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Rank-d tensorial group field theories are quantum field theories (QFTs) defined on a group manifold
G×d, which represent a nonlocal generalization of standard QFT and a candidate formalism for quantum
gravity, since, when endowed with appropriate data, they can be interpreted as defining a field theoretic
description of the fundamental building blocks of quantum spacetime. Their renormalization analysis is
crucial both for establishing their consistency as quantum field theories and for studying the emergence of
continuum spacetime and geometry from them. In this paper, we study the renormalization group flow of
two simple classes of tensorial group field theories (TGFTs), defined for the group G ¼ R for arbitrary
rank, both without and with gauge invariance conditions, by means of functional renormalization group
techniques. The issue of IR divergences is tackled by the definition of a proper thermodynamic limit for
TGFTs. We map the phase diagram of such models, in a simple truncation, and identify both UV and IR
fixed points of the RG flow. Encouragingly, for all the models we study, we find evidence for the existence
of a phase transition of condensation type.
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I. INTRODUCTION

Group field theories (GFTs) [1] are a new type of
quantum field theories characterized by a peculiar nonlocal
pattern of pairings of field arguments in the interactions.
The domain of definition of the fields is, for the most
studied models, a (Lie) group manifold, hence the name of
the formalism. The first consequence of the nonlocality of
the GFT interactions is that their quantum states can be
associated with graphs (or networks), while the Feynman
diagrams arising in the GFT perturbative expansion are
dual to cellular complexes. These graphs and cellular
complexes are then decorated by group-theoretic data,
corresponding to the degrees of freedom associated with
the GFT fields. This implies that a number of standard QFT
techniques have to be adapted to this new context, and that
a host of new mathematical structures can be explored by
such field theoretic means. This formalism finds its historic
roots, and main applications, at present, as a promising
framework for quantum gravity. From this more physical
perspective, GFTs are a tentative definition of the micro-
structure of quantum spacetime and of its fundamental
quantum dynamics. The decorated graphs, in this inter-
pretation, are the fundamental quantum structures from
which a continuum spacetime and geometry should emerge

in the appropriate regime of approximation. In fact, group
field theories were first proposed [2] as an enrichment, by
the addition of group-theoretic data, of tensor models [3]
(in turn a generalization of matrix models for two-
dimensional (2D) quantum gravity [4] to higher dimen-
sions), with the main goal being to obtain Feynman
amplitudes of the form of state sum models of topological
field theories. The link with loop quantum gravity (LQG)
[5] became quickly clear [6]: group field theories and loop
quantum gravity share the same type of quantum states, i.e.,
spin networks. It is then in the context of loop quantum
gravity and state sum models, called spin foam models [7]
and developed as a covariant definition of loop quantum
gravity, that most subsequent work has been done, once it
was understood [8] that the correspondence between group
field theory and spin foam amplitudes is completely
general. Finally, the relation between group field theory
and lattice quantum gravity, already evident in their origin
in tensor models, became stronger because of the appear-
ance of the Regge action in semiclassical analyses of spin
foam amplitudes (see, for example, [9]), and, more recently,
of the general possibility to recast group field theory
amplitudes as (noncommutative) simplicial gravity path
integrals [10]. It is now clear that group field theories sit at
the crossroads of several approaches to quantum gravity, as
a second quantized framework for loop quantum gravity
degrees of freedom [11] as well as an enrichment of tensor
models. The quantum field theory framework they provide
for the candidate fundamental degrees of freedom of
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quantum spacetime is then crucial for tackling the open
issues of these approaches. In particular, it makes it
possible to take on a condensed matterlike perspective,
making precise the idea of “atoms of space,” to study from
this perspective the emergence of continuum spacetime
[12], and to use powerful renormalization group techniques
for the analysis of their quantum dynamics. The renorm-
alization group analysis of GFT models has two main
goals: establishing their perturbative renormalizability and
exploring the continuum phase diagram. The first goal is all
the more important because these models are initially
defined and studied in perturbative expansion around the
trivial vacuum, and it is in this expansion that their relation
with loop quantum gravity and lattice quantum gravity, as
well as their quantum geometric content, is more apparent.
Establishing their perturbative renormalizability amounts
then to establishing the consistency of this definition, and
it also serves the purpose of constraining quantization
ambiguities (the GFT counterpart of those arising in the
canonical loop quantum gravity formulation) as well as
model building. The second goal is the most important
open issue in all these related quantum gravity approaches:
their continuum limit, i.e., the macroscopic, collective
dynamics of their microscopic degrees of freedom, and
the possibility of spacetime and geometry emerging from a
phase transition of the same degrees of freedom [12], as it
has been proposed also in related approaches [13–17]. It
also amounts to controlling the full GFTexpansion in terms
of the sum over cellular complexes and spin foam histories;
thus it can be seen as solving, by QFT techniques, the
problem of the continuum limit in both dynamical trian-
gulations and spin foam models (for which alternative
strategies have also been explored [18]).
GFT renormalization is, in fact, one of the most rapidly

developing research directions in this area, and it has
benefited greatly from concurrent developments in tensor
models [3], which provides analytic tools and many
insights concerning the combinatorics and the topology
of GFT Feynman diagrams [19,20] as well as the possible
definitions of the theory space to focus on [21,22]. Indeed,
most of the work in GFT renormalization has concerned a
class of GFTs, called tensorial group field theories
(TGFTs), in which tensorial structures are prominent.
Several interesting TGFT models have been proven to
be renormalizable [23–28], and their RG flow has also been
studied, mainly in the vicinity of the UV fixed point
[25,29–32], showing that asymptotic freedom is a very
general feature of TGFT models [33]. This work has
encompassed Abelian as well as non-Abelian models,
and both models with and without the additional gauge
invariance properties characterize GFTs for topological BF
theory and four-dimensional (4D) gravity, by giving their
Feynman amplitudes the structure of lattice gauge theories.
The same analysis has also been extended to models
defined not by groups but by homogeneous spaces [34].

More recently, nonperturbative GFT renormalization has
been tackled as well. Some work [35,36] has been based on
the Polchinski equation and on the analysis of the
Schwinger-Dyson equations (see also [37]). Most work
has, however, been framed in the language of the functional
renormalization group approach to QFTs, first adapted to
TGFTs in [38], after the initial steps taken in [39–42] for
matrix models. The first model being studied [38] was an
Abelian rank-3 one on Uð1Þ, and this analysis was quickly
extended to the noncompact case in [43]. A model in rank-6
and again based on Uð1Þ was instead analyzed in [44], this
time incorporating gauge invariance. All these models were
analyzed in a fourth order truncation in the number of
fields. In all these cases, not only was it possible to confirm
the asymptotic freedom of the models in the UV, but it was
also possible to identify IR fixed points and to provide hints
of a phase transition. The IR fixed points resemble Wilson-
Fisher fixed points for ordinary scalar field theories, and the
phase transition appears to separate a symmetric and a
broken or condensate phase, with a nonzero expectation
value for the TGFT field operator. With a different
perspective, the existence of a phase transition has been
proven for quartic tensor models in [45,46] with a char-
acterization of the related phases and also for GFT models
related to topological BF theory, in any dimension [47]. In
models more directly related to loop quantum gravity and
lattice quantum gravity, this type of phase transition was
suggested to govern the emergence of an effective cosmo-
logical dynamics from such quantum gravity models [48].
In this paper, we generalize the analysis of Abelian

models on R performed in [43], in two main ways: we
compute and study the RG flow of models of arbitrary rank,
and we perform the same analysis also for gauge invariant
models, again in arbitrary rank. In both cases, we then
specialize the results to ranks 3, 4, and 5, identify the UV
and IR fixed points, and describe the resulting phase
diagram. We still work, though, in a fourth order truncation
of the number of fields.
The plan of this paper is as follows. Section II reviews

the functional renormalization group applied to group field
theories following [38]. In Sec. III, we describe the analysis
of the simplest class of noncompact models, without gauge
invariance, for arbitrary rank. We also complete the analysis
given in [43] by providing the solution of the system of the
β-function at second order around the Gaussian fixed point,
provide details on the neighborhood of that trivial fixed
point. As in that previous work, the analysis of such a
noncompact model requires IR regularization, as we will
discuss in detail. The key point of our regularization
scheme is the introduction of a new parameter representing
the dependence of couplings on the volume of the direct
space. In Sec. IV, we repeat the analysis for another
interesting class of models obtained introducing an addi-
tional gauge invariance in the amplitudes, by means of
suitable projector operators inserted in the GFT action.
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After appropriate regularization, we can again study the RG
flow of these models. In Sec. V we give a summary of our
results and list some important open problems for this
approach. Appendixes A and B provide more details of our
calculations, and Appendix C deals with the issue of
scaling dimensions in the TGFTs.

II. THE FUNCTIONAL RENORMALIZATION
GROUP FOR TGFTS: AN OVERVIEW

In this section we first review the basic ingredients
of the (tensorial) group field theory formalism, in its
covariant functional integral formulation. Then, we present
the functional renormalization approach, as it has been
adapted and applied to TGFTs in [38].

A. Tensorial group field theories

Let us introduce the special class of GFTs we will work
with in the following, known as tensorial group field
theories [23–32,49–51].
Consider a field ϕ defined over d-copies of a group

manifoldG, ϕ:G×d → C. For the moment, we assumeG to
be a compact Lie group. Without assuming any symmetry
under permutations of field labels and, using the Peter-Weyl
theorem (or its counterpart for a noncompact group, e.g., a
Plancherel decomposition for the Lorentz group), the field
decomposes in group representations as follows:

ϕðg1;…; gdÞ ¼
X
P

ϕP

Yd
i¼1

DpiðgiÞ; ð1Þ

with P ¼ ðp1;…; pdÞ, gi ∈ G and where the functions
DpiðgiÞ form a complete orthonormal basis of functions on
the group characterized by the labels pi. In a TGFT model,
we require fields to have tensorial properties under basis
changes. We define a rank-d covariant complex tensor ϕP
to transform through the action of the tensor product of

unitary representations of the group ⊗
d

i¼1
UðiÞ, each of them

acting independently over the indices of field labels,

ϕp0
1;…;p0

d
¼
X
P

Uð1Þ
p0

1;p1
� � �UðdÞ

p0
d;pd

ϕp1;…;pd
: ð2Þ

The complex conjugate field will then be the contravariant
tensor transforming as

ϕ̄p0
1;…;p0

d
¼
X
P

ðU†ÞðdÞp0
d;pd

� � � ðU†Þð1Þp0
1;p1

ϕ̄p1;…;pd
: ð3Þ

TGFT interactions are defined by “trace invariants” built
out of ϕ and ϕ̄, which allow a strong control on the
combinatorial structure of field convolutions, and are thus
relevant for the construction of renormalizable TGFT
actions. Tensorial trace invariants generalize invariant

traces over matrices, which indeed are classical unitary
invariants. They are obtained contracting pairwise the
indices with the same position of covariant and contra-
variant tensors and saturating all of them. In this way, they
always involve the same number of ϕ and ϕ̄. A simple
example is the following:

Trðϕϕ̄Þ ¼
X
P;Q

ϕPϕ̄Q

Yd
i¼1

δpi;qi : ð4Þ

Considering that ϕP (ϕ̄P) transforms as a complex vector
(1-form) under the action of the unitary representations of
G on one single index, the fundamental theorem on
classical invariants for U on each index entails that all
invariant polynomials in field entries can be written as a
linear combination of trace invariants [52]. This formu-
lation of tensor models can be adapted to the real field case,
where the unitary group is replaced by the orthogonal
one [53].
An interesting feature, which becomes an important

computational tool, is that tensor invariants can be given
a graphical representation as bipartite colored graphs, and,
in fact, they are in one-to-one correspondence with them. A
tensor ϕ is represented by a (white) node with d labeled
half-lines outgoing from it. Its complex conjugate is a
similar d-valent node with a different color (black). A
tensor contraction is represented then by joining the half-
lines, equally labeled, of two nodes of different color.
Trace invariants can be generalized to convolutions

where the contractions are made by operators different
from the delta distribution, i.e., by nontrivial kernels. In this
case, the resulting object is not guaranteed to be a unitary
invariant.
We write a generic action for a TGFT model symboli-

cally as

S½ϕ; ϕ̄� ¼ Trðϕ̄ ·K · ϕÞ þ Sint½ϕ; ϕ̄�;
Trðϕ̄ ·K · ϕÞ ¼

X
P;Q

ϕ̄PKðP;QÞϕQ;

Sint½ϕ; ϕ̄� ¼
X
fnbg

λnbTrðVnb · ϕ
n · ϕ̄nÞ: ð5Þ

Here K and Vn are kernels implementing the convolutions
in the kinetic and interaction terms, respectively, where n
indicates the numbers of covariant and contravariant fields
appearing in the vertices, b labels the combinatorics of
convolutions (i.e., corresponds to some given bipartite
d-colored graph), and λnb is a coupling constant for the
interaction nb.
The formalism can easily be generalized to a TGFT

based on a noncompact group manifold G, and in this case
the Plancherel decomposition into (unitary) representations
replaces the Peter-Weyl one to decompose fields, and the
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definition of the trace over representation labels involves, in
general, also integrals over continuous variables.
Given an action S½ϕ; ϕ̄�, the partition function is defined

as usual,

Z½J; J̄� ¼ eW½J;J̄� ¼
Z

dϕdϕ̄e−S½ϕ;ϕ̄�þTrðJ·ϕ̄ÞþTrðJ̄·ϕÞ; ð6Þ

where J is a rank-d complex source term and TrðJ · ϕ̄Þ is
defined in (4).
The partition function can be expanded in perturbation

theory around a Gaussian distribution and expressed as a
(formal) sum over Feynman diagrams. Feynman diagrams
of a rank-d TGFT are obtained by attaching, to the bipartite
graph corresponding to a trace invariant defining each
interaction vertex, a propagator (dashed line) for each field
obtaining a (dþ 1)-colored graph (some examples are
depicted in Fig. 1).

B. FRG formulation for TGFTs

The generalization of the FRG formalism [54–58] to
TGFTs is straightforward and was first provided in [38].
Given a partition function of the type (6), we choose a UV
cutoff M and a IR cutoff N.1 Adding to the action a
regulator term of the form

ΔSN ½ϕ; ϕ̄� ¼ Trðϕ̄ · RN · ϕÞ ¼
X
P;P0

ϕ̄PRNðP;P0ÞϕP0 ; ð7Þ

we can perform the usual splitting in high and low modes.
In particular, given an action with a generic kernel depend-
ing on the derivative of the fields Kð∇ϕÞ and a generalized
Fourier transform F , if we choose RN to be of the specific
form

RNðP;P0Þ ¼ NδP;P0R

�
F ðKPÞ

N

�
; ð8Þ

we need to impose on the profile function RðzÞ the
following conditions:

(i) positivity RðzÞ ≥ 0, to indeed suppress and not
enhance modes outside of the domain of the regu-
lator function;

(ii) monotonicity d
dz RðzÞ ≤ 0, so that high modes will

not be suppressed more that low modes;
(iii) Rð0Þ > 0 and limz→þ∞RðzÞ ¼ 0 to exclude func-

tions with constant profile.
The last requirement, together with the form (8), guar-

antees that the regulator is removed for Z → 0. In accor-
dance with the usual FRG procedure, we define the scale
dependent partition function as

ZN ½J;J̄�¼eWN ½J;J̄� ¼
Z

dϕdϕ̄e−S½ϕ;ϕ̄�−ΔSN ½ϕ;ϕ̄�þTrðJ·ϕ̄ÞþTrðJ̄·ϕÞ;

ð9Þ

and the generating functionals of one-particle irreducible
(1PI) correlation functions after Legendre transform are
given in terms of the average field φ ¼ hϕi as

ΓN ½φ; φ̄� ¼ sup
J;J̄

fTrðJ · φ̄Þ þ TrðJ̄ · φÞ −WN ½J; J̄�

− ΔSN ½φ; φ̄�g: ð10Þ

Given the above definitions, the Wetterich equation takes
the form

∂tΓN ½φ; φ̄� ¼ Trð∂tRN · ½Γð2Þ
N þ RN �−1Þ; ð11Þ

where t ¼ logN, so that ∂t ¼ N∂N , and the “supertrace”
symbol Tr means that we are summing over all mode
labels. More explicitly, the functional trace reads

X
P;P0

∂tRNðP;P0Þ½Γð2Þ
N þ RN �−1ðP0;PÞ: ð12Þ

The presence of the ∂tRN in the Wetterich equation for
TGFTs, enforces the trace to be UV finite if the profile
function and its derivative go fast enough to 0, as z → þ∞.
In this way, we can basically forget about the UV cutoffM.
In any case, we need an initial condition of the type

FIG. 1. Three examples of Feynman graphs for a rank-3 TGFT. The trace invariants used to build the interactions are the following:
(a) Trðϕϕ̄Þ, (b) an example of Trðϕϕ̄ϕϕ̄Þ, and (c) an example of Trðϕϕ̄ϕϕ̄ϕϕ̄Þ.

1We adopt a standard QFT terminology for field modes, even if
no spacetime interpretation should be attached to them, at this
stage.
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ΓN¼M½φ; φ̄� ¼ S½φ; φ̄�; ð13Þ

for some scaleM. The problem of solving the full quantum
theory is now phrased as the one of pushing the initial
condition to infinity, which usually requires the existence of
a UV fixed point, and solving the Wetterich equation with
such an initial condition. The full quantum field theory will
then be defined by the corresponding solution, i.e., by the
full RG trajectory.
The Wetterich equation has a 1-loop structure, and since

no (perturbative) approximation is required to obtain it, it is
an exact functional equation. However, although we have
expressed the problem of extracting the flow of the theory
in terms of a partial differential equation in one single
variable, we still have the issue that all possible (i.e.,
compatible with symmetry requirements and field content)
couplings are allowed in Γk, which is thus expressible as an
infinite sum of monomials in the field (and its conjugate). If
we want to perform practical computations, we need some
approximation scheme for the form of the free energy.
Usually, this is obtained by truncating Γk to a maximal
power in the fields and in their derivatives. It is then a
truncation in theory space, which maintains the nonper-
turbative character of the RG equation.
What is peculiar, and interesting, about the application of

FRG to TGFTs, is that Γð2Þ
N carries inside the Wetterich

equation information about the combinatorial nonlocality
of the theory, i.e., the intricate combinatorics of TGFT
interactions. In the case we consider here, that of a
noncompact group manifold, this will also backreact at
the level of the β-functions, with the fact that, depending on
the combinatorics of the interaction, the volume contribu-
tions appearing in (11) will be not homogeneous and, in
general, a natural definition of an effective local potential
does not exist. Let us explain this key point, which we will
deal with in detail in the following.
In its usual form, namely when applied to a standard,

local quantum field theory (see, for instance, in [56]), the
Wetterich equation shows pathological IR divergences due
to the presence of δð0Þ arising from the two-point Green’s

function computed at a single point Gð2Þ
k ðq; qÞ. In the local

field theory case, these divergent delta functions are
homogeneous and proportional to the total volume of

the system, namely, the domain manifold of the fields.
A particular approximation procedure allows one to cure
this problem, and it is called the local potential approxi-
mation (LPA) [56]. This procedure cannot be applied, at
least not in the same straightforward way, to combinato-
rially nonlocal theories as TGFTs. One reason is that, in
such nonlocal theories, the same type of IR divergence
arises, in general, in a nonhomogeneous combination of
δð0Þ which are strictly dependent on the combinatorics of
the interaction. We will discuss this and several other issues
characterizing TGFTs as QFTs of an interesting new kind.

III. RANK-d TENSORIAL GROUP
FIELD THEORY ON R

As discussed in the Introduction, the first model studied
within the FRG framework for TGFTs, already in [38], was
a rank-3 model with compact group manifold Uð1Þ, and
subsequently, we have studied a noncompact counterpart of
the same model, i.e., a rank-3 TGFT on R [43]. New issues
concerning the thermodynamic limit but also more com-
pelling hints for the existence of UV and IR fixed points,
and of condensation phase transitions, were found.
We now extend the analysis and results of the latter work

to arbitrary rank (as well as analyzing in more detail in the
rank-3 model), showing how those intriguing hints are
actually confirmed in a more general case. In the following
section, we will analyze a modification of the same type of
TGFT models which includes a gauge invariance property
of fields and amplitudes, thus moving closer to full-fledged
TGFT models for quantum geometry and discrete quantum
gravity, as well as related to loop quantum gravity.
We start by introducing the class of TGFT models we

will analyze.

A. The model

The TGFTs we work with have “melonic” interactions
(in correspondence with d-colored graphs called “melons”)
[59–61]. Such melons are dual to special triangulations of
the d-ball [51] and, of course, correspond also to trace
invariants of the type introduced in Sec. II A.
We consider a rank-d model with complex field, ϕ:

Rd → C, defined by the following action:

S½ϕ; ϕ̄� ¼ ð2πÞd
Z
R×d

½dxi�di¼1ϕ̄ðx1;…; xdÞ
�
−
Xd
s¼1

△s þ μ

�
ϕðx1;…; xdÞ

þ λ

2
ð2πÞ2d

Z
R×2d

½dxi�di¼1½dx0j�dj¼1½ϕðx1; x2;…; xdÞϕ̄ðx01; x2;…; xdÞϕðx01; x02;…; x0dÞϕ̄ðx1; x20;…; x0dÞ

þ symf1; 2;…; dg�; ð14Þ
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where 2π factors have been conveniently introduced in the
definition of the Fourier transform, the symbol sym f·g
represents the rest of the colored symmetric terms in the
interaction (see Fig. 2 for a graphical representation2 in
rank d ¼ 3), and μ and λ are coupling constants. As it is
easy to see, because of the structure of the interaction
kernels, the interaction fully depends on all the 2d
coordinates, and this makes it nonlocal from the combi-
natorial point of view. Note that we have introduced a
unique coupling constant for the d colored interactions.
This is because at this point we have no criterion to
distinguish them, as we do not associate a direct physical
meaning to the coloring. A different choice is to introduce a
different coupling for each color term. The FRG analysis of
a model of this type, called anisotropic in [29], is slightly
more cumbersome (at the end, for instance, the theory flow
in a multidimensional coupling space must be drawn using
sections or projections) but could in practice be deduced
from the calculations performed here. We plan to analyze
this anisotropic model in a subsequent work.
After Fourier transform, we write the action in momen-

tum space as

S½ϕ; ϕ̄� ¼
Z
R×d

½dpi�di¼1ϕ̄12���d

�Xd
s¼1

p2
s þ μ

�
ϕ12���d

þ λ

2

Z
R×2d

½dpi�di¼1½dp0
j�dj¼1

× ½ϕ12���dϕ̄102���dϕ1020���d0 ϕ̄120���d0 þ symf1;2;…; dg�;
ð15Þ

where we use the conventions

ϕ12���d ¼ ϕp1;p2;…;pd
¼ ϕðpÞ

¼
Z
R×d

½dxi�di¼1ϕðx1; x2;…; xdÞe−i
P

i
pixi ; ð16Þ

ϕðx1; x2;…; xdÞ ¼
1

ð2πÞd
Z
R×d

½dpi�di¼1ϕ12���de
i
P

i
pixi : ð17Þ

We represent the propagator as a stranded line made with d
segments (strands). See Fig. 3 for the case d ¼ 3. The
combinatorics of the interaction is preserved by the Fourier
transform.

B. Dimensions

We can now proceed with the dimensional analysis to fix
the dimensions of the coupling constants. To make sense of
the exponentiation of the action in the partition function, we
must set ½S� ¼ 0. Furthermore, we fix the dimensions in
units of the momentum, i.e., ½p� ¼ ½dp� ¼ 1.3 Now, for
consistency we must have ½μ� ¼ 2. This leads us to the
following equations:

dþ 2½ϕ� þ 2 ¼ 0 ⇒ ½ϕ� ¼ −
dþ 2

2
; ð18Þ

½λ� þ 2dþ 4½ϕ� ¼ 0 ⇒ ½λ� ¼ 4; ð19Þ

which fix the dimension of the TGFT fields depending on
the rank-d of the model. Note that the above dimensions are
fixed with respect to the Fourier components of the field. In
the direct space, the field has a dimension ½ϕ� ¼ ðd − 2Þ=2,
in units ½x� ¼ −1. In addition, as one directly realizes from
(19), the notion of dimension of a coupling does not depend
on the dimension d of the manifold of the theory.
It is important to stress that, in this (T)GFT context, the

canonical dimension differs from the scaling dimension of
the coupling constants, which instead depends on the rank-
d, and reflects the power counting of the given model. In
general, the notions of canonical or scaling dimensions or
power counting must be studied with special care because

FIG. 2. Colored symmetric interaction terms in rank d ¼ 3.

2As a remark, in the following subsections, illustrations and
figures are made in the case d ¼ 3 because the general case can
easily be recovered from that case.

3Notice that the physical dimension of such momentum
variables, if any, is not especially relevant in this context; what
matters is the relative dimension of the various ingredients
entering the TGFT action.
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they do not reflect the conventional wisdom from usual
(local) quantum field theories.
We now address in some detail the issue of scaling

dimensions of the couplings, which in turn gives the first
set of information about relevant, marginal, and irrelevant
directions of the RG flow and then also a preliminary
indication about the reliability of any given truncation of
the effective action.
As in standard QFT (see Appendix C 1), we need to

estimate the power counting corresponding to various
interactions, in order to determine their proper scaling
dimension. The general idea is that the scaling dimension is
chosen so that the most divergent interactions are regular-
ized, the RG system is made autonomous, and other
interactions are correspondingly suppressed. And as in
standard QFT, we do this by using the power counting in
the UV (which sets the initial conditions of our GR flow
equations), and only around the putative Gaussian fixed
point. This is necessary because it is only at the perturbative
level around the free theory that we have some control over
such power counting. For this reason, however, one should
be careful in taking the result of this analysis as giving any
general indication about relevant and irrelevant directions,
and about the reliability of a given truncation. The latter, in
fact, can only be studied by detailed analysis of appropriate
extensions of the same truncation.
The power counting of an amplitude has been treated in

full-fledged form using multiscale analysis in [25]
(Proposition 2 therein). Note that the power counting is
universal and independent of the regularization scheme. For
a graph G, we write the amplitude AG after imposing some
cutoff in the momentum space involving some scale k as

jAGj ∝
����
�Y

v∈V
λv

�����kωdivðGÞ; ð20Þ

where v runs over the set V of vertices of G and λv is the
coupling associated with v, and where ωdivðGÞ is the
divergence degree of the graph G giving the highest power
involving the scale k. The integer jVj determines the order
of the perturbation in which this amplitude has been
evaluated. It remains to interpret and restrict this formula
according to our present context. We must first stress that
this counting was performed on compact group manifolds
[namely GD ¼ Uð1ÞD or SUð2ÞD]. In our situation, the
counting using the group GD ¼ Uð1Þ (fixing in [25]
D ¼ 1) must coincide with what we obtain before taking
the thermodynamic limit. For simplicity, we focus on
connected diagrams since we will be interested in a
truncation containing only connected interactions (such
that the number of connected components is C∂ ¼ 1 in the

same reference; in fact, the below reasoning can easily be
extended to the more general case C∂ ≥ 1). In such
circumstances, the degree of divergence is of the form

ωdivðGÞ ¼ −2Lþ Fint ¼ −ΩG −
1

2
½ðd − 3Þn − 2ðd − 1Þ�

þ 1

2
½ðd − 3Þl · −2ðd − 1Þ�V; ð21Þ

where L is the number of propagator lines, and Fint is the
number of closed loops (internal faces) or momenta
integrated. Then, the degree is further expanded in terms
ofΩG related to the Gurau degree of the graph [19] which is
a positive quantity (its explicit expression is not required in
the following), n (written Next in [25]) is the number of
external legs of the diagram, l · V ≔

Pkmax
l¼2 lVl is the

number of exiting half-lines of all vertices, V ¼PlVl is
the total number of vertices, and Vl is the number of
vertices having degree l.
Consider now a graph G0 having n0 external legs,

n0 ∈ ⟦2; kmax⟧. We have provided in Appendix C 1 the
standard picture in scalar field theory of the extraction of
the scaling dimension of some coupling λn0 just from the
knowledge of the number of external legs n0 using some
power counting arguments. The idea is straightforward: the
RG equation describing the evolution of a coupling λn0;k can
be expanded perturbatively, and several terms AG;k contrib-
ute to that equation. One must equate the scaling of AG;k and
that of λn0;k. A set of constraints is then generated and allows
one to fix the scaling fλn0;kg. However, observables in the
tensor case have a lot more structure: they are sorted by a
largeN expansion (they have different power counting), i.e.,
by their UV behavior, and distinguished by their boundary
data (including the number of external legs n0). We report
the corresponding analysis in Appendix C 2. The result of
that analysis is quite involved in the generic case. Using the
large N expansion, we can, however, find couplings with
explicit expressions for scaling dimensions.
Consider the set of graphs Gwith the same set of external

data associated with a particular pattern b characterizing an
interaction λn0;bTrn0;bððϕ · ϕ̄Þn0=2Þ. There are choices for b
such that G is dominant in power counting such that the
quantity ΩG ¼ 0, and such that the scaling dimension of
λn0;b can be evaluated as (see Appendix C 2)

fλn0;bg ¼ −
1

2
½ðd − 3Þn0 − 2ðd − 1Þ�: ð22Þ

Remarkably, the condition imposes that the scaling dimen-
sion becomes actually independent from the precise pattern
b (at given polynomial order in the fields).
The scaling dimension analysis of the gauge invariant

TGFT, as treated in Sec. IV, can be performed in a similar
way (see Appendix C 2). In the end, the scaling dimensions
of particular couplings with the same boundary conditions

FIG. 3. Feynman rule for the propagator at d ¼ 3.
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as above are again of the form (22) with a shift in the
dimension d → d − 1.
In the following, we will present the general analysis of

RG flow equations for TGFT models for arbitrary rank-d,
and then specialize it, giving more details, in the cases
d ¼ 3, 4, 5, in order to cover a certain variety of cases.
In these different cases, the above analysis of scaling

dimensions, in the TGFT models without gauge invariance,
as defined by (14), indicates that

(i) at rank d ¼ 3, there is an infinite tower of relevant
couplings with an arbitrary valence of the interaction
[25]; this is an analogue of the superrenormalizable
PðϕÞ2-scalar model in dimension 2.

(ii) at rank d ¼ 4, mass and ϕ4 are relevant operators,
and the model includes two different marginal
higher order ϕ6-terms;

(iii) at rank d ¼ 5, mass and ϕ4 terms are relevant and
marginal directions in the UV, respectively.

We will discuss relevant and marginal operators for the
class of TGFT with gauge invariance in Sec. IV. More
extensively, in the following, we will comment on the
reliability of the truncation of the effective action we use
(including only a mass term and ϕ4-interaction) in char-
acterizing the RG flow of the various models.

C. Effective action and Wetterich equation

To proceed with the functional renormalization group
analysis, following the general template described in the
previous section, we introduce an IR cutoff k and a UV
cutoff Λ. We need to perform a truncation on the form of
the effective action. A possible choice, compatible with the
condition (13), is to truncate the effective action to be of the
same form of the action itself for any value of the cutoffs,
that is,

Γk½φ; φ̄� ¼
Z
R×d

½dpi�di¼1φ̄12���d

�
Zk

X
s

p2
s þ μk

�
φ12���d

þ λk
2

Z
R×2d

½dpi�di¼1½dp0
j�dj¼1½φ12���dφ̄102���dφ1020���d0φ̄120���d0 þ symf1; 2;…; dg�; ð23Þ

where φ ¼ hϕi.
According to the analysis of Sec. III B, the truncation

(23) includes
(i) at rank d ¼ 3, two relevant directions out of an

infinite tower of relevant others with arbitrary
valence of the interaction [25];

(ii) at rank d ¼ 4, all relevant directions but does not
include marginal higher order φ6-terms;

(iii) at rank d ¼ 5, all the relevant and marginal
directions.

Therefore, a priori, within this φ4-truncation, the model
at rank d ¼ 5 containing all relevant and marginal direc-
tions will have the most reliable results in terms of
qualitative stability of the flow with respect to the inclusion
of higher order couplings. However, this being said, the
results for the other ranks d ¼ 3 and, especially, 4 might
still turn out to be qualitatively stable, and one cannot prove
or disprove this possibility without a detailed analysis of
the improved RG flow.
As we have already stressed, this is a nonperturbative

truncation of the theory, and any of the ensuing results
should then be tested by extending this truncation, includ-
ing more invariants [including other types of Trðϕ4Þ
invariants, i.e., with different combinatorics, as well as
higher order terms Trðϕ2nÞ, n ≥ 3; in general, one should
include also disconnected invariants such as multitraces,
Trðϕ2nÞTrðϕ2mÞ…] and checking for (qualitative) conver-
gence. Enlarging the theory space is postponed for future
investigations, but it should be obvious that, even in the

truncation given by (23), the calculations and the outcome
of the present analysis remain highly nontrivial.
From the dimensional analysis of the previous section

and from the fact that ½Γk� ¼ 0 and ½φ� ¼ ½ϕ�, one infers
½Zk� ¼ 0, ½μk� ¼ ½μ� ¼ 2, and ½λk� ¼ ½λ� ¼ 4.
We introduce a regulator kernel of the following form

[62,63]:

Rkðp;p0Þ ¼ δðp − p0ÞZk

�
k2 −

X
s

p2
s

�
θ

�
k2 −

X
s

p2
s

�
;

ð24Þ
where θ stands for the Heaviside step function. This form of
the regulator is convenient because it allows one to solve
analytically many spectral sums. It is easy to show that Rk
satisfies the minimal requirements for a regulator kernel:

(i) as a consequence of the fact that θð−jxjÞ ¼ 0, we
have
Rk¼0ðp;p0Þ

¼δðp−p0ÞZk

�
−
X
s

p2
s

�
θ

�
−
X
s

p2
s

�
¼0; ð25Þ

(ii) at the scale k ¼ Λ, the regulator takes the form
Rk¼Λðp;p0Þ

¼δðp−p0ÞZΛ

�
Λ2−

X
s

p2
s

�
θ

�
Λ2−

X
s

p2
s

�
; ð26Þ

which at the first order gives Rk¼Λ ≃ ZΛΛ2;
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(iii) for k ∈ ½0;Λ�, we also have

Rkðp;p0Þ ¼ 0; ∀ p;p0; such that jpj; jp0j > k;

ð27Þ

Rkðp;p0Þ≃ Zkk2; ∀ p;p0; such that jpj; jp0j < k:

ð28Þ

The derivative of the regulator kernel with respect to the
logarithmic scale t ¼ log k, entering in the Wetterich
equation, evaluates as

∂tRkðp;p0Þ ¼ θðk2 − Σsp2
sÞ½∂tZkðk2 − Σsp2

sÞ
þ 2k2Zk�δðp − p0Þ: ð29Þ

One notes that Rk and ∂tRk are both symmetric kernels,
which is important in evaluating the convolutions induced
by the Wetterich equation.
Computing the 1PI 2-point function yields

Γð2Þ
k ðq;q0Þ ¼

�
Zk

X
s

q2s þ μk

�
δðq − q0Þ þ λk

�Z
R
dp1φp1q02…q0d

φ̄p1q2…qdδðq1 − q01Þ

þ
Z
R×ðd−1Þ

½dpi�di¼2φq0
1
p2…pd

φ̄q1p2…pd

�Yd
i¼2

δðqi − q0iÞ
�
þ symf1; 2;…; dg

�

¼
�
Zk

X
s

q2s þ μk

�
δðq − q0Þ þ Fkðq;q’Þ: ð30Þ

There is a simple graphical way to picture the various terms
contributing to Fk. Each summed index can be represented
by a segment and each fixed index (not summed) by a dot.
As an example in rank d ¼ 3, Fig. 4 displays two terms
coming from the second variation of the interaction labeled
by color 1 [the ones which appear explicitly in (30)]. The
other terms appearing in symf·g can be inferred by color
permutation.
Defining the operator Pk with kernel

Pkðp;p’Þ ¼Rkðp;p’Þþ
�
Zk

X
s

p2
s þ μk

�
δðp−p’Þ; ð31Þ

the Wetterich equation can be recast as

∂tΓk ¼ Tr½∂tRk · ðPk þ FkÞ−1�: ð32Þ

The right-hand side (RHS) of (32) generates an infinite
series of terms with convolutions involving an arbitrary
number of fields. To compare the two sides of (32), we must
therefore perform a truncation in this series to match with
the left-hand side (LHS) of that equation. This may be
achieved expanding (32) in powers of Fk · ðPkÞ−1, that is, in
powers of φφ̄, and considering only the terms up to the
power 2,

∂tΓk ¼ Tr½∂tRk · ðPkÞ−1 · ð1þ Fk · ðPkÞ−1Þ−1�
¼ Tr½∂tRk · ðPkÞ−1 · ð1 − Fk · ðPkÞ−1
þ Fk · ðPkÞ−1 · Fk · ðPkÞ−1Þ þ oððφφ̄Þ3Þ�: ð33Þ

The vacuum term proportional to the zeroth order in the
above expansion will be discarded because it does not
reflect any term in the LHS of (32). As an explicit example,
the trace at linear order takes the form

∂tΓkin
k

¼
Z
R×12

∂tRkðp;p0ÞðPkÞ−1ðp0;qÞFkðq;q0ÞðPkÞ−1ðq0;pÞ:

ð34Þ

Already, from the structure of the operators, ∂tRk, Pk, and
Fk, we expect the presence of singular δ-functions which
need to be regularized. Indeed, the appearance of δð0Þ-
terms reflects the fact that we have infinite volume effects
which have to be treated. The presence of such infinities, as
we have anticipated above, is not a specific feature of
TGFTs, as it also arises in standard QFT. What is peculiar
in TGFTs is the fact that, due to the combinatorics of the
vertex operators, these divergences cannot be addressed by
projection on the constant fields. Roughly speaking, in
ordinary (local) field theories projecting on constant fields
allows one to factorize out the full volume of the space
entering some given power of δð0Þ, and depending only on
the order of the field interaction. Such a procedure cannot
be applied in the present setting, the main reason being that
the order of volume divergences depends not only on theFIG. 4. Terms of the second variation of Γk at rank d ¼ 3.
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order of field interactions but also on their precise con-
volution pattern. This would be entirely lost in a constant
field projection and must instead be checked term-by-term
in the expansion of (32). The best way to tackle these
divergences is to resort to a compactification of configu-
ration space, corresponding to a discretization in the
conjugate space, and define an appropriate thermodynamic
limit. This is explained in the next section.

D. IR divergences and thermodynamic limit

To regularize volume divergences, we perform a com-
pactification of the direct space and a lattice regularization
in the conjugate space, following the conventions of [64],
and generalizing to arbitrary rank the procedure adopted in
[43]. Defining the model (14) over a compact set D ⊂ R×d

with volume Ld ¼ ð2πrÞd, and taking a Fourier transform,
the domain of integration (actually, summation) of the
effective action, in momentum space, becomes the lattice

D� ¼
�
2π

L
Z
�

×d
¼
�
1

r
Z
�

×d
≔
�
lZ
�

×d
; ð35Þ

so that we have, for any function FðpÞ,Z
D�
½dpi�di¼1FðpÞ ¼ ld

X
p1;p2;…;pd∈D�

FðpÞ: ð36Þ

We define the delta distribution in D� in momentum space
as

δD�ðp;qÞ ¼ l−dδp;q; ð37Þ

with δp;q ¼Qsδps;qs , the Kronecker delta. Choosing an
orthonormal basis ðepÞp∈D� for the space of fields such that
epðqÞ ¼ δD�ðp;qÞ, we have

ϕðpÞ ¼ hep;ϕiD� : ð38Þ

For a generic observable A, we then have

ðAϕÞðpÞ ¼
Z
D�
½dqi�di¼1Aðq;pÞϕðpÞ

¼
Z
D�
½dqi�di¼1heq; AepiD�ϕðpÞ: ð39Þ

Whenever A is invertible, then the inverse operator satisfiesZ
D�
½dri�di¼1Aðp; rÞA−1ðr;qÞ ¼ δD� ðp;qÞ: ð40Þ

We also define the regularized functional derivative as

δ

δϕðpÞ ¼ l−d
∂

∂ϕðpÞ ; ð41Þ

so that the following relations hold:

δ

δϕðpÞϕðqÞ ¼ δD� ðp;qÞ;
δ

δJðpÞ e
hJ;ϕiD� ¼ JðpÞehJ;ϕiD� : ð42Þ

This set of conventions is, of course, consistent with the
continuous version of field theory, where δD� becomes
the Dirac δ-distribution and the derivative (41) becomes the
standard functional derivative.
Using this regularization prescription, the effective

action of the model takes the form

Γk½φ; φ̄; l� ¼ ld
X
p∈D�

φ̄12���d

�
Zk

X
s

p2
s þ μk

�
φ12���d

þ l2d
λk
2

X
p;p0∈D�

½φ12���dφ̄102���dφ1020���d0φ̄120���d0

þ symf1; 2;…; dg�; ð43Þ

where, using the same notation φ for the field and its
Fourier transform, one has

φðx1; x2;…; xdÞ ¼ ð2πÞ−dld
X
p∈D�

ei
P

i
pixiφðpÞ;

φðpÞ ¼
Z
D
½dxi�di¼1e

−i
P

i
pixiφðx1; x2;…; xdÞ: ð44Þ

Now we use the relations (44) to transform δD� and obtain

ð2πÞ−dld
X
p∈D�

δD� ðp;qÞei
P

i
pixi ¼ ð2πÞ−dei

P
i
qixi : ð45Þ

Thus, an integral representation of the delta distribution
over D� can be consistently defined as

δD� ðp;qÞ ¼ ð2πÞ−d
Z
D
½dxi�di¼1e

−i
P

i
ðpi−qiÞxi : ð46Þ

As a final result, we have

δD� ðp;pÞ ¼ ð2πrÞd
ð2πÞd ¼ rd ¼ 1

ld
: ð47Þ

From these formulas, the continuum description will be
recovered in the thermodynamic limit l → 0.
This procedure makes the dependence on the volume of

the direct space explicit. We can then also rescale the
coupling constants of the model to incorporate in their
definition a dependence on the same volume. Then, we can
use this dependence in such a way that the noncompact
(thermodynamic) limit of the theory becomes well defined
and all divergences are consistently removed.

GELOUN, MARTINI, and ORITI PHYSICAL REVIEW D 94, 024017 (2016)

024017-10



E. β-functions and RG flows

We introduce a regularization as outlined in Sec. III D and write the regularized effective action as

Γk½φ;φ̄�¼
Z
D�
½dpi�di¼1φ̄12���d

�
Zk

X
s

p2
sþμk

�
φ12���d

þλk
2

Z
D�×2

½dpi�di¼1½dp0
j�dj¼1½φ12���dφ̄102���dφ1020���d0φ̄120���d0 þsymf1;2;…;dg�: ð48Þ

We can study the Wetterich equation corresponding to the action (48), incorporating a dependence on the volume in the
coupling constants, and perform a thermodynamic limit at the end of the computation to extract the coefficients valid in the
noncompact case.
The set of β-functions that we obtain from the discretized model is4

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

βðZkÞ ¼ λk
ðZkk2þμkÞ2

(
∂tZk

"
2ðd − 1Þ kl þ π

d−1
2

ΓEðdþ1
2 Þ

kd−1

ld−1

#
þ 2Zk

"
ðd − 1Þ kl þ π

d−1
2

ΓEðd−12 Þ
kd−1

ld−1

#)

βðμkÞ ¼ − dλk
ðZkk2þμkÞ2

(
∂tZk

"
4
3
k3
l þ π

d−1
2

ΓEðdþ3
2 Þ

kdþ1

ld−1

#
þ 2Zk

"
2 k3

l þ π
d−1
2

ΓEðdþ1
2 Þ

kdþ1

ld−1

#)

βðλkÞ ¼ 2λ2k
ðZkk2þμkÞ3

(
∂tZk

"
π
d−1
2

ΓEðdþ3
2 Þ

kdþ1

ld−1 þ
4ð2d−1Þ

3
k3
l þ 2δd;3k2

#

þ 2Zk

"
π
d−1
2

ΓEðdþ1
2 Þ

kdþ1

ld−1
þ 2ð2d − 1Þ k3l þ 2δd;3k2

#)
: ð49Þ

It must be stressed that the coefficients appearing in (49) are
computed with integrals as in the continuous setup. This is,
however, not an issue, once the volume dependence has
been factored out; the order of taking the limit and
performing the integral does not matter.
Some interesting features of the system (49) must be

stressed. At this intermediate step (the limit liml→0 still has
to be taken), this is a nonautonomous system, and it
involves terms of different powers in the cutoff k (we
refer to this feature as “nonhomogeneity” in k).
Nonautonomous systems are known to occur in other
contexts, for example, quantum field theory at finite
temperature [58], or on a curved [65] and noncommutative
spacetime [66]. The nonhomogeneity in k of the system
signals the presence of an external scale, for the system:
here, the radius of the compactified configuration space.
The specific form of the terms appearing in this case is an
effect of the particular combinatorics of the vertices of the
theory which, after differentiation, yields the 1PI 2-point
function with terms with different volume contributions. If
the l parameter is kept finite, we see two different systems
arising in the UV and IR limits, coming from different
leading terms. Such a feature has been found in previous
work [38], and both the two limits and the intermediate

regime were investigated. In the two limits one can
compute the analogue of fixed points, which, however,
cannot be straightforwardly interpreted as such.
On the other hand, if one tries to proceed in the usual

way, extracting the dimensions of the coupling constants
using one parameter (k or l), one obtains a set of
β-functions which are either trivial or still divergent in
the limit. Hence, in the end the nonlocal combinatorics of
the TGFT interactions requires a revision of conventional
procedures of local QFTs. As we now show, the correct
way of proceeding in the TGFT case requires taking
advantage of the presence of both the two parameters
ðk; lÞ when defining the scaling of the couplings.
To make sense of the above system, consider the

following ansatz:

Zk ¼ Z̄klχk−χ ; μk ¼ μ̄kZ̄klχk2−χ ; λk ¼ λ̄kZ̄2
kl

ξkσ;

ð50Þ

where ½Z̄k� ¼ ½μ̄k� ¼ ½λ̄k� ¼ 0, ½φ� ¼ − dþ2
2
, and

ξþ σ ¼ 4.
The ordinary coarse graining picture, adapted to a finite

size volume, applies equally in our TGFT context. In
ordinary local QFT, one regularizes volume divergences
just as is performed here, by introducing an external length/
volume scale; in the local QFT case, this external scale4Important steps of the calculation are detailed in Appendix A.
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(which can just be set to the identity, of course) enters the
couplings just as their canonical dimension would suggest,
and the same happens for their k-dependence, i.e., their
scaling dimension. In other words, the fact that no real
advantage is obtained by keeping the external volume scale
explicit is due to the identity between canonical and scaling
dimension. In the TGFT case, by following the very same
procedure, we realize that canonical and scaling dimen-
sions of the couplings are different. Keeping the external
scale explicit allows us to distinguish more easily the
contribution to the k-dependence of the various couplings
that is due to their physical scaling (coarse graining), from
the contribution that only indicates their canonical dimen-
sion, because the latter is directly reflected in the depend-
ence on the external volume scale.

We look for the scaling of dimensionless coupling
constants, i.e., for dimensionless β-functions. From (50),
and using the convention ηk ¼ ∂t ln Z̄k, one finds

ηk ¼
1

Z̄k
βðZ̄kÞ ¼

1

Zk
βðZkÞ þ χ;

βðμ̄kÞ ¼
1

Z̄klχk2−χ
βðμkÞ − ηkμ̄k − ð2 − χÞμ̄k;

βðλ̄kÞ ¼
1

lξkσZ̄2
k

βðλkÞ − 2ηkλ̄k − σλ̄k; ð51Þ

and inserts this in (49) to reach the following expressions:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ηk ¼ λ̄klξkσ

l2χk2ð2−χÞð1þμ̄kÞ2

(
ðηk − χÞ

"
π
d−1
2

ΓEðdþ1
2 Þ

kd−1

ld−1
þ 2ðd − 1Þ kl

#
þ 2

"
ðd − 1Þ kl þ π

d−1
2

ΓEðd−12 Þ
kd−1

ld−1

#)
þ χ;

βðμ̄kÞ ¼ − dλ̄klξkσ

l2χk6−2χð1þμ̄kÞ2

(
ðη − χÞ

"
π
d−1
2

ΓEðdþ3
2 Þ

kdþ1

ld−1 þ 4
3
k3
l

�
þ 2

"
2 k3

l þ π
d−1
2

ΓEðdþ1
2 Þ

kdþ1

ld−1

#)
− ηkμ̄k − ð2 − χÞμ̄k;

βðλ̄kÞ ¼ 2λ̄2kl
ξkσ

l2χk6−2χð1þμ̄kÞ3

(
ðη − χÞ

"
π
d−1
2

ΓEðdþ3
2 Þ

kdþ1

ld−1
þ 4ð2d−1Þ

3
k3
l þ 2δd;3k2

#

þ 2

"
π
d−1
2

ΓEðdþ1
2 Þ

kdþ1

ld−1 þ 2ð2d − 1Þ k3l þ 2δd;3k2
#)

− 2ηkλ̄k − σλ̄k:

ð52Þ

To make the noncompact limit regular, we must solve the
system in the variables ξ and χ by requiring that the highest
degree of divergence (highest negative power of l) is
regularized and all the subleading infinities are sent to
zero. This is achieved by solving, for any d ≥ 3,

ξ − 2χ − ðd − 1Þ ¼ 0: ð53Þ

We make a natural choice χ ¼ 0 (thus implying that Zk is
dimensionless) and obtain

ðχ ¼ 0; ξ ¼ d − 1Þ ⇒ σ ¼ 4 − ξ ¼ 5 − d: ð54Þ

Let us come back to the issue of scaling and canonical
dimensions. We realize that the scaling dimension can be
expanded in a form similar to (54) as

fλn;bg ¼ ðd − 1Þ − ðd − 3Þ n
2
¼ n − ξnðdÞ ¼ σnðdÞ;

ξnðdÞ ≔ ðd − 1Þ
�
n
2
− 1

�
; ð55Þ

where, we recall, n is the number of external legs of the
diagram. Hence for a tensor interaction with degree n
associated with a melonic boundary graph, the notion
of canonical dimension, namely (19), ½λn� ¼ ξn þ σn ¼
ξn þ fλng ¼ n, does not match with scaling dimension
fλng ¼ σn. We apply the above formula at n ¼ 4 and
recover σ4ðdÞ ¼ ðd − 1Þ − ðd − 3Þ2 ¼ d − 1 − 2dþ 6 ¼
5 − d and ξ4ðdÞ ¼ d − 1. Thus the truncation of the
effective action must be restricted to relevant and marginal
directions, in terms of their scaling dimension σn ≥ 0, as
discussed in Sec. III C after (23).
With the above tools, we now comment on the term

tmax of maximal power kdþ1=ðk2ðeþ1Þld−1Þ appearing in the
system of β-functions (52). Noting that the Wetterich
equation is a one-loop equation, convoluting all
ð∂tR · P−1Þ · ðF · P−1Þe, we note that the number Fint of
internal momenta integrated cannot exceed d − 1. The
case when Fint ¼ d − 1 coincides precisely with a maxi-
mal degree of divergence corresponding to a boundary
melonic invariant. Then the scaling of this integration is
kd−1þ2; the extra k2 comes from the regulator ∂tR ∼ k2.
Note that this case only occurs when one term of F, the
term including the maximal number of δ’s, is convoluted
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(d − 1)-times with itself. At the end, one gets 1=ld−1 ¼
1=lξ4ðdÞ as a volume factor for the term tmax. At order
e of the expansion, the number of propagators is
precisely e plus the extra propagator included in the
regulator ∂tR · P−1; this gives a 1=k2ðeþ1Þ. Therefore, the
power counting associated with this term respects
ωdivðGÞ ¼ −2eþ d − 1.
After reducing to dimensionful quantities, the resulting

system of equations for the theory becomes8>>>>>>>><
>>>>>>>>:

ηk ¼ 2π
d−1
2

ΓEðd−12 Þ
λ̄k

ð1þμ̄kÞ2

�
ηk
d−1 þ 1

�

βðμ̄kÞ ¼ −2dπ
d−1
2

ΓEðdþ1
2 Þ

λ̄k
ð1þμ̄kÞ2

�
ηk
dþ1

þ 1

�
− ηkμ̄k − 2μ̄k

βðλ̄kÞ ¼ 4π
d−1
2

ΓEðdþ1
2 Þ

λ̄2k
ð1þμ̄kÞ3

�
ηk
dþ1

þ 1

�
− 2ηkλ̄k − ð5 − dÞλ̄k

;ð56Þ

which defines an autonomous system of coupled differ-
ential equations describing the flow of dimensionless
coupling constants.
These equations hold for generic rank-d. They could be

solved at the same level of generality, in principle, but we
specialize the analysis for various interesting choices of
rank, so that the results can be reported in more explicit
terms. Specifically, we study the above system of equations
when restricted to the first nontrivial rank situations at
d ¼ 3, 4, 5. These models have been proved perturbatively
renormalizable; at rank d ¼ 5, the φ4-truncation is special
because it includes all relevant and marginal terms. Because
the key results of the following analysis are, in fact, valid
for any of the ranks 3, 4, and 5, we provide the treatment of
the rank d ¼ 3 in all details, and we will simply report the
key results in higher ranks d ¼ 4, 5.

F. Rank d = 3

At rank d ¼ 3, the system (56) reduces to8>>>>>>>><
>>>>>>>>:

ηk ¼ πλ̄k
ð1þμ̄kÞ2 ðηk þ 2Þ

βðμ̄kÞ ¼ − 3πλ̄k
ð1þμ̄kÞ2

�
ηk
2
þ 2

�
− ηkμ̄k − 2μ̄k

βðλ̄kÞ ¼ πλ̄2k
ð1þμ̄kÞ3 ðηk þ 4Þ − 2ηkλ̄k − 2λ̄k

: ð57Þ

Before proceeding with the standard analysis, which
consists in finding fixed points of the flow and studying the
linearized equations around them, we point out that,
because of the nonlinear nature of the β-functions, we
have a singularity at μ̄ ¼ −1 and λ̄ ¼ ð1þ μ̄Þ2=π. This is a
common feature in dealing with a truncated Wetterich
equation. In a neighborhood of those singularities, we do
not trust the linear approximation, and being interested in
the part of the RG flow connected with the Gaussian fixed

point, we will not study the flow beyond the mentioned
divergence of the β-functions.
By numerical integration, we find a Gaussian fixed point

and three non-Gaussian fixed points in the plane ðμ̄; λ̄Þ at

d¼3P1 ¼ ð8.619;−47.049Þ;
3P2 ¼ 10−1ð−6.518; 0.096Þ;
3P3 ¼ 10−1ð−8.010; 0.212Þ: ð58Þ

A quick inspection proves that 3P3 lies in the sector
disconnected from the origin, so we will not perform
any analysis around it.
We linearize the system of equations by evaluating the

stability matrix around the other three fixed points,�
βðμ̄kÞ
βðλ̄kÞ

�
¼
� ∂ μ̄kβðμ̄kÞ ∂ λ̄k

βðμ̄kÞ
∂ μ̄kβðλ̄kÞ ∂ λ̄k

βðλ̄kÞ

�
F:P:

�
μ̄k

λ̄k

�
: ð59Þ

In a neighborhood of the Gaussian fixed point, the stability
matrix is of the form

ðβ�ijÞjGFP ≔
�−2 −6π

0 −2

�
; ð60Þ

which has an eigenvalue with algebraic multiplicity 2,
corresponding to the canonical scaling dimensions of the
couplings λk and μk: d¼3θ0 ¼ −2. The geometric multi-
plicity of 3θ0 is 1; hence, the matrix of the linearized system
turns out to be not diagonalizable and has a single
eigenvector 3v0 ¼ ð1; 0Þ.
In a neighborhood of the non-Gaussian fixed points

(NGFP) we have

3P1 3θ11 ∼ 0.351 for 3v11 ∼ 10−1ð0.65;−9.98Þ; ð61Þ

3P1 3θ12 ∼ 2.548 for 3v12 ∼ 10−1ð−6.88; 7.26Þ; ð62Þ

3P2 3θ21 ∼ 10.066 for 3v21 ∼ 10−1ð9.996;−0.269Þ;
ð63Þ

3P2 3θ22 ∼ −1.988 for 3v22 ∼ 10−1ð9.987; 0.506Þ:
ð64Þ

Because of the difference in their magnitudes (distance
from the origin), it becomes difficult to plot the two NGFPs
simultaneously with enough precision in their vicinity. We
plot two sectors of the RG flow in the plane ðμ̄k; λ̄kÞ
(see Fig. 5).
In the vicinity of a fixed point, we define as relevant

directions those eigendirections that are UV attractive with
respect to the cutoff, while we call irrelevant the UV
repulsive eigendirections. Marginal directions can be
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attractive or repulsive depending on the initial condition of
the trajectory. The origin is a great attractor and has one
relevant direction connecting it to the other two fixed
points. The absence of a second eigenvector for the stability
matrix around the Gaussian fixed point requires an
approximation beyond the linear order, when the flow is
studied analytically, and is a signal of the presence of a
marginal perturbation. We can instead integrate numeri-
cally the flow, and we find that this marginal direction will
still be UV attractive, which means that it corresponds to a
marginally relevant direction. The fact that the GFP is a
sink for the flow means that this model is asymptotically
free with respect to the cutoff. Both non-Gaussian fixed
points have one relevant and one irrelevant direction. The
eigendirections connecting the three fixed points turn out to
be stable under RG transformations, and they are charac-
terized by an effect known as the large river effect [56].
This signifies that all the RG trajectories in a neighborhood
of these eigendirections get closer and closer to them while
pointing in the UV. This effect shows a splitting of the
space of coupling into two regions not connected by any
RG trajectory. Thus, the relevant directions for the
Gaussian fixed point reflect the properties of a critical
surface and suggest the presence of phase transitions in the
model. In the λ̄k > 0 plane, the flow is similar to the one of
standard local scalar field theory in a neighborhood of the
Wilson-Fisher fixed point, but the presence of a second
non-Gaussian fixed point in the λ̄k < 0 plane makes the
theory quite different. Nevertheless, the properties of this
second NGFP are basically the same as the former one.
Another particularity of the second fixed point is that it lies
at a negative value of λ̄. This might lead to unstable and
unbounded action in this truncation. However, we know
already that this truncation should be completed with other

relevant terms ϕ2n≥6, so we must check whether this non-
Gaussian fixed point persists in such extended truncations.
It can also be stressed that this feature has been found in
different tensorial models. Indeed, in [44], one finds that,
by tuning the rank 4 ≤ d ≤ 6, the fixed points with a
negative value of the coupling merge with the Gaussian
fixed point. In another context, namely, colored tensor
models [46], the search for instantons led also to negative
valued couplings and have raised the issue of constructing a
new type of renormalizable tensorial theories with inter-
actions of the “wrong” sign. At this stage, we simply report
here the existence of such a fixed point which certainly
deserves to be further investigated.
In this context (and we emphasize that the same picture

can be drawn in rank d ¼ 4, 5, and that in the last case it is
fully reliable), therefore, we have hints of a phase transition
with two phases: a symmetric and a broken one. The
spontaneous symmetry breaking would happen while
crossing the critical surface, generating a condensed state
of the TGFT field (nonzero expectation value of the field
operator). This is interesting from a physical perspective,
because, in more involved models defined in a simplicial
gravity or LQG context, this kind of phase transition has
been suggested to relate to the emergence of a geometric
spacetime from the theory [12], and the corresponding
condensate states have been shown to admit a cosmological
interpretation [48]. To confirm this condensate interpreta-
tion of the broken phase, one should change parametriza-
tion for the effective potential and study the theory around
the new (degenerate) ground state solving the equation of
motion in the saddle point approximation. This (compli-
cated) analysis of our TGFT model is left for future work.
Here we only notice that, in the constant modes approxi-
mation, which forgets about the peculiar combinatorial

FIG. 5. Flow of the theory. The red and blue lines represent, respectively, the zeros of βðμ̄kÞ and βðλ̄kÞ, the brown arrows are the
eigenperturbations of the non-Gaussian fixed points (represented in black), and the green ones those of the Gaussian fixed point (in red).
Arrows point in the UV direction. The thick black line is the singularity of the flow.
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nonlocality of our interactions, and whose results should
therefore be taken with great care, we find an algebraic
equation of Ginsburg-Landau type for a ϕ4 scalar complex
theory, which indeed describes this type of condensate
phase transitions. Once more, however, the rank d ¼ 3
model possesses an infinite tower of relevant directions,
and thus our conclusions could be confirmed only after
studying the higher order truncations and testing the
regulator dependence on the results. At rank d ¼ 4, which
we discuss in the next section, we still have to include
marginal ϕ6 couplings. On the other hand, the similar
results at rank d ¼ 5, which we discuss in the next section,
are trustable, because our truncation already exhausts all
marginal and relevant directions.
Finally, we ought to mention that, at a more elaborate

and technical level as the analysis performed in [67], the
values of critical exponents and anomalous dimension at
the NGFPs may be used to test the viability of the
truncation. That analysis can be, in principle, extended
to our present system and will be addressed in future work.

G. Rank d = 4, 5

We now give a streamlined analysis of the flow in the
case of rank d ¼ 4, which is very similar to the case d ¼ 3,
and the rank d ¼ 5, which shares similarities but also a few
differences that we will list.
Writing the system in rank d ¼ 4 as8>>>>><

>>>>>:

ηk ¼ 4π
3

λ̄k
ð1þμ̄kÞ2 ðηk þ 2Þ

βðμ̄kÞ ¼ −32π
3

λ̄k
ð1þμ̄kÞ2

h
ηk
5
þ 1
i
− ηkμ̄k − 2μ̄k

βðλ̄kÞ ¼ 16π
3

λ̄2k
ð1þμ̄kÞ3

h
ηk
5
þ 1
i
− 2ηkλ̄k − λ̄k

; ð65Þ

we find, in addition to the Gaussian fixed point, the
following NGFPs:

4P1 ¼ 10−1ð−6.402; 0.058Þ;
4P2 ¼ ð1.612;−0.496482Þ;
4P3 ¼ 10−1ð−8.452; 0.112Þ: ð66Þ

As in the case d ¼ 3, the fixed point 4P3 lies beyond the
singularity. The eigenvalues and eigenvectors in the vicinity
of the GFP and of 4P1 and 4P2 are given in the following
table:

GFP4 4θ
þ
0 ¼ −2 for 4v

þ
0 ¼ ð1; 0Þ; ð67Þ

GFP4 4θ
−
0 ¼ −1 for 4v

−
0 ¼

�
− 32π

3
; 1

�
ð68Þ

4P1 4θ11 ∼ 7.899 for 4v11 ∼ 10−1ð10;−0.106Þ; ð69Þ

4P1 4θ12 ∼ 1.570 for 4v12 ∼ 10−1ð10; 0.279Þ; ð70Þ

4P2 4θ21 ∼ 3.082 for 4v21 ∼ 10−1ð−10; 0.521Þ; ð71Þ

4P2 4θ22 ∼ 0.439 for 4v22 ∼ 10−1ð8.193;−5.733Þ;
ð72Þ

Negative eigenvalues at the vicinity of the GFP show that
its eigendirections are all relevant. The NGFPs have a
relevant and an irrelevant direction.
In rank d ¼ 5, on the other hand, the system (56)

specializes as8>>>>><
>>>>>:

ηk ¼ π2

2
λ̄k

ð1þμ̄kÞ2 ðηk þ 2Þ

βðμ̄kÞ ¼ −5π2 λ̄k
ð1þμ̄kÞ2

h
ηk
6
þ 1
i
− ηkμ̄k − 2μ̄k

βðλ̄kÞ ¼ 2π2
λ̄2k

ð1þμ̄kÞ3
h
ηk
6
þ 1
i
− 2ηkλ̄k

: ð73Þ

Here, along with the GFP, we identify two NGFPs as

5P1 ¼
�
−23þ ffiffiffiffiffi

34
p

33
;
4ð191 − 4

ffiffiffiffiffi
34

p Þ
11979π2

�
¼ 10−1ð−5.202; 0.056Þ;

5P2 ¼ 10−1ð−8.736; 0.072Þ: ð74Þ

Again, one of them, 5P2, is beyond the singularity so we
will skip its analysis. We list eigenvalues and eigenvectors
in the vicinity of the GFP and 5P1 as follows:

GFP5 5θ
þ
0 ¼ −2 for 5v

þ
0 ¼ ð1; 0Þ; ð75Þ

GFP5 5θ
−
0 ¼ 0 for 5v

−
0 ¼

�
−
5π2

2
; 1

�
; ð76Þ

5P1 5θ1 ∼ 2.947 for 5v1 ∼ ð−249.652; 1Þ; ð77Þ

5P1 5θ2 ∼ −0.843 for 5v2 ∼ ð66.431; 1Þ; ð78Þ

The GFP has one relevant eigendirection (corresponding to
the mass coupling) and a marginal one. The numerical
integration of the flow shows that this direction is margin-
ally relevant for positive λ but becomes irrelevant for a
negative λ. Similar to the previous case, the NGFP 5P1 has
one relevant and one irrelevant eigendirection.
The models at rank-4 and rank-5 are very similar to the

previous rank-3 case. Hence, similar conclusions concern-
ing the analysis of their flow hold, in particular the
separation of the space of couplings in regions which
are not connected by any RG trajectories which again
suggest of phase transition. The numerical flow of the rank-
4 and rank-5 models have been given in Fig. 6. Note that we
did not display the NGFP 4P2 of the rank-4 model which
should be similar to the second fixed point of rank-3.
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IV. GAUGE INVARIANT RANK-d TENSORIAL
GROUP FIELD THEORY ON R

We now proceed to analyze a modified version of the
TGFT models studied in the previous section, in which an
additional gauge invariance condition is included in the
model. These models define topological lattice gauge
theories of BF type for the gauge group G at the level of
their Feynman amplitudes. The first model of this type has
been studied in [44] in rank-6 for the group G ¼ Uð1Þ. We
therefore extend these first results by working with a
noncompact group manifold, albeit still Abelian, keeping
the rank arbitrary. As for the previous model, we first
introduce the gauge-invariant model, then proceed with
the FRGanalysis in the general case, and finally specialize to
interesting choices of rank to show explicitly the results of
our analysis.

A. The gauge projection

We work with rank-d fields over the group manifold G
satisfying the gauge invariance condition

ϕðg1; g2;…; gdÞ ¼ ϕðg1h; g2h;…; gdhÞ; ∀ h ∈G: ð79Þ

This invariance condition can be imposed directly at the
level of the space of fields or as a condition on the dynamics,
which then restricts indirectly the field degrees of freedom.
In both cases, this translates into amodification of the action
(14). This modification can take different forms and should

be implemented with some care. A possible (formal) way to
implement it would be to allow only the propagation of
modes satisfying (79) by inserting in the kinetic kernel a
projector on the space of thesemodes.Defining the projector
P and a kinetic kernel K, one may encounter some
ambiguity. A proper inspection shows that in our case,
where the kinetic term has the form of a Laplacian plus
constant, K and P commute. We choose to implement the
kinetic term of the action in the following form:

S½ϕ; ϕ̄� ¼
Z
G×d

½dgi�di¼1½dg0i�di¼1ϕ̄ðg1; g2;…; gdÞðP ·KÞ

× ðfgigdi¼1; fg0igdi¼1Þϕðg01; g02;…; g0dÞ þ V½ϕ; ϕ̄�;
ð80Þ

where V is the interaction term. The main issue of this
formulation is that a projector is by definition not invertible;
thus, a kinetic kernel built out of such an operator cannot, in
general, define a covariance of a field theory measure. We
partially avoid this problemby inverting the kinetic kernel in
the operatorial sense, in such a way that the same constraint
will define the covariance itself. In other words, also the
propagator is defined as P ·K−1.
Now we restrict our description to the case of the Abelian

additive group R and consider V with the same combina-
torics used in Sec. III,

S1½ϕ; ϕ̄� ¼ ð2πÞd−1
Z
R×ð2dþ1Þ

dxdydhϕ̄ðxÞ
Yd
i¼1

δðxi þ h − yiÞ
�
−
Xd
s¼1

Δys þ μ

�
ϕðyÞ

þ λ

2
ð2πÞ2d

Z
R×2d

dxdx0½ϕðx1; x2;…; xdÞϕ̄ðx01; x2;…; xdÞϕðx01; x02;…; x0dÞϕ̄ðx1; x02;…; x0dÞ

þ symf1; 2;…; dg�; ð81Þ

FIG. 6. Flow at rank d ¼ 4 (left) and 5 (right).
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where x ¼ ðxiÞ;x0 ¼ ðx0iÞ, and y ¼ ðyiÞ are vectors in Rd, and h ∈ R.
We expect that the Wetterich equation will exhibit IR divergences of the same type encountered in the nonprojected

model, although the gauge invariance conditions relate in a nontrivial way the arguments of the fields entering the
interactions, and therefore modifies the combinatorics of the same; as a result, we expect a different degree of IR
divergences with respect to the case we have treated in the previous section. In any case, we introduce again a regularization
scheme. We consider a compact subset D of R homeomorphic to S1 and write a regularized action as

S1½ϕ; ϕ̄� ¼ ð2πÞd−1
Z
D×ð2dþ1Þ

dxdydhϕ̄ðxÞ
Yd
i¼1

δðxi þ h − yiÞ
�
−
Xd
s¼1

Δys þ μ

�
ϕðyÞ

þ λ

2
ð2πÞ2d

Z
D×2d

dxdx0½ϕðx1; x2;…; xdÞϕ̄ðx01; x2;…; xdÞϕðx01; x02;…; x0dÞϕ̄ðx1; x02;…; x0dÞ

þ symf1; 2;…; dg�; ð82Þ

where we used the same notations introduced in Sec. III D.
The computation will be performed in momentum space. Using again the same notation for the lattice as D� ¼ D×d, and

denoting the gauge invariance constraint on the corresponding lattice as δDðXÞ ≔ δDðX; 0Þ, the Fourier series of the model
(82) reads

S1½ϕ; ϕ̄� ¼ ld
X
p∈D�

ϕ̄ðpÞ½Σsp2
s þ μ�ϕðpÞδDðΣpÞ þ

λ

2
l2d

X
p;p0∈D�

½ϕ12…dϕ̄102…dϕ1020…d0 ϕ̄120…d0 þ symf1; 2;…; dg�: ð83Þ

The general FRG formalism introduced in Sec. II B applies to this model as to the one in the previous section. In particular,
the regulator kernel will incorporate the same gauge constraint appearing in the kinetic term. TheWetterich equation has the
same structure as well and expands again as (33).
We choose to truncate the effective action as

Γ1
k½φ; φ̄� ¼ ld

X
p∈D�

φ̄ðpÞ½ZkΣsp2
s þ μk�φðpÞδDðΣpÞ

þ λk
2
l2d

X
p;p0∈D�

½φ12…dφ̄102…dφ1020…d0φ̄120…d0 þ symf1; 2;…; dg�; ð84Þ

and, then, we introduce the kernels [using the same notation as (33)],

Rkðq;q’Þ ¼ Θðk2 − Σsq2sÞZkðk2 − Σsq2sÞδDðΣqÞ
Y

δDðq;q’Þ; ð85Þ

F1
kðq;q0Þ ¼ δ2

δφ̄q0δφq
V1½φ; φ̄�; ð86Þ

where V1
k refers to the interaction part of Γ1

k. This is a natural choice following directly from a straightforward FRG
formulation of (82). Performing the computation of the Wetterich equation, however, one realizes that this proposal
drastically fails: the delta’s enforcing the gauge constraints do not convolute properly with the TGFT fields. This is due to
the fact that, if one evaluates (33) using (85) and (86), the fields appearing in the RHS come from the F1

k operator, while the
constraints always come from the masslike terms. The comparison of the two sides of the Wetterich equation for this model
then would lead to all β-functions being trivial.
A moment of reflection shows that another way of choosing the interaction term produces a more sensible result. We

simply insert gauge projections also in all fields in the interaction. An interaction satisfying this requirement is expressed as
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V½ϕ; ϕ̄� ¼ λk
2
ð2πÞ2d−4

Z
D×ð6dþ4Þ

fdwig4i¼1dxdx
0fdhjg4j¼1ϕðw1Þϕ̄ðw2Þϕðw3Þϕ̄ðw4Þ

× δðx1 þ h1 − w1
1Þδðx2 þ h1 − w1

2Þ…δðxd þ h1 − w1
dÞ

× δðx01 þ h2 − w2
1Þδðx2 þ h2 − w2

2Þ…δðxd þ h2 − w2
dÞ

× δðx01 þ h3 − w3
1Þδðx02 þ h3 − w3

2Þ…δðx0d þ h3 − w3
dÞ

× δðx1 þ h4 − w4
1Þδðx02 þ h4 − w4

2Þ…δðx0d þ h4 − w4
dÞ

þ symf1; 2;…; dg

¼ λk
2
l2d
X
p;p0

ϕ12…dϕ̄102…dϕ1020…d0 ϕ̄120…d0δDðΣpÞδDðΣp0Þ

× δDðp0
1 þ p2 þ � � � þ pdÞδDðp1 þ p0

2 þ � � � þ p0
dÞ þ symf1; 2;…; dg: ð87Þ

Hence, restarting the analysis from the beginning, we define a model with gauge constraints on both the kinetic and
interaction kernels via the action

S½ϕ; ϕ̄� ¼ l2d
X
p

ϕ̄ðpÞ½Σsp2
s þ μ�ϕðpÞδDðΣpÞ

þ λk
2
l2d
X
p;p0

ϕ12…dϕ̄102…dϕ1020…d0 ϕ̄120…d0δDðΣpÞδDðΣp0ÞδDðp0
1 þ p2 þ � � � þ pdÞδDðp1 þ p0

2 þ � � � þ p0
dÞ

þ symf1; 2;…; dg; ð88Þ

with the corresponding continuous model defined by

S½ϕ; ϕ̄� ¼
Z

dpϕ̄ðpÞ½Σsp2
s þ μ�ϕðpÞδðΣpÞ

þ λk
2

Z
dpdp0ϕ12…dϕ̄102…dϕ1020…d0ϕ̄120…d0δDðΣpÞδDðΣp0ÞδDðp0

1 þ p2 þ � � � þ pdÞδDðp1 þ p0
2 þ � � � þ p0

dÞ

þ symf1; 2;…; dg: ð89Þ

In fact, with hindsight, one realizes that this result could
have been guessed from a more general consideration. Even
if the perturbative quantum amplitudes of the theory do not
depend on whether the gauge projection appears in the
kinetic term, in the interaction, or in both, and only gauge
invariant degrees of freedom have nontrivial Feynman
amplitudes (spin foam models), the nonperturbative analy-
sis is, of course, radically different. From a nonperturbative
point of view one is suggested to simply project the model
to the space of gauge invariant fields, and thus insert
projections in all elements of the TGFT action. From this
point of view, a model which presents this constraint in
only one of the two terms cannot be consistent. This
directly reflects in the analysis we just presented.
At the same time, notice that inserting gauge projections

on all fields in the action, both in kinetic and interaction
terms, results in a trivial overall divergence equal to the
volume of the domain, due to the fact that the

combinatorics of field pairings is such that imposing gauge
invariance on all but one field in each polynomial auto-
matically implies the gauge invariance of the last one. We
can easily remove this trivial divergence, therefore, by
removing one gauge projection from one of the fields
in each polynomial term in the action. The above
prescription of the effective action together with (32)
coincides with the Wetterich equation as formulated in
[44] (albeit the formalism differs by the nature of the field
background).
We can now proceed further using the model (89).

B. Effective action and Wetterich equation

Having defined the main ingredients of the model, we are
in position to analyze its FRG equation. We shall again
restrict to a simple truncation of the effective action for the
model (88), which reads
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Γk½φ; φ̄� ¼ ld
X
p

φ̄ðpÞ½ZkΣsp2
s þ μk�φðpÞδDðΣpÞ

þ λk
2
l2d
X
p;p0

φ12���dφ̄102���dφ1020���d0φ̄120���d0δDðΣpÞδDðΣp0ÞδDðp0
1 þ p2 þ � � � þ pdÞδDðp1 þ p0

2 þ � � � þ p0
dÞ

þ symf1; 2;…; dg: ð90Þ

Considering that ½δDðpÞ� ¼ −1, the dimensional analysis
for the coupling constants gives different results from the
model of Sec. III. We have

½Zk� ¼ 0 ⇒ ½μk� ¼ 2;

2½φ� þ dþ 2 − 1 ¼ 0 ⇒ ½φ� ¼ −
dþ 1

2
;

½λk� þ 2dþ 4½φ� − 4 ¼ 0 ⇒ ½λk� ¼ 6; ð91Þ

where, again, we set the canonical dimensions by requiring
½S� ¼ ½Γk� ¼ 0 and ½dp� ¼ 1. Once again, it must be
stressed that the notions of canonical dimension and of
scaling dimension are different in this context. Using the
treatment of Appendix C 2, and for particular boundary
data b, one associates the scaling dimension fλn;bg with a
given coupling λn;b by taking

fλn;bg ¼ −
1

2
½ðd − 4Þn − 2ðd − 2Þ�: ð92Þ

The truncation of the effective action will be performed
using positive scaling dimensions. Fixing n ¼ 4 as given in
the effective action, therefore the effective action contains

(i) at d ¼ 3 and d ¼ 4, two out of an infinite tower of
relevant couplings; at d ¼ 4, all couplings have,
however, a fixed scaling dimension equal to 2;

(ii) at d ¼ 6, one relevant (the mass) and one marginal
coupling, and this exhausts the number of relevant
and marginal couplings.

We introduce

Rkðq;q’Þ ¼ Θðk2 − Σsq2sÞZkðk2 − Σsq2sÞδDðΣqÞδD� ðq;q0Þ;
ð93Þ

∂tRkðq;q’Þ ¼ Θðk2 − Σsq2sÞ½∂tZkðk2 − Σsq2sÞ þ 2k2Zk�δDðΣqÞδD� ðq;q0Þ; ð94Þ

Fkðq;q0Þ ¼ λk

�
ld−1

X
mi

φq0
1
m2…md

φ̄q1m2…md
δDðΣqÞδDðq01 þm2 þ � � � þmdÞ

× δDðq01 þ q2 þ � � � þ qdÞδDðq1 þm2 þ � � � þmdÞδDðq2 − q02Þ…δDðqd − q0dÞ
þ l
X
m1

φm1q02…q0d
φ̄m1q2…qdδDðΣqÞδDðm1 þ q02 þ � � � þ q0dÞ

× δDðm1 þ q2 þ � � � þ qdÞδDðq1 þ q02 þ � � � þ q0dÞδDðq1 − q01Þ

þ symf1; 2;…; dg
�
; ð95Þ

Pkðq;q0Þ ¼ Rkðq;q’Þ þ
�
Zk

X
s

q2s þ μk

�
δDðΣqÞδD� ðq;q0Þ: ð96Þ

This leads to the Wetterich equation,

∂tΓk ¼ Tr½∂tRk · ðPk þ FkÞ−1�
¼ l2d

X
p;p0

∂tRkðp;p0ÞðPk þ FkÞ−1ðp0;pÞ: ð97Þ

On the LHS, as in Sec. III, we truncate at the level of the quartic interactions. This gives then, for the RHS of the Wetterich
equation, the same expansion shown in (33), where now the operators involved are given by (94), (95), and (96).
An extra subtlety must be paid attention to, however, in extracting the β-functions of this model. The δ’s implementing

the convolutions which appear in the Pk operators can be inverted using (40), and summing over their indices we do not
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modify the dimensions of the whole expression. This is, however, not true for the δ’s coming from the gauge constraints
because they are not summed, so we need to keep them in the denominator. In any case, these constraints turn out to be
redundant with other delta functions coming from the Fk and ∂tRk operators, in such a way that their contribution, because
of the regularization, is equivalent to some power of l, and it is naturally well defined.

C. β-functions and RG flows

Expanding the FRG equation (97), we find the following system of dimensionful β-functions (the main steps of the
calculations are given in Appendix B):8>>>>>>>>>>><
>>>>>>>>>>>:

βd≠4ðZkÞ ¼ dλk
ðZkk2þμkÞ2

(
∂tZk

"
π
d−2
2

ðd−1Þ32ΓEðd2Þ
kd−2

ld þ 1
l2

#
þ 2π

d−2
2 Zk

ðd−1Þ32ΓEðd−22 Þ
kd−2

ld

)

βd≠4ðμkÞ ¼ − dλk
ðZkk2þμkÞ2

(
∂tZk

"
kd

ld
π
d−2
2ffiffiffiffiffiffi

d−1
p

ΓEðdþ2
2 Þ þ

k2

l2

#
þ 2Zk

"
kd

ld
π
d−2
2ffiffiffiffiffiffi

d−1
p

ΓEðd2Þ þ
k2

l2

#)

βd≠4ðλkÞ ¼ 2λ2k
ðZkk2þμkÞ3

(
∂tZk

"
2π

d−2
2

d
ffiffiffiffiffiffi
d−1

p
Γðd2Þ

kd

ld þ ð2½dþ δd;3� − 1Þ k2l2
#
þ 2Zk

"
π
d−2
2ffiffiffiffiffiffi

d−1
p

Γðd2Þ
kd

ld þ ð2½dþ δd;3� − 1Þ k2l2
#)

;

ð98Þ

and, at d ¼ 4, we have 8>>>>>>>><
>>>>>>>>:

βd¼4ðZkÞ ¼ λk
ðZkk2þμkÞ2

�
∂tZk

�
πffiffi
3

p k2

l4 þ 4
l2

�
þ 2πffiffi

3
p k2

l4 Zk

	

βd¼4ðμkÞ ¼ − 4λk
ðZkk2þμkÞ2

�
∂tZk

�
π

2
ffiffi
3

p k4

l4 þ k2

l2

�
þ 2Zk

�
πffiffi
3

p k4

l4 þ k2

l2

�	

βd¼4ðλkÞ ¼ 2λ2k
ðZkk2þμkÞ3

�
∂tZk

�
2π
4
ffiffi
3

p k4

l4 þ 7 k2

l2

�
þ 2Zk

�
πffiffi
3

p k4

l4 þ 7 k2

l2

�	 : ð99Þ

To obtain a well defined noncompact limit of the model, we use a modified ansatz (different from the one of Sec. III E),

Zk ¼ Z̄kk−χlχ ; μk ¼ μ̄kZ̄kk2−χlχ ; λk ¼ λ̄kZ̄2
kk

6−ξlξ; ð100Þ
from which we obtain the dimensionless β-functions according to the following calculation:

ηk ¼
1

Z̄k
βðZ̄kÞ ¼

kχl−χ

Z̄k
βðZkÞ þ χ;

βðμ̄kÞ ¼
kχ−2l−χ

Z̄k
βðμkÞ − ηkμ̄k þ ðχ − 2Þμ̄k;

βðλ̄kÞ ¼
kξ−6l−ξ

Z̄2
k

βðλkÞ − 2ηkλ̄k þ ðξ − 6Þλ̄k: ð101Þ

Inserting the above in (98), we deduce the equations for the dimensionless coupling constants,

ηk ¼
dλ̄kk2−ξþ2χlξ−2χ

ð1þ μ̄kÞ2
(
ðηk − χÞ

"
π

d−2
2

ðd − 1Þ32ΓEðd2Þ
kd−2

ld
þ 1

l2

#
þ 2π

d−2
2

ðd − 1Þ32ΓEðd−22 Þ
kd−2

ld

)
þ χ;

βd≠4ðμ̄kÞ ¼ −
dλ̄kk−ξþ2χlξ−2χ

ð1þ μ̄kÞ2
(
ðηk − χÞ

"
kd

ld
π

d−2
2ffiffiffiffiffiffiffiffiffiffiffi

d − 1
p

ΓEðdþ2
2
Þ þ

k2

l2

#
þ 2

"
kd

ld
π

d−2
2ffiffiffiffiffiffiffiffiffiffiffi

d − 1
p

ΓEðd2Þ
þ k2

l2

#)
− ηkμ̄k þ ðχ − 2Þμ̄k;

βd≠4ðλ̄kÞ ¼
2λ̄2kk

2χ−ξlξ−2χ

ð1þ μ̄kÞ3
(
ðηk − χÞ

"
2π

d−2
2

d
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
Γðd

2
Þ
kd

ld
þ ð2½dþ δd;3� − 1Þ k

2

l2

#

þ 2

"
π

d−2
2ffiffiffiffiffiffiffiffiffiffiffi

d − 1
p

Γðd
2
Þ
kd

ld
þ ð2½dþ δd;3� − 1Þ k

2

l2

#)
− 2ηkλ̄k þ ðξ − 6Þλ̄k: ð102Þ
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As in Sec. III E, the system of β-functions is nonauton-
omous in the IR cutoff k, as long as l is kept finite. We also
notice a different dependence on the parameters k and l
with respect to (52). The difference is, of course, a
consequence of the presence of the delta functions which,
having nontrivial dimensions, change both the canonical
and scaling dimensions of couplings and fields, and remove
degrees of freedom from the space of dynamical fields by
imposing the gauge invariance constraints. Concerning this,
we point out that, had we introduced one delta for each field
appearing in both the kinetic and interaction kernels, this
operation would have caused some extra divergences, but it
would have also allowed us to absorb, from the point of
view of the dimensions, the contribution of deltas inside a

redefinition of the fields. In that case we would expect the
couplings to have the same (canonical) dimensions of those
appearing in the previous model. Finally, we can also note
that the system might be reexpressed in terms of a shifted
anomalous dimension ηk → ηk − χ; thus it could be defined
up to constant χ. In the following, we have set χ ¼ 0.
To get an autonomous system in the limit of the regulator

being removed, we set

ξ − 2χ − d ¼ 0; ð103Þ

and fixing χ ¼ 0, we come to ξ ¼ d. In the thermodynamic
limit, for d ≠ 4, we obtain the autonomous system,

8>>>>>>>><
>>>>>>>>:

ηk ¼ dλ̄k
ð1þμ̄kÞ2

π
d−2
2

ðd−1Þ32

�
ηk

1

ΓEðd2Þ þ
2

ΓEðd−22 Þ
	

βd≠4ðμ̄kÞ ¼ − dλ̄k
ð1þμ̄kÞ2

π
d−2
2ffiffiffiffiffiffi

d−1
p

�
ηk

1

ΓEðdþ2
2 Þ þ

2

ΓEðd2Þ
	
− ðηk þ 2Þμ̄k

βd≠4ðλ̄kÞ ¼ 2λ̄2k
ð1þμ̄kÞ3

π
d−2
2ffiffiffiffiffiffi

d−1
p

�
ηk

1

ΓEðdþ2
2 Þ þ

2

ΓEðd2Þ
	
− 2ηkλ̄k þ ðd − 6Þλ̄k

: ð104Þ

In passing, we observe that at d ¼ 6 ¼ ξ, the coupling λk
becomes marginal.
The same analysis performed at d ¼ 4 yields8>>>>><

>>>>>:

ηk ¼ λ̄k
ð1þμ̄kÞ2

πffiffi
3

p ðηk þ 2Þ

βd¼4ðμkÞ ¼ − 4λ̄k
ð1þμ̄kÞ2

πffiffi
3

p


1
2
ηk þ 2

�
− ðηk þ 2Þμ̄k

βd¼4ðλkÞ ¼ 2λ̄2k
ð1þμkÞ3

πffiffi
3

p


1
2
ηk þ 2

�
− 2ðηk þ 1Þλ̄k

: ð105Þ

D. Rank d = 3, 4

We can now fix the rank-d to be able to explicitly
compute the flow.
We start with the case d ¼ 3. The dependence in χ can be

reabsorbed by a redefinition ηk → ηk − χ (and the resulting
variable is called again ηk). We therefore finally have a
system of dimensionless β-functions given by

8>>>><
>>>>:

ηk ¼ 3λ̄kffiffi
2

p ð1þμ̄kÞ2−3λ̄k

βðμ̄kÞ ¼ − 6λ̄k
ffiffi
2

p
ð1þμ̄kÞ2



ηk
3
þ 1
�
− ηkμ̄k − 2μ̄k

βðλ̄kÞ ¼ 4λ̄2k
ffiffi
2

p

ð1þμ̄kÞ3


ηk
3
þ 1
�
− 2ηkλ̄k − 3λ̄k

: ð106Þ

As in the model without gauge projection, the system
presents a divergence in the flow due to the truncation
scheme. Here the singularity occurs at μ̄ ¼ −1 and

λ̄ ¼
ffiffi
2

p
3
ð1þ μ̄Þ2. In the plane ðμ̄; λ̄Þ, we find four fixed

points, the Gaussian and three non-Gaussian fixed points at

3P1 ¼ ð10Þ−1ð−7.083; 0.154Þ;
3P2 ¼ 10−1ð−7.935; 0.273Þ;
3P3 ¼ ð−12.809; 169.635Þ: ð107Þ

Both 3P2 and 3P3 lie in the sector disconnected from the
origin; therefore, we restrict the analysis and linearize the
system only around 3P1 and the Gaussian fixed point. The
following eigenvalues and eigenvectors can be found by
calculation from the stability matrix:

GFP3 3θ
þ
0 ¼ −2 for 3v

þ
0 ¼ ð1; 0Þ; ð108Þ

GFP3 3θ
−
0 ¼ −3 for 3v

−
0 ¼ ð6

ffiffiffi
2

p
; 1Þ; ð109Þ

3P1 3θ1 ∼ 14.47 for 3v1 ∼ 10−1ð9.986;−0.529Þ; ð110Þ

3P1 3θ2 ∼ −2.29 for 3v2 ∼ 10−1ð9.948; 1.022Þ: ð111Þ

Negative eigenvalues represent UV-attractive eigendirec-
tions, while positive eigenvalues correspond to UV-
repulsive eigendirections. From the plot in Fig. 7, we
see that the Gaussian fixed point, where we have two
negative eigenvalues corresponding to the scaling dimen-
sions of the couplings, is a UV-attractor and has two
relevant directions. Thus, we infer that the model is
asymptotically free in the UV. Meanwhile, the NGFP
has one relevant direction and one irrelevant direction.
In this model, there are no marginal directions in the flow,
and, qualitatively, the structure of the plot is again
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reminiscent of the Wilson-Fisher fixed point in standard
scalar field theory in three dimensions. This is again
suggestive of a phase transition between a symmetric
and a broken phase, interpreted as a condensate phase
labeled by a nonzero expectation value of the TGFT field
operator. We again stress that the above claims could be
trustable only after testing their validity by extending the
truncation and changing the regulator.
Comparing this model with the one studied in Sec. III F,

we can list some similarities, as well as the differences that
follow then directly from the new gauge invariance
imposition.
From the computational point of view, there are no

fundamental differences. The presence of the gauge con-
straints influences the end result for what concerns the
exact dependence of the FRG equations on the parameters k
and l. The way the thermodynamic limit turns the regu-
larized system of RG equations into an autonomous one is
similar, but results from different canonical dimensions
attributed to the various elements of the theory. For
example, the canonical dimension of the ϕ4-coupling
changes from one model to the other. We claim that these
models are not in the same universality class.
From a qualitative point of view, we find in both models

the same number of non-Gaussian fixed points, but their
distribution in the plane ðμ̄; λ̄Þ is different. The TGFT
model without gauge projection has two interesting NGFPs
in the region of the plane ðμ̄; λ̄Þ connected to the origin,

whereas the gauge projected model has a unique NGFP
lying in the same region. Also, the linearized theory around
the Gaussian fixed point turns out to be slightly different.
While in the previous section we have found a non-
diagonalizable stability matrix with only one strictly
relevant direction, for the gauge invariant model we have
two relevant directions and the eigenperturbations form
indeed a basis for the linearized system. On the other hand,
the GFPs of both models are sinks, and so both models are
asymptotically free in this truncation.
In rank d ¼ 4, the results are very similar to the above

rank d ¼ 3. We obtain, in addition to the Gaussian fixed
point, the fixed points

4P1 ¼ ð10Þ−1ð−7.05; 0.093Þ;
4P2 ¼ 10−1ð−8.465; 0.228Þ;
4P3 ¼ ð10.051;−97.962Þ: ð112Þ

4P2 which stands below the singularity will be not further
analyzed. We will focus on the rest of the fixed points and
perform a linearization around those.
Around the Gaussian fixed point the stability matrix

becomes

ðβ�ijÞjGFP ≔
 
−2 − 8πffiffi

3
p

0 −2

!
; ð113Þ

which has an eigenvalue 4θ0 ¼ −2 with multiplicity 2 with
a single eigenvector 4v0 ¼ ð1; 0Þ. We cannot diagonalize it
and will integrate numerically the flow around this point.
We have the following critical exponents:

GFP4 4θ0 ¼ −2 for 4v0 ¼ ð1; 0Þ; ð114Þ

4P1 4θ11 ∼ 11.819 for 4v11 ∼ 10−1ð10;−0.225Þ; ð115Þ

4P1 4θ12 ∼ −2.158 for 4v12 ∼ 10−1ð10; 0.624Þ; ð116Þ

4P3 4θ31 ∼ −2.654 for 4v31 ∼ 10−1ð−3.891; 9.211Þ;
ð117Þ

4P3 4θ32 ∼ 0.624 for 4v32 ∼ 10−1ð0.316;−10Þ: ð118Þ

Both NGFPs have one relevant and one irrelevant
direction. The analysis of perturbations around the fixed
points leads to the phase diagram and RG flow presented in
Fig. 8. From the numerical integration, we observe that the
second eigendirection of the GFP is marginally relevant.
We represent the phase diagram in Fig. 6.
We see once more RG trajectories indicating asymptotic

freedom in the UV, and the presence of a phase transition
between a symmetric and a broken phase in the IR (this
must, however, be confirmed by extending the truncation

0.0

-0.2

-0.4

-0.6

-0.8

-1.0-1.0

0.000 0.005 0.010 0.015 0.020 0.025 0.030

FIG. 7. Flow for the rank-3 gauge invariant model. Brown
arrows represent the eigendirections of the NGFP (in black),
while green arrows are the eigendirections of GFP (in red). The
thick black line indicates the singularity of the system.
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and testing the dependence of the results on the regulator
function).

E. Rank d = 6

Another interesting case to look at in more detail is the
one for d ¼ 6. For this rank, the model has one marginal
direction around the GFP as the scaling dimension of the
coupling λ vanishes. In this case, in fact, we can compare
our results directly with the ones obtained in [44]. This
comparison has two aspects. At the regularized level, with
the system restricted to (six copies of) the compact domain
S1, we expect our RG equations to match the ones found in
[44], up to normalizations. This can indeed be verified, but
we do not report on it. On the other hand, by studying the
RG flow in the thermodynamic limit, we will then be able
to check how the phase diagram we obtain compares with
the limiting cases studied for the compact model, expecting
a qualitative agreement with the results found there in the
UV approximation.
In rank d ¼ 6, we have the following fixed points

alongside the Gaussian fixed point:

6P� ¼
�

1

234
ð−175�

ffiffiffiffiffiffiffiffiffiffi
1141

p
Þ;

ffiffiffi
5

p ð43309 ∓ 79
ffiffiffiffiffiffiffiffiffiffi
1141

p Þ
1067742π2

�
:

ð119Þ

The NGFP 6P− is below the singularity. We focus on the
Gaussian FP and 6Pþ which gives

GFP6 6θ0 ¼ −2 for 6v
þ
0 ¼ ð1; 0Þ; ð120Þ

GFP6 6θ0 ¼ −2 for 6v
−
0 ¼

�
−
3π2ffiffiffi
5

p ; 1

�
; ð121Þ

6Pþ 6θ1 ∼ 4.589 for 6v1 ∼ ð−185.549; 1Þ; ð122Þ

6Pþ 6θ2 ∼ −0.9 for 6v2 ∼ 10−1ð31.289; 1Þ; ð123Þ

The GFP has one relevant (mass) direction, and one
marginally relevant direction for positive λ, which signals
asymptotic freedom. Notice that for negative λ we do not
expect the theory to be nonperturbatively well defined. On
the other hand, the NGFP has a relevant and an irrelevant
direction and shares a similar structure as the Wilson-Fisher
FP. The analysis of perturbations around the fixed points in
this case, then, leads to the phase diagram and RG flow
presented in Fig. 9. The same conclusions discussed so far
hold again in the present rank-6.
After the following change of normalization λ → 2λ, the

NGFP 6Pþ, its critical exponents, and those of the GFP
match with the results in rank d ¼ 6 in the large mode limit
of [44]. The RG flow lines are also very similar.
Interestingly, at least for this model at rank-6, this coinci-
dence means that the large radius sphere limit of the TGFT

corresponds to our thermodynamic limit with our particular
choice of scaling the coupling including both IR cutoff
scaling and lattice spacing scaling. In fact, we expect this to
be true more generally (for instance, at any rank-d or for
any background of the fields).
As pointed out in [44], the presence of both an attractive

UV fixed point and an IR Wilson-Fisher fixed point seems
to be a general feature of TGFTs. While many other (local)
quantum field theories present just one of these results (this
is the case of QCD for just asymptotic freedom and of
scalar field theory for the IR fixed point), the nonlocal
models that we studied appear to always have a well
defined behavior in both the limits. Moreover, there is

FIG. 8. Flow of the gauged model at rank d ¼ 4.

FIG. 9. Flow of the gauged model at rank-6.
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another important property which might be interesting and
fertile for future developments. All the models that we
studied also present a second IR fixed point lying beyond
the singularity of the flow. Even if we said that the presence
of the anomalous dimension as a parameter in our effective
action generates a divergence which prevents us from
trusting in the flow across itself, we should remember that
far from the infinite values of the flow the computation is
probably correct. In other words, given initial conditions in
the sector connected with the origin, we are not able to
integrate the RG equation beyond the singularity but, had
we given initial conditions in the other sector, the situation
would be the opposite. Even if we cannot reconnect the
flows over all the space of couplings, there are hints that
other fixed points could arise and, with them, there is the
possibility to find new (nontrivial) UV attractors. If this is
confirmed by further investigations, TGFTs would also
show asymptotic safety in the UV, in some regions of
parameter space, and for specific models at least. If
reproduced for 4D gravity models with more quantum
geometric structure, this result would be in agreement with
the hypothesis of asymptotic safety proposed by Weinberg
and Reuter for quantum gravity theories [68]. However, it is
not immediate to match TGFT results of this type with the
asymptotic safety program for quantum gravity, since this is
based directly on quantum Einstein gravity, and thus
quantum field theories on spacetime involving directly a
metric field, while TGFTs aim to be models of the micro-
scopic constituents of spacetime and geometry itself. Still,
it may be taken to suggest a nice convergence of results
from different directions.

V. CONCLUSION

We have undertaken the functional renormalization
group analysis of two classes of tensorial group field
theories, as a further application of the formalism first
studied in [38].
The models are defined on the noncompact group

manifoldR and for arbitrary tensor rank. They are endowed
with melonic combinatorial interactions and distinguished
from the presence (or absence) of a projection on the gauge
invariant dynamics under the diagonal group action on the
field arguments.
Both classes of models are simplified with respect to full-

fledged TGFT models for quantum gravity, usually based
on the group manifolds SUð2Þ or SLð2;CÞ, and charac-
terized by additional conditions on the dynamics, in
addition to the gauge invariance models. However, they
may capture many of their relevant features, and they are in
any case of great interest from a more technical/math-
ematical point of view; the FRG analysis is a further step
toward controlling and understanding this new type of
quantum field theories. More generally, any GFT defines a
sum over cellular complexes, which can be interpreted as a
discrete definition of the covariant path integral for

quantum gravity (with the details of the interpretation
depending, of course, on the details of the amplitudes of
the model), of the same type as those defining the
dynamical triangulations approach to quantum gravity.
The FRG analysis has the main objective of probing their
continuum limit and phase structure, which would be, for
quantum gravity models, a continuum limit for the pre-
geometric, discrete, and quantum building blocks of
spacetime. The search for a continuum geometric phase
governed by a general relativistic dynamics is, in fact, the
main outstanding open issue of these quantum gravity
theories.
At a more technical level, the specific aim of our study

was to obtain a picture of the fixed points and phase
diagram, while enlightening the peculiarities coming from
the noncompactness of the underlying group manifold, and
thus comparing these results to previous work on TGFTs
based on Abelian compact groups [38,44].
The main new issue posed by the noncompactness of the

group manifold is the presence of IR divergences in the
expansion of the Wetterich equation, which cannot be dealt
with in the same way in which one removes simple infinite
volume factors in local field theories, due to the particular
combinatorics of TGFT interaction terms. We have shown,
generalizing the previous work [43], how to regularize,
first, and then remove these divergences using the appro-
priate thermodynamic limit. In particular, a comparison
with [44] and the verified matching of critical exponents
and scaling dimensions suggests a new concept of scaling
dimension for this class of theories. While in the previous
work the dimensional analysis leading to scaling dimen-
sions was based on a perturbative approach and on the
analysis of n-loops Green functions, at this nonperturbative
level we find it more appropriate to rely on the order of
divergences that need to be regularized to make the theory
consistent in the noncompact limit. In this limit, all the
models we study define a well-posed autonomous system
of RG equations for the coupling constants, and we then
proceed to solve numerically for various interesting values
of the rank, in a simple truncation of the effective action.
In this simple truncation, and for all models considered,

we identify UVand IR fixed points, study the perturbations
around them, and obtain the corresponding phase diagram.
In all these models, we find indications of the following:
(1) asymptotic freedom in the UV; (2) a number of non-
Gaussian fixed points in the IR; (3) a phase transition
similar to the Wilson-Fisher type, between a symmetric and
a broken (or condensate) phase with a nonzero expectation
value of the TGFT field operator. These points must,
however, be checked and consolidated by extending the
truncation of the effective action (by including more
involved invariants) and checking their dependence on
the regulator function.
The first point is interesting because it confirms, by

different means, the apparently generic asymptotic freedom
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of TGFT models, due to the dominance of wave function
renormalization over coupling constant renormalization
[33]. The last point, on the other hand, is important because
phase transitions (in particular, of condensation type) have
been suggested to mark the emergence of spacetime and
geometry in GFT models of 4D quantum gravity [12,69],
and because GFT condensate states have, in fact, been used
to extract effective cosmological dynamics directly from
the microscopic GFT quantum dynamics [48].
However, more work is certainly needed to further

corroborate these findings.
Even for this simple class of TGFT models, one would

need to improve the truncation scheme to include more
terms in the effective action entering the Wetterich
equation and change also the regulator to test the validity
of the results about the overall phase diagram. And,
concerning the study of the phase transition, a clear
understanding of the different phases require at least
solving the equations of motion (thus a mean field
analysis), which is highly nontrivial due to the combi-
natorial structure of the TGFT interactions and the
integrodifferential nature of the equations, and a change
of parametrization for the effective potential (see the
discussion in [38]).
And of course, we need to proceed toward the FRG

analysis of more involved models, investigating how
different groups and more involved forms of interaction
kernels affect the results, and especially toward models
with a more complete quantum geometric interpretation,
and stronger links with simplicial quantum gravity
and loop quantum gravity. The road ahead is long but
promising.
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APPENDIX A: EVALUATION OF β-FUNCTIONS
IN RANK-d

In this appendix, we provide the detailed calculation of
the β equations and emphasize its particularities. Note that
this computation of the β-functions is performed in the
regularized framework and only, at the end, do we take the
thermodynamic limit. The system of equations that we
obtain is an autonomous system in a continuous non-
compact space.
Notations.— Given the regularization prescription intro-

duced in Sec. III D, we set the notation δD� ðp;qÞ ¼
δðp − qÞ not to be confused with the continuous Dirac
delta that we do not use in this appendix.We also defineD to
be the one-dimensional lattice, that is, the domain of a single
component of objects in D�. We have D� ¼ D×d so that

l
X
pi

¼
Z
D
dpi: ðA1Þ

A change of notation helps during the calculation,

q ¼ ðq1; q2;…; qdÞ ⇒ q1 ≔ q1;

qðd−1Þ
1 ≔ ðq2; q3;…; qdÞ;

qðd−1Þ1 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q22 þ q23 þ…; q2d

q
;

for a generic d-dimensional momentum q. When there is no
possible confusion, we will simply forget the subscript 1 of

qðd−1Þ
1 and qðd−1Þ1 , and use qðd−1Þ and qðd−1Þ, respectively.
Let us recall the second variation of the effective action

(30) in these new notations,

Γð2Þ
k ¼

�
Zk

X
s

p2
s þ μk

�
δðp − p’Þ þ λk

�Z
D×d−1

dq2…dqdφp0
1
q2…qd φ̄p1q2…qd

Yd
i¼2

δðpi − p0
iÞ

þ
Z
D
dq1φq1p

0
2
…p0

d
φ̄q1p2…pd

δðp1 − p0
1Þ þ symf1; 2;…; dg

�

¼
�
Zk

X
s

p2
s þ μk

�
δðp − p’Þ þ Fkðp;p’Þ;

and choose a regulator of the form (24) where θ is now replaced by ΘðfðpÞÞ the discrete step function. This implies

∂tRk ¼ δðp − p’ÞΘ
�
k2 −

X
s

p2
s

��
∂tZk

�
k2 −

X
s

p2
s

�
þ Zk2k2

�
:

Defining Pkðp;p’Þ like (31), with appropriate replacements, we expand and truncate the Wetterich equation as (33). The
zeroth order of the previous expansion is the vacuum term and does not provide us any useful information. On the other
hand, the first and the second orders will provide us with the flow of the kinetic (φ2) and interaction (φ4) couplings,
respectively, namely, the β-functions for the couplings μk, Zk, and λk.

FUNCTIONAL RENORMALIZATION GROUP ANALYSIS OF … PHYSICAL REVIEW D 94, 024017 (2016)

024017-25



1. φ2-terms

To compute the flow of couplings of the quadratic terms of Γk, in other words, the β-functions for μk and Zk, we focus on
the first order of (33). To have more compact notations, let us introduce the first convolution appearing in the expansion,

~∂tRkðp;p00Þ ¼
Z
D�

dp0∂tRkðp;p0ÞðPkÞ−1ðp0;p00Þ

¼
Z
D�

dp0δðp − p0Þδðp0 − p00ÞΘ
�
k2 −

X
s

p2
s

� ∂tZkðk2 −
P

sp
2
sÞ þ 2k2Zk

Zkðk2 −
P

sp
02
sÞΘðk2 −

P
sp

02
sÞ þ Zk

P
sp

02
s þ μk

¼ δðp − p00ÞΘ
�
k2 −

X
s

p2
s

� ∂tZkðk2 −
P

sp
2
sÞ þ 2k2Zk

ðZkk2 þ μkÞ
;

where we used the fact that, after integration, the two Θ’s appearing in the expression are redundant.
Thus, calling ðIÞW the first order of the Wetterich equation, we write

−ðIÞW ¼ Tr½ ~∂tRk · Fk · ðPkÞ−1� ¼
Z
D�×2

dpdp0 ~∂tRkðp;p0Þ
Z
D�

dqFkðp0;qÞðPkÞ−1ðq;pÞ

¼
Z
D�

dpΘ
�
k2 −

X
s

p2
s

� ∂tZkðk2 −
P

sp
2
sÞ þ 2k2Zk

ðZkk2 þ μkÞ2
Fkðp;pÞ:

To simplify the computation, we split the integral in two pieces, namely,

A ¼ ∂tZk

ðZkk2 þ μkÞ2
Z
D�

dpΘ
�
k2 −

X
s

p2
s

��X
s

p2
s

�
Fkðp;pÞ;

B ¼ k2ð2þ ∂tÞZk

ðZkk2 þ μkÞ2
Z
D�

dpΘ
�
k2 −

X
s

p2
s

�
Fkðp;pÞ; ðA2Þ

having ðIÞW ¼ A − B. Let us treat the first term and recall that δDð0Þ ¼ δð0Þ ¼ 1
l,

A ¼ λk∂tZk

ðZkk2 þ μkÞ2
Z
D�

dpΘ
�
k2 −

X
s

p2
s

��X
s

p2
s

�

×

�
1

ld−1

Z
D×d−1

dq2 � � � dqdjφp1q2���qd j2 þ
1

l

Z
D
dq1jφq1p2���pd

j2 þ symf1; 2;…; dg
�

¼ λk∂tZk

ðZkk2 þ μkÞ2
�

1

ld−1

Z
D�

dp1dq2 � � � dqdjφp1q2���qd j2
Z
D×d−1

dp2 � � � dpdΘ½ðk2 − p2
1Þ − Σd

i¼2p
2
i �½Σd

i¼2p
2
i þ p2

1�

þ 1

l

Z
D�

dq1dp2 � � � dpdjφq1p2���pd
j2
Z
D
dp1Θ½ðk2 − Σd

i¼2p
2
i Þ − p2

1�½Σd
i¼2p

2
i þ p2

1�
	

þ symf1; 2;…; dg:

Now we perform the continuum limit l → ∞, and this corresponds to

Z
D
→
Z
R
; Θ → θ: ðA3Þ

The negative powers of l appearing in the expressions keep track of the former IR divergences of the continuous model.
Extracting an l dependence from the couplings, we will address them at the end. To simplify the notation, we drop the limit
symbol liml→∞ and get
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A ¼ λk∂tZk

ðZkk2 þ μkÞ2
�
1

l

Z
Rd

dq1dp2 � � �dpdθðk2 − Σd
i¼2p

2
i Þjφq1p2���pd

j2
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2−Σd
i¼2

p2
i

p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−Σd

i¼2
p2
i

p dp1½Σd
i¼2p

2
i þ p2

1�

þ 1

ld−1

Z
Rd

dp1dq2 � � � dqdθðk2 − p2
1Þjφp1q2���qd j2

Z
dΩd−1

Z ffiffiffiffiffiffiffiffiffi
k2−p2

1

p

0

drrd−2½r2 þ p2
1�
	

þ symf1; 2;…; dg

¼ λk∂tZk

ðZkk2 þ μkÞ2
�
1

l

Z
Rd

dq1dp2 � � �dpdθðk2 − Σd
i¼2p

2
i Þ
�
2ðΣd

i¼2p
2
i Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − Σd

i¼2p
2
i

q
þ 2

3
ðk2 − Σd

i¼2p
2
i Þ3=2

�
jφq1p2���pd

j2

þ 1

ld−1

Z
Rd

dp1dq2 � � � dqdθðk2 − p2
1Þ
�ðk2 − p2

1Þ
dþ1
2

dþ 1
þ p2

1

d − 1
ðk2 − p2

1Þ
d−1
2

�
Ωd−1jφp1q2���qd j2

	
þ symf1; 2;…; dg;

where in the first passage we changed the variable to the (d − 1)-dimensional spherical coordinates and introduced the
following notation:

Ωd ¼
Z

dΩd ¼
Yd−2
i¼1

�Z
π

0

dαisind−1−iðαiÞ
� Z

2π

0

dαd−1 ¼
2πd=2

ΓEðd2Þ
; ðA4Þ

with ΓE the Euler gamma function. Expanding the term B, we find

B ¼ λk
k2ð2þ ∂tÞZk

ðZkk2 þ μkÞ2
Z
D�

dpΘ
�
k2 −

X
s

p2
s

��
1

ld−1

Z
D×d−1

dq2 � � � dqdjφp1q2���qd j2 þ
1

l

Z
D
dq1jφq1p2���pd

j2
�

þ symf1; 2;…; dg; ðA5Þ

which, in the limit, gives

B ¼ λk
k2ð2þ ∂tÞZk

ðZkk2 þ μkÞ2
�

1

ld−1

Z
Rd

dp1dq2 � � � dqdθðk2 − p2
1Þjφp1q2���qd j2Ωd−1

Z ffiffiffiffiffiffiffiffiffi
k2−p2

1

p

0

drrd−2

þ 1

l

Z
Rd

dq1dp2 � � � dpdθðk2 − Σd
s¼2p

2
sÞjφq1p2���pd

j2
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2−Σd
s¼2

p2
s

p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−Σd

s¼2
p2
s

p dp1

	

þ symf1; 2;…; dg

¼ λk
k2ð2þ ∂tÞZk

ðZkk2 þ μkÞ2
�

1

ld−1

Z
Rd

dp1dq2 � � � dqdθðk2 − p2
1ÞΩd−1

ðk2 − p2
1Þ

d−1
2

d − 1
jφp1q2���qd j2

þ 2

l

Z
Rd

dq1dp2 � � � dpdθðk2 − Σd
s¼2p

2
sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − Σd

s¼2p
2
s

q
jφq1p2���pd

j2
	

þ symf1; 2;…; dg:

β-functions.— To find the β-functions of the coupling constants, we rely on the fact that the LHS of (33) is of the form

∂tΓkin ¼
Z

dpjφðpÞj2
�
βðZkÞ

X
s

p2
s þ βðμkÞ

�
:

In fact, this allows us to identify the β-functions with the coefficients of an expansion in powers of the field momenta of
the integrands in A and B, up to an oðp3Þ. Respectively, the terms with momenta of order p2

i convoluted with the fields
φ…;pi;… will contribute to the flow of the wave function renormalization, while the zeroth order will be proportional to the
scaling of the mass. All remaining terms, falling out of the truncation, must be discarded. Hence, we have, for d ≥ 3,

FUNCTIONAL RENORMALIZATION GROUP ANALYSIS OF … PHYSICAL REVIEW D 94, 024017 (2016)

024017-27



A≃ λk∂tZk

ðZkk2 þ μkÞ2
�
1

l

Z
dq1dp2 � � � dpd

�
2

3
k3 þ kðΣd

s¼2p
2
sÞ
�
jφq1p2���pd

j2

þ 1

ld−1

Z
dp1dq2 � � � dqdΩd−1

�
kdþ1

dþ 1
þ
�

1

d − 1
−
1

2

�
kd−1p2

1

�
jφp1q2���qd j2

	
þ symf1; 2;…; dg:

For the B terms, one finds

B≃ λk
k2ð2þ ∂tÞZk

ðZkk2 þ μkÞ2
�

1

ld−1

Z
dp1dq2 � � � dqdΩd−1

�
kd−1

d − 1
−
kd−3

2
p2
1

�
jφp1q2���qd j2

þ 2

l

Z
dq1dp2 � � � dpd

�
k −

1

2k
ðΣd

s¼2p
2
sÞ
�
jφq1p2���pd

j2
	

þ symf1; 2;…; dg: ðA6Þ

Now, we concentrate on the colored symmetric terms. Note that the procedure and result of the above integrals will not
change for each colored term in symf·g, up to a simple relabeling. Thus, collecting all terms, we obtain an expression of the
form

∂tΓkin ¼
Z

dp1 � � � dpdjφp1���pd
j2
Xd
j¼1

½fðkÞ þ gðkÞp2
j þ hðkÞðΣj−1

i¼1p
2
i þ Σd

i¼jþ1p
2
i Þ�

¼
Z

dp1 � � � dpdjφp1���pd
j2
�
dfðkÞ þ ½gðkÞ þ ðd − 1ÞhðkÞ�

Xd
i¼1

p2
i

	
: ðA7Þ

This, by comparison between the two sides of the equation, leads to the following dimensionful β-functions for the
parameters Zk and μk:

βðZkÞ ¼
λk

ðZkk2 þ μkÞ2
(
∂tZk

"
2ðd − 1Þ k

l
þ π

d−1
2

ΓEðdþ1
2
Þ
kd−1

ld−1

#
þ 2Zk

"
ðd − 1Þ k

l
þ π

d−1
2

ΓEðd−12 Þ
kd−1

ld−1

#)
;

βðμkÞ ¼ −
dλk

ðZkk2 þ μkÞ2
(
∂tZk

"
4

3

k3

l
þ π

d−1
2

ΓEðdþ3
2
Þ
kdþ1

ld−1

#
þ 2Zk

"
2
k3

l
þ π

d−1
2

ΓEðdþ1
2
Þ
kdþ1

ld−1

#)
: ðA8Þ

Already at this level, one realizes that each β-function does not have homogeneous scaling in k and dimensions in l. This
feature clearly comes from the pattern of the convolution of the interaction which is specific to TGFTs.

2. φ4-terms

The second order ðIIÞW of (33) will provide the β-function for λk, which completes the set of β-functions of the model.
Defining R0

k and P0
k such that

Rkðp;p’Þ ¼ R0
kðpÞΘ

�
k2 −

X
s

p2
s

�
δðp − p0Þ;

Pkðp;p’Þ ¼ P0
kðpÞδðp − p0Þ; ðA9Þ

the terms of interest take the form
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ðIIÞW ¼ Tr½∂tRk · ðPkÞ−1 · Fk · ðPkÞ−1 · Fk · ðPkÞ−1�

¼
Z
D�×5

dpdp0dp00dqdq0∂tR0
kðpÞΘ

�
k2 −

X
s

p2
s

�
δðp − p0ÞðP0

kÞ−1ðp0Þδðp0 − p00Þ

× Fkðp00;qÞðP0
kÞ−1ðqÞδðq − q0ÞFkðq0;pÞðP0

kÞ−1ðpÞ

¼
Z
D�

dp∂tR0
kðpÞΘ

�
k2 −

X
s

p2
s

�
ðP0

kÞ−1ðpÞ
Z
D�

dqFkðp;qÞðP0
kÞ−1ðqÞFkðq;pÞðP0

kÞ−1ðpÞ: ðA10Þ

We focus on the intermediate convolution Fk · P−1
k · Fk which expands as

ðFk · P−1
k · FkÞðp;pÞ ¼ λ2k

Z
D�

dqFðp;qÞðP0
kÞ−1ðqÞFkðq;pÞ

¼ λ2k

Z
D�

dq1 � � � dqd
�Z

D
dm1φm1p2���pd

φ̄m1q2���qdδðp1 − q1Þ

þ
Z
D×d−1

dm2 � � � dmdφp1m2���md
φ̄q1m2���md

Yd
i¼2

δðpi − qiÞ þ symf1; 2;…; dg
�

× ðP0
kÞ−1ðqÞ

�Z
D
dm0

1φm0
1
q2���qd φ̄m0

1
p2���pd

δðp1 − q1Þ

þ
Z
D×d−1

dm0
2 � � � dm0

dφq1m0
2
���m0

d
φ̄p1m0

2
���m0

d

Yd
i¼2

δðpi − qiÞ þ symf1; 2;…; dg
�
:

At this level, the product of colored symmetric terms generates a list of terms (among which are cross terms) that we must all
carefully analyze. First, we deal with the case when the product involves two terms of the same color, and then we will treat
the cross-colored case. Below, we further specialize the study to the product of terms of color 1 and then on the cross terms
1–2 in the above expansion. We refer to the first type of term as ðFk · P−1

k · FkÞðp;pÞj1;1 and to the overall contribution after
tracing over remaining indices as ðIIÞW j1;1 (respectively, the symbol j1;2 will stand for the cross term product of the colors 1
and 2). This evaluation is, of course, without loss of generality because one can quickly infer the result for all remaining
products. All these contributions, at the end, must be summed.
We have

ðFk · P−1
k · FkÞðp;pÞj1;1 ¼ λ2k

Z
D�

dq1 � � � dqd
Z
D
dm1φm1p2���pd

φ̄m1q2���qdδðp1 − q1ÞðP0
kÞ−1ðqÞ

×
Z
D×d−1

dm0
2 � � � dm0

dφq1m
0
2
���m0

d
φ̄p1m0

2
���m0

d

Yd
i¼2

δðpi − qiÞ

þ λ2k

Z
D�

dq1 � � � dqd
Z
D×d−1

dm2 � � � dmdφp1m2���md
φ̄q1m2���md

δðpi − qiÞðP0
kÞ−1ðqÞ

×
Z
D
dm0

1φm0
1
q2c���qdφ̄m0

1
p2���pd

δðp1 − q1Þ

þ λ2k

Z
D�

dq1 � � � dqd
Z
D
dm1φm1p2���pd

φ̄m1q2…qdδðp1 − q1ÞðP0
kÞ−1ðqÞ

×
Z
D
dm0

1φm0
1
q2���qd φ̄m0

1
p2���pd

δðp1 − q1Þ

þ λ2k

Z
D�

dq1 � � � dqd
Z
D×d−1

dm2 � � � dmdφp1m2���md
φ̄q1m2���md

Yd
i¼2

δðpi − qiÞðP0
kÞ−1ðqÞ

×
Z
D×d−1

dm0
2 � � � dm0

dφq1m0
2
���m0

d
φ̄p1m0

2
���m0

d

Yd
i¼2

δðpi − qiÞ:
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The first two terms, after the δ’s in q are integrated out, become proportional to the product of two square moduli of the
fields, and thus they represent disconnected interactions. They can be discarded for the same reasons invoked above. As a
remainder, we get

ðFk · P−1
k · FkÞðp;pÞj1;1 ≃ λ2k

l

Z
D×d−1

dq2 � � � dqd
Z
D×2

dm1dm0
1φm1p2���pd

φ̄m1q2���qdφm0
1
q2���qdφ̄m0

1
p2���pd

ðP0
kÞ−1ðp1; q2;…; qdÞ

þ λ2k
ld−1

Z
D
dq1

Z
D×2d−2

dm2 � � � dmddm0
2 � � � dm0

dφp1m2���md
φ̄q1m2���md

φq1m
0
2
���m0

d
φ̄p1m0

2
���m0

d

× ðP0
kÞ−1ðq1; p2;…; pdÞ: ðA11Þ

Then, plugging back (A11) into ðIIÞW and concentrating on the contribution of this term, one finds

ðIIÞW j1;1 ¼ λ2k

Z
D�

dpΘ
�
k2 −

X
s

p2
s

� ½∂tZkðk2 −
P

sp
2
sÞ þ 2k2Zk�

ðZkk2 þ μkÞ2

×

�
1

l

Z
D×d−1

dq2 � � � dqd
Z
D×2

dm1dm0
1φm1p2���pd

φ̄m1q2���qdφm0
1
q2���qd φ̄m0

1
p2���pd

×

�
Zkðk2 − p2

1 − Σd
i¼2q

2
i ÞΘðk2 − p2

1 − Σd
i¼2q

2
i Þ þ Zkðp2

1 þ Σd
i¼2q

2
i Þ þ μk

�
−1

þ 1

ld−1

Z
D
dq1

Z
D×2d−2

dm2 � � � dmddm0
2 � � � dm0

dφp1m2���md
φ̄q1m2���md

φq1m
0
2
���m0

d
φ̄p1m0

2
���m0

d

×

�
Zkðk2 − q21 − Σd

i¼2p
2
i ÞΘðk2 − q21 − Σd

i¼2p
2
i Þ þ Zkðq21 þ Σd

i¼2p
2
i Þ þ μk

�
−1
	
:

With the same principle used for the evaluation of the β-functions of Zk and μk, any explicit dependence on the 2dmomenta
involved in the four fields in the spectral sums of (A10) must be discarded. In other words, any term of the form
pα
i φ���pi���φ̄���pi��� · ðφφ̄Þ falls out of the truncation. After taking the limit (again we drop the symbol liml→0), we expand the

expression at zeroth order and get

ðIIÞW j1;1 ≃ λ2k
l

Z
R2d

dm1dm0
1dp2 � � � dpddq2 � � � dqdφm1p2���pd

φ̄m1q2���qdφm0
1
q2���qd φ̄m0

1
p2���pd

×
Z
R
dp1

½∂tZkðk2 − p2
1Þ þ 2k2Zk�

ðZkk2 þ μkÞ2
θðk2 − p2

1Þ
Zkðk2 − p2

1Þθðk2 − p2
1Þ þ Zkp2

1 þ μk

þ λ2k
ld−1

Z
R2d

dp1dq1dm2 � � � dmddm0
2 � � � dm0

dφp1m2���md
φ̄q1m2���md

φq1m0
2
���m0

d
φ̄p1m0

2
���m0

d

×
Z
Rd−1

dp2 � � �dpd
½∂tZkðk2 − Σd

i¼2p
2
i Þ þ 2k2Zk�

ðZkk2 þ μkÞ2
θðk2 − Σd

i¼2p
2
i Þ

Zkðk2 − Σd
i¼2p

2
i Þθðk2 − Σd

i¼2p
2
i Þ þ ZkðΣd

i¼2p
2
i Þ þ μk

:

The θ’s turn out to be redundant in both the terms, and we can simplify their contributions. Call Vi the vertex of color i of the
effective interaction. Rather than using the explicit form of that vertex, we will simply use Vi in the following, when no
confusion might arise.
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We split the previous terms into two pieces,

ðIIÞ0W j1;1
¼ 1

l
λ2kk

2ð2þ ∂tÞZk

ðZkk2 þ μkÞ3
Z

dq2 � � � dqddp2 � � �dpddm1dm0
1φm1p2���pd

φ̄m1q2���qdφm0
1
q2���qd φ̄m0

1
p2���pd

Z
dp1θðk2 − p2

1Þ

−
1

l
λ2k∂tZk

ðZkk2 þ μkÞ3
Z

dq2 � � � dqddp2 � � � dpddm1dm0
1φm1p2���pd

φ̄m1q2���qdφm0
1
q2���qd φ̄m0

1
p2���pd

Z
dp1p2

1θðk2 − p2
1Þ

¼ 2
λ2kk

3

l

� ð2þ ∂tÞZk

ðZkk2 þ μkÞ3
−
1

3

∂tZk

ðZkk2 þ μkÞ3
�
V1 ¼

2λ2kk
3

lðZkk2 þ μkÞ3
�
2Zk þ

2

3
∂tZk

�
V1:

The second integral can be computed as

ðIIÞ00W j1;1 ¼
1

ld−1
λ2kk

2ð2þ ∂tÞZk

ðZkk2 þ μkÞ3
Z

dp1dq1dm2 � � �dmddm0
2 � � � dm0

dφp1m2���md
φ̄q1m2���md

φq1m0
2
���m0

d
φ̄p1m0

2
���m0

d

×
Z

dp2 � � � dpdθðk2 − Σd
i¼2p

2
i Þ

−
1

ld−1
λ2k∂tZk

ðZkk2 þ μkÞ3
Z

dp1dq1dm2 � � � dmddm0
2 � � � dm0

dφp1m2���md
φ̄q1m2���md

φq1m0
2
���m0

d
φ̄p1m0

2
���m0

d

×
Z

dp2 � � � dpdðΣd
i¼2p

2
i Þθðk2 − Σd

i¼2p
2
i Þ

¼
Z

dp1dq1dm2 � � � dmddm0
2 � � � dm0

dφp1m2���md
φ̄q1m2���md

φq1m0
2
���m0

d
φ̄p1m0

2
���m0

d

×

�
1

ld−1
λ2kk

2ð2þ ∂tÞZk

ðZkk2 þ μkÞ3
Z

dΩd−1

Z
k

0

drrd−2 −
1

ld−1
λ2k∂tZk

ðZkk2 þ μkÞ3
Z

dΩd−1

Z
k

0

drrd
�

¼ λ2k
ld−1ðZkk2 þ μkÞ3

�
2kdþ1ð2þ ∂tÞZkπ

d−1
2

ðd − 1ÞΓEðd−12 Þ −
2π

d−1
2 kdþ1∂tZk

ðdþ 1ÞΓEðd−12 Þ
�
V1

¼ λ2kk
dþ1π

d−1
2

ld−1ðZkk2 þ μkÞ3
� ∂tZk

ΓEðdþ3
2
Þ þ

2Zk

ΓEðdþ1
2
Þ
�
V1:

A simple check of the dimensions of these terms and the dimension of the interaction term of the effective action can be
given as

½ðIIÞ0W � ¼ ½ðIIÞ00W � ¼ 2½λ� − 4þ 2dþ 4½φ�;

which, considering that ½φ� ¼ − dþ2
2
, fixes ½λ� ¼ 4 as expected.
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Let us now focus on the cross term given by the product of the contribution of color 1 and 2,

ðIIÞW j1;2 ¼ λ2k

Z
D�×2

dpdj
Θðk2 −Psp

2
sÞ

ðZkk2 þ μkÞ2
∂tZkðk2 −

P
sp

2
sÞ þ 2k2Zk

Θðk2 −Psj
2
sÞZkðk2 −

P
sj

2
sÞ þ Zk

P
sj

2
s þ μk

×

�Z
D×2

dm1dn2φm1j2���jd φ̄m1p2���pd
φp1n2p3���pd

φ̄j1n2j3���jdδðp1 − j1Þδðp2 − j2Þ

þ
Z
D2d−2

dm2 � � � dmddn1dn3 � � � dndφj1m2���md
φ̄p1m2���md

φn1p2n3���nd φ̄n1j2n3���nd

× δðp1 − j1Þδðp2 − j2Þ
Yd
i¼3

δ2ðpi − jiÞ

þ
Z
D�

dm1dn1dn3 � � � dndφm1j2���jd φ̄m1p2���pd
φn1p2n3���nd φ̄n1j2n3���ndδ

2ðp1 − j1Þ
Yd
i¼3

δðpi − jiÞ

þ
Z
D�

dm2 � � � dmddn2φj1m2���md
φ̄p1m2���md

φp1n2p3���pd
φ̄j1n2j3���jdδ

2ðp2 − j2Þ
Yd
i¼3

δðpi − jiÞ
�
:

If we integrate the deltas over the j variables, the second term is again a disconnected 4-point function that we neglect. In
rank d > 3, the first term falls out of the truncation: it generates a “matrixlike” convolution with two momenta distinguished
from the other d − 2 labels. However, at the boundary value d ¼ 3, it will contribute to the flow. We find

ðIIÞW j1;2 ¼ δd;3
λ2k

ðZkk2 þ μkÞ2
Z

dp1dp2dp3dm1dn2dj3φm1p2j3 φ̄m1p2p3
φp1n2p3

φ̄p1n2j3

×
Θðk2 −Psp

2
sÞ½∂tZkðk2 −

P
sp

2
sÞ þ 2k2Zk�

Θðk2 − p2
1 − p2

2 − j23ÞZkðk2 − p2
1 − p2

2 − j23Þ þ Zkðp2
1 þ p2

2 þ j23Þ þ μk

þ λ2k
ðZkk2 þ μkÞ2

1

l

Z
D�×D

dp1 � � � dpddj2dm1dn1dn3 � � � dndφm1j2p3���pd
φ̄m1p2���pd

φn1p2n3���nd φ̄n1j2n3���nd

×
Θðk2 −Psp

2
sÞ½∂tZkðk2 −

P
sp

2
sÞ þ 2k2Zk�

Θðk2 − p2
1 − j22 − Σd

i¼3p
2
i ÞZkðk2 − p2

1 − j22 − Σd
i¼3p

2
i Þ þ Zkðp2

1 þ j22 þ Σd
i¼3p

2
i Þ þ μk

þ λ2k
ðZkk2 þ μkÞ2

1

l

Z
D�×D

dp1 � � � dpddj1dm2 � � � dmddn2φj1m2���md
φ̄p1m2���md

φp1n2p3���pd
φ̄j1n2p3���pd

×
Θðk2 −Psp

2
sÞ½∂tZkðk2 −

P
sp

2
sÞ þ 2k2Zk�

Θðk2 − j21 − Σd
i¼2p

2
i ÞZkðk2 − j21 − Σd

i¼2p
2
i Þ þ Zkðj21 þ Σd

i¼2p
2
i Þ þ μk

:

In the continuum limit, the previous integrals can be evaluated at 0-momentum truncation and the Θ in the denominator put
to 1. One realizes that the first term is proportional to δd;3V3, while the second and third terms are (1,2)-colored symmetric
contributions and are proportional to V2 and V1, respectively. Casting away the p2

iφ
4
pi
-terms, one infers

ðIIÞW j1;2 ≃ δd;3
λ2kk

2ð2þ ∂tÞZk

ðZkk2 þ μkÞ3
V3

þ λ2k
ðZkk2 þ μkÞ3

1

l
V2

Z
dp1θðk2 − p2

1Þ½∂tZkðk2 − p2
1Þ þ 2k2Zk� þ symf1 → 2g: ðA12Þ

Performing the integrals over the external momenta,

ðIIÞW j1;2 ¼
λ2kk

2

ðZkk2 þ μkÞ3
�
δd;3ð2þ ∂tÞZkV3 þ

k
l

�
−
2

3
∂tZk þ 2ð2þ ∂tÞZk

�
ðV2 þ V1Þ

	
: ðA13Þ
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We are in position to sum all contributions. Taking into account the color symmetry of the vertices, the coefficients obtained
from ðIIÞW ji;i contribute once for each color i, while the terms coming from the cross terms, i.e., ðIIÞW ji;j≠i, will appear
once for each couple of colors ði; jÞ, j ≠ i. Thus the later terms gain a factor 2ðd − 1Þ. Especially, the term δd;3V3 in (A13)
and the like, at d ¼ 3, acquires a factor of 2. Performing these operations, the β-function for λk reads

βðλkÞ ¼
2λ2k

ðZkk2 þ μkÞ3
(
∂tZk

"
π

d−1
2

ΓEðdþ3
2
Þ
kdþ1

ld−1
þ 4ð2d − 1Þ

3

k3

l
þ 2δd;3k2

#

þ 2Zk

"
π

d−1
2

ΓEðdþ1
2
Þ
kdþ1

ld−1
þ 2ð2d − 1Þ k

3

l
þ 2δd;3k2

#)
: ðA14Þ

Dimensionful β-functions.— We write the full set of dimensionful β-functions for the model as8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

βðZkÞ ¼ λk
ðZkk2þμkÞ2

(
∂tZk

"
2ðd − 1Þ kl − π

d−1
2

ΓEðdþ1
2
Þ
kd−1

ld−1

#
þ 2Zk

"
ðd − 1Þ kl þ π

d−1
2

ΓEðd−12 Þ
kd−1

ld−1

#)

βðμkÞ ¼ − dλk
ðZkk2þμkÞ2

(
∂tZk

"
4
3
k3
l þ π

d−1
2

ΓEðdþ3
2
Þ
kdþ1

ldþ1

#
þ 2Zk

"
2 k3

l þ π
d−1
2

ΓEðdþ1
2
Þ
kdþ1

ld−1

#)

βðλkÞ ¼ 2λ2k
ðZkk2þμkÞ3

(
∂tZk

"
π
d−1
2

ΓEðdþ3
2
Þ
kdþ1

ld−1 þ
4ð2d−1Þ

3
k3
l þ 2δd;3k2

#

þ 2Zk

"
π
d−1
2

ΓEðdþ1
2
Þ
kdþ1

ld−1
þ 2ð2d − 1Þ k3l þ 2δd;3k2

#)
; ðA15Þ

which is reported in Sec. III E, Eq. (49).

APPENDIX B: EVALUATION OF β-FUNCTIONS IN THE GAUGE INVARIANT CASE

The computation of the dimensionful β-functions for the gauge projected model follows roughly the same steps of the
calculations of the model without constraints. However, because of the presence of the extra deltas of the gauge projection,
the analysis requires, at some point, a different technique. In this appendix, we provide details of the procedure for obtaining
the system of the dimensionful RG equations, namely, Eq. (98) of Sec. IV C, and underline the differences with the previous
calculus.
We start by expanding Eq. (97) of Sec. IV B and focus, first on the φ2-terms and then calculate higher order terms.

1. φ2-terms

Referring to the conventions introduced at the beginning of Sec. IV B, say (93)–(96), for the scaling of the kinetic term,
we have

ðIgÞW ¼ −Tr½∂tRk · ðPkÞ−1 · Fk · ðPkÞ−1�

¼ −λk
Z
D�

dpΘðk2 − Σsp2
sÞ
½∂tZkðk2 − Σsp2

sÞ þ 2k2Zk�
ðZkk2 þ μkÞ2

δðΣpÞ
δ2ðΣpÞ

×

�
1

ld−1

Z
D×d−1

dm2 � � � dmdjφp1m2���md
j2δ2ðΣpÞδ2ðp1 þm2 þ � � � þmdÞ

þ 1

l

Z
D
dm1jφm1p2���pd

j2δ2ðΣpÞδ2ðm1 þ p2 þ � � � þ pdÞ þ symf1; 2;…; dg
�
: ðB1Þ

In the same perspective, the square deltas can be reduced as δ2ðpÞ ¼ δðpÞδð0Þ ¼ 1
l δðpÞ. The second integral in the above

expression can be directly computed by integrating over p1 the δðPpÞ as
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ðIgÞ0W ¼ −
λk
l2

Z
D�

dpΘðk2 − Σsp2
sÞ
½∂tZkðk2 − Σsp2

sÞ þ 2k2Zk�
ðZkk2 þ μkÞ2

δðΣpÞ

×
Z
D
dm1jφm1p2���pd

j2δðm1 þ p2 þ � � � þ pdÞ þ symf1; 2;…; dg

¼ −
λk

l2ðZkk2 þ μkÞ2
Z
D�

dm1dp2 � � � dpdjφm1p2���pd
j2δðm1 þ p2 þ � � � þ pdÞ

×
Z
D
dp1Θðk2 − Σsp2

sÞ½∂tZkðk2 − Σsp2
sÞ þ 2k2Zk�δðΣpÞ þ symf1; 2;…; dg

¼ −
λk

l2ðZkk2 þ μkÞ2
Z
D�

dpjφp1p2���pd
j2δðp1 þ p2 þ � � � þ pdÞ½dk2ð2þ ∂tÞZk − d∂tZkΣd

s¼1p
2
s �

¼ −
dλk

l2ðZkk2 þ μkÞ2
Z
D�

dpjφp1p2���pd
j2δðp1 þ p2 þ � � � þ pdÞ½2k2Zk þ ∂tZk½k2 − Σd

s¼1p
2
s ��: ðB2Þ

We discuss now the first term in the brackets in (B1) that we denote

ðIgÞ00W ¼ −
λk

ldðZkk2 þ μkÞ2
Z
D�

dp1dm2 � � � dmdjφp1m2���md
j2δðp1 þm2 þ � � � þmdÞ

×
Z
D×d−1

dp2 � � �dpdΘðk2 − Σsp2
sÞ½∂tZkðk2 − Σsp2

sÞ þ 2k2Zk�δ
�X

p

�
þ symf1; 2;…; dg: ðB3Þ

Because of the combinatorial pattern chosen for the interaction, the case d ¼ 3 represents again a special situation that we
deal with by direct evaluation. We integrate over the third variable, imposing the constraint p3 ¼ −ðp1 þ p2Þ. The resulting
domain of integration of p2 is known, in the continuous limit, as the θ distribution and is nonzero when
−2p2

2 − 2p2p1 þ ðk2 − 2p2
1Þ ≥ 0. The boundary of this inequality, solved in p2, is given by the roots

p�
2 ¼ 1

2

�
−p1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2 − 3p2

1

q �
: ðB4Þ

The nonzero values of the Heaviside distribution hold when p2 ∈ ½p−
2 ; p

þ
2 �. There is still a residual constraint over p1 which

has to be imposed in order to keep real the square root appearing in (B4), that is, 3p2
1 ≤ 2k2. Thus, Eq. (B3) becomes

ðIgÞ00W;d¼3 ¼ −
λk

l3ðZkk2 þ μkÞ2
Z

dp1dm2dm3jφp1m2m3
j2δðp1 þm2 þm3Þ

× θð2k2 − 3p2
1Þ
Z

1
2
ð−p1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2−3p2

1

p
Þ

1
2
ð−p1−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2−3p2

1

p
Þ

dp2f∂tZk½k2 − 2ðp2
2 þ p2

1 þ p2p1Þ� þ 2k2Zkg

þ symf1; 2;…; dg

¼ −
λk

l3ðZkk2 þ μkÞ2
Z

dp1dm2dm3jφp1m2m3
j2δðp1 þm2 þm3Þθð2k2 − 3p2

1Þ

×

�
k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2 − 3p2

1

q
ð2þ ∂tÞZk −

3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2 − 3p2

1

q
∂tZkp2

1 −
1

6
ð2k2 − 3p2

1Þ3=2∂tZk

	
þ symf1; 2;…; dg: ðB5Þ

Expanding the last result up to the third order in momenta, one obtains

ðIgÞ00W;d¼3≃−
λk

l3ðZkk2þμkÞ2
Z

dp1dm2dm3jφp1m2m3
j2δðp1þm2þm3Þ

×

�
k3
� ffiffiffi

2
p

−
ffiffiffi
8

p

6

�
∂tZkþ2

ffiffiffi
2

p
k3Zk−

3ffiffiffi
2

p kð1þ∂tÞZkp2
1

�
þ symf1;2;…;dg

≃−
λk

l3ðZkk2þμkÞ2
Z
D�
dpjφp1p2p3

j2δðp1þp2þp3Þ
�
2
ffiffiffi
2

p
dk3
�
1

3
∂tþ1

�
Zk−

3ffiffiffi
2

p kð1þ∂tÞZk

�Xd
s¼1

p2
s

��
; ðB6Þ
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where in the last line we include the symmetry factors. From this point, and combining it with (B2) restricted at d ¼ 3, we
write the β-functions for the couplings μk and Zk as

βd¼3ðZkÞ ¼
λk

ðZkk2 þ μkÞ2
�
3ffiffiffi
2

p k
l3
ð1þ ∂tÞZk þ

3

l2
∂tZk

�
;

βd¼3ðμkÞ ¼ −
3λk

ðZkk2 þ μkÞ2
�
2
ffiffiffi
2

p k3

l3

�
1þ 1

3
∂t

�
Zk þ

k2

l2
ð2þ ∂tÞZk

�
: ðB7Þ

At rank d ≥ 4, the term (B3) has more integrations to perform and becomes simpler if expressed in spherical coordinates.
Considering that the coordinate p1 is convoluted with the field, we will change basis from ðp2;…; pdÞ to ðr;Ωd−1Þ. The
δðPpÞ defines the hyperplane orthogonal to a vector N of norm ‖N‖ ¼ ffiffiffi

d
p

and components (in Cartesian coordinates)
N ¼ ð1; 1;…; 1Þ. We will call n the projection of this vector on the subspace orthogonal to p1 and P the generic vector on
this subspace. In this setting the Dirac delta function becomes

δðp1 þ hP;niÞ ¼ δðp1 þ r
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
cos ϑÞ ¼

δð p1

r
ffiffiffiffiffiffi
d−1

p þ cos ϑÞ
r
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p ; ðB8Þ

where ϑ represents the angle between P and n. Considering that the scalar product, as the rest of the integrand, is rotational
invariant on the (d − 1)-dimensional space, we can set ϑ to be one of the angles appearing in the spherical measure. After the
change of coordinates, Eq. (B3) reads

ðIgÞ00W;d>3 ¼ −
λk

ldðZkk2 þ μkÞ2
Z

dp1dm2 � � � dmd

Z
drdΩd−2

Z
π

0

dϑrd−2sind−3ϑ
δð p1

r
ffiffiffiffiffiffi
d−1

p þ cosϑÞ
r
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p

× jφp1m2���md
j2δðp1 þm2 þ � � � þmdÞθðk2 − p2

1 − r2Þ½∂tZkðk2 − p2
1 − r2Þ þ 2k2Zk�

þ symf1; 2;…; dg: ðB9Þ

We focus on the integral over ϑ and change the variable from ϑ to X ¼ cosϑ and get, for d > 3,

Z
π

0

dϑsind−3ϑδ

�
p1

r
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p þ cosϑ

�
¼
Z

1

−1
dXð1 − X2Þd−42 δ

�
p1

r
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p þ X

�
¼
�
1 −

p2
1

r2ðd − 1Þ
�d−4

2

: ðB10Þ

Substituting (B10) in (B9), we get

ðIgÞ00W;d>3 ¼ −
λk

ldðZkk2 þ μkÞ2
Ωd−2ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
Z

dp1dm2 � � � dmdjφp1m2���md
j2δðp1 þm2 þ � � � þmdÞ

× θðk2 − p2
1Þ
�
θðd − 5Þ

Z ffiffiffiffiffiffiffiffiffi
k2−p2

1

p

0

drrd−3
�
1 −

p2
1

ðd − 1Þr2
�d

2
−2
½∂tZkðk2 − p2

1 − r2Þ þ 2k2Zk�

þ δd;4

Z ffiffiffiffiffiffiffiffiffi
k2−p2

1

p

0

drr½∂tZkðk2 − p2
1 − r2Þ þ 2k2Zk�

�
þ symf1; 2;…; dg: ðB11Þ

Expanding the result of the integral over ϑ at the second order in p1, we obtain an integral over r of the form

ðIgÞ00W;d>3 ≃ −
λk

ldðZkk2 þ μkÞ2
Ωd−2ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
Z

dp1dm2 � � � dmdjφp1m2���md
j2δðp1 þm2 þ � � � þmdÞ

× θðk2 − p2
1Þ
�
θðd − 5Þ

Z ffiffiffiffiffiffiffiffiffi
k2−p2

1

p

0

drrd−3
�
1 −

d − 4

2ðd − 1Þr2 p
2
1

�
½∂tZkðk2 − p2

1 − r2Þ þ 2k2Zk�

þ δd;4

Z ffiffiffiffiffiffiffiffiffi
k2−p2

1

p

0

drr½∂tZkðk2 − p2
1 − r2Þ þ 2k2Zk�

�
þ symf1; 2;…; dg: ðB12Þ

Computing the last integral and expanding the result, we expand the RHS of (B12) to the second order in the momenta
convoluted with the fields, and this yields
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ðIgÞ00W;d>3 ≃ −
λk

ldðZkk2 þ μkÞ2
Ωd−2ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
Z

dp1dm2 � � � dmdjφp1m2���md
j2δðp1 þm2 þ � � � þmdÞ

× θðk2 − p2
1Þ
�
θðd − 5Þ

�
2kd

d − 2
Zk þ

2kd

dðd − 2Þ ∂tZk − p2
1k

d−2
�

d
ðd − 1ÞZk þ

d∂tZk

ðd − 1Þðd − 2Þ
��

þ δd;4

�
1

2

�
1

2
∂tZk þ 2Zk

�
k4 − p2

1k
2

�
1

2
∂tZk þ Zk

��	
þ symf1; 2;…; dg: ðB13Þ

We sum (B2) and (B13) and write at rank d ¼ 4,

ðIgÞW;d¼4 ≃ −
λk

ðZkk2 þ μkÞ2
Z

dpjφp1p2���p4
j2δ
�X

s

ps

�

×

�
2π

l4
ffiffiffi
3

p
�
2

�
1

2
∂tZk þ 2Zk

�
k4 − k2

�
1

2
∂tZk þ Zk

��X
s

p2
s

��
þ 4

l2

�
k2ð2þ ∂tÞZk − ∂tZk

�Xd
s¼1

p2
s

��	
;

ðB14Þ

and at rank d > 4, summing (B2) and (B13) gives

ðIgÞW ≃ λk
ðZkk2 þ μkÞ2

Z
D�

dpjφp1p2…pd
j2δ
�X

s

ps

�

×

�
−
1

ld
Ωd−2ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
�
dkd
�ð2þ ∂tÞZk

d − 2
−
∂tZk

d

�
− kd−2

�
d∂tZk

ðd − 1Þðd − 2Þ þ
dZk

d − 1

��X
s

p2
s

�	

−
d
l2

�
k2ð2þ ∂tÞZk − ∂tZk

�Xd
s¼1

p2
s

��	
: ðB15Þ

Hence, we write the β-functions for the couplings μk and Zk at rank d ¼ 4 as

βd¼4ðZkÞ ¼
λk

ðZkk2 þ μkÞ2
�
2πffiffiffi
3

p
�
1

2
∂tZk þ Zk

�
k2

l4
þ ∂tZk

4

l2

	
;

βd¼4ðμkÞ ¼ −
4λk

ðZkk2 þ μkÞ2
�

πffiffiffi
3

p
�
1

2
∂tZk þ 2Zk

�
k4

l4
þ ð2þ ∂tÞZk

k2

l2

	
; ðB16Þ

and for d > 4, as

βd>4ðZkÞ ¼
dλk

ðZkk2 þ μkÞ2
(
∂tZk

"
π

d−2
2

ðd − 1Þ32ΓEðd2Þ
kd−2

ld
þ 1

l2

#
þ 2π

d−2
2 Zk

ðd − 1Þ32ΓEðd−22 Þ
kd−2

ld

)
;

βd>4ðμkÞ ¼ −
dλk

ðZkk2 þ μkÞ2
(
∂tZk

"
kd

ld
π

d−2
2ffiffiffiffiffiffiffiffiffiffiffi

d − 1
p

ΓEðdþ2
2
Þ þ

k2

l2

#
þ 2Zk

"
kd

ld
π

d−2
2ffiffiffiffiffiffiffiffiffiffiffi

d − 1
p

ΓEðd2Þ
þ k2

l2

#)
: ðB17Þ

Wenote that setting d ¼ 3 in (B17), we recover (B7).We can therefore extend the last formulas to d ¼ 3 andwill denote them
βd≠4ðZkÞ and βd≠4ðμkÞ. The case d ¼ 4must be distinguished from the rest of the ranks, becausewe observe that βd¼4ðZkÞ is
not the evaluation of βd≠4ðZkÞ at d ¼ 4. Note that the mass equation can, however, be recovered from βd≠4ðμkÞ at d ¼ 4.

2. φ4-terms

The next order of the truncation made on the Wetterich equation, i.e., ðIIgÞW ¼ Tr½∂tRk · ðPkÞ−1 · Fk·
ðPkÞ−1 · Fk · ðPkÞ−1�, provides the β-function for the coupling λk. Introducing the notation φ̂p ¼ φpδð

P
pÞ for the gauge

invariant field, we write
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ðIIgÞW ¼ λ2k

Z
D�×2

dpdr
Θðk2 − Σsp2

sÞ½∂tZkðk2 − Σsp2
sÞ þ 2k2Zk�δðΣpÞ

ðZkk2 þ μkÞ2½ZkΣsr2s þ μk þ Θðk2 − Σsr2sÞZkðk2 − Σsr2sÞ�δðΣrÞδ2ðΣpÞ

×

�Z
Dd−1

dm2 � � � dmdφ̂r1m2���md
ˆ̄φp1m2���md

δðΣpÞδðr1 þ p2 þ � � � þ pdÞ
Yd
i¼2

δðpi − riÞ

þ
Z
D
dm1φ̂m1r2���rd ˆ̄φm1p2���pd

δðΣpÞδðp1 þ r2 þ � � � þ rdÞδðp1 − r1Þ þ symf1; 2;…; dg
�

×

�Z
D×d−1

dn2 � � � dndφ̂p1n2���nd ˆ̄φr1n2���ndδðΣrÞδðp1 þ r2 þ � � � þ rdÞ
Yd
i¼2

δðri − piÞ

þ
Z
D
dn1φ̂n1p2���pd

ˆ̄φn1r2c…rdδðΣrÞδðr1 þ p2 þ…pdÞδðr1 − p1Þ þ symf1; 2;…; dg
�
; ðB18Þ

where the redundant Θ-functions are set to 1. The combinatorics of the present model is the same as studied in the previous
appendix, and we therefore proceed in the same way by collecting different types of colored contributions. We first discuss
the contribution obtained by the product of color 1–1,

ðIIgÞW j1;1 ¼ λ2k

Z
D�×2

dpdr
Θðk2 − Σsp2

sÞ½∂tZkðk2 − Σsp2
sÞ þ 2k2Zk�

ðZkk2 þ μkÞ2½ZkΣsr2s þ μk þ Θðk2 − Σsr2sÞZkðk2 − Σsr2sÞ�

×

�Z
D×2

dm1dn1φ̂m1r2���rd ˆ̄φm1p2���pd
φ̂n1p2���pd

ˆ̄φn1r2���rdδðp1 þ r2 þ � � � þ rdÞδðr1 þ p2 þ � � � þ pdÞδ2ðr1 − p1Þ

þ
Z
D×2d−2

dm2 � � � dmddn2 � � � dndφ̂r1m2���md
ˆ̄φp1m2���md

φ̂p1n2���nd ˆ̄φr1n2���nd

× δðr1 þ p2 þ � � � þ pdÞδðp1 þ r2 þ � � � þ rdÞ
Yd
i¼2

δ2ðri − piÞ þ disconnected

�
; ðB19Þ

where the terms denoted by “disconnected” describe disconnected interactions which we discard. Integrating over ri, in the
delta functions which are not convoluted with the fields, and replacing the redundant δ by 1=l, one gets

ðIIgÞW j1;1 ≃ λ2k

Z
D�×2

dm1dp2 � � � dpddn1dr2 � � � drd
φ̂m1r2���rd ˆ̄φm1p2���pd

φ̂n1p2���pd
ˆ̄φn1r2���rd

ðZkk2 þ μkÞ2

×
1

l

Z
D
dp1

Θðk2 − Σsp2
sÞ½∂tZkðk2 − Σsp2

sÞ þ 2k2Zk�
Zkðp2

1 þ Σd
i¼2r

2
i Þ þ μk þ Θ½k2 − p2

1 − Σd
i¼2r

2
i �Zk½k2 − p2

1 − Σd
i¼2r

2
i �
δðΣpÞδðp1 þ Σd

i¼2riÞ

þ λ2k

Z
D�×2

dp1dm2 � � � dmddr1dn2 � � � dnd
φ̂r1m2…md

ˆ̄φp1m2���md
φ̂p1n2���nd ˆ̄φr1n2���nd

ðZkk2 þ μkÞ2

×
1

ld−1

Z
D×ðd−1Þ

dp2 � � � dpd
Θðk2 − Σsp2

sÞ½∂tZkðk2 − Σsp2
sÞ þ 2k2Zk�

Zkðr21 þ Σd
i¼2p

2
i Þ þ μk þ Θ½k2 − r21 − Σd

i¼2p
2
i �Zk½k2 − r21 − Σd

i¼2p
2
i �

× δðΣpÞδðr1 þ p2 þ � � � þ pdÞ: ðB20Þ
Once again, the case d ¼ 3 requires special care during the evaluation of the above integrals. For d ¼ 3, we have by direct
evaluation

ðIIgÞW;d¼3j1;1≃λ2k

Z
D�×2

dm1dp2dp3dn1dr2dr3
φ̂m1r2r3

ˆ̄φm1p2p3
φ̂n1p2p3

ˆ̄φn1r2r3

ðZkk2þμkÞ2

×
1

l

Z
D
dp1

Θðk2−Σsp2
sÞ½∂tZkðk2−Σsp2

sÞþ2k2Zk�
Zkðp2

1þΣ3
i¼2r

2
i ÞþμkþΘ½k2−p2

1−Σ3
i¼2r

2
i �Zk½k2−p2

1−Σ3
i¼2r

2
i �
δðΣpÞδðp1þr2þr3Þ

þλ2k

Z
D�×2

dp1dm2dm3dr1dn2dn3
φ̂r1m2m3

ˆ̄φp1m2m3
φ̂p1n2n3

ˆ̄φr1n2n3

ðZkk2þμkÞ2

×
1

l2

Z
D×2

dp2dp3

Θðk2−Σsp2
sÞ½∂tZkðk2−Σsp2

sÞþ2k2Zk�
Zkðr21þΣ3

i¼2p
2
i ÞþμkþΘ½k2−r21−Σ3

i¼2p
2
i �Zk½k2−r21−Σ3

i¼2p
2
i �
δðΣpÞδðr1þp2þp3Þ: ðB21Þ
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We integrate over p1 the first term and over p3 the second term, replace redundant deltas by appropriate factors 1=l, and
then put to 0 all momentum variables involved in the field convolutions, to get

ðIIgÞW;d¼3j1;1 ≃ λ2k
ðZkk2 þ μkÞ3

k2ð2þ ∂tÞZk

l2
V1 þ

λ2k
ðZkk2 þ μkÞ3

1

l3

Z ffiffiffiffiffiffiffi
k2=2

p

−
ffiffiffiffiffiffiffi
k2=2

p dr½∂tZkðk2 − 2r2Þ þ 2k2Zk�V1

≃ λ2k
ðZkk2 þ μkÞ3

�
k2ð2þ ∂tÞZk

l2
þ k3

l3

� ffiffiffi
2

p
ð∂t þ 2ÞZk −

ffiffiffi
2

p

3
∂tZk

��
V1

≃ λ2k
ðZkk2 þ μkÞ3

��
k2

l2
þ 2

ffiffiffi
2

p

3

k3

l3

�
∂tZk þ 2

�
k2

l2
þ

ffiffiffi
2

p k3

l3

�
Zk

�
V1: ðB22Þ

At rank d > 3, using again the spherical coordinates ðR;Ωd−1Þ, and taking the continuum limit, we write

ðIIgÞW;d>3j1;1 ≃ λ2k

Z
dm1dp2 � � � dpddn1dr2 � � � drd

φ̂m1r2���rd ˆ̄φm1p2���pd
φ̂n1p2���pd

ˆ̄φn1r2���rd
lðZkk2 þ μkÞ2

×
Z

dp1

θðk2 − Σsp2
sÞ½∂tZkðk2 − Σsp2

sÞ þ 2k2Zk�
Zkðp2

1 þ Σd
i¼2r

2
i Þ þ μk þ θ½k2 − p2

1 − Σd
i¼2r

2
i �Zk½k2 − p2

1 − Σd
i¼2r

2
i �
δðΣpÞδðp1 þ Σd

i¼2riÞ

þ λ2k

Z
dp1dm2 � � � dmddr1dn2 � � � dnd

φ̂r1m2���md
ˆ̄φp1m2���md

φ̂p1n2���nd ˆ̄φr1n2���nd
ld−1ðZkk2 þ μkÞ2

×
Z

dR
Z

dΩd−1
Rd−2θðk2 − p2

1 − R2Þ½∂tZkðk2 − p2
1 − R2Þ þ 2k2Zk�

Zkðr21 þ R2Þ þ μk þ θðk2 − r21 − R2ÞZk½k2 − r21 − R2�
× δðp1 þ R

ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
cosϑÞδðr1 þ R

ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
cosϑÞ

¼ λ2k

Z
dm1dp2 � � � dpddn1dr2 � � �drd

φ̂m1r2���rd ˆ̄φm1p2���pd
φ̂n1p2���pd

ˆ̄φn1r2���rd
lðZkk2 þ μkÞ2

×
Z

dp1

θðk2 − Σsp2
sÞ½∂tZkðk2 − Σsp2

sÞ þ 2k2Zk�
Zkðp2

1 þ Σd
i¼2r

2
i Þ þ μk þ θ½k2 − p2

1 − Σd
i¼2r

2
i �Zk½k2 − p2

1 − Σd
i¼2r

2
i �
δðΣpÞδðp1 þ Σd

i¼2riÞ

þ λ2k

Z
dp1dm2 � � � dmddr1dn2 � � � dnd

φ̂r1m2���md
ˆ̄φp1m2���md

φ̂p1n2���nd ˆ̄φr1n2���nd
ld−1ðZkk2 þ μkÞ2

×
Z

dR
Z

dΩd−2

Z
π

0

Rd−2

R2ðd − 1Þ dϑsin
d−3ϑδ

�
p1

R
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p þ cosϑ

�
δ

�
r1

R
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p þ cosϑ

�

×
θðk2 − p2

1 − R2Þ½∂tZkðk2 − p2
1 − R2Þ þ 2k2Zk�

Zkðr21 þ R2Þ þ μk þ θðk2 − r21 − R2ÞZkðk2 − r21 − R2Þ

¼ λ2k

Z
dm1dp2 � � � dpddn1dr2 � � �drd

φ̂m1r2���rd ˆ̄φm1p2���pd
φ̂n1p2���pd

ˆ̄φn1r2���rd
lðZkk2 þ μkÞ2

×
θ½k2 − 2ðΣd

i¼2p
2
i þ Σ1<i<jpipjÞ�f∂tZk½k2 − 2ðΣd

i¼2p
2
i þ Σ1<i<jpipjÞ� þ 2k2ZkgδðΣd

i¼2ðri − piÞÞ
Zk½Σd

i¼2r
2
i þ ðΣd

i¼2piÞ2� þ μk þ θ½k2 − Σd
i¼2r

2
i − ðΣd

i¼2piÞ2�Zk½k2 − Σd
i¼2r

2
i − ðΣd

i¼2piÞ2�

þ λ2kΩd−2

Z
dp1dm2 � � � dmddr1dn2 � � � dnd

φ̂r1m2���md
ˆ̄φp1m2���md

φ̂p1n2���nd ˆ̄φr1n2���nd
ld−1ðZkk2 þ μkÞ2

×
Z

dR

�
1 −

r21
R2ðd − 1Þ

�d−4
2 Rd−3ffiffiffiffiffiffiffiffiffiffiffi

d − 1
p δðp1 − r1Þ

θðk2 − p2
1 − R2Þ½∂tZkðk2 − p2

1 − R2Þ þ 2k2Zk�
Zkðr21 þ R2Þ þ μk þ θðk2 − r21 − R2ÞZkðk2 − r21 − R2Þ :

ðB23Þ

Considering that all interaction terms which explicitly depend on themomenta involved in their fields fall out of our truncation,
considering also that the deltas δðp1 − r1Þ and δðΣd

i¼2ðri − piÞÞ turn out to be redundant with the gauge invariance conditions,
we can then set to zero the labels pi and ri appearing in the integrals, coefficients of the gauge projected fields, and get
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ðIIgÞW;d>3j1;1 ≃ λ2kk
2ð2þ ∂tÞZk

l2ðZkk2 þ μkÞ3
Z
D�×2

dm1dp2 � � � dpddn1dr2 � � � drdφ̂m1r2���rd ˆ̄φm1p2���pd
φ̂n1p2���pd

ˆ̄φn1r2���rd

þ 2π
d−2
2 λ2k

ðZkk2 þ μkÞ3ΓEðd−22 Þ ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p kd

ld

�ð2þ ∂tÞZk

d − 2
−
∂tZk

d

�

×
Z
D�×2

dp1dm2 � � � dmddr1dn2 � � �dndφ̂r1m2���md
ˆ̄φp1m2���md

φ̂p1n2���nd ˆ̄φr1n2���nd

¼ λ2k
ðZkk2 þ μkÞ3

(
ð2þ ∂tÞZk

"
π

d−2
2

ΓEðd2Þ
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p kd

ld
þ k2

l2

#
−

2π
d−2
2 ∂tZk

d
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
ΓEðd−22 Þ

kd

ld

)
V1; ðB24Þ

wherewe used for the colored vertex the same notation introduced in Sec. A 2.We note that setting d ¼ 3 in the last result leads
us to (B22). Then, we prolong ðIIgÞW to d ≥ 3.
Inspecting the 2-color cross terms, we focus on the product of terms 1–2. Discarding the disconnected interactions and

the terms which fall out of the chosen truncation, while paying special care to the case d ¼ 3, one has

ðIIgÞW j1;2 ≃ λ2k

Z
D�×2

dpdr
Θðk2 − Σsp2

sÞ½∂tZkðk2 − Σsp2
sÞ þ 2k2Zk�

ðZkk2 þ μkÞ2½ZkΣsr2s þ μk þ Θðk2 − Σsr2sÞZkðk2 − Σsr2sÞ�

×

�
δd;3

Z
D2

dm1dn2φ̂m1r2r3
ˆ̄φm1p2p3

φ̂p1n2p3
ˆ̄φr1n2r3δðp1 þ r2 þ p3Þδðp1 þ r2 þ r3Þδðr1 − p1Þδðp2 − r2Þ

þ
Z
D�

dm1dn1dn3 � � � dndφ̂m1r2���rd ˆ̄φm1p2���pd
φ̂n1p2n3���nd ˆ̄φn1r2n3���nd

× δðp1 þ r2 þ � � � þ rdÞδðr1 þ p2 þ r3 þ � � � þ rdÞδ2ðr1 − p1Þ
Yd
i¼3

δðpi − riÞ

þ
Z
D�

dn2dm2 � � � dmdφ̂r1m2���md
ˆ̄φp1m2���md

φ̂p1n2p3���pd
ˆ̄φr1n2r3���pd

× δðr1 þ p2 þ � � � þ pdÞδðp1 þ r2 þ p3 þ � � � þ pdÞδ2ðp2 − r2Þ
Yd
i¼3

δðpi − riÞ
�

≃ λ2k
ðZkk2 þ μkÞ2

�
δd;3

Z
D2

dm1dn2dr3dp1dp2dp3φ̂m1p2r3
ˆ̄φm1p2p3

φ̂p1n2p3
ˆ̄φp1n2r3δðp1 þ p2 þ p3Þδðp1 þ p2 þ r3Þ

×
Θðk2 − Σsp2

sÞ½∂tZkðk2 − Σsp2
sÞ þ 2k2Zk�

Zkðp2
1 þ p2

2 þ r23Þ þ μk þ Θ½k2 − ðp2
1 þ p2

2 þ r23Þ�Zk½k2 − ðp2
1 þ p2

2 þ r23Þ�
þ 1

l

Z
D�×2

dm1dp2 � � � dpddn1dr2dn3 � � � dndφ̂m1r2p3���pd
ˆ̄φm1p2���pd

φ̂n1p2n3���nd ˆ̄φn1r2n3���nd

×
Z
D
dp1δðp1 þ r2 þ p3 þ � � � þ pdÞδðΣpÞ

×
Θðk2 − Σsp2

sÞ½∂tZkðk2 − Σsp2
sÞ þ 2k2Zk�

Zkðp2
1 þ r22 þ Σd

i¼3p
2
i Þ þ μk þ Θ½k2 − ðp2

1 þ r22 þ Σd
i¼3p

2
i Þ�Zk½k2 − ðp2

1 þ r22 þ Σd
i¼3p

2
i Þ�

þ 1

l

Z
D�×2

dr1dm2 � � � dmddp1dn2dp3 � � � dpdφ̂r1m2���md
ˆ̄φp1m2���md

φ̂p1n2p3���pd
ˆ̄φr1n2p3���pd

×
Z
D
dp2δðr1 þ p2 þ � � � þ pdÞδðΣpÞ

×
Θðk2 − Σsp2

sÞ½∂tZkðk2 − Σsp2
sÞ þ 2k2Zk�

Zkðr21 þ p2
2 þ � � � þ p2

dÞ þ μk þ Θ½k2 − ðr21 þ p2
2 þ � � � þ p2

dÞ�Zk½k2 − ðr21 þ p2
2 þ � � � þ p2

dÞ�
	
: ðB25Þ
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Performing the integral over p1 and p2 in the last two terms and evaluating at the 0-momentum we find

ðIIgÞW j1;2 ≃ δd;3
λ2k

ðZkk2 þ μkÞ3
k2

l2
ð2þ ∂tÞZkV3 þ

λ2k
ðZkk2 þ μkÞ3

k2

l2
ð2þ ∂tÞZk½V2 þ V1�

≃ λ2k
ðZkk2 þ μkÞ3

k2

l2
ð2þ ∂tÞZk½δd;3V3 þ V2 þ V1�: ðB26Þ

The combinatorics of the φ4 is the same with or without the presence of (gauge) constraints; the contribution to the
coefficients coming from the color symmetry is the same as for the previous model. Collecting all contributions, ðIIgÞW ji;i
(B24), i ¼ 1;…; d, and ðIIgÞW ji;j (B26), i < j, i; j ¼ 1;…; d, the β-function for λk, in any rank d, expresses as

βðλkÞ ¼
2λ2k

ðZkk2 þ μkÞ3
(
∂tZk

"
2π

d−2
2

d
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
Γðd

2
Þ
kd

ld
þ ð2d − 1Þ k

2

l2

#
þ 2Zk

"
π

d−2
2ffiffiffiffiffiffiffiffiffiffiffi

d − 1
p

Γðd
2
Þ
kd

ld
þ ð2d − 1Þ k

2

l2

#)
: ðB27Þ

Dimensionful β-functions.— Let us collect all β-functions. At rank d ≠ 4, we gather (B17) and (B27) for the complete
system of β-functions for the gauge invariant TGFT model which is expressed as

8>>>>>>>>>>><
>>>>>>>>>>>:

βd>4ðZkÞ ¼ dλk
ðZkk2þμkÞ2

(
∂tZk

"
π
d−2
2

ðd−1Þ32ΓEðd2Þ
kd−2

ld
þ 1

l2

#
þ 2π

d−2
2 Zk

ðd−1Þ32ΓEðd−22 Þ
kd−2

ld

)

βd≠4ðμkÞ ¼− dλk
ðZkk2þμkÞ2

(
∂tZk

"
kd

ld
π
d−2
2ffiffiffiffiffiffi

d−1
p

ΓEðdþ2
2
Þþ k2

l2

#
þ2Zk

"
kd

ld
π
d−2
2ffiffiffiffiffiffi

d−1
p

ΓEðd2Þ
þ k2

l2

#)

βd≠4ðλkÞ ¼ 2λ2k
ðZkk2þμkÞ3

(
∂tZk

"
2π

d−2
2

d
ffiffiffiffiffiffi
d−1

p
Γðd

2
Þ
kd

ld þð2d−1þ2δd;3Þk2l2
#
þ2Zk

"
π
d−2
2ffiffiffiffiffiffi

d−1
p

Γðd
2
Þ
kd

ld þð2d−1þ2δd;3Þk2l2
#)

; ðB28Þ

which is reported in (98) in Sec. IV C, and at d ¼ 4, we obtain the expression

8>>>>>><
>>>>>>:

βd¼4ðZkÞ ¼ λk
ðZkk2þμkÞ2

�
2πffiffi
3

p
�
1
2
∂tZk þ Zk

�
k2

l4 þ ∂tZk
4
l2

	

βd¼4ðμkÞ ¼ − 4λk
ðZkk2þμkÞ2

�
πffiffi
3

p
�
1
2
∂tZk þ 2Zk

�
k4

l4 þ ð2þ ∂tÞZk
k2

l2

	

βd¼4ðλkÞ ¼ 2λ2k
ðZkk2þμkÞ3

�
∂tZk

�
2π
4
ffiffi
3

p k4

l4 þ 7 k2

l2

�
þ 2Zk

�
πffiffi
3

p k4

l4 þ 7 k2

l2

�	 ðB29Þ

as reported in (99).

APPENDIX C: SCALING AND CANONICAL DIMENSIONS IN SCALAR/TENSOR
GROUP FIELD THEORY

We provide here the scaling dimensional analysis for a scalar and tensor field theory on Rd. This is useful in order to
explain the notion of scaling dimension in the tensor case as discussed in Sec. III E.

1. Scalar field theory

Consider a
Pkmax

l¼2 λlϕ
l real scalar field theory in dimension d (l should be even and kmax a fixed even integer). We use the

usual propagator ð−Δþm2Þ−1 introduced by the usual Gaussian field measure. Introducing a momentum cutoff Λ, it is
known that the power counting of any amplitude AG of graph G (with set V of vertices and set E of propagator lines) can be
written as
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jAGj ∝ j
Y
v∈V

λvjΛωdivðGÞ;

ωdivðGÞ ¼ −2Eþ dðE − V þ 1Þ; ðC1Þ

where jVj ¼ V, the quantity E ¼ jEj gives the number of
internal propagators (introducing a suppression of Λ−2E),
and E − V þ 1 counts the number of loops producing
divergences and where internal momenta should be cut
off. Using the combinatorial property 2E ¼ l · V − Next,
where Next is the number of external legs of G, and l · V ≔Pkmax

l¼2 lVl is the number of half-lines exiting from all
vertices in the graph, we recast the degree of divergence
ωdivðGÞ as

ωdivðGÞ ¼
�
1 −

d
2

�
Next þ dþ

��
−1þ d

2

�
l · −d

�
V:

ðC2Þ

Let n0 ∈ ⟦2; kmax⟧. We introduce the scaling dimension
fλn0g in units of the momentum of a coupling λn0;k ¼
λ̄n0;kk

fλn0g to be the quantity such that, for all graphs G with
Next ¼ n0, the scaling dimension of the amplitude asso-
ciated with G must coincide with fλn0g. This definition is
natural in the sense that evaluating the RG flow of the
coupling λn0;k, all amplitudes with external data coinciding
with ϕn0 must be summed and equated to k∂kλn0;k and
hence must be of the same scaling dimension. In other
terms, we have an equality

fAGg ¼
X
l

Vlfλlg þ ωdivðGÞ ¼ fλn0g: ðC3Þ

We can check the consistency of this equation at the zeroth
order of perturbation. Consider G being the graph made by
1 vertex ϕn0 , with 4 external propagators attached to the
external legs, with no loops. The graph does not have any
internal line or loops, so then we get ωdivðGÞ ¼ 0; on the
other hand,

P
lVlfλlg ¼ Vn0fλn0g ¼ fλn0g, so that

(C3) holds.
Introducing the notations, V̂ ¼Pl≠n0Vl, l̂ · V̂ ¼P
l≠n0lVl, fλ̂g · V̂ ¼Pl≠n0Vlfλlg, from (C3) and (C2),

we infer for a graph G with Next ¼ n0,

0 ¼ fλn0gðVn0 − 1Þ þ
��

−1þ d
2

�
n0 − d

�
Vn0

þ
�
1 −

d
2

�
n0 þ fλ̂g · V̂ þ dþ

��
−1þ d

2

�
l̂ · −d

�
V̂;

0 ¼ ðð−2þ dÞn0 þ 2fλn0g − 2dÞðVn0 − 1Þ
þ ðð−2þ dÞl̂ ·þ2fλ̂g · −2dÞV̂: ðC4Þ

The graph being arbitrary (with arbitrary Vn0 and V̂), for
this equation to hold, we must set for all n ∈ ⟦2; kmax⟧,

fλng ¼ 1

2
ð2 − dÞnþ d: ðC5Þ

We note that the scaling dimension for a coupling λk is
precisely ð−1Þ times the coefficient of Vk in (C2). It can be
seen that at d ¼ 2, something special happens, the scaling
dimension of any λn becomes fixed to 2. This is, of course,
the superrenormalizable PðϕÞ2-model.
The above notion of scaling dimension coincides

with the notion of canonical dimension set up at the level
of the action yielding the usual dimension (in momentum
unit)

½ϕ� ¼ −
dþ 2

2
;

½λn� ¼ −dnþ d − n½ϕ� ¼ dþ n
2
ð2 − dÞ; ðC6Þ

the last equation comes from the interaction term
λn
R ½Qn

i¼1 d
dpiϕðpiÞ�δð

P
ipiÞ setting its canonical dimen-

sion to be that of the action which is 0. Let us finally
comment that the notion of relevant and marginal couplings
are defined by fλng ¼ ½λn0 � ≥ 0, and restricting the initial
action to couplings with such scaling dimensions, one
obtains a perturbatively renormalizable theory. As a con-
sequence, the set of β-functions is stable and can be made
autonomous by simple rescaling of the couplings.

2. Tensorial group field theory

As expected in the case of tensor fields, observables and
amplitudes are more involved. Fortunately, the previous
treatment can be extended to achieve a notion of scaling
dimension. The expression of the amplitude jAGj ∝
jQv∈VλvjΛωdivðGÞ remains valid in this case for graphs built
with tensorial interactions. The degree of divergence is of
the form [25], in similar notations as previously introduced,

ωdivðGÞ ¼ −2Eþ Fint

¼ −ΩG −
1

2
½ðd − 3ÞNext − 2ðd − 1Þ�

þ 1

2
½ðd − 3Þl · −2ðd − 1Þ�V: ðC7Þ

We have restricted the result of [25] to GD ¼ Uð1Þ, D ¼ 1,
and focused on connected diagrams such that C∂ ¼ 1. The
caseC∂ ≥ 1 can be treated in a similar way. E is the number
of propagator lines, Fint is the number of internal faces or
closed loops associated with momenta integrated. To be
useful, the divergence degree must be further expanded in
terms of ΩG ¼ 2ðdegðGÞ − degð∂GÞÞ=ðd − 1Þ! which is
related to the difference between the degree degðGÞ of
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the graph G [19] and the degree of the boundary graph ∂G.
Roughly speaking, the boundary graph ∂G collects the
external data of G: it defined by the set of external legs of G
but also the particular pattern of convolution of external
momenta. For the following developments, we mainly rely
on the fact that ΩG is bounded [24]. Once again, Next is the
number of external legs of the diagram, Vl is the number of
vertices having degree l, l · V ≔

Pkmax
l¼2 lVl is the number of

exiting half-lines of all vertices, and V ¼PlVl is the total
number of vertices.
Let us fix ∂G0 the boundary graph of G0 that we will

identify with a particular pattern b, namely a colored graph,
characterizing an interaction λn0;bTrn0;bððϕ · ϕ̄Þn0=2Þ. We

write ∂G0 ¼ b. The scaling dimension fλn0;bg of λn0;b;k ¼
~λn0;b;kk

fλn0;bg will be evaluated at large k, at the dominant
order in k in the power counting. In that situation, for a
given boundary ∂G0 data we will target all graphs G such
that ∂G ¼ ∂G0 ¼ b and such that the divergence degree
ωdivðGÞ is maximal. One realizes that the procedure of
evaluating a scaling dimension is generally difficult to
handle in practice simply because listing all graphs with
given boundary data is not obvious in the nonlocal case.
However, in some particular cases, we have enough
information and can quickly reach a result.
InG, among theVn0 verticeswithn0 exiting half-lines, there

areverticeswhich do not reproduce the patternb, sowe further
split Vn0 in the number Vn0;b of vertices with contraction
pattern b and the rest: Vn0 ¼ Vn0;b þ V 0

n0 . We then

denote V̂ ¼Pl≠n0Vl þ V 0
n0 and l̂ · V̂ ≔

Pkmax
l¼2;l≠n0 lVlþ

n0V 0
n0 . The scaling dimension of the amplitude of a graph

G with boundary ∂G ¼ b should be the same as fλn0;bg, and
we have

fλn0;bg ¼ ðVn0;bfλn0;bg þ fλ̂g · V̂ÞjG=ωdivðGÞ is maximal
þ max

G=∂G¼∂G0¼b
ωdivðGÞ; ðC8Þ

where fλ̂g·V̂≔
P

b0≠bVn0;b0
0fλn0;b0gþ

P
l≠n0;b00Vl;b00 fλl;b00 g.

This set of equations might be difficult to solve in general.
Note that the scaling dimension might even depend on the
quantity minG=∂G¼∂G0¼bΩG. This is a feature proper to tensor
models in rank d ≥ 3, not to scalar theories, not even tomatrix
models. Indeed, dealing with a matrix model, after a large N
expansion, the scaling dimension of a coupling λn0 does not
depend on the genus of the ribbon graphs but only on the data
of external legs and the number of multitraces building the
invariant [41,42]. This can be further justified: any boundary
graph of any ribbon graph can be recast as the boundary graph
of a planar ribbon graph, with null genus. Another crucial
piece of information is that ΩG is always positive, and it is
either 0 or, whenever degð∂GÞ > 0, then ΩG ≥ d − 2 (a
theorem in [24]; see also Proposition 1 of the second reference

therein).Hence tomaximize the divergence degree,ΩG should
be chosen minimal.
There are cases where we can find fλn0;bg. This occurs

when the pattern b is a melonic boundary, i.e.,
degð∂GÞ ≔ 0. Then, we know that we can construct a
tensor melonic graph G, namely defined by degðGÞ ≔ 0,
such that ∂G ¼ b. Indeed, this can easily be achieved by
adding to any of the external legs of b a two-point function
like a sunshine graph. In that case, ΩG reaches its smallest
value of 0. Hence, we restrict to the class of graphs
degð∂GÞ ¼ 0 since they make the ωdivðGÞ the largest
possible.
Inspecting the rest of the terms of the divergence degree,

we must note that

∀l ≥ 2; ðd − 3Þl − 2ðd − 1Þ ≥ 2d − 6 − 2dþ 1 ¼ −5;

ðC9Þ

hence, in (C7), the term 1
2
½ðd − 3Þl − 2ðd − 1Þ�V can be

negative or positive, since all Vk ≥ 0. At fixed d, let us
assume that k0max is the integer such that

ðd − 3Þk0max − 2ðd − 1Þ ¼ 0; ðC10Þ

such that Vkmax
becomes an arbitrary number in (C7).

Now let us assume k0max ¼ kmax and n0 ¼ kmax. To make
the degree of divergence maximal, we consider a graph
without vertices of valence l < kmax ¼ n0 such that
Vl<kmax

¼ 0 [otherwise, one can prove that the graph
amplitude is convergent ωdivðGÞ < 0 and it is certainly
not maximal; see the proof of this claim on page 141 in
[25]]. From (20), (C7), (C8), and ΩG ¼ 0, we obtain

fλkmax;bg ¼ Vkmax;bfλkmax;bg; ðC11Þ

which, from the arbitrariness of Vkmax;b (infinitely many
graphs), imposes fλkmax;bg ¼ 0. We inspect the case
n0 ≤ kmax. By a similar argument which optimizes the
divergence degree, we use graphs such that Vl<kmax

¼ 0

[otherwise, the degree of divergence may be not maximal
since ðd − 3Þl − 2ðd − 1Þ < 0]. We use (20), (C7),
Vl<kmax

¼ 0, and ΩG ¼ 0, to write (C8) in the form

fλn0;bg ¼ ðfλkmax;bg · Vkmax;bÞjG=ωdivðGÞ is maximal

þ max
G=∂G¼∂G0¼b

ωdivðGÞ ¼ max
G=∂G¼∂G0¼b

ωdivðGÞ;

fλn0;bg ¼ −
1

2
½ðd − 3Þn0 − 2ðd − 1Þ�: ðC12Þ

Notice that for this type of graphs, the scaling dimension
does not depend anymore on b.
The second case k0max < kmax leads to difficulties since

the divergence degree can, in fact, be arbitrarily large. We
can build graphs using only vertices Vk0max<k≤kmax

with all
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positive coefficients in ωdivðGÞ. This is precisely the signal
of nonrenormalizability.
To deal only with perturbatively renormalizable theories

(with a finite number of marginal and relevant directions in
the IR) we must restrict the parameter space ðd; kmaxÞ
to cases when, for all l ∈ ⟦2; kmax⟧, we have
ðd − 3Þl − 2ðd − 1Þ ≤ 0. That analysis has been carried
out in [25], and it results that the constraints d ≤ 5 and
kmaxðdÞ ≤ 6 must be imposed. In this case, perturbative
renormalization at all orders, fixing the scaling dimensions
to be positive, and as given in (C12) are equivalent
statements. Thus, in nonlocal theories the notions of scaling
dimension and canonical dimension in the sense of Sec. III
A can very well differ. Scaling dimensions, as expected,
govern renormalization analysis.
Finally, one might be interested in the restriction at rank

d ¼ 2 or the matrix case. We obtain at that rank

fλngjd¼2 ¼ 1þ n
2
; ðC13Þ

which differs from the scaling dimension of the coupling λn
of TrðMnÞ of matrix models in a single trace formalism
[41,42]. In that case, one finds − n

2
þ 1. This can easily be

explained from the fact that in the above reference the
authors did not include a kinetic term in the form of a
Laplacian. Thus the factor ðd − 3Þn must be replaced by
ðd − 1Þn in (C7) to obtain the corresponding scaling. All
the above reasoning applies to matrices, and even in a
simpler fashion, because in that case there is always a

planar graph with vanishing genus ΩG ¼ 2gG ¼ 0, the
boundary of which is precisely of the form of TrðMnÞ,
for all n. Moreover, we mention that the extension of the
above formula (C12) at C∂ > 1, d ¼ 2 (and without the
Laplacian) will lead to the multitrace scaling dimension as
worked out in the above reference as well.
The discussion for the tensorial group field theory with

the gauge projection is straightforward: we must again
maximize the degree of divergence of a graph which is
given by [26–28]

ωdivðGÞ ¼ −2Eþ Fint − R; ðC14Þ

where R is the rank of the so-called incidence matrix
between line and faces. The divergence degree for G ¼
Uð1Þ can be recast in a way similar to (C7) by just adding
−R to that expression. There is a useful relation proving
that Fint − R ≤ ðd − 2ÞðE − V þ 1Þ which allows one to
find an upper bound on the divergence degree. The rest of
the reasoning applies and, for couplings such that
degð∂GÞ ¼ 0 and ΩG ¼ 0, leads to

fλn;bg ¼ −
1

2
ððd − 4Þn − 2ðd − 2ÞÞ: ðC15Þ

This shows that there is a shift in d in the scaling dimension
d → d − 1. Restricted to Next ¼ 4, 2, we obtain the scaling
dimensions fλ4;bgjn¼4 ¼ − 1

2
ð4d − 16 − 2dþ 4Þ ¼ 6 − d

as found in Sec. IV C.
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