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We show that known entropy bounds constrain the information carried off by radiation to null infinity.
We consider distant, planar null hypersurfaces in asymptotically flat spacetime. Their focusing and area
loss can be computed perturbatively on a Minkowski background, yielding entropy bounds in terms of the
energy flux of the outgoing radiation. In the asymptotic limit, we obtain boundary versions of the quantum
null energy condition, of the generalized Second Law, and of the quantum Bousso bound.
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I. INTRODUCTION

A. Entropy bounds

Gravitational entropy bounds [1–16] are of the general
form

S ≤
ΔA
4Gℏ

; ð1:1Þ

where S is a suitable measure of the quantum information
or entropy carried by matter systems, and ΔA is the area
of a surface or the difference between two surface areas.
G and ℏ are Newton’s and Planck’s constants; we set
c ¼ kB ¼ 1.
The holographic scaling with area is surprising and

conflicts with locality. However, there is considerable
evidence that Eq. (1.1) holds in nature, if S is taken to
be the entropy of matter systems crossing a nonexpanding
null hypersurface called a light sheet [6–9]. This is called
the covariant entropy bound, or Bousso bound. In its most
general form it remains a conjecture about the semiclassical
regime. Its proof will likely require a full quantum theory of
gravity. However, in the weak-gravity limit, it has already
been possible to prove Eq. (1.1).
As gravity becomes weak, G → 0, one might expect

entropy bounds to become trivial, since Newton’s constant
G appears in the denominator in Eq. (1.1). Remarkably, this
is not the case if the light rays are chosen to be parallel at
OðG0Þ. The area difference ΔA on null hypersurfaces (such
as event horizons or light sheets) then results entirely from
the focusing of the light rays by matter and radiation. Thus,
ΔA will be proportional to G [17], and Newton’s constant
drops out of Eq. (1.1) as G → 0.
The bounds can then be expressed in terms of integrals

over the energy flux T that causes focusing. T is the matter
stress tensor component in the light-sheet direction, plus a
shear-squared term that is associated with gravitational

radiation. Using precise definitions of S [10–15,18–20], the
G → 0 limit yields novel, highly nontrivial statements
about quantum field theory: a quantum Bousso bound
(QBB) [13], and the quantum null-energy condition
(QNEC) [15]. One can also consider the generalized
Second Law in this limit [12,20]. In some cases, the
weak-gravity bounds can be proven rigorously within
quantum field theory [12–14,16,20,21].
In the present paper, we will explore a different limit, in

which G is held fixed but gravity nevertheless becomes
weak: the limit of distant null planes in asymptotically flat
space. We find that the above weak-gravity bounds apply
in this setting. (In particular, this implies that all relevant
quantities can be computed on a Minkowski background;
we need not consider curved metrics explicitly.) Taking the
limit as the null planes recede to future null infinity, we will
show that each known weak-gravity entropy bound implies
a corresponding bound on the information arriving at the
conformal boundary, Iþ.

B. Outline and summary of results

We review relevant known entropy bounds in Sec. II, and
their standard weak-gravity limits in Sec. III. Our main
results appear in Secs. IV and V.
In Sec. IV, we consider a one-parameter family of light

sheets HðupÞ in asymptotically flat spacetime (Figs. 1
and 2). The light sheets are constructed so as to be
approximately planar; at leading order they are given by
the null planes t − z ¼ up in Minkowski space. As up
becomes large, the light sheets HðupÞ approach future null
infinity, Iþ. We show that focusing and area loss can be
computed at order G=u2p simply by applying the focusing
equation to radiation propagating through HðupÞ on the
trivial OððG=u2pÞ0Þ background.
We thus find that all weak-gravity entropy bounds apply

directly to the light sheets HðupÞ for large up but fixed G.
This means that weak-gravity entropy bounds such as the
QNEC and the QBB limit the flow of information out of*bousso@lbl.gov
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arbitrarily large, isolated systems with arbitrary self-
gravity, in terms of the energy flux density T .
In Sec. V, we take the limit as up → ∞, and we show that

HðupÞ becomes Iþ in the “unphysical spacetime” obtained
by conformal rescaling (the Penrose diagram). Iþ is a light
sheet with vanishing expansion. This is perhaps counter-
intuitive: the HðupÞ have planar cross sections at OðG0Þ,
whereas the spatial cross sections of Iþ are conventionally
chosen as spheres of unit radius. Yet the limit can be
established. In particular, the retarded time u, which is an
affine parameter on Iþ, becomes an affine parameter on
HðupÞ in the limit.
We define a boundary energy flux T̂ by an angle-

dependent rescaling of T . For the matter part of T̂ , we
show explicitly that our definition reduces to the standard
boundary “matter stress tensor,” which characterizes non-
gravitational radiation arriving on Iþ. This quantity is
manifestly finite and independent of the orientation of
the HðupÞ. It can be shown [22] that the corresponding
rescaling of the shear on HðupÞ is equal to the Bondi news.
We identify a spatial cross section, or “cut,” on every

HðupÞ, corresponding to a given cut σ̂ on Iþ, such that
every cut partitions the outgoing radiation in the same way
as up → ∞. We can consider the entropy of one part of the
radiation—i.e., the von Neumann entropy of the reduced
quantum state obtained by restricting the global state to the
portion of HðupÞ on one side of the cut. By applying
entropy bounds to each HðupÞ and taking the limit, we
obtain entropy bounds on Iþ in terms of the finite
boundary energy flux T̂ .
Our strongest result is the boundary quantum null energy

condition,

1

δΩ
d2

du2
Ŝout½σ̂;Ω� ≤

2π

ℏ
T̂ : ð1:2Þ

We obtain a boundary generalized Second Law, both in
differential form

−
1

δΩ
d
du

Ŝout½σ̂;Ω� ≤
2π

ℏ

Z
∞

σ̂
du T̂ ; ð1:3Þ

and in integral form

Ŝout½σ̂2� − Ŝout½σ̂1� ≤
2π

ℏ

Z
σ̂1

σ̂2

d2Ωdu½u − u2ðΩÞ�T̂ : ð1:4Þ

(See the main text for detailed definitions. Divergences
of the entanglement entropy cancel in the derivatives and
subtractions.) Finally, we derive a boundary quantum
Bousso bound, which refers to the vacuum-subtracted
entropy of a finite affine interval and involves additional
subtleties.

C. Related work

Recently, Kapec, Raclariu, and Strominger (KRS) con-
jectured an asymptotic entropy bound on Iþ [23]. Null
surfaces with approximately spherical cross sections (past
light cones) are considered. In this setup, existing entropy
bounds become trivial in the asymptotic limit, since areas
and area differences diverge. Reference [23] proposes an
additional subtraction to cancel this divergence, which
amounts to conjecturing a novel entropy bound. The
definition of the entropy appearing in this bound was left

p

matter

vacuum

radiation

FIG. 1. Conformal diagram of an asymptotically flat spacetime.
The left boundary represents only ϑ ¼ π; the right boundary
represents all other angles on Iþ. The light-sheet HðupÞ (red
thick line) is the boundary of the past of a point p at ðup; ϑ ¼ πÞ
on Iþ. For large up, only outgoing radiation (blue arrows) passes
through HðupÞ. All massive systems are assumed to decay into
radiation in finite time, so the yellow region at the top is empty.

FIG. 2. The light sheetHðupÞ (orange) is approximately planar.
The outgoing radiation is approximately radial (blue cones). Its
focusing effect on HðupÞ depends on the angle ϑ where it strikes
HðupÞ, like cos4ðϑ=2Þ. In the limit as up → ∞, this factor cancels
against the transformation between bulk and boundary affine
parameters u and w. The resulting entropy bounds on Iþ do not
depend on the orientation of HðupÞ. Image credit: Z. Fisher.
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to future work, so the conjecture is (for now) that an
appropriate definition can be found [23].
The present work takes a different approach: we consider

planar light sheets, on which area differences between cuts
remain finite. This allows us to exploit standard bulk bounds
on fairly rigorously defined measures of entropy, for which
proofs or substantial evidence have already been found. A
potential downside is that the planar light sheets carry an
orientation, so one might expect to obtain a separate
boundary statement for each orientation angle. However,
when we take the limit as up → ∞ and express the bounds
in terms of finite rescaled quantities on Iþ, we find that the
results are independent of the angle chosen. Thus, we obtain
a unique boundary version of each type of bound.
It is not possible to determine whether the KRS con-

jecture implies, or is implied by, any of the bounds derived
here, because no definition of the entropy was given.
Formally, Eq. (66) of Ref. [23] can be compared to a
special case of our results: the integrated form of the GSL,
Eq. (1.4), with the further choice σ1 → ∞. The right side
of Eq. (1.4) then reduces (up to sign conventions) to the
quantity denoted AΣ

F in Ref. [23]. The KRS conjecture
contains an extra surface term of indefinite sign; see
Eq. (22) in Ref. [23]. Perhaps it is possible to define the
entropy in the KRS conjecture so that it differs from the lhs
of Eq. (1.4) by the same term; if so, the KRS conjecture
would reduce to Eq. (1.4). This question will be considered
in a separate publication [22], where we provide a more
detailed treatment of the contributions from gravitons.

II. ENTROPY BOUNDS WITH GRAVITY

In this section, we state the generalized Second Law
(Sec. II B) in a rigorous form, and we review the quantum
focusing conjecture (Sec. II C). We begin by defining the
generalized entropy and the quantum expansion in
Sec. II A.

A. Definitions

LetH be a null hypersurface with affine parameter w and
transverse coordinates y. Let σ be a spatial cross section of
H, or cut. For example, σ can be specified by a function
wðyÞ. The generalized entropy [1,24,25] is the functional

Sgen½σ�≡ Sout½σ� þ
A½σ�
4Gℏ

þ…; ð2:1Þ

where Sout is the von Neumann entropy of the density
operator of the quantum fields restricted to one side of the
cut σ. (It is assumed here that σ splits a Cauchy surface. It
does not matter which side is chosen [15].)1

Notably, Sgen is better defined than either Sout or
A½σ�=4Gℏ separately [18]. The leading divergence in the

exterior entropy is proportional to A½σ�. The Bekenstein-
Hawking term can be regarded as a counterterm. The “� � �”
in Eq. (2.1) stands for additional geometric counterterms,
e.g., higher-curvature terms, which cancel subleading
divergences of the von Neumann entropy. If the exterior
region consists of well-isolated systems far from H, the
two terms on the right-hand side become separately well
defined, with Sout the standard thermodynamic entropy of
the systems and G the “infrared” value of Newton’s
constant. (See Ref. [15] for a brief review and references.)
Consider a deformation of σ by an infinitesimal distance
dw along a neighborhood of the generator y, of infinitesi-
mal area A. The change in Sgen will be proportional
to A and to dw. The quantum expansion of σ at y is
defined [15] as

Θ½σ; y� ¼ 4Gℏ
A

S0gen½σ; y�; ð2:2Þ

where the prime denotes d=dw. The limit as A → 0 is
implicit wherever A appears. The quantum expansion
depends both on the cut σ, and on where σ is deformed
(at y).
Using Eq. (2.1), the quantum expansion can be

expressed as

Θ½σ; y� ¼ 4Gℏ
A

S0out½σ; y� þ θ½σ; y�; ð2:3Þ

where

θ½σ; y� ¼ A0

A
ð2:4Þ

is the classical expansion—i.e., the trace of the null
extrinsic curvature of σ in H at y. (The definitions of A
and the prime are given in the previous paragraph.) Unlike
the quantum expansion, θ is local: it does not depend on the
cut σ away from y.

B. Generalized Second Law

Now let us specialize to a null hypersurface H that is a
causal horizon (i.e., the boundary of the past of an
inextendible timelike or null curve). The generalized
Second Law (GSL) [24] on a future causal horizon is
the conjecture that

Θ½σ; y� ≥ 0 ð2:5Þ

for any future-directed deformation at y of any cut σ of H.
(See Refs. [15,26] for the present formulation.) That is, the
generalized entropy will not decrease towards the future.
Equation (2.5) generalizes both the ordinary Second Law

of thermodynamics (to the case where horizons are present)
and Hawking’s area theorem for event horizons (to the case
where the null energy condition need not hold). In cases

1For helpful figures illustrating the definitions in this section,
see for example Ref. [15].
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where the generalized entropy can be separated into area
and exterior entropy, Eq. (2.5) becomes

−
S0out½σ; y�

A
≤
θ½σ; y�
4Gℏ

: ð2:6Þ

Consider two cuts of the horizon such that σ1 is nowhere
to the past of σ2. Integration of Eq. (2.5) gives the integral
form of the GSL:

Sgen½σ1� − Sgen½σ2� ≥ 0: ð2:7Þ

Specializing to the separable case, Eq. (2.7) becomes

Sout½σ2� − Sout½σ1� ≤
A½σ1� − A½σ2�

4Gℏ
: ð2:8Þ

For example, if a matter system with entropy S enters a
black hole, then Sout½σ2� − Sout½σ1� ¼ S, so by Eq. (2.8) the
horizon area must increase at least by 4GℏS.

C. Quantum focusing conjecture and Bousso bound

Returning to a general null hypersurface H, we can
consider how the quantum expansion, in turn, varies under
second deformations of the cut σ. The quantum focusing
conjecture (QFC) states that the quantum expansion at y
will not increase under a deformation of the cut at ȳ [15].
The second deformation at ȳ is required to be taken in the
same direction (future or past) with respect to which the
quantum expansion was defined at y.
For y ≠ ȳ, the QFC can be proven using strong sub-

additivity. Below, we will focus on the most nontrivial case,
y ¼ ȳ. Then the QFC can be stated as

Θ0½σ; y� ≤ 0; ð2:9Þ

using the notation introduced around Eq. (2.2). Substituting
Eq. (2.1) yields the separated differential form of the QFC

−
θ0

4Gℏ
≥

1

A
ðS00out − S0outθÞ; ð2:10Þ

where we have suppressed the dependence of all quantities
on ½σ; y�.
Now consider two cuts σ1 and σ2 of H. Suppose that the

cut σ2 has larger or equal w on every generator, and that
Θ½σ1; y� ≤ 0 at every y where the cuts differ. Then
integration of Eq. (2.9) implies that the quantum expansion
remains nonpositive between σ1 and σ2. A second inte-
gration yields

Sgen½σ2� ≤ Sgen½σ1�: ð2:11Þ

This looks the same as the GSL, and indeed the above
argument can be applied to the special case of causal
horizons. Under the (physically reasonable) assumption

that their quantum expansion vanishes at late times,
integrating the QFC once (towards the past) implies the
differential version of the GSL, Eq. (2.5). Integrating the
QFC twice implies the integral version of the GSL,
Eq. (2.7).
However, the GSL does not imply the QFC on causal

horizons, so the QFC is stronger. Further, the QFC is more
general, since Eqs. (2.9) and (2.11) apply to arbitrary null
hypersurfaces. In this general setting, Eq. (2.11) can be
regarded as a quantum-corrected version of the Bousso
bound [15]. (It is distinct from the QBB discussed in
Sec. III D [13].) The assumption that Θ½σ1; y� ≤ 0 together
with Eq. (2.9) is the quantum generalization of the defining
condition for light sheets, that θ ≤ 0 everywhere between
σ1 and σ2. Upon separating the area and matter entropy
terms in the integrated QFC, one obtains

Sout½σ2� − Sout½σ1� ≤
A½σ1� − A½σ2�

4Gℏ
: ð2:12Þ

For well-isolated matter systems localized to the light sheet
between σ1 and σ2, the left-hand side can be identified as
the entropy S on the light sheet [15], and one recovers the
Bousso bound [6,7],

S ≤
A½σ1� − A½σ2�

4Gℏ
: ð2:13Þ

III. STANDARD WEAK-GRAVITY LIMIT

We now review the weak-gravity limit of the GSL
[11,12,20] and the QFC [15,16]. One obtains two non-
gravitational statements, i.e., statements about quantum
field theory. Both have been proven for free fields [12,16].
In addition, we will review a third statement that has
been formulated only in this limit, a bound on the
vacuum-subtracted entropy of a bounded region [13,14].
This statement has been proven for free and interacting
theories.

A. Focusing in the G → 0 limit

Any null hypersurface H is ruled by a congruence
of null geodesics, its generators. Given the expansion at
one point on H, the expansion at any other point on the
same generator can be computed by integrating the
Raychaudhuri equation:

θ0 ¼ −
θ2

2
− ςabς

ab − 8πGTww: ð3:1Þ

Here

Tww ≡ hTabkakbi; ð3:2Þ

Tab is the stress tensor, ka ¼ dxa=dw is the null vector
tangent to the generator, and θ ¼ ∇aka; see also Eq. (2.4).
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The shear ςab is the traceless part of the null extrinsic
curvature:

ςab½σ�≡ qacqbd∇ckd −
1

2
θ ~qab; ð3:3Þ

where qab is the intrinsic metric on the cut σ.
In the weak-gravity limit, one considers a two-

dimensional spatial surface σ1 whose null expansion
vanishes at all points y at leading order:

θ½σ1; y� ¼ 0þOðGÞ: ð3:4Þ

The goal is to compute the expansion elsewhere on the null
hypersurface H of which σ1 is a cut. We will also assume
that ςab is at most of order G1=2 on H. Thus, θ will be
generated only at order G; the θ2 term in Eq. (3.1) will be
OðG2Þ and can be neglected:

θ0 ¼ −8πGT þOðG2Þ; ð3:5Þ

where we have defined

T ≡ Tww þ ~ς2; ~ς2 ≡ ςabς
ab

8πG
: ð3:6Þ

One can then compute the expansion θ on any other cut σ2
ofH by direct integration of Eq. (3.1) along the generator y
on which the point lies:

θ½σ2; y� ¼ θ½σ1; y� − 8πG
Z

σ2

σ1

dwT

þOðG2Þ; ð3:7Þ

where the integral runs over the single generator y. This is
the key result for focusing in the weak-gravity limit.
Integrating a second time yields a formula for the area

change accumulated along the generator y. This can be
integrated over all generators to yield the area difference
between the two cuts. For simplicity we quote the result for
the case where θ½σ1; y� vanishes through OðGÞ:

A½σ1� − A½σ2� ¼
Z

σ2

σ1

d2y
ffiffiffiffiffiffiffiffiffi
hðyÞ

p
dwθðw; yÞ

¼ 8πG
Z

σ1

σ2

d2y
ffiffiffiffiffiffiffiffiffi
hðyÞ

p
dw½w − w2ðyÞ�T

þOðG2Þ; ð3:8Þ

where the integral now runs over the entire portion of H
between the two cuts. The second line follows from
Eq. (3.7) and integration by parts; w2ðyÞ is the value of
w on σ2 at y.

B. Weak-gravity generalized Second Law

We now apply the above results to the cut σ of a causal
horizonH. With σ2 ¼ σ and σ1 → ∞, substituting Eq. (3.7)
into Eq. (2.6) yields the weak-gravity limit of the GSL:

−
S0out½σ; y�

A
≤
2π

ℏ

Z
∞

σ
dw T ; ð3:9Þ

where the integral runs over the single generator y.
We have taken the limit as G → 0. The GSL remains

nontrivial in this limit, because the leading factor of G in
Eq. (3.7) cancels against the G in the denominator in
Eq. (2.5). Thus, the GSL reduces to an exact statement
concerning the von Neumann entropy of quantum fields
restricted to a semi-infinite portion of a causal horizon.
The use of both Eq. (3.7) and Eq. (2.6) requires

justification. Equation (3.7) is valid only if the cut σ1
has vanishing expansion at order G0. Here, that surface is
taken to be in the infinite future on a causal horizon [27],
where θ indeed vanishes. Equation (2.6) is the “separated”
differential version of the GSL. This version requires us to
separately control the divergences in the entanglement
entropy and the RG flow of Newton’s constant. But in
the weak-gravity limit, we have seen that Newton’s con-
stant cancels out. The divergent boundary contribution Sout
also drops out, because only S0out enters, and at leading
order, the derivative is taken along a null hypersurface with
fixed cross-sectional geometry. Hence S0out in Eq. (3.9) is
well defined.
Integration by parts of Eq. (3.9), or substitution of

Eq. (3.8) into Eq. (2.8), yields the integrated version of
the weak-gravity GSL:

Sout½σ2� − Sout½σ1� ≤
2π

ℏ

Z
σ1

σ2

d2y
ffiffiffiffiffiffiffiffiffi
hðyÞ

p
dw½w − w2ðyÞ�T ;

ð3:10Þ

where σ1 is nowhere to the past of σ2.

C. Quantum null energy condition

The QFC, too, becomes separable into area and exterior
entropy terms as G → 0. Thus, we may use Eq. (2.10) as
we study the weak-gravity limit of the QFC. Substituting
Eq. (3.5) and taking G → 0 yields the quantum null energy
condition (QNEC):

S00out½σ; y�
A

≤
2π

ℏ
T : ð3:11Þ

The QNEC holds on any generator y orthogonal to a slice σ
with the property that θ½σ; y� scales as a positive power ofG
as the limit is taken, or else the S0outθ term in Eq. (2.10) will
contribute. This will be the case everywhere on H if H is a

ASYMPTOTIC ENTROPY BOUNDS PHYSICAL REVIEW D 94, 024018 (2016)

024018-5



causal horizon. Thus, integration of the QNEC, Eq. (3.11),
implies the weak-gravity GSL, Eq. (3.9).
More generally, given any point p and null vector k at p

in an arbitrary spacetime, one can find a spatial surface with
null normal vector k and vanishing expansion in an open
neighborhood of p. Taking H to be the null hypersurface
orthogonal to any Cauchy-splitting completion σ of this
surface, Eq. (3.11) applies. Note that S00out will in general
depend on the choice of σ.

D. Quantum Bousso bound

The quantum Bousso bound (QBB) was formulated and
proven in Refs. [13,14]. LetH be a (classical) light sheet [6]
in the weak-gravity limit. That is, we assume that H is a
null hypersurface bounded by cuts σ1, σ2 such that θ is
nonpositive, and at most OðGÞ, everywhere between σ1
and σ2. Then

SC ≤
A½σ1� − A½σ2�

4Gℏ
; ð3:12Þ

where SC is the vacuum-subtracted entropy or Casini
entropy [11,19] of the quantum state restricted to H.
The bound is tied to the weak-gravity limit, because SC is

well defined only as G → 0. As backreaction gets small,
different quantum states become compatible with the same
spacetime geometry, that ofH. Then it is possible to restrict
both an arbitrary state ρglobal, and the vacuum state j0ih0j,
to H. This yields reduced density operators ρ and ρ0, with
von Neumann entropies S½ρ� and S½ρ0�. One defines

SC ≡ S½ρ� − S½ρ0�: ð3:13Þ

Like the QFC, the QBB also reduces to the original
covariant bound [6,7] in settings where systems are well
isolated. However, the QBB has no known extension to
strongly gravitating regions. The QBB is not known to
imply, nor to follow from, any other entropy bounds
listed above.
In the earlier subsections, we expressed the weak-gravity

limit of entropy bounds by converting (derivatives of) the
area to expressions involving the energy flux, by applying
Eqs. (3.5) and (3.7). We could also convert Eq. (3.12) in
this way by using Eq. (3.8). Terms proportional to θ0 would
have to be restored in Eq. (3.8), as they may be necessary to
uphold the classical nonexpansion condition [13]. Thus, we
would obtain an expression similar in form to the integrated
GSL, but for a different entropy and with the integral
running over finite affine distance.
However, it is possible to write the QBB in a stronger

form,

SC ≤
2π

ℏ
ΔK; ð3:14Þ

whereΔK is the vacuum-subtracted modular energy of ρ on
H [13,14]. One can show that this implies Eq. (3.12). Yet
ΔK, like ΔA, can be expressed as an integral over the
energy flux in the weak-gravity limit. Since this is the
format we seek, it makes sense to start from the stronger
statement, Eq. (3.14).
In general, the modular energy is highly nonlocal, but for

the finite light sheets H, one has2

ΔK ¼
Z

σ2

σ1

d2y
ffiffiffiffiffiffiffiffiffi
hðyÞ

p
dwgyðwÞT ; ð3:15Þ

where

gyðwÞ ¼
ðw − w1Þðw2 − wÞ

w2 − w1

ð3:16Þ

for free theories. The weight function g depends on y
through w1 and w2, the affine parameter values where the
generator y intersects σ1 and σ2. One can show that
Eqs. (3.14) and (3.15) imply Eq. (3.12). Moreover,
Eq. (3.14) follows directly from the positivity of the relative
entropy.
For interacting theories, gðwÞ will be a different function

that satisfies constraints derived in Ref. [14]. Under
changes of the affine parameter, g transforms nontrivially
due to renormalization:

gðwÞ → gðuÞ ¼ gðwðuÞÞ du
dw

: ð3:17Þ

The constraints on g are sufficient to obtain Eq. (3.12) from
Eqs. (3.14) and (3.15).

IV. ASYMPTOTIC WEAK-GRAVITY LIMIT

In an asymptotically flat spacetime, gravity effectively
becomes weak for light rays near future null infinity, Iþ,
for any fixed value of G. This is because the relevant term
in the focusing equation is 8πGT . One way to make this
term small is to take G → 0 at fixed T . But another is to
take the energy density T → 0 at fixed G; this is precisely
what happens near Iþ. Only massless fields reach Iþ, and
their density scales as T ∼Oðr−2Þ at large distances. In this
section, we will reconsider the weak-gravity limit as an
expansion in G=r2, with G fixed and r → ∞.
We will be able to work strictly on a Minkowski

background; we will never need to consider any other
metric explicitly. The effects of gravity can be computed at
order G=r2 by integrating the evolution equations for the
null extrinsic curvature (e.g., the Raychaudhuri equation
for the expansion), along a null congruence.

2The ~ς2 term enters the modular Hamiltonian through the
effective stress tensor of gravitational radiation [12].
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A. Causal horizons in asymptotically flat space

The metric of Minkowski space can be written as

ds2 ¼ −du2 − 2dudrþ r2dΩ2 ð4:1Þ

¼ −dw2 − 2dwdzþ dρ2 þ ρ2dϕ2: ð4:2Þ

In terms of the standard spherical and Cartesian systems,
u ¼ t − r, w ¼ t − z, and ρ ¼ ðx2 þ y2Þ1=2 ¼ r sin ϑ. We
use the notation

Ω ¼ ðϑ;ϕÞ; dΩ2 ¼ dϑ2 þ sin2ϑdϕ2: ð4:3Þ

In the limit as r → ∞, the coordinates ðu;ΩÞ label points
on future null infinity, Iþ. In the standard “unphysical
spacetime” or Penrose diagram of Minkowski space
[28,29], Iþ is a null hypersurface ruled by null geodesics
with affine parameter u. Each null geodesic is labeled by its
angular position Ω.
We now consider a general asymptotically flat spacetime

M [29]. It has the same conformal boundary as Minkowski
space, and we shall continue to use coordinates ðu;ΩÞ on
Iþ. Let p ∈ Iþ be a point at affine time up and angle Ωp.
Without loss of generality, we set ϑp ¼ π. LetHðupÞ be the
boundary of the past of p:

HðupÞ≡ _I−ðpÞ; p ∈ Iþ: ð4:4Þ

More precisely, H is the hypersurface in M obtained by
finding _I−ðpÞ in the unphysical spacetime and then trans-
forming back to M.
In pure Minkowski space, HðupÞ is the null plane [28]

given by tþ z ¼ up, or

wþ 2z ¼ up: ð4:5Þ

This is a null hypersurface with no expansion and shear.
It is ruled by light rays with affine parameter w. Each
geodesic is labelled by its position on the transverse
(x, y) or (ρ, ϕ) plane.
Now, consider HðupÞ in a general asymptotically flat

spacetimeM. BecauseHðupÞ is the boundary of the past of
a set, it is still a null hypersurface [28,29]. This implies that
the QFC (Sec. II C) can be applied to HðupÞ, and hence,
Eqs. (2.9) and (2.11) apply toHðupÞ. More strongly,HðupÞ
is a causal horizon, because p is the end point of an
inextendible worldline (e.g., an accelerated timelike
observer, or a light ray ending at p). This implies that
the GSL, Eqs. (2.5) and (2.7), can be applied to HðupÞ.
So far, no limits have been taken or approximations

made. Near p (i.e., for sufficiently large w), HðupÞ will
resemble the null plane of Minkowski space, Eq. (4.5). For
general up, HðupÞ may suffer significant distortions deep
inside M, as it passes through strongly gravitating regions.

B. Late causal horizons as a weak-gravity limit

We now take the limit as up → ∞. That is, we take the
end point of the causal horizon HðupÞ to approach future
timelike infinity. For simplicity, we will assume that all
energy is eventually radiated out to Iþ; that is, the Bondi
mass vanishes at sufficiently late retarded times. Thus, for
sufficiently large up, the causal horizon HðupÞ will remain
outside all timelike matter sources, passing through the
radiative region only (see Fig. 1). This region is filled with
radiation that propagates to Iþ along radially outgoing
light rays.
To be precise, let us pick an early time cutoff uEðΩÞ of

Iþ and exclude the portion of each HðupÞ that lies in the
past of uE from consideration. Then we take the limit as
up → ∞. Physically this is not restrictive, since one can
choose uE to be as early as we like, e.g., prior to the arrival
of the earliest radiation at Iþ. This prescription excludes
regions whereHðupÞwould develop caustics. Similarly, we
may place cutoffs on I− such that no radiation enters the
spacetime before the early-time cutoff and after the late-
time cutoff (up to weak tails [30,31]). This ensures that the
above assumptions about Iþ can be satisfied.
For large enough up, the energy flux through HðupÞ is

dominated by radially outgoing radiation. This implies that
Tww ∼ 1=u2p, as we will explain in detail below. The Weyl
tensor sources the shear ς of HðupÞ. Since the relevant
component of the Weyl tensor falls off as 1=up, we have
~ς2 ∼ u−2p [22]. Hence,

T ∼ u−2p ; ð4:6Þ

so the focusing equation,

θ0 ¼ −
θ2

2
− 8πGT ; ð4:7Þ

implies that the expansion θ is sourced at order 1=u2p.
Therefore, the θ2 term can be neglected in the up → ∞
limit, just as it could in the G → 0 limit in Sec. III.
Thus, the weak-gravity focusing equation (3.5) holds on

HðupÞ for large up, even though we have not taken G → 0.
Also, the weak-gravity equations for the expansion and for
the area difference, Eqs. (3.7) and (3.8), both hold on
HðupÞ for large up.
It follows that the weak-gravity entropy bounds reviewed

in Sec. III can all be applied directly to HðupÞ: the
differential and integral forms of the weak-gravity GSL,
Eqs. (3.9) and (3.10); the QNEC, Eq. (3.11); and the
QBB, Eq. (3.12).
We stress that we have not formulated any new entropy

bounds. Rather, we have identifiedHðupÞ, for large enough
up, as a null surface to which these known bounds apply.
Our remaining task is to take the up → ∞ limit and express
the bounds directly in terms of variables on Iþ.
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V. ENTROPY BOUNDS ON Iþ

We have constructed null hypersurfaces near Iþ to
which known weak-gravity entropy bounds apply
directly. To make this explicit, we referred only to bulk
quantities such as the physical energy flux and shear
tensor.
In this section, we express our results in terms of a finite

boundary energy flux (in which the role of the shear is
played by the Bondi news). In particular, our results will
show that the bounds obtained from the null surfacesHðupÞ
are independent of their orientation in the spacetime, i.e.,
independent of which boundary generator the point p
lies on.
Like in the previous section, it suffices to carry out all

calculations strictly on a Minkowski background. This
simplifies the analysis considerably.

A. Bulk to boundary dictionary

Before taking the up → ∞ limit, we have to establish
relations between bulk and boundary quantities. Below,
up and r are taken to be large, but still finite. Boundary
quantities are denoted by hats.

1. Cuts

All of the entropy bounds involve specifying a cut on a
null surface, and then either a deformation of this cut or a
second cut. In order to derive entropy bounds on Iþ, we
need to map cuts and deformations specified on Iþ into
cuts and deformations on the bulk null surfaces HðupÞ, for
large up.
Let σ̂ be a cut on Iþ. For large enough up, the boundary

of the past of σ̂ defines a cut σðupÞ of each HðupÞ:

σðupÞ ≡HðupÞ ∩ _I−ðσ̂Þ: ð5:1Þ

This definition is appropriate because the cuts “flow with
the outgoing radiation.” That is, the physical radiation that
lies above (or below) the cut σðupÞ on HðupÞ becomes
independent of up for large up. Hence, the entropy of the
quantum state between two cuts, or on the semi-infinite
region on one side of a cut, will become independent of up
in the limit.
A manifestly local definition equivalent to Eq. (5.1) is to

associate to each point on the boundary the bulk points with
the same ðu;ΩÞ but varying r ≤ ∞. This implies that we
associate to each ðu; ϑ;ϕÞ on Iþ the point ðw; ρ;ϕÞ on
HðupÞ, with

w ¼ ðup − uÞ tan2 ϑ
2
þ u; ð5:2Þ

ρ ¼ ðup − uÞ tanϑ
2
: ð5:3Þ

In particular, if σ̂ is given as a function uðΩÞ, the above
equations determine the cut σðupÞ parametrically as wðΩÞ,
ρðΩÞ.
For completeness, we note that z ¼ ðup − wÞ=2 and

r ¼ up − u

2 cos2ðϑ=2Þ : ð5:4Þ

The r position of the cut is irrelevant to the entropy
Sout½σðupÞ�, since the radiation is propagating radially out-
ward as up → ∞. Note that up − u can be assumed to be
positive, since the limit up → ∞ is taken with ðu; θ;ϕÞ
fixed.

2. Area element

Wemust also characterize local deformations of σðupÞ. As
up → ∞, they should limit to a deformation of the cut σ̂,
whereby a small area element of size δΩ is pushed forward
along the null generator of Iþ at angular position Ω. This
can be accomplished by locating the generator of HðupÞ
that has the same angular position on σðupÞ, using Eq. (5.3).
The solid-angle element δΩ spans an area element of size

A ¼ r2δΩ ð5:5Þ

on σðupÞ. Note that this depends on up and ϑ only
through Eq. (5.4).
Equation (5.5) follows immediately from setting du ¼ 0

in Eq. (4.1), but the result may seem counterintuitive. A is
the area of the intersection of a small solid angle δΩ of a
light cone u ¼ const.. with a null plane. In Euclidean space,
the intersection area of an angle element of a cone with a
plane would depend not only on the plane’s distance r from
the apex, but also on the angle at which the cone and plane
meet. Here the latter dependence is absent for small δΩ,
because the cone is null.

3. Null tangent vector

We consider the null surface HðupÞ with affine param-
eter w. The null vector kμ ¼ dxμ=dw is tangent to its
generators. kμ has components (0,1,0,0) in the fup; w; ρ;ϕg
coordinate system of Minkowski space. In the fu; r;ϑ;ϕg
coordinates, kμ has components

ku ¼ ðdu=dwÞup;ρ;ϕ ¼ cos2ðϑ=2Þ; ð5:6Þ

kr ¼ ðdr=dwÞup;ρ;ϕ ¼ −ðcosϑÞ=2; ð5:7Þ

kϑ ¼ ðdϑ=dwÞup;ρ;ϕ ¼ sin ϑ cos2ðϑ=2Þ
up − u

; ð5:8Þ

kϕ ¼ ðdϕ=dwÞup;ρ;ϕ ¼ 0: ð5:9Þ
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The subscripts indicate coordinates that are held fixed as
the derivative is taken.

4. Affine parameter and angular dependence

We are interested in following the same infinitesimal
beam of radiation near fixed u, ϑ, ϕ through a sequence of
light sheets up ¼ const as we take up → ∞. This is why we
expressed kμ in terms of u, ϑ, ϕ. The details of the u and ϑ
dependence will not be important. What matters is the
scaling with up, or equivalently (to leading order at fixed u,
ϑ, ϕ) by Eq. (5.4), the scaling with r.
Because dϑ=dw falls off as u−1p , u becomes an affine

parameter on HðupÞ as up → ∞:

d2u
dw2

¼ −
sin ϑ
2

�
dϑ
dw

�
up;ρ;ϕ

∼Oðu−1p Þ: ð5:10Þ

This implies that on a fixed generator (ρ, ϕ) of HðupÞ and
for finite w1, w2,

lim
up→∞

uðw2Þ − uðw1Þ ¼ ðw2 − w1Þ
�
du
dw

�
up;ρ;ϕ

; ð5:11Þ

where the last factor can be evaluated anywhere betweenw1

and w2. The scaling of dϑ=dw also implies that integrals
over a generator of HðupÞ become integrals over a
boundary generator at fixed angular position Ω, in the
up → ∞ limit. (This assumes that either the integral has a
finite range of u, or the integrand drops off sufficiently
rapidly at large u.)

5. Stress tensor and shear

A finite boundary “matter stress tensor” on Iþ (really,
the nongravitational energy flux across Iþ) can be defined
as [32,33]

T̂uuðu; ϑ;ϕÞ≡ lim
r→∞

r2Tuuðu; r; ϑ;ϕÞ: ð5:12Þ

We now relate this quantity to Tww, the nongravitational
energy flux across HðupÞ.
The bulk matter stress tensor in Minkowski space [33], in

the fu; r; ϑ;ϕg coordinates, falls off as

Tuu ∝ r−2; ð5:13Þ

Tuϑ ∝ r−2; ð5:14Þ

Tϑϑ ∝ r−1: ð5:15Þ

Other relevant components fall off at least as rapidly
as r−3. These falloff conditions together with Eqs. (3.2)
and (5.6)–(5.9) yield

Tww ¼ T̂uu

r2

�
du
dw

�
2

up;ρ;ϕ
þOðr−3Þ ð5:16Þ

¼ T̂uu

r2
cos4

ϑ

2
þOðr−3Þ: ð5:17Þ

This result implies that the boundary nongravitational
flux T̂uu could have been defined directly as the up → ∞
limit of r2Tww= cos2ðϑ=2Þ. Given the appearance of ~ς2

alongside Tww in the focusing equation for HðupÞ, it is
natural to define a boundary shear as a limit of the rescaled
shear of the null surfaces HðupÞ:

ς̂abðu; ϑ;ϕÞ≡ 1ffiffiffiffiffiffiffiffiffi
8πG

p lim
r→∞

r
ςabðu; r; ϑ;ϕÞ
cos2ðϑ=2Þ : ð5:18Þ

Indeed, it can be shown [22] that ς̂ab ¼ −Nab=2, whereNab

is the Bondi news. This confirms that ς̂ab, like T̂uu, is finite
and independent of the orientation of HðupÞ. We conclude
that

~ς2 ¼ ς̂abς̂
ab

r2
cos4

ϑ

2
þOðr−3Þ: ð5:19Þ

The total boundary energy flux is defined as

T̂ ≡ T̂uu þ ς̂abς̂
ab: ð5:20Þ

By Eqs. (5.17) and (5.19), the total energy flux across
HðupÞ is given by

T ðup; u;ΩÞ ¼
T̂ ðu;ΩÞ

r2
cos4

ϑ

2
þOðr−3Þ; ð5:21Þ

where rðup; u;ΩÞ is given by Eq. (5.4). This is a central
result for what follows.

B. Quantum null energy condition on Iþ

We showed in Sec. III that the standard QNEC applies to
the null surfacesHðupÞ for large up. Equation (3.11) can be
written as

1

A
S00out½σðupÞ; yðΩÞ� ≤

2π

ℏ
T : ð5:22Þ

Here Sout½σðupÞ� is the entropy of the quantum state on
HðupÞ restricted to one side of the cut σðupÞ. yðΩÞmarks the
generator of HðupÞ that has angular position Ω on σðupÞ;
this is where the cut is varied. σðupÞ is defined in terms of a
cut σ̂ on Iþ through Eqs. (5.2) and (5.3).
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Using Eqs. (5.5) and (5.21), this becomes

1

r2δΩ
du
dw

d
du

�
du
dw

d
du

Sout½σðupÞ;Ω�
�

≤
2π

ℏ
T̂ ðΩÞ
r2

�
du
dw

�
2

þOðr−3Þ: ð5:23Þ

The product rule yields two terms, of which one is
proportional to d2u=dw2. This is subleading by
Eq. (5.10) and can be dropped along with other terms of
order r−3 as we take the limit up → ∞. Upon canceling the
factor r−2ðdu=dwÞ2 on both sides we obtain

1

δΩ
d2

du2
Ŝout½σ̂;Ω� ≤

2π

ℏ
T̂ ðΩÞ; ð5:24Þ

where Ŝout½σ̂� is the entropy of the reduced density operator
obtained by restricting the quantum state on Iþ to the past3

or future of the cut σ̂. This is the QNEC on Iþ.

C. Generalized Second Law on Iþ

Integration of the QNEC on Iþ over the single generator
Ω yields the differential form of the GSL on Iþ:

−
1

δΩ
d
du

Ŝout½σ̂;Ω� ≤
2π

ℏ

Z
∞

σ̂
du T̂ : ð5:25Þ

We can also derive Eq. (5.25) directly from the GSL in
the bulk. The argument mirrors our derivation of the
boundary QNEC. The only new feature is the appearance
of the integral over a generator of HðupÞ in the bound. By
the remarks following Eq. (5.11), this becomes an integral
over the boundary generator Ω in the limit.
Integration by parts of Eq. (5.25) yields the integral form

of the GSL on Iþ:

Ŝout½σ̂2� − Ŝout½σ̂1� ≤
2π

ℏ

Z
σ̂1

σ̂2

d2Ωdu½u − u2ðΩÞ�T̂ ðu;ΩÞ:

ð5:26Þ

Again, this can also be derived directly from the bulk
integrated weak-gravity GSL, Eq. (3.10), using Eq. (5.11)
to convert from ðw − w1Þ to ðu − u1Þ. Note that the integral
is now over ðu;ΩÞ. Strictly, before taking the limit, u1½u;Ω�
is the initial cut at the fixed generator (ρ, ϕ) determined by
Ω at u. This corresponds to a different value of Ω at u1, but

again the angle difference vanishes in the up → ∞ limit, by
the remarks following Eq. (5.11).

D. Quantum Bousso bound on Iþ

We now apply the covariant bound on the Casini entropy
(the QBB), Eq. (3.12), to the finite portion of HðupÞ
defined by cuts σ̂1, σ̂2 on Iþ. Taking the limit as up → ∞,
recalling that u becomes an affine parameter in the
limit, and using Eqs. (5.21) and (3.17), we obtain the
QBB on Iþ:

ŜC ≤
2π

ℏ
ΔK̂; ð5:27Þ

where we identify the limit of the modular energy

ΔK̂ ¼
Z

d2Ω
Z

u2ðΩÞ

u1ðΩÞ
du ĝðuÞT̂ ðu;ΩÞ ð5:28Þ

as the expectation value of a modular Hamiltonian on Iþ.
Moreover, ŜC is defined as the limit of the vacuum-
subtracted entropies on the surfaces HðupÞ. It may be
identified as the vacuum-subtracted entropy of the asymp-
totic quantum state on Iþ, restricted to the region between
σ1 and σ2.
The QBB is more subtle than the other bounds due to

qualitative differences between the free and interacting
cases.4 For interacting bulk fields (such as gravitons), the
up → ∞ limit may be discontinuous, since interactions
turn off near Iþ. We expect that the free weighting
function, Eq. (3.16), will be the one relevant to the
asymptotic limit:

ĝðuÞ ¼ ðu2 − uÞðu − u1Þ
u2 − u1

; ð5:29Þ

even for fields which interact at any finite value of up.
These points bear further investigation. It would be
interesting to study the algebra of operators on Iþ directly.
However, they do not affect the validity of Eq. (5.27) in the
general form stated above.
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