it. Third, the linear perturbation will
result in the interaction of matter fields with the KK
gravitons, which can be tested by experiments.
In the previous investigations about a brane system, the

metric [49–52] and Palatini formalisms [53,54] were
individually considered. Therefore, it is interesting to study
the properties of a brane system in a gravity theory
containing both formalisms. For example, how does the
hybrid of the two formalisms affect the properties of the
brane solutions, graviton zero mode, scalar zero modes, and
stability of the linear perturbations? This motivates us to
investigate the hybrid metric-Palatini brane system. In this
paper, inspired by the scalar-tensor representation of hybrid
metric-Palatini gravity, we will consider two models: the
thick branes constructed by a background scalar field
(model A) and by pure gravitational system (model B)
in hybrid metric-Palatini gravity. In Refs. [55–62], some
brane models have been constructed for pure gravitational
systems without matter fields. This scenario is the same as
producing an expanding universe from fðRÞ gravity with-
out introducing an extra scalar field (inflation without the
inflaton). To study the issues of the stability of the linear
perturbations and the localization of the graviton and scalar
zero modes, we will investigate the linearization of these
two brane models.
In this work, we focus on the brane model in hybrid

metric-Palatini gravity. Therefore, in Sec. II, we briefly

introduce the hybrid metric-Palatini model and find the
thick brane solutions for model A and model B. The
stability of the brane system and localization of the graviton
and scalar zero modes are analyzed in Sec. III. Section IV is
the conclusion.

II. HYBRID METRIC-PALATINI BRANE
MODELS AND SOLUTIONS

Now, let us start with the action of the five-dimensional
brane model in hybrid metric-Palatini gravity [9],

S ¼ 1

2κ2

Z
d5x

ffiffiffiffiffiffi
−g

p ½Rþ fðRÞ� þ Smðg; χÞ; ð1Þ

where κ2 ¼ 8πG5, withG5 the five-dimensional Newtonian
gravitational constant, and we have set c ¼ 1. Sm is the
standard matter action, R ¼ gMNRMN is the Einstein-
Hilbert Ricci scalar constructed by the metric, and R ¼
gMNRMN is the Palatini curvature, whereRMN is defined in
terms of a torsionless independent connection, Γ̂, as

RMN ≡ ðΓ̂P
MN;P − Γ̂P

MP;N þ Γ̂P
PQΓ̂

Q
MN − Γ̂P

MQΓ̂
Q
PNÞ: ð2Þ

Introducing an auxiliary scalar field ϕ, the action (1) can
be deformed as

S ¼ 1

2κ2

Z
d5x

ffiffiffiffiffiffi
−g

p ½Rþ ϕR − V1ðϕÞ� þ Sm; ð3Þ

where

ϕ≡ FðRÞ ¼ dfðRÞ
dR

; V1ðϕÞ≡RFðRÞ − fðRÞ: ð4Þ

The field equations can be obtained by varying the action
(3) with respect to the metric gMN , the scalar field ϕ, and the
independent connection Γ̂P

MN ,

RMN þ ϕRMN −
1

2
ðRþ ϕR − V1ÞgMN ¼ κ2TMN; ð5aÞ

R − V1ϕ ¼ 0; ð5bÞ

∇̂Pð
ffiffiffiffiffiffi
−g

p
ϕgMNÞ ¼ 0; ð5cÞ

where V1ϕ ≡ dV1ðϕÞ
dϕ , the matter stress-energy tensor is

defined as usual TMN ≡ − 2ffiffiffiffi−gp δð ffiffiffiffi−gp
LmÞ

δgMN , and ∇̂P is compat-

ible with the connection Γ̂P
MN .

The solution of Eq. (5c) implies that the independent
connection is the Levi-Civitáa connection of a metric
qMN ¼ ϕ2=3gMN . Then, the relation between RMN and
RMN is
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RMN ¼ RMN þ 4

3ϕ2
∂Mϕ∂Nϕ

−
1

ϕ

�
∇M∇Nϕþ 1

3
gMN□ϕ

�
; ð6Þ

where □≡ gKL∇K∇L. Using the relation (6), one can
obtain a scalar-tensor representation [9–11]:

S ¼ 1

2κ2

Z
d5x

ffiffiffiffiffiffi
−g

p �
ð1þ ϕÞRþ 4

3ϕ
∂Kϕ∂Kϕ − V1ðϕÞ

�

þ Sm: ð7Þ

Now, it is clear that the free choice of the form of the
fðRÞ is transformed to the potential V1ðϕÞ of a scalar
profile ϕ. Inspired by the scalar-tensor representation, we
consider two models: model A for the brane constructed by
a matter scalar field χ and model B for the brane
constructed by the pure gravity without any matter field.

A. Model A: With matter

The action of the matter part with a scalar field is

Sm ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
−
1

2
gMN∂Mχ∂Nχ − V2ðχÞ

�
: ð8Þ

Substituting Eqs. (6) and (5b) in Eq. (5a), the gravitational
field equation can be written as

ð1þ ϕÞRMN þ 4

3ϕ
∂Mϕ∂Nϕ − ð∇M∇Nϕ − gMN□ϕÞ

−
1

2
gMN

�
ð1þ ϕÞRþ 4

3ϕ
∂Kϕ∂Kϕ − V1ðϕÞ

�
¼ κ2TMN:

ð9Þ

Considering Eq. (5b) and the trace of Eq. (6), one finds that
the scalar field ϕ is governed by the second-order evolution
equation

8ϕ□ϕ − 4∂Kϕ∂Kϕ − ϕ2½5V1ðϕÞ − 3ð1þ ϕÞV1ϕ�
þ 2ϕ2κ2T ¼ 0: ð10Þ

Our discussion will be limited to the static flat brane
scenario, for which the metric is given by

ds2 ¼ e2AðyÞημνdxμdxν þ dy2; ð11Þ

with y the extra dimension. Meanwhile, the scalar field,
ϕ ¼ ϕðyÞ, is independent of the brane coordinates. For the
system (9)–(11), the Einstein field equations and equation
of motion of the scalar field ϕ are read as

3ðA00 þ 4A02Þð1þ ϕÞ þ 7A0ϕ0 þ V1 þ 2κ2V2

þ ϕ00 ¼ 0; ð12aÞ

12ðA00 þ A02Þð1þ ϕÞ þ 4A0ϕ0 þ V1 þ 4ϕ00

þ 2κ2V2 þ 3κ2χ02 − 4ϕ02=ϕ ¼ 0; ð12bÞ

32A0ϕ02ϕ − ϕ2ð5ϕ0V1 − 3ð1þ ϕÞV0
1Þ − 4ϕ03

− κ2ϕ0ϕ2ð10V2 þ 3χ02Þ þ 8ϕ00ϕ0ϕ ¼ 0; ð12cÞ

where a prime stands for the derivative with respect to the
extradimensional coordinate y.
The equation of motion of the matter field is described by

the following equation:

4A0χ0 þ χ00 ¼ dV2ðχÞ
dχ

: ð13Þ

Equations (12) and (13) describe the whole system. There
are five variables, namely, AðyÞ;ϕðyÞ; χðyÞ; V1ðϕÞ, and
V2ðχÞ. However, there are only three independent equa-
tions. So, one needs assume two conditions to solve this
system.
In this model, we consider the following configuration

for the scalar field ϕðyÞ and warp factor AðyÞ:

ϕðyÞ ¼ atanh2ðkyÞ; ð14aÞ

AðyÞ ¼ b ln½sechðkyÞ�: ð14bÞ

To avoid the ghost problem, we should ensure the positive
definiteness of the coefficient of R in the action (7), so we
should take a > 0. Now, it can be checked that the system
supports the solutions

χðyÞ ¼ tanhðkyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6
ð3ð5aþ 3Þ coshð2kyÞ þ 5aþ 9Þ

r

þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10aþ 9

3

r �
E

�
iky;

15aþ 9

10aþ 9

�

− F

�
iky;

15aþ 9

10aþ 9

��
; ð15aÞ

V1ðyÞ ¼ −
1

2
k2sech4ðkyÞ½ð12 − 8aÞ coshð2kyÞ

þ 3ðaþ 1Þ coshð4kyÞ þ 49aþ 9�; ð15bÞ

V2ðyÞ ¼
5

2
k2sech2ðkyÞ½−asech2ðkyÞ þ 5aþ 3�; ð15cÞ

where we have chosen b ¼ 1 and κ ¼ 1 for simplicity and
the functions E and F are two kinds of elliptic integrals.
From Fig. 1, it is obvious that the matter field χðyÞ has the
shape of a topological soliton and the scalar field ϕ has the
shape of a nontopological soliton. The similar solutions
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have been obtained in Refs. [63–65], which are named
“trapping bag” solutions. The shapes of this brane solution
and the energy density are shown in Fig. 1. Obviously, the
energy density peaks at the origin of the extra dimension,
which represents a single brane. It is not difficult to analyze
the structure of the five-dimensional spacetime at y ¼ �∞,
where the curvature R ¼ −20k2 < 0. This means that the
spacetime is asymptotic anti-de Sitter (AdS).
We can also obtain the expression of fðRÞ from Eq. (4):

fðRÞ ¼ 2a
3
R −

a
120k2

R2 þ 26ak2

3
þ 12k2: ð16Þ

Then, the complete Lagrangian for gravity can be
expressed as

L ¼ Rþ 2a
3
R −

a
120k2

R2 þ 26ak2

3
þ 12k2: ð17Þ

B. Model B: Without matter

We can also construct a brane from the scalar profile
ϕðyÞ without introducing the matter field χðyÞ. Then, we
can obtain the field equations of the whole system just by
omitting the terms about the matter field χðyÞ from
Eq. (12):

3ð1þ ϕÞðA00 þ 4A02Þ þ 7A0ϕ0 þ V1ðϕÞ þ ϕ00 ¼ 0; ð18aÞ

12ϕð1þ ϕÞðA00 þ A02Þ þ 4A0ϕ0ϕþ ϕV1ðϕÞ
þ 4ϕϕ00 − 4ϕ02 ¼ 0; ð18bÞ

8ϕ00 þ 32A0ϕ0 − 5ϕV1ðϕÞ þ 3ϕð1þ ϕÞV1ϕ ¼ 0: ð18cÞ

Now, there are only three variables, namely, AðyÞ;ϕðyÞ,
and V1ðϕÞ, but only two independent equations. So, we just
need one condition to solve this system.
Subtracting (18a) from (18b) yields

9ϕð1þ ϕÞA00 þ 3ϕϕ00 − 3ϕA0ϕ0 − 4ϕ02 ¼ 0. ð19Þ
It is easy to check that this equation yields a thin brane
solution, i.e., ϕðyÞ ¼ ϕ1 and AðyÞ ¼ −αjyj, where both ϕ1

and α are constants. In this paper, we mainly focus on thick
brane solution, so we suppose

AðyÞ ¼ b ln½sechðkyÞ�; ð20Þ

where b is a positive parameter in order to localize the
graviton zero mode on the brane [see Sec. III]. To keep the
Z2 symmetry of the extra dimension, we only look for an
even function solution for the scalar ϕðyÞ. Thus, the initial
condition for ϕðyÞ can be assumed as

ϕð0Þ ¼ ϕ0; ϕ0ð0Þ ¼ 0; ð21Þ

and from this and Eq. (19), we can get

ϕ00ð0Þ ¼ 3ð1þ ϕ0Þk2b: ð22Þ

To ensure the positive definiteness of the coefficient of R in
the action (7), we require 1þ ϕðyÞ > 0, from which one
has 1þ ϕ0 > 0 and so ϕ00ð0Þ > 0.
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FIG. 1. Plot the shapes of the wrap factor e2A, scalar field ϕðyÞ, matter field χðyÞ, scalar potential V1(ϕðyÞ), scalar potential V2(χðyÞ),
and energy density ρðyÞ for the model A. The parameters are set to b ¼ 1, k ¼ 1, and a ¼ 1 for thin lines; a ¼ 5 for red dashed thick
lines; and a ¼ 10 for black thick lines.
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Considering the asymptotic behavior of the warp factor
Aðy → �∞Þ → −bkjyj, one can obtain the asymptotic
behavior of the scalar profile from Eq. (19),

ϕðy → �∞Þ → c1
ðec2 þ e−bkjyjÞ3 → c1; ð23Þ

where c1 and c2 are integral constants related to ϕð0Þ and
ϕ0ð0Þ. The numerical solutions of the scalar field and scalar
potential V1ðyÞ are plotted in Fig. 2, from which one can
see that c1 increases with ϕð0Þ.
Next, since the scalar profile ϕ is an even function, it can

be expanded around y ¼ 0 as

ϕðyÞ ¼ c0 þ c2y2 þ c4y4 þOðy6Þ; ð24Þ

where c0, c2, and c4 are some parameters to be solved.
Considering the behavior of the warp factor

Aðy → 0Þ → − by2

2
þ by4

12
þOðy6Þ, they can be solved from

Eq. (19) as

c0 ¼
4ð8 − 31bÞ
45ð3b − 2Þ þ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bð8bþ 67Þ þ 64

p
45ð3b − 2Þ ; ð25Þ

c2 ¼
ð11b − 58Þb
90b − 60

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bð8bþ 67Þ þ 64

p
b

45b − 30
; ð26Þ

c4 ¼ −
157b

630ð3b − 2Þ −
ð117bþ 1108Þb2
2520ð3b − 2Þ

þ
�
31

630
−

b
140

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bð8bþ 67Þ þ 64

p
b

3b − 2
: ð27Þ

Note that the even parity of the scalar ϕðyÞ here would
have a different influence on the localization of fermions
[66] from the case of odd scalar kink solutions in other
brane models [26,67].

III. LINEAR PERTURBATIONS AND STABILITY
OF THE SOLUTIONS

Since we already have two brane models (model A and
model B), we will consider the stability of these two models
under the linear perturbations of the spacetime metric and
the scalar fields as well as the localization of the graviton
and scalar zero modes, which are important issues in the
brane model. Generally speaking, the four-dimensional
massless graviton should be localized on the brane in order
to reproduce the familiar four-dimensional Newtonian
potential, and the scalar zero mode should not be localized
on the brane to avoid a fifth force. We will analyze these
issues in the following context.

A. Tensor perturbation

Since the scalar, vector, and tensor fluctuations are
decoupled from each other, we can write the spacetime
metric under the tensor fluctuation as

ds2 ¼ e2AðyÞðημν þ hμνÞdxμdxν þ dy2; ð28Þ

where hμν represents the tensor fluctuation and it is
transverse traceless, i.e., ημβ∂βhμν ¼ 0 and h≡ ημνhμν ¼ 0.
The field equation of the tensor perturbation reads

h00μν þ
�
4A0 þ ϕ0

1þ ϕ

�
h0μν þ e−2A□ð4Þhμν ¼ 0; ð29Þ

where □
ð4Þ ¼ ημν∂μ∂ν stands for the four-dimensional

d’Alembertian operator. By making a coordinate trans-
formation dy ¼ eAdz, Eq. (29) can be rewritten as

∂2
zhμν þ

�
3∂zAþ ∂zϕ

1þ ϕ

�
∂zhμν þ□

ð4Þhμν ¼ 0: ð30Þ

After making the KK decomposition hμν ¼
εμνðxÞfðzÞHðzÞ, we can get the two equations

□ð4ÞεμνðxÞ ¼ m2εμνðxÞ; ð31aÞ

− ∂2
zHðzÞ − ð3∂zAþ ∂z lnðf2ð1þ ϕÞÞÞ∂zHðzÞ

−
�∂2

zf
f

þ 3
∂zA∂zf

f
þ ∂zϕ

1þ ϕ

∂zf
f

�
HðzÞ ¼ m2HðzÞ;

ð31bÞ

where Eq. (31a) is the Klein-Gordon equation for the
four-dimensional massless (m ¼ 0) or massive (m ≠ 0)
graviton. To get a Schrödinger-like equation of the KK
mode HðzÞ, its first-order derivation should be vanishing.
Thus, the function fðzÞ can be solved from 3∂zAþ
∂z lnðf2ð1þ ϕÞÞ ¼ 0 as
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FIG. 2. Figures 2(a) and 2(b) plot the scalar profile ϕðyÞ and
scalar potential V1(ϕðyÞ) for model B, respectively. The param-
eters are set to b ¼ 1, k ¼ 1. The black thick, red dashed thick,
and blue thin lines correspond to ϕ0 ¼ −0.9,−0.8, and −0.7,
respectively.
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fðzÞ ¼ e−3A=2ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϕ

p : ð32Þ

Then, Eq. (31b) can be rewritten as

ð−∂2
z þ UðzÞÞHðzÞ ¼ m2HðzÞ; ð33Þ

where the effective potential for the KK mode is given by

UðzÞ ¼ 2
ð∂zfÞ2
f2

−
∂2
zf
f

¼ 3

2
∂2
zAþ 9

4
ð∂zAÞ2 −

ð∂zϕÞ2
4ð1þ ϕÞ2

þ 3∂zA∂zϕþ ∂2
zϕ

2ð1þ ϕÞ ; ð34Þ

which can be rewritten in the y coordinate as

UðzðyÞÞ¼e2A
�
3

2
A00þ15

4
A02−

ϕ02

4ðϕþ1Þ2þ
4A0ϕ0þϕ00

2ðϕþ1Þ
�
:

ð35Þ

Equation (33) is the equation of motion for the KK mode
HðzÞ, and it can be factorized as the supersymmetric
form L†LHðzÞ ¼ m2HðzÞ with L ¼ ð ddz þ ∂zf

f Þ and L† ¼
ð− d

dz þ ∂zf
f Þ. The Hermitian and positive definite of the

operator L†L ensure that m2 ≥ 0. Thus, there is no
tachyonic KK mode.
By settingm ¼ 0 in Eq. (33), the graviton zero mode can

be solved as

H0ðzÞ ¼ N0f−1ðzÞ ¼ N0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϕ

p
e3A=2; ð36Þ

where N0 is a normalization constant. The normalization of
the zero mode is expressed as

Z
H2

0dz ¼
Z

H2
0e

−Ady ¼ N2
0

Z
ð1þ ϕÞe2Ady ¼ 1.

ð37Þ

FormodelAwith the other parameters set tob ¼ 1, k ¼ 1,

and κ ¼ 1, N0 can be calculated as N0 ¼
ffiffiffiffiffiffiffiffi
3

6þ2a

q
. For

arbitrary positive parameters, it can be shown that the integral
in Eq. (37) is finite. So, the graviton zero mode in model A
can be localized on the brane. Figure 3 shows the shapes of
the effective potential of the gravitational fluctuation and
non-normalized graviton zero mode. It can be seen that the
shape of the effective potential changes from a volcanolike
well to a double well with increasing a. From Eq. (35), we
can obtain U00ð0Þ ¼ −4a2 − 18aþ 27=2. It is obvious that
the shape of the effective potential is volcanolike for

U00ð0Þ > 0 and doublewell forU00ð0Þ < 0. The critical value
of the parameter a is ac ¼ 3

4
ð ffiffiffiffiffi

15
p

− 3Þ since we only need
positivea. Thus, the effective potential has a singlewell and a
double well for 0 < a < ac and a > ac, respectively.
It can also be seen that the graviton zero mode is

localized gradually far away from the origin of the extra
dimension [see Fig. 3(b)] because the shape of the effective
potential changes from volcanolike to double well [see
Fig. 3(a)]. This character does not mean a double brane but
a single brane because the energy density still peaks at the
origin of the extra dimension [see Fig. 1f]. Therefore, even
though the brane has no inner structure, the effective
potential has a double well, and the graviton zero mode
has a split for large a. This is a new result of this model that
is different from the previous ones in the literature.
Figure 4 shows the shapes of the effective potential and

graviton zero mode in model B. From Eqs. (20), (21), (22),
and (35), one can get

Uð0Þ ¼ ϕ00ð0Þ
2ðϕ0 þ 1Þ −

3

2
bk2 ¼ 3

2
bk2 −

3

2
bk2 ¼ 0:

Thus, the shape of the effective potential of the gravitational
fluctuation is always a double well for any positive param-
eters b and k. From the asymptotic behavior of the
warp factor Aðy → �∞Þ → −bkjyj and scalar profile
ϕðy → �∞Þ → c1, it is easy to check that the corresponding
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FIG. 3. The left and right figures plot the effective potential
UðyÞ of the gravitational fluctuation and the graviton zero mode
HðyÞ for model A, respectively. The parameters are set to b ¼ 1,
k ¼ 1, κ ¼ 1, and a ¼ 0.1 for thin lines; a ¼ 5 for red dashed
thick lines; and a ¼ 10 for black thick lines.
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FIG. 4. The left and right figures plot the effective potential
UðyÞ of the gravitational fluctuation and the graviton zero mode
fluctuation and the graviton zero mode HðyÞ for model B,
respectively. The parameters are set to b ¼ 3, ϕ0 ¼ −0.9, and
k ¼ 1 for thin lines; k ¼ 2 for red dashed thick lines; and k ¼ 3
for black thick lines.
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graviton zero mode for model B can also be normalizable:R
H2

0ðzÞdz < ∞. Therefore, the graviton zero mode can be
localized on the brane.
So, we can conclude that the brane can be constructed by

the background scalar field or by pure gravity, and the
Newtonian potential on the brane can be reproduced on
both models since the graviton zero mode can be localized
on the brane.

B. Scalar perturbation

In this subsection, we will first analyze the scalar
perturbation for model B in detail. Before analyzing the
more complex model A, we will give a brief analysis about
the scalar perturbations for a general multifield system by
using a covariant approach. It is convenient to analyze the
scalar perturbation in the Einstein frame. Thus, we will first
rewrite the action (7) in the Einstein frame.
After making a coordinate transformation dy ¼ eAðzÞdz,

the metric can be written as

gMN ¼ e2AðzÞηMN: ð38Þ

Then, we introduce a conformal transformation

~gMN ¼ e2ωgMN: ð39Þ

Under this conformal transformation, the Ricci scalar
transforms as [68]

R ¼ e2ω ~Rþ 8~gMNeω ~∇M
~∇Neω

− 20~gMN ~∇Meω ~∇Neω; ð40Þ

where ~∇M is the covariant derivative compatible with the
metric ~gMN . Then, from Eq. (7), the action of model B in the
Einstein frame reads

S ¼ 1

2κ2

Z
d5x

ffiffiffiffiffiffi
−~g

p �
~Rþ 4~gMN∂Mϕ∂Nϕ

3ϕðϕþ 1Þ2 −
V1ðϕÞ

ðϕþ 1Þ5=3
�
:

ð41Þ

By the way, the second term of the action (41) can also be
rewritten in canonical form. Here, we will not do this
because we can make use of the solutions of the scalar field
ϕ and the potential V1ðϕÞ obtained in the previous section
directly.
The field equations can be obtained by varying the action

(41) with respect to the metric gMN and the scalar field ϕ,

~RMN −
1

2
~gMN

~Rþ 4

3ϕðϕþ 1Þ2 ∂Mϕ∂Nϕ

−
1

2
~gMN

�
4~gKL∂Kϕ∂Lϕ

3ϕðϕþ 1Þ2 −
V1

ðϕþ 1Þ5=3
�
¼ 0; ð42Þ

ðϕþ 1Þϕ00 þ 3 ~A0ϕ0 þ 3ϕ ~A0ϕ0 −
3

2
ϕ02 −

ϕ02

2ϕ

þ
�
1

8
þ ϕ

4
þ ϕ2

8

�
3e2 ~Aϕ

ðϕþ 1Þ2=3 V1ϕ

−
5

8
e2 ~Aϕðϕþ 1Þ1=3V1 ¼ 0; ð43Þ

where the prime in this subsection denotes the derivative
with respect to the coordinate z, and ~A ¼ Aþ 1

3
lnðϕþ 1Þ.

In the longitudinal gauge, the perturbed metric can be
written in the familiar form

ds2 ¼ e2 ~Aðð1þ 2αÞημνdxμdxν þ ð1þ 2βÞdz2Þ: ð44Þ
By the way, instead of choosing a gauge, we can also
construct gauge-invariant variables [42,43,69].
Then, we get the equations for the scalar perturbations:

ðμ; νÞ∶
�
−3α00 − 9 ~A0α0 þ 3 ~A0β0 −

e2 ~AV1

ðϕþ 1Þ5=3 α

þ
�
6 ~A02 −

4ϕ02

3ϕðϕþ 1Þ2 þ 6 ~A00
�
ðβ − αÞ

− ηρσ∂ρ∂σðβ þ 2αÞ�δμν þ ημρ∂ρ∂νðβ þ 2αÞ

¼
�
e2 ~Að3ðϕþ 1ÞV1ϕ − 5V1Þ

6ðϕþ 1Þ8=3 δϕþ 2ð3ϕþ 1Þϕ02

3ϕ2ðϕþ 1Þ3 δϕ

−
4ϕ0

3ϕðϕþ 1Þ2 δϕ
0
�
δμν ; ð45Þ

ðμ; zÞ∶ − 3 ~A0∂μβ þ 3∂μα
0 ¼ 4ϕ0

3ϕðϕþ 1Þ2 ∂μδϕ; ð46Þ

ðz; zÞ∶ 12 ~A0α0 þ 3ημν∂μ∂ναþ e2 ~AV1

ðϕþ 1Þ5=3 β

¼
�
e2 ~Að5V1 − 3ðϕþ 1ÞV1ϕÞ

6ðϕþ 1Þ8=3 þ 2ð3ϕþ 1Þϕ02

3ϕ2ðϕþ 1Þ3
�
δϕ

−
4ϕ0

3ϕðϕþ 1Þ2 δϕ
0; ð47Þ

matter∶ ημν∂μ∂νδϕþ δϕ00 þ
�
3 ~A0 −

ð3ϕþ 1Þϕ0

ϕðϕþ 1Þ
�
δϕ0

þ
�

5e2 ~Aϕ

3ðϕþ 1Þ5=3 V1 −
5e2 ~Aϕ

4ðϕþ 1Þ3=2 V1ϕ

þ 3

8
e2 ~Aϕðϕþ 1Þ1=3 d

2V1

dϕ2
þ ð6ϕ2 þ 4ϕþ 1Þϕ02

ϕ2ðϕþ 1Þ2

−
ð3ϕþ 1Þð3 ~A0ϕ0 þ ϕ00Þ

ϕðϕþ 1Þ
�
δϕ ¼ −6ϕ0α0

−
�
12 ~A0ϕ0 þ 4ϕ00 −

2ð3ϕþ 1Þϕ02

ϕðϕþ 1Þ
�
α: ð48Þ
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From Eq. (46), we get

δϕ ¼ 9ϕðϕþ 1Þ2
4ϕ0 ðα0 − ~A0βÞ; ð49Þ

and from the off-diagonal part of Eq. (45), we get

2αþ β ¼ 0. ð50Þ

Substituting Eqs. (43), (49), and (50) into Eq. (45), we
obtain the scalar perturbation equation of the system,

ημν∂μ∂ναþ α00 þHðzÞα0 þ FðzÞα ¼ 0; ð51Þ

where

FðzÞ ¼ −2 ~A02 þ 6 ~A00 −
4 ~A0ϕ00

ϕ0 þ 2ð3ϕþ 1Þ ~A0ϕ0

ϕðϕþ 1Þ

−
8ϕ02

9ϕðϕþ 1Þ2 ; ð52Þ

HðzÞ ¼ 3 ~A0 −
2ϕ00

ϕ0 þ ð3ϕþ 1Þϕ0

ϕðϕþ 1Þ : ð53Þ

Equation (51) can be written as a Schrödinger-type form
in terms of the variable [42,43,47]

G ¼ θδϕ − γα; ð54Þ

where θ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−4e3 ~A
3κϕðϕþ1Þ2

q
and γ ≡ θ ϕ0

~A0. The reason why one

must discuss this variable is that it is G rather than α, which
can diagonalize the quadratic action. Thus, one should use
G as the normal mode in the quantization (for more details,
see Refs. [42,43,47]). Then, from Eqs. (48) and (51), the
equation for the canonical normal mode G can be obtained
as [42,43,47]

G00 þ ημν∂μ∂νG −
γ00

γ
G ¼ 0. ð55Þ

With the expansion

G ¼ ψðzÞeipx; ð56Þ

Eq. (55) becomes

ð−∂2
z þ VpÞψðzÞ ¼ m2ψðzÞ; ð57Þ

where p2 ¼ −m2 and the effective potential Vp ¼ γ00
γ .

Equation (57) can also be factorized as a supersymmetric
formAA†ψ¼m2ψ withA¼ð ddzþ γ0

γÞ andA† ¼ ð− d
dz þ γ0

γ Þ.
The Hermitian and positive definite of the operator AA†

ensure that m2 ≥ 0. Thus, there is no tachyonic KK mode.

By the way, Eq. (51) can also be factorized as a super-
symmetric form A†Aαm ¼ m2αm, which indicates the
spectra of G and α are related [42].
From Eq. (57), the scalar zero mode can be solved as

ψ0 ¼ n0γ; ð58Þ

where n0 is a normalization constant. The normalization
condition is given by
Z

jψ0ðzÞj2dz ¼ n20

Z
jγj2dz ¼ 2n20

Z þ∞

0

jγj2e− ~Adz

¼ 2n20

�Z
ϵ

0

þ
Z þ∞

ϵ

�
−4e2 ~Aϕ02

3κ ~A02ϕðϕþ 1Þ2 dy;

ð59Þ
where ϵ is an infinitesimal positive number. Considering
the behavior of the scalar profile ϕðyÞ [see Eq. (24)] and
warp factor AðyÞ around y ¼ 0, the first part of Eq. (59) can

be calculated as 2n20
R
ϵ
0

−4e2 ~Aϕ02

3κ ~A02ϕðϕþ1Þ2 dy ∼ 2n20
R
ϵ
0 ðd1y4 þ d2

y2Þdy,
which is divergent. The second part of Eq. (59) is finite
because the convergent of the integrand referring to
Eq. (23). The divergence of Eq. (59) implies that the zero
mode cannot be localized on the brane.
Besides, from Fig. 5(a), we can see that the effective

potential is positive everywhere and diverges at the origin
of extra dimension z ¼ 0, which also implies that the zero
mode of the scalar perturbation cannot be localized on the
brane in model B.
Next, we will give some comment on the scalar pertur-

bation in model A. There are two scalar fields, which are
coupled together. Thus, it is more complex than model B.
The scalar perturbations of multiple scalar fields were
considered in Ref. [65] by Giovannini, who investigated the
perturbations of the gravitating multidefects constructed
by two scalar fields in five dimensions. The two scalar
perturbation equations are coupled together and can be
written in matrix notation. Giovannini showed that the
system is stable under the scalar perturbations and the zero
modes of them cannot be localized on the multidefects.

10 5 5 10
z

1

2

3

4

Vp

10 5 5 10
z

0.1
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0.3

0.4

0.5

0

FIG. 5. The left and right figures plot the effective potential Vp
and zero mode ψ0 of scalar perturbation of model B, respectively.
The parameters are set to b ¼ 1 and k ¼ 1. The black thick, red
dashed thick, and blue thin lines correspond to ϕ0 ¼ −0.9,−0.8,
and −0.7, respectively.
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For more examples, see Refs. [70,71]. However, the kinetic
term of each scalar field in Refs. [65,70,71] is canonical,
and there is no coupling between them. In general, the
kinetic term of a scalar field may not be canonical, and the
different scalar fields may be coupled together. It is
convenient to deal with these general scalar fields in the
field space formalism, where the kinetic terms of the scalar
fields can be written in a compact form,

Lkin ¼ −
1

2
gMNGIJ∂MΦI∂NΦJ; ð60Þ

where GIJ ¼ GIJðΦKÞ is a metric in the field space.
Here, some Latin letters label spacetime indices,
M;N; P;Q;… ¼ 0, 1, 2, 3, 5, and some other Latin letters,
I; J; K; L;… ¼ 1; 2; 3;…, label the field space indices.
Thus, the scalar fields in Refs. [65,70,71] correspond a flat
metric in the field space, GIJ ¼ δIJ.
In this paper, the action (7) of model A in the Einstein

frame is

S ¼
Z

d5x
ffiffiffiffiffiffi
−~g

p �
~R

2κ2
þ 2~gMN∂Mϕ∂Nϕ

3κ2ϕðϕþ 1Þ2 −
~gMN∂Mχ∂Nχ

2ðϕþ 1Þ

−
V1ðϕÞ þ 2κ2V2ðχÞ
2κ2ðϕþ 1Þ5=3

�
: ð61Þ

In the field space formalism, the above action (61) can be
rewritten as

S ¼
Z

d5x
ffiffiffiffiffiffi
−~g

p �
~R

2κ2
−
1

2
~gMNGIJ∂MΦI∂NΦJ − V

�
; ð62Þ

where

Φ1 ¼ ϕðyÞ; Φ2 ¼ χðyÞ;

V ¼ V1ðϕÞ þ 2κ2V2ðχÞ
2κ2ðϕþ 1Þ5=3 ; ð63Þ

and the nonvanishing components of the field space metric
GIJ are G11 ¼ − 1

κ2
4

3ϕðϕþ1Þ2 and G22 ¼ 1
ϕþ1

.

In Ref. [72], the authors investigated the scalar pertur-
bations of multifield inflationary models with an arbitrary
field space metric in cosmology. They calculated the
second-order action in the linear perturbations and divided
the scalar perturbations into an adiabatic mode and entropy
modes and analyzed their behavior individually. To obtain
the higher-order action of cosmological perturbations easily
and systematically, the authors of Ref. [73] introduced a
covariant approach for general multiple scalar field system.
They obtained the quadratic order action and cubic order
action in the covariant form.

Although the field space formalism is very powerful in
analyzing the multiple scalar perturbations in cosmology,
we do not know how to deal with it in the brane world.
In the brane world, the most interesting things are the
stability of the system and the localization of the scalar zero
modes, which have not been solved. We leave this for the
next work.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we investigated two thick brane models
(model A and model B) in hybrid metric-Palatini gravity.
The brane in model A was constructed by a background
scalar field χ. This brane system can be solved analytically.
On the other hand, inspired by the scalar-tensor represen-
tation of this gravity, we considered the possibility of the
thick brane constructed by pure gravity, which is called
model B. We obtained a set of numerical solutions for the
brane system in this model. Then, we derived the field
equation of the tensor perturbation (29). After the KK
decomposition, we obtained a Schrödinger-like equation of
the KK modesHðzÞ, which is the equation of motion of the
graviton along the extra dimension. This equation can be
factorized as a supersymmetric form, which ensures the
stability of the brane system. Furthermore, we also gave
the condition that avoids the ghost gravitons. Then, we
analyzed the scalar perturbation of model B in detail and
gave a brief introduction about the multiple scalar field
perturbations.
To produce the four-dimensional Newtonian potential,

we analyzed the graviton zero modes in both models. The
graviton zero mode in model A splits from one peak to two
peaks with the increase of the parameter a; however, the
brane does not split. This means that the graviton zero
mode is localized gradually far away from the origin of
the extra dimension with the parameter a increasing. The
reason is that the shape of the effective potential of the
gravitational fluctuation changes from volcanolike
(0 < a < ac) to double well (a > ac). This is a new feature
compared with the former literature, where the splitting
graviton zero mode only appears with the splitting brane
[33,41,42,44–46,48–53]. This may be caused by the hybrid
of the metric and Palatini formalisms. The graviton zero
mode in model B is localized around the origin of the
extra dimension and becomes thinner with the parameter
k increasing. The shape of the effective potential of
the gravitational fluctuation is always a double well. The
graviton zero modes in both models are localized on the
branes. So, we can obtain the familiar four-dimensional
Newtonian potential for both models.
On the other hand, we analyzed the scalar perturbation of

model B in detail. We found that the effective potential of
the scalar perturbation is positive definite. Thus, the zero
mode cannot be localized on the brane, avoiding a fifth
force. In model A, the two scalar fields are coupled
together, which is hard to deal with. Perturbations in the
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multiple scalar fields with nontrivial metric in the field
space have been investigated in the cosmology, whereas,
we do not know how to deal with it in the corresponding
brane world models. This problem will be left for our
next work.
Next, we will give a brief analysis about the localization

of the bulk matter fields. We first consider the localization
of a massless real free bulk scalar field. The effective
potential of the scalar KK modes can be obtained
as [74–78]

V0ðzÞ ¼
3

2
A00 þ 9

4
A02 ¼ 3k2ð5k2z2 − 2Þ

4ðk2z2 þ 1Þ2 : ð64Þ

The zero mode of the bulk scalar field can be solved as
φ0ðzÞ ¼ c0e3AðzÞ=2 ¼ c0

ðk2z2þ1Þ3=4. It can be easily shown that

this zero mode can be localized on the branes in models
A and B.
In general, the zero mode of a massless free bulk vector

field cannot be localized on the RS-type thick brane with
codimension 1 [75–79]. To obtain a confined zero mode of
a bulk vector field, one should introduce a dynamical mass
term [80,81] or consider other brane models [82,83]. After
a mass term has been added on the Lagrangian density of a
bulk vector field, the effective potential of the vector KK
modes can be obtained as [80,81]

V1ðzÞ ¼ A00 þ A02 ¼ k2ð2k2z2 − 1Þ
ðk2z2 þ 1Þ2 : ð65Þ

The vector zero mode is ρ0 ¼ c1eA ¼ c1ffiffiffiffiffiffiffiffiffiffiffi
k2z2þ1

p and is
localized on the branes in both models.
To obtain a confined four-dimensional massless fermion

field, one needs to introduce the Yukawa coupling between
the bulk fermion and background scalar fields, i.e.,
ηΨΠðχÞΨ, in which the background scalar field χ is an
odd function of the extra dimension [74,76–78,84–87].
In model A, this background scalar field can be chosen as
the matter field χ because it is an odd function. Then, the

effective potential of the fermion KK modes with ΠðχÞ ¼ χ
can be obtained as [76–78]

VL;RðzÞ ¼ ðηeAχÞ2 ∓ ∂zðηeAχÞ: ð66Þ

The fermion zero modes read fL0;R0ðzÞ ¼ c1=2 exp
ð∓ η

R
eAχdzÞ. It can be easily shown that the left-chiral

fermion can be localized on the brane for positive coupling
constant η, which is similar to the results given in
Refs. [76–78].
However, there is only one even background scalar field

ϕ in model B. Therefore, the Yukawa coupling does not
work. Reference [66] introduced a new mechanism with a
coupling term ηΨΓM∂MF ðϕÞΨ to localize fermions. With
the new coupling term, the effective potentials of the
fermion KK modes with F ðϕÞ ¼ 1

ϕ2
0
−ϕ2 are given by

VL;RðzÞ ¼ ðη∂zF Þ2 ∓ ∂zðη∂zF Þ

¼ 1

ðϕ2
0 − ϕ2Þ4 ½∓ 2ηð∂zϕÞ2ð∓ 2ðη ∓ ϕ2

0Þϕ2

− 3ϕ4 þ ϕ4
0Þ ∓ 2ηϕðϕ2

0 − ϕ2Þ2ð∂2
zϕÞ�: ð67Þ

The zero modes of a bulk fermion field can be solved as
fL0;R0ðzÞ ¼ c1=2 expð∓ ηF Þ ¼ c1=2 expð ∓η

ϕ2
0
−ϕ2Þ. Then, a

confined left-chiral fermion can be obtained for positive
coupling constant η.
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