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Current searches for gravitational waves from compact-object binaries with the LIGO and Virgo
observatories employ waveform models with spins aligned (or antialigned) with the orbital angular
momentum. Here, we derive a new statistic to search for compact objects carrying generic (precessing)
spins. Applying this statistic, we construct banks of both aligned- and generic-spin templates for binary
black holes and neutron star–black hole binaries, and compare the effectualness of these banks towards
simulated populations of generic-spin systems. We then use these banks in a pipeline analysis of Gaussian
noise to measure the increase in background incurred by using generic- instead of aligned-spin banks.
Although the generic-spin banks have roughly a factor of ten more templates than the aligned-spin banks,
we find an overall improvement in signal recovery at a fixed false-alarm rate for systems with high-mass
ratio and highly precessing spins. This gain in sensitivity comes at a small loss of sensitivity (≲4%) for
systems that are already well covered by aligned-spin templates. Since the observation of even a single
binary merger with misaligned spins could provide unique astrophysical insights into the formation of these
sources, we recommend that the method described here be developed further to mount a viable search for
generic-spin binary mergers in LIGO/Virgo data.
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I. INTRODUCTION

On September 14, 2015, the Laser Interferometer
Gravitational-Wave Observatory (LIGO) [1,2] made its
first observation of gravitational waves, which were emitted
by the binary black-hole merger dubbed GW150914 [3].
In the coming years, the field of gravitational-wave (GW)
astronomy will begin to take off in earnest, with further
upgrades to the LIGO detectors under way, and the
expansion of the GW observatory network to include
Advanced Virgo [4], KAGRA [5,6] and an additional
LIGO observatory in India [7]. We expect not only to
observe more binary black-hole mergers [8], but also
signals from binary neutron-star and neutron star–black
hole mergers [9].
Compact-object binary systems (henceforth, compact

binaries) are thought to form through two channels: the
coevolution of two massive stars in a binary [10–14], or by
the dynamical capture of two preformed compact objects
in dense stellar environments such as globular clusters
[15–19]. The relative and absolute rates for these two
potential formation channels are highly uncertain; they
depend sensitively on a number of poorly constrained
parameters, such as the typical stellar metallicity at for-
mation, the distribution of supernova kicks, and the binding

energy of the common envelope. Indeed, clarification of the
astrophysics of these formation channels is one of the great
scientific promises of observing GW signals from compact-
binary mergers [20–23]. The parameters of the merging
binary are measurable through an observed GW signal
[24,25], which can then provide information about the
formation processes of the system.
In particular, it is thought that compact binaries formed

by dynamical capture are more likely to have component
angular momenta (spins) at large angles to the orbital
angular momentum, while those formed by common
evolution are more likely to have spins that are nearly
aligned with the orbital angular momentum [19,26–28].
Present observations clearly indicate the potential for large
spins on black holes in binaries, possibly close to the Kerr
limit jS=m2j ¼ jχ j ¼ 1 [29–34]. Very few measurements
of the angles between the spins and the orbital angular
momentum exist from electromagnetic observations. In
some cases, one can measure this spin misalignment via
GW emission, as misalignment leads to precession of the
orbital plane, which appears as phase and amplitude
modulations in the observed signal [35–38]. However,
for GW150914 it was not possible to constrain the spin
misalignment [24].
We focus here on the effect of misalignment between the

spin and the orbital angular momenta from the perspective
of GW searches. The usual detection strategy for compact
binaries is based on matched filtering of the data against a
bank of templates spanning as densely as possible the
full physical parameter space [39,40]. Covering the full
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parameter space is quite challenging. In fact, almost all
searches of Initial LIGO and Initial Virgo data for compact-
binary coalescences (CBCs) ignored the effect of spins in
search templates [41–48]. The only search that did include
spin effects in its templates [49] was a search using
precessing-spin templates [50]. This search was later shown
to perform, on average, no better than nonspinning searches
[51], as the increased degrees of freedom in the signal space
picked up extra noise, which offset the gains achieved in
signal-power recovery. Several recent studies performed
with aligned-spin templates have demonstrated that it is
possible to pull in more signal than noise [52–55], and
aligned-spin templates are currently used in searches with
Advanced LIGO [56]. However, the effect of precession
on the GW signal is not fully captured by aligned-spin
templates [53,57,58], and it remains to be seen whether
precessing-spin effects can be exploited to further improve
the sensitivity of CBC searches. We note that while
detection searches currently consider only aligned-spin
templates, parameter inference algorithms, including the
analysis of GW150914, do consider precessing waveforms
[24,25]. Studies already exist in the literature demonstrat-
ing that for systems with strong precessional features it
will be possible to break degeneracies that exist between
physical parameters in the emitted gravitational-wave
signal and therefore better measure the component spins,
and potentially spin orientations [37,38]. However, to be
able to make such measurements we must first be able to
detect highly precessing systems, and the detection prob-
lem is the focus of this work.
In this work, we demonstrate a method for performing a

detection search with precessing-spin templates. We restrict
our attention to binary black hole (BBH) and neutron star-
black hole (NSBH) systems, as neutron stars are generally
expected to have smaller spins compared to black holes
[59,60], and precessing-spin binary neutron star signals
already match well with aligned-spin waveforms [57,61].
More specifically, we construct template banks of wave-
forms for precessing BBH systems with component
masses mi ≥ 3M⊙, total masses Mtotal ∈ ½6; 100�M⊙ and
mass ratios m1=m2 ≤ 5, as well as for precessing NSBH
systems with component masses 3M⊙ < m1 < 15M⊙,
1M⊙ < m2 < 3M⊙.
Our method makes use of a new statistic, which max-

imizes the matched-filter signal-to-noise ratio (SNR) over
the detector-sky location of the source in addition to the
phase and amplitude of the observed signal. We compare
our new method to searches using aligned-spin templates
and quantify the relative sensitivity between the two in a
two-detector analysis of simulated Advanced LIGO noise.
In doing so, we consider both the gain in signal power due
to having templates that more accurately model precessing
signals, as well as the increase in background from filtering
the data with more templates. We find that, averaged across
the parameter space, these two factors largely cancel out,

such that the expected rate of observations at a fixed rate of
false alarms with the search presented here is roughly the
same as that with an aligned-spin-only search. However, in
certain regions of parameter space, namely at high mass
ratios and large in-plane spins, we observe an increase in
observation rate that is greater than 50%.
This paper is organized as follows. In Sec. II, we define

the BBH and NSBH parameter spaces considered in this
work, and justify the choice of waveform approximants
used to model these systems. In Sec. III, we review the
standard formulation of the phase-, amplitude- and time-
maximized SNR currently used in searches with non-
precessing templates, highlighting the assumptions which
are invalid for precessing signals. Having thus laid out the
mathematical formalism, we then derive in Sec. IVa phase-,
amplitude-, time- and sky-location-maximized SNR sta-
tistic applicable to precessing templates, which we call
the sky-maximized signal-to-noise ratio (sky-maxed SNR).
We also present in Sec. IV a comparison between the sky-
maxed SNR and previous methods, indicating in particular
the reasons for which we find the sky-maxed SNR
approach to be more promising. In Sec. V, we apply the
sky-maxed SNR to construct banks of aligned-spin and
precessing-spin template waveforms and demonstrate their
coverage of the precessing signal space. In Sec. VI, we
apply these template banks in a real pipeline analysis of
simulated Gaussian noise in order to measure the increase
in background incurred by using precessing template banks
with the sky-maxed SNR. From the measured increase in
background rate, we deduce the expected sensitivity
improvement one could gain by employing such a statistic
in Gaussian noise. Finally, in Sec. VII, we summarize the
results, indicating the work remaining to turn the method
presented here into a truly viable search method in real,
non-Gaussian GW data.

II. PARAMETER SPACE AND
WAVEFORM MODELS

In this paper, we consider two separate regions of the
compact-binary parameter space, shown in Table I, corre-
sponding to NSBH and BBH sources. We use different
template waveform approximants in each region, based on
the considerations below.
Let us first discuss the NSBH parameter space. For

the purposes of detection with LIGO and Virgo, the signal
from compact binaries with Mtotal ≲ 10–15M⊙ are well
modeled by the post-Newtonian (PN) approximation to the
Einstein field equations [62], since only the inspiral portion
of the signal is in band. Truncation of the various physical
ingredients (energy, flux, precession equations, waveform
amplitude) at different PN orders, together with distinct
methods for reexpanding the balance equation when
obtaining the frequency evolution equation, lead to a
variety of so-called PN approximants, whose predictions
for the signal can vary significantly [63,64]. In this paper,
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our goal is not to compare these different models but rather
to understand the effect of adding precession to a search.
While the details will certainly depend on the approximant
that one considers, it seems reasonable to consider that the
main effects will be captured by choosing one of them.
Specifically, when considering the NSBH parameter

space, we use the TaylorT2 [63] approximant with all
orbital phase-evolution terms up to 3.5PN order, all spin
phase-evolution terms up to 2.5PN order, and using only
the dominant amplitude term. The waveform is generated
from a frequency lower than that used in the matched-filter
integral and terminated at the frequency corresponding
to the innermost stable circular orbit (ISCO) of a non-
spinning black hole. In certain cases, the evolution reaches
a minimum energy configuration before the ISCO is
reached, and the waveform terminates at that point if this
happens. For the purpose of bank placement, a faster way to
evaluate waveform models is required. Thus, for template
bank construction only, we use the closed-form, single-
spin, frequency-domain precessing model introduced in
Ref. [65]. This waveform is derived from the TaylorT2
reexpansion of the balance equation and has been shown to
agree well with TaylorT2 in most cases [65].
For the larger masses considered in our BBH parameter

space, the merger and ringdown portions of the signal
enter the detectors’ most sensitive band, and including
these portions of the waveform becomes critical. Two
approaches have been developed over the past years
for the construction of approximate analytical models
calibrated to numerical-relativity (NR) waveforms and
covering the entire coalescence of the binary. One approach
is the effective-one-body (EOB) formalism [66,67], which

combines a resummation of the available PN information
and a description of the merger and ringdown phases with
the calibration of a limited number of parameters (hence-
forth, EOBNR). The other approach is to construct phe-
nomenological, frequency-domain models, which directly
interpolate between NR waveforms hybridized to PN or
EOB inspiral waveforms [68] (henceforth, IMRPhenom).
Both approaches were successfully applied to the simpler
problem of modeling aligned-spin systems [69–75] and
have recently been extended to the case of precessing
systems [36,76].
The template bank construction method that we use

requires that the computational cost of generating wave-
forms be small. Precessing time-domain EOBNR models
are currently orders of magnitude too slow for such a study;
their use in these applications will require the development
of fast frequency-domain reduced-order surrogate models
[77], like those already constructed for aligned-spin
EOBNR models [78,79]. Therefore, we compute template
waveforms in our BBH parameter space using a phenom-
enological precessing approximant [36,80]. This approx-
imant is constructed from an underlying aligned-spin
model [74,75], which models the waveform in the copre-
cessing frame. Then, assuming a single in-plane spin, PN
expressions are used to compute the precession angles
as a function of orbital frequency. The l ¼ 2 modes of
the waveform in an inertial frame are then obtained by
appropriately rotating the coprecessing aligned-spin
waveform [36,80].
This IMRPhenom model has known pathologies in the

region of parameter space where the projection of the total
spin on the unit orbital angular momentum is large and
negative as these configurations strongly violate one of the
central assumptions in the model, namely that the direction
of the total angular momentum remains approximately
constant throughout the evolution [81]. A simple approxi-
mate and conservative boundary for the pathological region
is given by χ 1 · L̂ < −3=q where q ¼ m1=m2 > 1 and L̂
denotes the normalized orbital angular momentum. As can
be seen from this expression, this does not affect systems
with q < 3 but covers an increasingly larger portion of the
spin parameter space as q increases. For this reason, we
decide to restrict our parameter space to q ≤ 5, for which
the problematic portion of parameter space (determined
using the proper condition involving also the projection of
the spin of the secondary body) is only a small fraction
(≃0.3%) of the full space. By this we mean that assuming
the distributions described in the caption of Table I, only
0.3% of the simulations lie in this region. In the rest of this
analysis, we excise this region from our parameter space
both when assessing sensitivity improvement via sets of
simulations and when constructing our template banks.
This is also the reason why we do not use this model in the
NSBH region of parameter space despite the obvious
advantage of including the merger-ringdown portion and

TABLE I. Component mass and spin parameter ranges used to
generate the waveforms used in this work for the BBH (left) and
NSBH (right) parameter spaces. In both cases, the parameter
space ranges are chosen identically for the template bank and the
simulated signals used to test the coverage of the bank. For
simulations, masses are drawn uniformly in component masses,
spins are drawn uniformly in component spin magnitude, and
all angular parameters are drawn isotropically. The parameter
distribution for the stochastic placement of templates is detailed
in the Appendix.

BBH parameter ranges

m1, m2 ½3; 97�M⊙
Mtotal ½6; 100�M⊙
m1=m2 [1, 5]
jχ 1j, jχ 2j [0, 0.99]

NSBH parameter ranges

m1 ½3; 15�M⊙
m2 ½1; 3�M⊙
jχ 1j [0, 1.0]
jχ 2j [0, 0.05]
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therefore removing the uncertainties related to the termi-
nation of the waveform.
All the waveforms that we use in this paper are publicly

available in the lalsimulation repository [82].1

III. SKY-MAXED SNR: NONPRECESSING LIMIT

We now lay out the mathematical formalism we later
use for deriving our sky-maxed SNR by first reviewing
the phase-maximized matched filter SNR for nonpre-
cessing templates. This method has been used in nearly
all initial LIGO and Virgo CBC searches to date
[39,41–47] and is well described in existing literature
[39,40,83,84].
Consider the data output sðtÞ of a GW detector, which

consists of noise nðtÞ and possibly a GW signal of known
form hðtÞ. We wish to decide between the signal hypothesis
and the noise hypothesis,

sðtÞ ¼
�
nðtÞ noise hypothesis

nðtÞ þ hðtÞ signal hypothesis
;

given the observed data and predicted form of the signal.
We assume that the noise is both stationary and Gaussian.
Under these assumptions, the statistical properties of the
noise are fully described by a single function, the one-sided
(f > 0) noise power spectral density (PSD) SnðfÞ,
defined by

1

2
δðf − f0ÞSnðfÞ ¼ E½ ~nðfÞ ~n�ðf0Þ�; ð1Þ

where E½·� denotes the expectation value over independent
noise realizations. The PSD naturally induces a complex
inner product hji on the signal space,

hajbi ¼ 4

Z
∞

0

~aðfÞ ~b�ðfÞ
SnðfÞ

df: ð2Þ

Using the Gaussian assumption, we can then express the
probabilities PðsjnÞ and PðsjhÞ of the observed data given
the signal and noise hypotheses, respectively, in terms of
this inner product as

PðsjnÞ ∝ e−ℜ½hsjsi�=2 ð3Þ

PðsjhÞ ∝ e−ℜ½hs−hjs−hi�=2; ð4Þ

where ℜ denotes the real part. It follows that the likelihood
ratio Λ≡ PðsjhÞ=PðsjnÞ between the signal and noise
hypotheses is given by

logΛ≡ λ ¼ ℜ½hsjhi� − 1

2
ℜ½hhjhi�: ð5Þ

By the Neymann-Pearson lemma, a search which thresh-
olds on the matched-filter statistic given in Eq. (5) max-
imizes the probability of accepting the signal hypothesis
whenever the signal hypothesis is true for any false-alarm
probability. Equation (5) therefore gives the general pre-
scription for searching for a GW signal of known form in
stationary, Gaussian noise. One also defines the matched-
filter SNR, ρ, by maximizing λ over an overall amplitude

ρ2=2 ¼ max
amp

ðλÞ ¼ ðℜ½hsjhi�Þ2
hhjhi ¼ ðℜ½hsjĥi�Þ2; ð6Þ

where x̂≡ x=hxjxi1=2 is used to denote normalized
waveforms.
In practice, the exact form of the signal is not known, and

we must maximize Eq. (5) over the a priori unknown
template parameters which determine the signal. A generic
compact-binary coalescence GW signal is described by at
least fifteen parameters2: the component masses, m1 and
m2; the component dimensionless spin vectors χ 1, χ 2; the
sky location of the signal with respect to the frame of the
observer (θ, ϕ); the distance D to the source; the coales-
cence time tc of the signal; the inclination of the binary with
respect to the line-of-sight to the system ι; a polarization
angle ψ ; and an orbital phase at coalescence ϕc. For some
parameters, this maximization step can be performed
analytically, or in a computationally efficient way using
fast Fourier transform (FFT) algorithms, whereas for the
remaining ones, one has to resort to discretizing the
parameter space and repeating the matched-filter operation
a large number of times. In this and the following sections,
we are concerned with the possible analytic maximizations
of Eq. (5). In Sec. V, we describe how we create banks of
waveforms to optimize over the remaining parameters.
The observed signal hðtÞ at the detector is the sum of the

two GW polarizations, hþ and h×, multiplied by the
response function of the detector to each polarization,
Fþ and F× [85], which encapsulate the full dependence of
the signal on ðθ;ϕ;ψÞ

hðtÞ ¼ Fþðθ;ϕ;ψÞhþðtÞ þ F×ðθ;ϕ;ψÞh×ðtÞ: ð7Þ

It is this combination of hþ and h× given in Eq. (7) that is
used as the filter of Eq. (5).

1The internal lalsimulation names for the waveforms
described above are “SpinTaylorT2” and “SpinTaylorF2” for the
two PN NSBH models, “SEOBNRv2” for the aligned-spin
EOBNR approximant, “SEOBNRv3” for the precessing EOBNR
approximant, “IMRPhenomPv2” for the precessing phenomeno-
logical approximant and “IMRPhenomD” for its aligned-spin
counterpart.

2We restrict attention to compact binaries on circular orbits,
removing parameters related to eccentricity. We also ignore any
effects related to the internal structure of neutron stars.
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In making the connection between the two waveform
polarizations and the template waveform hðtÞ, aligned-spin
searches rely on the simplifying assumption that only the
dominant ðl; jmjÞ ¼ ð2; 2Þ modes of the waveform3 are
taken into account. This allows us to write the dependence
of the two GW polarizations on the physical parameters in
the form [40]

hþ ¼ 1þ cos2 ι
2D

Aðt − tc; ξÞ cos½2ðΦðt − tc; ξÞ þ ϕcÞ�;

h× ¼ cos ι
D

Aðt − tc; ξÞ sin½2ðΦðt − tc; ξÞ þ ϕcÞ�; ð8Þ

where Aðt; ξÞ and Φðt; ξÞ are functions of time and the
parameters ξ ¼ ðm1; m2; χ1; χ2Þ, where χ1 and χ2 denote
the constant projections of the spins in the direction of the
orbital angular momentum. Inserting Eq. (8) into Eq. (7),
we find that the full strain seen by a detector can now be
written as

hðtÞ ¼ Aðt − tc; ξÞ
Deff

cos½2ðΦðt − tc; ξÞ þ ϕ0Þ�; ð9Þ

where

Deff ¼ D

�
F2þ

�
1þ cos2ι

2

�
2

þ F2
×cos2ι

�−1=2
ð10Þ

is the so-called effective distance and ϕ0, defined as

e2iϕ0 ¼ e2iϕc
Fþð1þ cos2 ιÞ=2 − iF× cos ι

½F2þð1þcos2 ι
2

Þ2 þ F2
× cos2 ι�1=2

; ð11Þ

is the phase of the observed waveform at coalescence.
Thus, in the aligned-spin case, the waveform hðtÞ depends
on the parameters ϕc, D, θ, ϕ, ψ and ι only through the
combinations Deff and ϕ0. Moreover, this dependence
amounts only to an overall phase and an overall amplitude.
For search applications, we ultimately need the depend-

ence of the Fourier transform of hðtÞ on the physical
parameters. Assuming that the time scale over which the
amplitude A changes is much smaller than the orbital time
scale we can apply the stationary phase approximation [39].
This allows us to conveniently factorize the dependence
on ϕ0 as

~h ¼ 1

Deff
e2iϕ0 ~h0ðf; tc; ξÞ; ð12Þ

where we have defined

h0ðt − tc; ξÞ ¼ Aðt − tc; ξÞ cos½2ðΦðt − tc; ξÞ�; ð13Þ

which depends only on ξ ¼ ðm1; m2; χ1; χ2Þ and tc.
We can nowmaximize Eq. (5) over the parameters ϕc,D,

θ, ϕ, ψ , and ι by maximizing over the combinations of
parameters Deff and ϕ0. Inserting Eq. (12) into Eq. (5) and
maximizing with respect to Deff and ϕ0, we thus obtain

max
ι;D;θ;ϕ;ψ ;ϕc

ðλÞ ¼ 1

2
max
ϕ0

ðρ2Þ ¼ 1

2
jhsjĥ0ij2: ð14Þ

The coalescence time tc parametrizes time translations
of h0. Therefore in the Fourier domain we can write
~h0ðf; tc; ξÞ ¼ ~h0ðf; ξÞe−2iπftc and therefore

hsjh0i ¼
Z

∞

0

~s�ðfÞ ~h0ðf; ξÞ
SnðfÞ

e−2πiftcdf: ð15Þ

Evaluating hsjh0i over a range of tc can be efficiently
performed numerically by using widely available FFT
routines.
To summarize, it is possible in the aligned-spin case to

quickly maximize over all parameters describing the
system except for ξ ¼ ðm1; m2; χ1; χ2Þ, provided subdomi-
nant modes can be neglected and that the stationary-phase
approximation holds. The remaining parameters are
searched over by repeating the matched-filter operation
Eq. (14) over a discrete bank of templates, with time
maximization handled by an efficient FFT implementation
of Eq. (15). We discuss the construction of the discrete
template banks in Sec. V.

IV. SKY-MAXED SNR: PRECESSING LIMIT

Consider now the case where we wish to conduct a
search using waveforms with generically oriented spins. A
first obvious difference with the case described above is
that we now have to deal with the six dimensionless spin
components: χ 1 and χ 2.

4 A more important difference is
that in the precessing case the orientation of the source with
respect to the detector varies as the orbit precesses. As a
result, the two polarizations hþ and h× cannot be written in
the simple form of Eq. (8) where both are identical up to an
amplitude rescaling that only depends on ι and a constant
phase shift. Therefore, we return to Eq. (7) and derive a new
statistic free of this assumption on the waveform. This
statistic maximizes λ, not only over an amplitude and a
phase, but also over the sky-location-dependent antenna
factors. We then explore the statistical properties of this
maximized form of λ and compare to previously proposed

3Defining these modes in a natural radiation frame where the
z-axis, with respect to which the multipolar decomposition is
performed, coincides with the direction of the angular orbital
momentum.

4We do not need to specify here the frame used to define the
spin components; note however that as the spins evolve with time
in the precessing case, we define these values to be the spins at
some reference time.
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approaches, emphasizing the differences which make the
current approach more promising.

A. Sky-maximized signal-to-noise ratio

We start by expressing the dependence in Eq. (7) on the
detector related angles ðθ;ϕ;ψÞ and the distanceD in terms
of an overall amplitude and a phase between hþ and h×,

h ¼ Kðθ;ϕ;ψ ; DÞ½hþðt; tc; ξ; ι;ϕcÞ cos κðθ;ϕ;ψÞ
þ h×ðt; tc; ξ; ι;ϕcÞ sin κðθ;ϕ;ψÞ�; ð16Þ

where we have defined ξ ¼ ðm1; m2; χ 1; χ 2Þ and

eiκ ¼ Fþ þ iF×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þ þ F2

×

p ; ð17Þ

K ¼ 1

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þ þ F2

×

q
: ð18Þ

In addition, as in Eq. (12), we can factorize the dependence
of ϕc in the Fourier domain as

~h¼Ke2iϕc ½ ~hþðϕc ¼ 0Þcosκþ ~h×ðϕc ¼ 0Þsinκ�: ð19Þ
As with the aligned-spin waveforms, this is not an exact
symmetry. However, it is a particularly good approximation
if one only considers a waveform containing the ðl; jmjÞ ¼
ð2; 2Þ modes in the corotating frame [36,50].
We could now perform the maximization over the

amplitude K and the phase ϕc just as in Eq. (14) but with
h0 replaced by ~hþ cos κ þ ~h× sin κ. This would leave us
with the two additional parameters ι and κ (plus the four
new spin components) to be covered using a discrete
bank. While it is possible to construct template banks in
this manner, it would be desirable to further reduce the
dimension of parameter space. Furthermore, different GW
observatories, with different orientations and locations,

will not observe the same combination of sky angles κ.
We therefore consider a scheme where we maximize not
only over the overall amplitude K and phase ϕc, but also
over the angle κ. Such a scheme removes all detector-
dependent quantities from the parameters used when
constructing the template bank, allowing the use of a
simpler template coincidence method for a multidetector
analysis.
Maximizing the log-likelihood defined in Eq. (5) over K

and ϕc, straightforwardly leads to

max
K;ϕc

ðλÞ ¼ 1

2

u2jρ̂þj2 þ 2uγ̂ þ jρ̂×j2
u2 þ 2uIþ× þ 1

; ð20Þ

where we have defined

ρ̂þ;× ¼ hsjĥþ;×i ð21Þ

γ̂ ¼ ℜ½ρ̂þρ̂�×� ð22Þ

hĥþjĥ×i ¼ Iþ× þ iJþ×; ð23Þ

with Iþ×; Jþ× ∈ R and we factorize the κ dependence in
terms of

u≡ 1

tan κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhþjhþi
hh×jh×i

s
: ð24Þ

Taking the derivative of Eq. (20) with respect to u and
solving for the roots leads to a quadratic equation in u,

ðIþ×jρ̂þj2 − γ̂Þu2 þ ðjρ̂þj2 − jρ̂×j2Þuþ ðγ̂ − Iþ×jρ̂×j2Þ ¼ 0:

ð25Þ

Substituting the roots of this equation back into Eq. (20),
we obtain two extremal values for λ,

λ ¼ 1

4

�jρ̂þj2 − 2γ̂Iþ× þ jρ̂×j2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjρ̂þj2 − jρ̂×j2Þ2 þ 4ðIþ×jρ̂þj2 − γ̂ÞðIþ×jρ̂×j2 − γ̂Þ

p
1 − I2þ×

�
: ð26Þ

To take the maximal value of λ, we notice that the denominator of Eq. (26) is always positive, so the log-likelihood will
always take a maximum value when the square-root term is positive. Therefore,

max
D;ϕc;θ;ϕ;ψ

ðλÞ ¼ max
K;ϕc;u

ðλÞ ¼ 1

4

�jρ̂þj2 − 2γ̂Iþ× þ jρ̂×j2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjρ̂þj2 − jρ̂×j2Þ2 þ 4ðIþ×jρ̂þj2 − γ̂ÞðIþ×jρ̂×j2 − γ̂Þ

p
1 − I2þ×

�
ð27Þ

is the log-likelihood maximized over an overall phase, an
overall amplitude and the sky location of the binary.
We notice that Eq. (27) is ill defined in the case that

Iþ× ¼ �1. However, for compact-binary waveforms it is
not possible for the ĥþ and ĥ× components to be identical

and so this case can never occur. Additionally, the terms
within the square root of Eq. (27) will always take positive
values and therefore the equation will always produce real,
positive, values of λ. In analogy with the nonprecessing
case discussed in the previous section, we define
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max
K;ϕc;u

ðλÞ ¼ 1

2
max
ϕc;u

ðρ2Þ ¼ 1

2
ρ2SM; ð28Þ

and we refer to the quantity ρSM as the sky-maxed SNR.
Additionally, Eq. (27) can be maximized over tc in a

similar way as in the aligned-spin case: both ρ̂þ;× can be
efficiently computed for a discrete set of values of tc using
FFT algorithms and one can just pick the largest resulting
value of λ. Note, however, that unlike in the aligned-spin
case, maximizing the likelihood over the unknown coa-
lescence time in the precessing case requires the compu-
tation of two inverse FFTs, which contributes to increasing
the computational cost.
As a sanity check, we show how the sky-maxed SNR

behaves in the aligned-spin limit. In this case, the simple
relation between the polarizations Eq. (8) implies that in the
frequency domain

ĥþ ¼ �iĥ×; ð29Þ
and therefore

ρ̂þ ¼ �iρ̂×; ð30Þ

Iþ× ≡ℜ½hĥþjĥ×i� ¼ 0: ð31Þ
Inserting these conditions into Eq. (27) results in the
equation collapsing to the form of Eq. (14),

max
D;ϕc;θ;ϕ;ψ

ðλÞ ¼ 1

2
jhsjĥþij2: ð32Þ

This is of course expected: in this case, the sky location
enters only as a constant phase and amplitude shift and
therefore by maximizing over these overall degrees of
freedom, one has already maximized over κ.

B. Statistical distribution of the sky-maximized
SNR in Gaussian noise

In Eqs. (27) and (28), we have defined a new statistic to
be used in searches with precessing templates. This statistic
has different statistical properties, in general, than the
standard aligned-spin statistic defined in Eq. (6). Before
applying the sky-maxed SNR, we wish to better understand
these differences. Here, we investigate the distribution of
the (squared) sky-maxed SNR ρ2SM in Gaussian noise.
For a given template with a known value of Iþ×, the

statistic defined in Eq. (27) is a combination of two

complex variables, ρ̂þ and ρ̂×. We use the following
notation for their real and imaginary parts,

ρ̂þ;× ¼ ϵRþ;× þ iϵIþ;×; ð33Þ

which are, for any point in time and in Gaussian noise, real
Gaussian random variables with unit variance and zero
mean. Thus,

E½ϵRþ� ¼ E½ϵIþ� ¼ E½ϵR×� ¼ E½ϵI×� ¼ 0; ð34Þ

Var½ϵRþ� ¼ Var½ϵIþ� ¼ Var½ϵR×� ¼ Var½ϵI×� ¼ 1: ð35Þ

However, while by definition the imaginary and real
components of ρ̂þ (and separately of ρ̂×) are statistically
independent,

E½ϵRþϵIþ� ¼ E½ϵR×ϵI×� ¼ 0; ð36Þ

the correlation between ρ̂þ and ρ̂× will depend on the
template and PSD being used.
In the aligned-spin case, we see directly from Eq. (32)

that 2λ is the sum of two independent Gaussian variables
squared and therefore has a χ2 distribution with 2 degrees of
freedom. In the generic case, the statistical distribution will
depend on both the real and imaginary parts of hĥþjĥ×i:
Iþ× and Jþ;×. In order to explore this, it is more convenient
to reexpress Eq. (27) in terms of four independent standard
normal variables. We therefore introduce a normalized
linear combination,

ĥ⊥ ¼ ĥ× − hĥþjĥ×iĥþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhĥþjĥ×ij2

q ; ð37Þ

such that hĥþjĥ⊥i ¼ 0. From this we obtain a new complex
variable ρ̂⊥ whose real and imaginary parts ϵR;I⊥ are
standard normal variables statistically independent of ϵR;Iþ .
Reexpressing ρ̂× as a linear combination of ρ̂þ and ρ̂⊥,

ρ̂× ¼ hĥþjĥ×iρ̂þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhĥþjĥ×ij2

q
ρ̂⊥; ð38Þ

and plugging this into Eq. (27), we rewrite the statistic in
terms of four statistically independent, zero-mean, unit-
variance vectors and the real and imaginary components
of hĥþjĥ×i,

λ ¼ ½H2
−jρ̂þj2 þH2þjρ̂⊥j2 − 2Jþ×HþðϵIþϵR⊥ − ϵRþϵI⊥Þ þ ðH4þ½jρ̂þj4 þ jρ̂⊥j4�

þ 2Jþ×H3þðϵIþϵR⊥ − ϵRþϵI⊥Þðjρ̂þj2 − jρ̂⊥j2Þ þH2þf8J2þ×ðϵIþϵR⊥ − ϵRþϵI⊥Þ2
þ 2H2

−ððϵRþϵR⊥Þ2 − ðϵIþϵR⊥Þ2 þ 4ϵRþϵIþϵR⊥ϵI⊥ − ðϵRþϵI⊥Þ2 þ ðϵIþϵI×Þ2ÞgÞ1=2�=ð4ð1 − I2þ×ÞÞ: ð39Þ
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Here we have defined for convenience

H− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðI2þ× − J2þ×Þ

q
; ð40Þ

Hþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðI2þ× þ J2þ×Þ

q
; ð41Þ

and we remind the reader for completeness that

jρ̂þ;⊥j2 ¼ ðϵRþ;⊥Þ2 þ ðϵIþ;⊥Þ2: ð42Þ

This fully explicit form, although not very elegant,
allows us to easily identify some particular cases and
symmetries. First, as already discussed, in the aligned-spin
case for which Jþ× ¼ �1, Iþ× ¼ Hþ ¼ 0 and H− ¼ ffiffiffi

2
p

,
the distribution trivially collapses to a χ2 distribution with
2 degrees of freedom 2λ ¼ ðϵRþÞ2 þ ðϵIþÞ2. Another inter-
esting case arises when Jþ× ¼ 0 since in this case H2

− ¼
H2þ ¼ 1 − I2þ× and the dependence on Iþ× completely
cancels out. Furthermore, Eq. (39) allows us to show
that the distribution of λ does not depend on the sign of
Iþ× and Jþ×. Indeed, Eq. (39) is left invariant by the
transformation Iþ× → −Iþ× or by the transformation
ðJþ×; ϵR⊥; ϵI⊥Þ → ð−Jþ×;−ϵR⊥;−ϵI⊥Þ.
As we have demonstrated, λ is formed from a combi-

nation of four orthogonal time series which, in Gaussian
noise, will each be independent, and follow a normal
distribution with zero mean and unit variance. We identify
an upper bound on the probability density function (PDF)
of the sky-maxed SNR at large SNRs by considering the
case where one is free to capture the power in all four of
these vectors, i.e. when the four components are added in
quadrature. In this case 2λ would follow a χ2 distribution
with 4 degrees of freedom. However, λ as defined in
Eq. (39) does not have the freedom to capture the power
in all four of these vectors; it is constrained to the physical
subspace. We find numerically that the PDF of the sky-
maxed SNR takes the largest values at high SNRs when
hĥþjĥ×i ¼ 0. The PDF takes the smallest values at high
SNRs in the case where hĥþjĥ×i ¼ �i, as for nonspinning
or aligned-spin restricted waveforms. This can be seen in
Fig. 1 where we compare the distribution of 2λ ¼ ρ2SM for
both the lower and upper bound configurations with χ2

distributions with 2,4 and 6 degrees of freedom. We note
that the lower bound at high SNRs for the “PTF” approach,
which we discuss in the next subsection, follows a χ2

distribution with 6 degrees of freedom.
Since the distribution of our sky-maxed SNR depends on

the value of hĥþjĥ×i for the template that one is consid-
ering, we find it informative to visualize the distribution of
hĥþjĥ×i corresponding to a set of precessing waveforms
randomly drawn from our parameter spaces of interest, as
shown in Fig. 2. The particular distribution that the
simulations in the panels of this figure are drawn from

are listed in Table I. We see that even though the set of
aligned-spin waveforms is of measure zero, the distribution
is highly peaked around the aligned-spin value �i.

C. Comparison to previously proposed approaches

The first attempt to derive an efficient search for
precessing waveforms in GW data analysis was presented
in Ref. [86]. This approach involved adding an additional
free parameter at the same order as the 1PN orbital term, to
model the dominant effect of precession on the orbital
phase. A later scheme for searching with precessing
templates was introduced in Ref. [87], which used unphys-
ical coefficients in the waveform expansion to model the
effects of precession in a parameter space of reduced
dimension. The approach described in Ref. [87] was used
to search for precessing signals in LIGO data [44,49].
However, it was determined that due to the increased
response to the noise background, this method did not
offer any improvement in sensitivity compared to a non-
spinning search pipeline [51]. The basic problem was that
while the increased parameter space offered an improve-
ment in the signal power recovered for precessing signals,
the large, additional, unphysical parameter space being
searched greatly increased the rate of background triggers
of the search. Therefore, when estimating sensitivity at a
constant rate of false alarm, the precessing search loses
sensitivity compared to a nonspinning or aligned-spin
search.
An alternative to these “unphysical template families” is

to use a method that restricts to only physically possible
template waveforms. A method for doing this was first
proposed in Ref. [88] and then further explored in

FIG. 1. The two limiting cases, (hĥþjĥ×i ¼ 0) and
(hĥþjĥ×i ¼ �i), of the probability density function of the
precessing sky-maxed SNR in Gaussian noise. Also plotted
are χ2 distributions with 2 and 4 degrees of freedom for direct
comparison. As expected, when hĥþjĥ×i ¼ 0 the statistic follows
a χ2 distribution with 2 degrees of freedom.
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Refs. [50,89,90]. We will refer to this as the “PTF”
(physical template family) approach. Our sky-maxed
SNR is motivated from the PTF approach and we compare
the two methods here.
The PTF approach considers single-spin systems and

considers only the ðl; jmjÞ ¼ ð2; 2Þ modes in a corotating
frame where the z direction tracks the orbital angular
momentum. This is similar to our approach, except we
do not restrict ourselves to considering single-spin systems.
The single-spin approximation was explored, however, in
terms of an effective spin for double-spin systems, and
found to perform well, in Ref. [50]. The PTF approach
parametrizes the single spin by the spin magnitude, χ1; the
cosine of the angle between the spin and the orbital angular
momentum, κ1 ¼ L̂N · χ 1; and the azimuthal angle φ
between the projections of the spin and the line of sight
on the orbital plane, all these quantities being computed at
some reference time. The PTF SNR is then constructed by
reexpressing hþ and h× as the sum of five basis waveforms
constructed using a spherical harmonic (l ¼ 2) basis to
express the waveform as [88]

hðtÞ ¼ PI½D; θ;ψ ;ϕ; ι;φ�QI½m1; m2; χ1; κ1;ϕc; tc; t�;
ð43Þ

where I takes values ∈ ½1; 5�. Next, a maximization is
performed over the five PI constants, ϕc and tc to obtain the
PTF SNR as described in Refs. [50,90].
The statistical distribution of the PTF SNR, as described

in Ref. [90], is template and noise curve dependent.
However, in the best case scenario, when the PDF of the
PTF SNR at high SNRs takes the smallest values,
the distribution of SNRs follows a χ2 distribution with
6 degrees of freedom. This can be compared to the
distribution of values for the sky-maxed SNR, as shown
in Fig. 1. However, as summarized in Table II, the PTF
SNR maximizes over more parameters than the sky-maxed
SNR. Specifically, considering a single-spin template, both
the inclination angle and the azimuthal spin angle are
maximized over in the PTF SNR, but not maximized over
in the sky-maxed SNR.
The PTF SNR, as described above, is not restricted to

physical values of the parameters. While the five PI values

TABLE II. Comparison between the maximization schemes proposed in the PTF method [88] and in this paper. PTF lays a discrete
bank in a 4d space and then “continuously” maximizes over the remaining 12 − 4 ¼ 8 parameters using a combination of analytic and
numerical methods. Note that the total number of parameters is 12 instead of 15 due to their restriction to single-spin systems. In this
paper, we essentially follow the same route except that (i) we do not restrict ourselves to single-spin systems and (ii) we include ι and φ
in the discrete bank. Note that in PTF the parameter φ (together with χ1 and κ1) describes the orientation of the spin in the source frame.
In our notation, these three parameters combine into χ 1.

Maximization scheme Discrete parameters in the bank Parameters continuously optimized over

Sky-maximized SNR m1, m2, χ 1, χ 2, ι ϕc, tc, θ, ϕ, ψ , D
PTF SNR (constrained max) m1, m2, χ1, κ1 ι, φ, ϕc, tc, θ, ϕ, ψ , D

FIG. 2. The distribution of hĥþjĥ×i for (left) a set of BBH signals modelled with the PhenomP approximant and (right) a set of NSBH
signals modeled with the TaylorT2 approximant, each set drawn with the distribution described in Sec. IV B. Most waveforms cluster
around the hĥþjĥ×i ¼ �i value achieved exactly by aligned-spin systems.
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do depend on six physical parameters, the values of
D; θ;ψ ;ϕ are degenerate in a single detector, and enter
the waveform in only two combinations, an overall ampli-
tude scaling, and Fþ=F×. Therefore, only four independent
physical values can be measured from the PI and it then
follows that allowing a free maximization over five values
allows for unphysical combinations. The authors of
Ref. [50] explored this and described a numerical method
for constraining the PI values to the physical manifold.
However, that method is computationally expensive and
was not included in attempts to use the PTF approach as a
search method [89,90].
In Ref. [50] the authors considered searching for

precessing signals in data from only a single detector.
Here we wish to consider the case of a multidetector
analysis. The standard approach is to measure the SNR
from data in each detector independently and then look for
times where both detectors obtain a SNR over some
threshold, within some predefined time window and within
some predefined window on the template parameters that
are gridded over. No attempt is made to ensure consistency
in the parameters that are maximized over. For a two-
detector aligned-spin search one maximizes over time, an
overall waveform phase, and an overall amplitude in each
detector. As long as the time difference is within that
allowed due to the light travel time between detectors it is
always possible to find a physical solution for the maxi-
mized parameters. For more than three detectors this is not
the case, and the aligned-spin coincident search will allow
unphysical combinations of the maximized parameters. In
that case the computationally more expensive coherent
search [90–94] can offer some improvement in sensitivity
by restricting the search to only physically possible values
of the maximized parameters.
In the PTF approach, even considering the constrained

statistic, one measures 6 maximized parameters (P1…4, ϕc,
tc) in each detector. With two detectors these are measured
independently and so we obtain 12 independent quantities
measuring only 8 physical parameters. For the noncon-
strained statistic 14 independent quantities are maximized
over, measuring the same 8 physical parameters. This
results in a significantly large unphysical region of param-
eter space being searched over when considering multiple
detector searches and makes it difficult to see sensitivity
gains over the aligned-spin searches.
In the sky-maxed SNR, we reduce six physical param-

eters to four nondegenerate combinations of them that are
maximized over. For a single detector, the resulting values
are always consistent with some physical signal. When
filtering in two detectors, however, we have obtained eight
independent measurements for only six physical quantities.
It therefore follows that, as in the PTF case, when filtering
with two or more detectors, some degree of unphysical
freedom is still allowed with this new statistic. However,
this new statistic allows less unphysical freedom than in the

PTF case and therefore should offer a better chance to
create a search that increases sensitivity to precessing
systems.

V. TEMPLATE BANK CONSTRUCTION

We now apply the sky-maxed SNR to generate banks of
generic-spin BBH and NSBH templates. We also quantify
the expected improvement in SNR recovery from a
simulated population of precessing-spin systems when
using these generic-spin template banks, compared to
aligned-spin-only banks. In each case, we first generate
a bank of aligned-spin templates, and then add precessing
templates to the aligned-spin bank in a second stage. By
construction, since the aligned-spin bank is a subset of the
generic-spin bank, the generic-spin template bank will
outperform the aligned-spin bank towards any putative
signal when performance is measured in terms of SNR
recovery. We remind the reader that comparing the
expected SNR recovery between the two banks does not
include the effect of the increase in background event rate
due to the increase in template bank size and increased
degrees of freedom incurred by using the precessing
templates. We consider this effect in the next section, in
which we demonstrate the application of the precessing
template banks in an analysis of simulated Advanced
LIGO noise.

A. Precessing bank construction method

The construction of efficient template banks to search for
nonspinning compact-binary mergers has been well
explored in the literature [40,84,95–100]. These methods
define a metric in the parameter space of the two masses,
and use this metric to place a hexagonal lattice in
appropriate coordinates. Recently, this method has been
extended to place geometrical lattices of aligned-spin
waveform templates [53,61]. However, for the parameter
space of precessing compact-binary mergers, it is not clear
how to choose a coordinate system in which it is appro-
priate to lay a lattice of waveform templates. Indeed, there
is no reason to believe that such an intrinsically flat
parameter space exists for the precessing parameter space.
In addition, current geometric methods exclude the effects
of merger and ringdown in the waveform model. This can
cause these banks to be suboptimal in the BBH parameter
space where merger and ringdown are important.
For these reasons, we make no attempt to employ a

geometrical template bank for our precessing search.
Instead, we use a “stochastic” template bank construction
scheme [57,101,102]. The stochastic template scheme has
the advantage that it is able to create a bank of waveform
signals for any parameter space, but the disadvantage that it
will require more templates to cover a given parameter
space than a geometrical lattice, and can be considerably
more computationally expensive [102,103]. In recent years,
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a number of methods have been proposed to significantly
speed up the generation of stochastic banks [55,57,104].
We use a number of these methods here, along with some
new methods to optimize bank placement, which we
describe in the Appendix.
The general stochastic approach works as follows. Begin

with a seed bank B, which may be empty. Then randomly
choose the parameters of a putative template signal and
compute the corresponding template waveform gprop. Then
a match, Mðgprop; hÞ, is computed between gprop and all
templates h ∈ B, where Mðgprop; hÞ defines the fraction of
the signal power of gprop that would be recovered if using
the template h as a filter. The fitting factor FF is then
defined as the match maximized over all templates in the
bank,

FF≡max
h∈B

Mðgprop; hÞ: ð44Þ

If the fitting factor falls below a given threshold—the
“minimal match”—then the proposed template is added
to the bank and B0 ¼ B ∪ fhpropg is set as the seed bank
for the next iteration. Otherwise, the proposed template
is discarded, and B0 ¼ B. The process repeats until a
sufficiently high rejection rate of proposed templates is
achieved.
For aligned-spin placement, the match Mðgprop; hÞ

defined from the phase-maximized matched-filter SNR
in Eq. (14) is

Mðgprop; hÞ≡max
ϕc;tc

ℜ½hĝpropjĥðϕc; tcÞi�

¼ max
tc

jhĝpropjĥð0; tcÞij: ð45Þ

We note that, as written, the maximization over time and
phase shift is performed only on the template h and not on
the proposed waveform gprop. However, given the assump-
tions that are used to construct Eq. (14), a phase or time
shift in h can be modeled by an opposite phase or time shift
in gprop and therefore the form given in Eq. (45) serves to
maximize over a phase and time shift in both h and gprop.
Therefore, when choosing seed points for aligned-spin
stochastic template bank construction, one only needs to
choose the masses and spins.
For precessing waveforms, we define the match as

Mðh; gÞ≡ max
ϕc;tc;u

ℜ½hĝpropjĥðϕc; tc; uÞi�; ð46Þ

where the maximization is performed as described in
Eq. (27). In this case, a variation in the value of u for
ĝprop cannot be written as a corresponding shift of the value
of u in h. Therefore, in the precessing case, we maximize
over ϕc and u only in the template waveform. That is, when
picking the putative template signal we choose a sky

location, construct hðtÞ and compare that against the hþ
and h× components of all templates in the bank, using
Eq. (27). If a putative point is accepted into the template
bank, the sky location and hðtÞ are discarded, and only the
hþ and h× components of that point are retained. Our
choice not to maximize over ϕc and u in ĝprop is taken to
allow us to use Eq. (27) directly when evaluating the fitting
factor for potential precessing filter waveforms. This choice
will result in an increase in the number of proposal points
needed to construct a precessing template bank than if one
were to consider also maximizing over ϕc and u in ĝprop.
However, the final number of templates in the resulting
template bank should not be affected by this choice.

B. Effective fitting factor

In order to quantify a template bank’s performance in
terms of SNR recovery, we use the notions of signal
recovery fraction and effective fitting factor as figures of
merit. These notions were defined initially in Refs. [53,87],
and we redefine them here for completeness. Consider a
template bank and a model pðυÞ for the distribution of
source parameters. We assume that sources are uniformly
distributed in volume, so that pðυÞ ∝ r2pðυ0Þ where υ0
denotes all parameters other than distance. For a “perfect”
template bank, where all fitting factors are unity, the
expected total number of sources that would be observed
above a SNR threshold ρ0 is proportional to

Nopt ∝
Z

σ3ðυ0Þpðυ0Þdυ0; ð47Þ

where σðυ0Þ is the distance at which the expected SNR to
the signal with parameters υ0 is equal to ρ0. In reality, our
template banks will not have a fitting factor of 1 for the
entire parameter space, and therefore the number of
observed signals above a SNR threshold ρ0 will be smaller
than Nopt according to

Nobs ∝
Z

FF3ðυ0Þσ3ðυ0Þpðυ0Þυ0; ð48Þ

where FFðυ0Þ denotes the fitting factor between the signal
with parameters υ0 and the template bank.
We then define the “signal recovery fraction” α as the

ratio between Nobs and Nopt,

α≡ Nobs

Nopt
¼

R
FF3ðυ0Þσ3ðυ0Þpðυ0Þdυ0R

σ3ðυ0Þpðυ0Þdυ0 ; ð49Þ

which takes values between 0 and 1. It is also convenient to
express the bank performance in terms of the “effective
fitting factor,” defined as

FFeff ≡ α1=3; ð50Þ

SEARCHING FOR GRAVITATIONAL WAVES FROM … PHYSICAL REVIEW D 94, 024012 (2016)

024012-11



which can be interpreted as the average SNR recovered for
the observed population of sources. Including the σ factors
means that signals that would not be seen at a large distance
have only a weak effect on the signal recovery fraction.
This includes signals that are poorly aligned with respect to
the detector, and signals that have intrinsically low GW
luminosity. In contrast, favorably oriented, intrinsically
bright sources will have the largest effect on this measure.
We estimate the signal recovery fraction numerically by

Monte Carlo integration, choosing a random set of source
parameters S ¼ fυi0gNi¼1 according to a sampling distribu-
tion qðυ0Þ. The signal recovery fraction is then given by

α ≈
P

N
i¼1 FF

3
i σ

3
i ðpi=qiÞP

N
i¼1 σ

3
i ðpi=qiÞ

; ð51Þ

where pi=qi ¼ pðυ0iÞ=qðυ0iÞ corrects the sampling distri-
bution q to match the desired astrophysical distribution p.
Table I summarizes the distribution qðυ0Þ that we use when
drawing signals to evaluate both our NSBH and BBH
template banks. The template banks are constructed using
the same limits on physical parameters.5

Wewish to sample well all points in our parameter space,
and so we choose sources uniformly distributed in compo-
nent masses within the bounds for the BBH and NSBH
parameter spaces given in Table I. However, such a choice
leads to an effective fitting factor that is dominated by high
mass systems since, to leading order, σ ∝ M5=6. This
would be the correct figure of merit if the distribution of
masses for compact-binary mergers in the Universe were
uniform in component masses. However, this distribution is
not well understood [105,106]. To obtain a figure of merit
for our banks that more evenly averages over the mass
space, we therefore correct the sampling distribution by a
factor p=q ¼ M−5=6 to approximate a prior in mass such
that the observation rate does not change as a function of
component masses. Thus, we evaluate the signal recovery
fraction from our simulations by the formula

α ≈
�PN

i¼1 FF
3
i σ

3
iM

−5=6
iP

N
i¼1 σ

3
iM

−5=6
i

�
: ð52Þ

To minimize issues of uncertainty in the real astrophysical
mass distribution, we also report below results restricted to
relatively small mass bins. However, when reporting results

in bins of spin, the chosen mass distribution will matter, and
this distribution more evenly weights the simulations.

C. Effectualness of precessing template banks

We now generate template banks to cover the parameter
spaces that are summarized in Table I. Our aligned-spin
banks, which form the seed for the precessing banks, are
generated using a minimal match of 0.97, which matches
the value used for aligned-spin searches of Advanced LIGO
and Advanced Virgo data [55]. The precessing banks
become unmanageably large with our current methods if
generated with a minimal match of 0.97. We therefore use a
minimal match of 0.9 when completing our aligned-spin
banks with precessing waveforms.
The sizes of the resulting template banks and the

corresponding effective fitting factors of those banks are
summarized in Table III, and the distribution of fitting
factors for each bank is plotted in Fig. 3. We find that the
precessing template banks are roughly an order of magni-
tude bigger than their aligned-spin counterparts, and that,

FIG. 3. The distribution of fitting factors for the aligned-spin
and precessing-spin template banks summarized in Table III and
covering the parameter spaces defined in Table I.

TABLE III. Sizes and effective fitting factors for the BBH and
NSBH template banks. These cover the same range of parameters
from which the corresponding signal set is drawn from, as
described in Table I. When computing matches and constructing
the template banks a lower frequency cutoff of 30 Hz is used and
the Advanced LIGO “early” noise curve prediction [107]. The
effective fitting factor reported in the last column is computed
using Eq. (50).

Parameter
space

Minimal
match Spin Templates Eff. FF

NSBH
0.97 Aligned 146,315 0.948
0.90 Precessing 1,583,079 0.976

BBH
0.97 Aligned 23,948 0.984
0.90 Precessing 237,909 0.988

5As discussed in Sec. II, the frequency-domain NSBH pre-
cessing waveform approximant that is used when placing the
NSBH precessing template bank is a single-spin model. There-
fore, NSBH precessing templates all have χ2 ¼ 0, although the
aligned-spin NSBH template bank contains templates with
χ2 ≠ 0. When calculating the effective fitting factor and asso-
ciated quantities all NSBH templates and simulated signals are
modeled using the double-spin time-domain TaylorT2 waveform
model.
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on average, aligned-spin banks are already performing
reasonably well when searching for precessing systems.
The BBH aligned-spin bank is more effective at recovering
precessing BBH signals (FFeff ¼ 0.984) than the NSBH
aligned-spin bank is at recovering precessing NSBH
systems (FFeff ¼ 0.948). However, both aligned-spin bank
distributions show long tails of precessing systems that are
recovered with fitting factors less than 0.90. When using
precessing template banks, these tails are significantly
reduced. The effective fitting factor also increases to
FFeff ¼ 0.988 for the BBH parameter space and FFeff ¼
0.976 for the NSBH parameter space. While the increase in
the overall effective fitting factor—averaged over the full
parameter space—is small our precessing template banks
seem to reduce an observational bias against highly
precessing signals that will be present in current aligned-
spin searches. We explore this further in the next section
when we put these numbers into context by taking into
account the increase in background incurred from filtering
the data against a larger number of templates.

VI. ASSESSING THE SENSITIVITY OF THE
PRECESSING SEARCH

The increase in templates from including the effects of
precession, coupled with the fact that the precessing-spin
templates on average produce larger background SNR
values than the aligned-spin templates with the sky-maxed
SNR, leads to an increase in the rate of false alarms at a
given SNR. Correctly estimating the increase in observed
signals with our precessing template banks requires assess-
ing the sensitivity of the aligned-spin and precessing
searches at a constant false-alarm rate, which we take on
in this section. To do so, we incorporate the sky-maxed
SNR into the PyCBC search pipeline described in
[108,109] and, using each of the banks constructed in
the previous section, perform a two-detector analysis of
Gaussian noise. These analyses give us a direct measure-
ment of the increase in background trigger rate, which we
then combine with the fitting factor calculations above to
estimate the change in detection rate of compact-binary
systems at fixed false-alarm rate when using precessing
templates instead of only aligned-spin templates.

A. Mapping between signal-to-noise ratio
and false-alarm rate

In performing the precessing search, we split the original
aligned-spin templates from the templates that were added
to cover the precessing space and analyze these two sets
separately. The “precessing-spin search” is then formed
by combining the aligned-spin-only analysis with the
precessing-spin-only analysis, giving equal weight to each
“subsearch.” This choice amounts to assuming that an event
is equally likely to appear in the aligned-spin set of templates
as in the precessing set. A better choice for this could be

made, but other studies suggest it will not drastically affect
our conclusions [110,111]; we leave this to future work.
When assessing the sensitivity of the aligned-spin search
alone, we use a false-alarm threshold of 1 in 100 years.
When assessing the sensitivity of the combined search, we
use a false-alarm threshold of 0.5 in 100 years for both the
aligned-spin-only and precessing-spin-only subsearches,
corresponding to a false-alarm threshold of 1 in 100 years
for the full precessing-spin search.
The result of these analyses on the aligned-spin-only and

precessing-spin-only template banks covering the BBH and
NSBH parameter spaces can be seen in Fig. 4. The relevant
thresholds are enumerated in Table IV. The table shows that
a signal that appears in the BBH aligned-spin bin with a
SNR of 9.64 would be deemed as significant in the BBH
aligned-spin search as a signal that appears in the BBH
precessing-spin bin with a SNR of 10.10 in the full
BBH precessing-spin search. Thus, a precessing BBH
signal would only be found with higher significance by
the precessing-spin search if the precessing-spin templates
increase its SNR by at least the factor 10.10=9.64 ≈ 1.05.
Similarly, a precessing NSBH signal would only be found
with higher significance by the NSBH precessing-spin
search if the precessing-spin templates increase its SNR
by at least the factor 10.44=9.79 ≈ 1.07. On the other hand,
a given aligned-spin signal will always be found with a
lower significance by the precessing-spin search, corre-
sponding to a loss of volume to aligned-spin systems of
about ð9.73=9.64Þ3 ≈ 1.03 for BBH and ð9.92=9.79Þ3 ≈
1.04 for NSBH. Thus, the precessing search approach
proposed here stands to lose at most 4% of signals that are
already well covered by aligned-spin templates, but will
improve the detection of any system whose fitting factor
improves by more than 7% when going from the aligned-
spin bank to the precessing-spin bank.

FIG. 4. The rate of coincident background events as a function
of the network SNR ðρ2H þ ρ2LÞ1=2 plotted for the BBH and
NSBH aligned-spin-only and precessing-spin-only analyses.
The full precessing search background is obtained by combining
the aligned-spin-only and precessing-spin-only analyses, as
described in the text.
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B. Comparing sensitivity methodology

The signal recovery fraction and effective fitting factor
defined in Sec. V B provide a useful measure of the fitting
factor averaged across the parameter space. However, these
measures do not take into account the background increase
as we discussed in the section above. To do this, we replace
the σi factor in the numerator of Eq. (52)—which we take
here to denote the distance at which a simulation will be
recovered with a SNR of 1, equivalent to setting ρ0 ¼ 1 in
the notation of Sec. V B—with σi=ρthresh, where ρthresh is
the threshold taken from Table IV. This gives the distance at
which a simulation will be recovered with a SNR of ρthresh.
For the aligned-spin search, the threshold-dependent signal
recovery fraction is then written as

αaligned ¼ ðρthreshÞ−3α: ð53Þ

For the precessing-spin search, which consists of the
aligned-spin-only and precessing-spin-only subsearches,
the weighting factor depends on the two subsearches
according to

αcombined ¼
�PN

i¼1ðFFweightedÞiσ3iM−5=6
iP

N
i¼1 σ

3
iM

−5=6
i

�
; ð54Þ

where we define

ðFFweightedÞi ¼ max
j
fðρthreshÞ−3j FF3i;jg; ð55Þ

and the index j runs over the two subsearches. This
measure can be used to compute the relative sensitivities
between search configurations. For the searches we desc-
ribe above, the relative search sensitivity is computed as

β ¼ αcombined

αaligned
: ð56Þ

Here αaligned is computed using the aligned-spin bank
results and the threshold from the aligned-spin bank at a
false-alarm rate of 10−2. αcombined is computed using
both the precessing and aligned-spin results, taking the
thresholds for both banks respectively at a false-alarm rate
of 0.5 × 10−2.

C. Results: BBH parameter space

When we include the varying SNR threshold, as dis-
cussed above, and evaluate the relative search sensitivity
between the aligned-spin template bank and the generic-
spin template bank as defined in Eq. (56) we find
β ¼ 0.978. This means that, given our assumed distribution
of signals (reweighed by chirp mass), our combined search
is on average slightly less sensitive than the aligned-spin
search as far as the total number of detections is concerned
in our BBH parameter space. However, this precessing
search could still allow us to recover signals in specific
“highly precessing” regions of parameter space that would
not be observed with the aligned-spin search. As a first step
in addressing this question, we need to understand which, if
any, regions of parameter space are sufficiently precessing
that we are gaining sensitivity when using our precessing
search method.
Visualizing any quantity in the precessing parameter

space is complicated by the large number of dimensions
and one has to resort to choosing two dimensional slices
and marginalizing over the remaining parameters. One slice
that is traditionally shown considers the component masses,
or equivalently the total mass and the mass ratio of the
system (left panel of Fig. 5). For close to equal mass
binaries, where precessional effects are expected to be
small, the combined search leads to a loss in sensitivity
(always smaller than 3%). Only for mass ratios close to the
upper boundary of our parameter space do we obtain some
mild sensitivity improvement of up to 7%.
The increase in sensitivity of the precessing search as the

mass ratio increases is an expected consequence of the fact
that the magnitude of the orbital angular momentum L
decreases as mass ratio increases, thereby allowing larger
opening angles between L and J ¼ Lþ S1 þ S2. Larger
mass ratios also imply more precessional cycles in the
band, which contributes to our precessing search perform-
ing better. A similar effect is also obtained by lowering the
total mass, which explains why the sensitivity improves to
the left of the plot.
A more appropriate set of two variables to identify highly

precessing regions has been used in the right panel of
Fig. 5: the opening angle between J and L introduced
above and the inclination with which the system is seen by
the observer, defined as the angle between J and the line of

TABLE IV. SNR thresholds at the false-alarm rate values used in this study for our BBH and NSBH aligned-spin-
only and precessing-spin-only template banks.

Bank
SNR threshold at false-alarm

rate of 10−2 yr−1
SNR threshold at false-alarm

rate of 0.5 × 10−2 yr−1

BBH aligned 9.64 9.73
BBH precessing � � � 10.10
NSBH aligned 9.79 9.92
NSBH precessing � � � 10.44
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sight N. The first quantity can be thought of as character-
izing the intrinsic amount of precession in the system. The
inclination modulates how much precession an observer
would see [61]. Of course, both angles actually vary during
the coalescence of the binary—the inclination varies on the
radiation reaction time scale, whereas the opening angle
can have modulations on the precessional time scale on
top of the secular evolution on the radiation reaction time
scale—and therefore the angles must be evaluated at some
reference frequency. Here, we choose to use 100 Hz as it
roughly corresponds to the peak sensitivity of the predicted
Advanced LIGO noise curve [107]. We find regions where
the sensitivity increases by a factor of larger than 2 with
respect to the aligned-spin search. However, we note that it

is extremely rare for signals to lie in these regions given
the simulation distribution we are using. We illustrate this
in Fig. 6 where we show the number of simulations as a
function of these spin angles.
The results in this section are dependent on the waveform

model used. However, we expect that this dependence is
only a weak one, and our results are still valid when using
template banks constructed for other waveform approx-
imants. To check this, we repeat our results using the
EOBNR approximant, introduced earlier in Sec. II.
Unfortunately, at the current time, producing a precessing
template bank using the EOBNR approximant is not
possible due to the time necessary to generate precessing
EOBNRwaveforms. However, as described in Ref. [55] we

FIG. 5. The relative increase in sensitivity from performing an aligned-spin and precessing search compared to performing only the
aligned-spin search is plotted in the (total mass, mass ratio) space in the left panel and as a function of opening angle and inclination
(defined in the text) in the right panel. For BBH systems with the mass range considered here, the orbital angular momentumL is always
larger than the component angular momenta Si and therefore the angle betweenL and J can only take a restricted set of values, as can be
seen in the right panel of this figure.

FIG. 6. The number of simulations performed as a function of opening angle and inclination (defined in the text) for our BBH (left)
and NSBH (right) parameter spaces. For BBH systems with the mass range considered here, the orbital angular momentum L is always
larger than the component angular momenta Si and therefore the angle betweenL and J can only take a restricted set of values, as can be
seen in the left panel of this figure.
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can generate an aligned-spin EOBNR template bank.
In Fig. 7 we compare the ability to recover precessing
EOBNR waveforms using an aligned-spin EOBNR tem-
plate bank with our ability to recover IMRPhenom signals
using our aligned-spin IMRPhenom template bank. We
can see that the two panels in the figure are largely
indistinguishable.

D. Results: NSBH parameter space

We now consider the NSBH parameter space, defined in
Table I. When including the varying SNR threshold, using
the values in Table IV and Eq. (56), we find the relative
search sensitivity, evaluated at constant false-alarm rate, is
β ¼ 1.014. This means that we expect to recover 1.4%
more signals averaged across the NSBH parameter space

when using the precessing search compared to the aligned-
spin search. This number does, of course, depend on the
distribution of parameters that we chose—in Table I—for
our NSBH space.
In Fig. 8, we show the relative search sensitivity as a

function of the mass ratio and total mass (left) and also the
angles between J and N and between J and L (right).
The relative search sensitivity as a function of total mass
and mass ratio (left panel of Fig. 8) shows similar trends to
the corresponding ones for BBH, but given mass ratio
values up to 15, we see larger relative search sensitivities,
up to 1.14 at a mass ratio of 15. On the right panels of
Figs. 7 and 8 we notice that systems in our NSBH
parameter space are able to cover all values of the angle
between J and L, which was not the case for our BBH

FIG. 7. Signal recovery fraction as a function of total mass and mass ratio comparing different waveform approximants. The left panel
shows the signal recovery fraction of our set of precessing IMRPhenom simulations when using our aligned-spin IMRPhenom template
bank. The right panel shows the signal recovery fraction of a set of precessing EOBNR simulations, with the same parameter distribution
as the IMRPhenom simulations, recovered with an aligned-spin EOBNR template bank constructed as described in Ref. [55].

FIG. 8. The relative increase in sensitivity from performing an aligned-spin and precessing search compared to performing only the
aligned-spin search is plotted in the (total mass, mass ratio) space in the left panel and as a function of opening angle and inclination
(defined in the text) in the right panel.
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systems. This is due to the fact that the higher-mass ratios
available to NSBH systems allow for cases where the
black-hole spin angular momentum is larger than the orbital
angular momentum. For the values of this angle that the
BBH parameter space can produce, we see similar behavior
between the BBH and NSBH parameter spaces. The main
difference is that it is more likely for signals to have larger
values of the angle between J andL, and therefore be more
likely to show precessional effects, in the NSBH parameter
space than in the BBH parameter space.
We can also ask if the fitting factor that we chose to place

the precessing bank with is affecting our results, and if
results would improve if the template bank were denser.
To try to answer this we reproduce Fig. 8, except when
constructing it we set all fitting factors for the precessing
bank to unity. We use the same background increase as
given in Table IV, which will be an underestimate, but this
can provide an upper limit on the relative search sensitivity
that would be obtained by using a denser template bank.
The results of this can be seen in Fig. 9. Here the features
are qualitatively similar to those in Fig. 8, but the relative
sensitivity improves.

VII. DISCUSSION

In this work we have (i) derived a new method for
detecting compact-binary coalescences when using wave-
form filters with generically oriented spins, (ii) constructed
banks of generic-spin template waveforms using this
method, (iii) demonstrated the method on a stretch of
Gaussian noise and (iv) assessed the relative search
sensitivity between our new generic-spin search and the
current aligned-spin search. In general, averaged over the
parameter spaces we consider, we have found that using our
generic-spin search does not result in a net increase in the
number of detections of compact-binary mergers—in our

NSBH parameter space we saw an increase of only 1%.
However, we have demonstrated that in regions of param-
eter space where precessional effects are large, we can see
improvements in detection rate that are larger than 50%.
Systems where the precessional effects are strong may be
rare, but these are also systems which offer us a better
chance to disentangle the various parameters that describe
the source, which in turn could allow us a better chance to
understand the nature and origin of these systems [37,38].
Therefore, one might argue that an observation of a highly
precessing system might be worth more than the one, or
several, observations of systems that do not exhibit preces-
sional effects.
We have also demonstrated that when considering

systems with GW150914-like masses and generically
oriented spins, we find signal recovery fractions that are
larger than 0.95. This is consistent with what is expected
due to the minimal match of 0.97 that is used to set the
discreteness of the template bank in the aligned-spin
parameter space. Current Advanced LIGO searches are
therefore not missing systems with masses similar to
GW150914 because the waveform filters do not consider
misaligned spins.
It is foreseeable that in future work alternative

precessing search methods might be proposed that could
improve on the formulation we provide here. However,
there is a fundamental difficulty we have observed in this
work that leads us to believe that it will not be possible to
significantly improve the relative sensitivity of such a
hypothetical search over the one described here.
Specifically, we notice that the number of templates
needed to adequately cover a precessing parameter
space is at least an order of magnitude larger than that
required to cover the aligned-spin parameter space. This
happens even though we are using a considerably smaller
fitting factor for our precessing template bank than the

FIG. 9. This figure is equivalent to Fig. 8 except here we assume that for the precessing search all fitting factors are unity.
This provides us with an upper limit on the sensitivity increase that could be gained if the template bank were placed much more densely.
This is an upper limit because the increased background from the hypothetical denser precessing bank is not taken into account.
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aligned-spin one. From this, one concludes that the size of
the precessing parameter space is significantly larger than
the region of that parameter space that is covered by a
template bank placed in only the aligned-spin manifold.
However, the majority of our signal waveforms, which
assume an isotropic distribution of the spin directions,
are recovered well by aligned-spin template waveforms.
This implies that the density of astrophysical systems that
lie close to the aligned-spin region of parameter space is
also significantly larger than the density of astrophysical
systems in the remaining, large, region of parameter space
where precession is important. For these reasons, it is
difficult to gain a significant increase in the number of
signals observed when covering the significantly larger,
sparsely populated, precessing parameter space unless the
distribution of signals in the Universe strongly prefers
highly precessing cases.
In this work, we have not discussed signal-based con-

sistency tests. Real GW data are not Gaussian, and non-
Gaussianities often produce a high SNR in matched-filter
outputs. This will be equally true for aligned-spin as for
precessing template banks. To be able to separate real
events from non-Gaussianities with large SNRs we use a set
of signal-based consistency tests [40,112]. Ranking sta-
tistics are then constructed that combine the SNR with the
signal-based consistency tests such that non-Gaussianities
are down-weighted if they do not match the features we
expect of real signals [40]. To be able to apply our methods
on real data, we need to extend these signal-based con-
sistency tests to our precessing search. This will be our
focus in future work.
It is worth pointing out that the signal-based consistency

tests down-weight both non-Gaussianities and real signals
that have a low overlap with the best matching template
waveform [112]. It is therefore possible that our results will
improve slightly when signal-based consistency tests are
included. However, there is also the possibility that the
noise background will increase for precessing templates
relative to aligned-spin templates when applied in real noise
even with signal-based consistency tests. This would
decrease the improvement of using the precessing template
bank.
Our results are also dependent on how well the models

we are using match the waveforms that will be produced
by real compact-binary mergers. For our BBH parameter
space we are using a waveform model including inspiral,
merger and ringdown phases and which has been tuned
against NR simulations [36,75]. For our NSBH space,
we are using an inspiral-only model, which is known to
have some disagreement with other inspiral-only models,
with inspiral-merger ringdown models and with NR
[64,113]. In cases where there is a mismatch between
our models and the real signal the signal recovery
fractions will be lower than what we have calculated
here, but this will be true for both aligned-spin and

precessing template waveforms. Nevertheless the methods
presented here are equally applicable as waveform
approximants improve.
For both our BBH and NSBH waveform models we

have restricted them to only consider the dominant l ¼ 2,
jmj ¼ 2 modes of the GW in the coprecessing frame.
The effect of using higher-order modes for nonprecessing
waveforms in searches has been previously explored [114],
but no computationally feasible search method has been
proposed. It would be possible to extend the method
described here by including also the initial phase of the
binaries in the orbital plane as a discrete template bank
parameter. This would alter our sky-maxed SNR, but would
enable us to filter with precessing, higher-order mode
waveforms. Exploring how computationally costly this
would be and whether this method would be feasible at
all is a topic we leave for future work.
For both the BBH and NSBH parameter spaces we

consider here we find an order of magnitude increase
between the number of templates in the aligned-spin bank
and the number of templates in the precessing bank.
Coupled with the fact that filtering precessing templates
using our scheme is a factor of 2 more expensive than
filtering aligned-spin templates results in searches using
our precessing banks being a factor of 20 more computa-
tionally expensive than searches using aligned-spin tem-
plate banks. This additional computational cost could be
used to, for example, increase the fitting factor of the
aligned-spin bank and potentially also gain some increase
in search sensitivity [115]. We would again make the point
that the observation of a highly precessing signal could be
very astrophysically rewarding, but exploring how to
reduce this computational cost would be very beneficial.
One possible approach we wish to consider in the future is,
when building the template bank, to not include templates
corresponding to systems with a low intrinsic luminosity.
This might allow us to reduce the template count and the
noise background. Other possibilities include some form of
hierarchical approach to filtering the templates in the
template bank. One could also consider schemes to make
the bank construction process more efficient, such as by
parallelizing not only in chirp mass bins, but also by using
bins in mass ratio [116].
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APPENDIX: COMPUTATIONAL
OPTIMIZATIONS OF PRECESSING

BANK CONSTRUCTION

To generate our stochastic template banks of precessing
signals, we use a number of recent optimizations described
in Refs. [55,57,104], as well as some new methods. We
briefly describe these optimizations in the next paragraphs.
When choosing hprop the masses are chosen from a

uniform distribution in the chirp time coordinates τ0-τ3
[84]. These coordinates are optimal for nonspinning,
inspiral-only signals. They are suboptimal in our case,
but better than choosing mass parameters uniformly in
m1-m2, since typically many more templates are needed at
low mass compared to high mass. Spins are chosen
isotropically with a uniform distribution of spin magnitude.
Sky locations and orientation parameters are chosen iso-
tropically. These distributions may not be the optimal
choices for stochastic precessing template bank construc-
tion, but we leave a further exploration of this for
future work.
When computing matches, those templates in the tem-

plate bank that have values of chirp mass closest to the
proposed template have matches computed first. This
allows one to reject proposed templates more quickly. In
addition a match is only computed if the difference in chirp
mass between the template in the bank and the point being
tested is less than 25%. This can lead to some over-
coverage, especially at higher masses.
When computing matches, a match is first computed

using a frequency spacing in the overlap integral of
df ¼ 8 Hz. If the resulting overlap is 0.05 less than the
desired minimal match, the match at smaller values of
the frequency spacing is assumed to also be less than the
desired minimal match and is not computed explicitly. If
the match using a frequency spacing of 8 Hz is not less than

the minimal match minus 0.05 then the match is
computed using frequency spacings of df ¼ 0.5 Hz and
df ¼ 0.25 Hz. If these matches agree to within 0.1% then
the df ¼ 0.25 Hz value is used. Otherwise an additional
match at df ¼ 0.125 Hz is computed and compared
against df ¼ 0.25 Hz. This process continues until either
the match is in agreement to 0.1% or the value of df has
exceeded the inverse of the waveform length. The first test
using df ¼ 8 Hz quickly rejects points that do not match
well to each other. The subsequent tests at much smaller
values of df, 0.5 Hz and 0.25 Hz, are because precessional
features in the waveform can be missed when using larger
values of df and we found some cases where matches
would agree well at df ¼ 4 Hz and df ¼ 2 Hz, but then
diverge when df became smaller.
A coarse bank is first produced with a lower convergence

threshold to roughly map out the density of templates.
Here, we choose a coarse threshold such that the algorithm
terminates when fewer than one in X proposed templates
are accepted to the bank over the last ten iterations. The
space is then split into Y equally spaced bands in chirp
mass, and a process launched for each chirp mass band,
choosing points only in that band, and filling templates
until fewer than one in Z proposed templates are accepted
to the bank over the last ten iterations. It is possible that the
parallel processes will cover the same region, but this effect
is mitigated by beginning the process with a partially
complete template bank over the full space before parallel-
izing. The parallelization also helps to ensure that all parts
of the parameter space are being sampled by the stochastic
process. The values X, Y and Z are chosen empirically and
vary for the different banks generated here.
Further optimizations of this process will be greatly

desirable if using the methods described in this paper in the
future. We leave that to future work.
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