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We obtain a large class of Lorentzian wormhole spacetimes in scalar-tensor gravity, for which the matter
stress energy does satisfy the weak energy condition. Our constructions have zero Ricci scalar and an
everywhere finite, nonzero scalar field profile. Interpreting the scalar-tensor gravity as an effective on-brane
theory resulting from a two-brane Randall-Sundrum model of warped extra dimensions, it is possible to
link wormhole existence with that of extra dimensions. We study the geometry, matter content, gravitational
redshift and circular orbits in such wormholes and argue that our examples are perhaps among those which
may have some observational relevance in astrophysics in the future. We also study traversability and find
that our wormholes are indeed traversable for values of the metric parameters satisfying the weak energy
condition.
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I. INTRODUCTION

Curved spacetimes for which the Ricci scalar R is
identically zero have been known in general relativity
(GR) since the discovery of the Schwarzschild solution.
While, in GR, the Schwarzschild is a vacuum spacetime for
which both R and Rij are zero, the Reissner-Nordström
geometry has R ¼ 0 but Rij ≠ 0, thereby implying the
presence of traceless matter. It has been further shown in
Ref. [1] that a generalization of Schwarzschild spacetime
with jg00j everywhere finite and nonzero and R ¼ 0 can be
obtained. More recently [2], this R ¼ 0 wormhole space-
time has been found to be a solution in a scalar-tensor
theory of gravity which is also the low-energy, effective,
on-brane gravity theory for the warped two-brane Randall-
Sundrum model. The R ¼ 0 spacetime in Ref. [1] when
viewed as a solution in GR, requires matter that violates the
weak energy condition (WEC). However, as shown in
Ref. [2], in the context of the scalar-tensor theory, the
required matter does not violate the WEC and the scalar
field (radion) is also finite and nonzero everywhere. In our
work here, we further generalize the spacetime studied in
Refs. [1,2]. In particular, newer R ¼ 0 spacetimes with jg00j
everywhere nonzero are constructed and shown to be
solutions in scalar-tensor gravity. A subclass of such
spacetimes are Lorentzian wormholes with the required
matter satisfying the WEC.
In our analysis here, we begin with a general static,

spherisymmetric line element for which the R ¼ 0

constraint is written as a differential equation for
ffiffiffiffiffiffiffiffiffijg00j

p ¼
fðrÞ. Obviously, this differential equation contains grr [or,
bðrÞwhere grr ¼ 1

1−bðrÞ
r

] and its derivatives in its coefficients.

It can therefore be solved once we provide our choice for
bðrÞ. Assuming bðrÞ as one should for a Lorentzian
wormhole, we find that for some specific choices (e.g.
the Schwarzschild wormhole and the Ellis-Bronnikov
wormhole [3,4]) the differential equation for fðrÞ can
indeed be solved. We obtain a wide class of geometries
in this manner. Thereafter, we show how these geometries
fare in terms of the WEC violation issue.
As mentioned above, in GR we require WEC violation

for the matter that threads nonsingular wormhole space-
times. However, it has been shown recently that, within
GR, a wormhole (which is topologically different from the
Morris-Thorne class) can be supported by a negative
cosmological constant (which is not quite exotic, WEC-
violating matter) [5]. Further, it is known that certain
wormhole solutions which have been constructed in various
modified theories of gravity—such as Brans-Dicke theory
(scalar-tensor gravity with constant coupling ω) [6], fðRÞ
gravity [7], Gauss-Bonnet gravity [8], third-order Lovelock
gravity [9], Eddington-inspired Born-Infeld gravity [10],
mimetic gravity [11], and Dvali-Gabadadze-Porrati gravity
[12]—do not require WEC-violating matter.
In our work here, we consider scalar-tensor gravity with

a nonconstant coupling ωðΦÞ and in the presence of matter
stress energy. Through our specific solutions, we show that
there may not be WEC violation for the matter required to
support a Lorentzian wormhole. It must be noted though
that the timelike convergence condition is still violated, as it
must be, for wormholes. The essential point is that the
relation between the convergence condition and the energy
condition is not as it is in GR, because of which there is
extra freedom to avoid any violation in a modified theory of
gravity (here, scalar-tensor gravity) [2].
Our paper is organized as follows. In Sec. II, we briefly

recall scalar-tensor gravity both as an independent theory
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and in the context of braneworld gravity. We provide the
details of our construction of R ¼ 0 spacetimes in Sec. III.
Sections IV and V deal with the status of the WEC. In
Sec. VI, we study gravitational redshift in the wormhole
spacetimes. The existence of stable and unstable circular
orbits and the issue of traversability are addressed in
Sec. VII. Finally, we conclude in Sec. VIII.

II. SCALAR-TENSOR GRAVITY

Scalar-tensor theories are well studied from various
angles and perspectives. The first such theory was, of
course, the Jordan-Brans-Dicke theory [13]. A scalar field
Φ and an extra parameter ω characterizes such theories.
Though originally considered a constant, a modified
version incorporates a Φ-dependent ω [14]. In general,
the Einstein field equations for such theories are given as

Gμν ¼
κ

Φ
TM
μν þ

1

Φ
ð∇μ∇νΦ − gμν∇α∇αΦÞ

þ ωðΦÞ
Φ2

�
∇μΦ∇νΦ −

1

2
gμν∇αΦ∇αΦ

�
ð1Þ

where TM
μν is the matter energy-momentum tensor and the

metric gμν is written in the Jordan frame where the action is
not in the standard canonical (Einstein-Hilbert) form.
Viewed as an independent competitor of GR, a scalar-
tensor theory could be specified by providing a form for
ωðΦÞ. Note that Φ must satisfy the equation,

∇α∇αΦ ¼ κ
TM

2ωðΦÞ þ 3
−

1

2ωðΦÞ þ 3

dω
dΦ

∇αΦ∇αΦ: ð2Þ

Various aspects of scalar-tensor theories have been exten-
sively studied and we will not review them here. See
Ref. [15] and references therein for detailed reviews.
Taking the trace of Eq. (1) and using Eq. (2), one obtains

R ¼ −
2κωTM

Φð2ωþ 3Þ −
3

Φð2ωþ 3Þ

×

�
dω
dΦ

−
ωð2ωþ 3Þ

3Φ

�
∇αΦ∇αΦ:

Note that traceless matter implies R ¼ 0 in GR. But, in
scalar-tensor gravity, traceless matter does not imply R ¼ 0
in general. But, for the specific form of ωðΦÞ given by

dω
dΦ

−
ωð2ωþ 3Þ

3Φ
¼ 0 ⇒ ωðΦÞ ¼ 3c0Φ

2ð1 − c0ΦÞ

R ¼ −κc0TM and hence, traceless matter implies R ¼ 0.
Here, c0 is an integration constant. As we shall see, the case
c0 ¼ −1 arises in the low-energy, effective on-brane quasi-
scalar-tensor gravity theory developed by Kanno and

Soda [16] in the context of the Randall-Sundrum two-
brane model.
It is well known that scalar-tensor theories arise as

effective theories of gravity in diverse contexts. For example,
the low-energy effective gravity theory which emerges out
of superstring theory contains a scalar known as the dilaton
and the theory is a ω ¼ −1 Brans-Dicke theory [17]. In the
braneworld scenario, our four-dimensional visible Universe
is considered as a lower-dimensional hypersurface called a
brane, which is embedded in a higher-dimensional bulk.
In the low-energy limit, the field equation governing bulk
gravity, leads to effective field equations for gravity on the
brane. The presence of the extra-dimensional bulk leaves its
imprint by modifying the Einstein field equations on the
brane. The most popular among the on-brane effective
Einstein equations was obtained by Shiromizu-Maeda-
Sasaki [18] in the context of a single-brane model and
contains a nonlocal term (bulk-Weyl-dependent Eμν). The
on-brane effective Einstein equations obtained byKanno and
Soda [16] in the context of the two-brane Randall-Sundrum
model, however, do not contain any nonlocal contribution.
Earlier, the nonlocal Eμν was used to obtainR ¼ 0 spacetime
solutions [19–22] (mostly wormhole solutions) in the single-
brane effective theory of Shiromizu-Maeda-Sasaki. In the
effective on-brane theory of Kanno and Soda, we have an
effective energy-momentum tensor (other than the matter on
the branes) constructed from the scalar radion field (which
measures the inter-brane distance) and its derivatives. The
radion field plays a crucial role in obtaining both static,
spherically symmetric spacetimes and cosmological solu-
tions [2,23,24]. It has been shown that the presence of the
radion field can correctly reproduce the observed virial
mass of galaxy clusters and observed galaxy rotation curves.
Thus, the radion field can act as a possible dark matter
candidate [25].
Let us now briefly review the low-energy effective

on-brane quasi-scalar-tensor theory developed by Kanno
and Soda [16]. The action is given as,

S ¼ 1

2κ2

Z
d5x

ffiffiffiffiffiffi
−g

p �
Rþ 12

l2

�
−

X
i¼A;B

σi

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gi brane

q

þ
X
i¼A;B

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gi brane

q
Li
matter

where κ2, R and gi braneμν are the five-dimensional gravita-
tional coupling constant, the five-dimensional curvature
scalar and the induced metric on the branes, respectively.
σA ¼ 6

κ2l and σB ¼ − 6
κ2l are the brane tensions. The positive-

tension brane A (Planck brane) and the negative-tension
brane B (visible brane) are respectively placed at fixed bulk
locations (y ¼ 0 and y ¼ l). The bulk line element is,

ds2 ¼ e2ϕðxμÞdy2 þ gμνðy; xμÞdxμdxν
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where the bulk curvature radius is l. Assuming the brane
curvature radius L as large compared to the bulk curvature
radius l, i.e., ð lLÞ2 ≪ 1, Kanno and Soda used a low-energy
expansion scheme (the gradient expansion method)
wherein the bulk metric and the extrinsic curvature are
expanded in powers of ð lLÞ2. They obtained the effective
field equations,

Gμν ¼
κ2

lΦ
TB
μν þ

κ2ð1þ ΦÞ
lΦ

TA
μν þ

1

Φ
ð∇μ∇νΦ − fμν∇α∇αΦÞ

−
3

2Φð1þ ΦÞ
�
∇μΦ∇νΦ −

1

2
fμν∇αΦ∇αΦ

�
ð3Þ

on the visible brane. Here,Φ ¼ e
2d
l − 1, TA

μν, TB
μν and fμν are

respectively the radion field, the matter on the Planck
brane, the matter on the visible brane and the metric tensor
on the visible brane. The proper distance d between the
branes is defined as

dðxÞ ¼
Z

l

0

eϕðxÞdy:

The radion field Φ satisfies the following equation of
motion on the visible brane:

∇α∇αΦ¼ κ2

l
ðTAþTBÞ
2ωþ 3

−
1

2ωþ 3

dω
dΦ

∇αΦ∇αΦ ð4Þ

where both the traces TA and TB are taken with respect to
the metric tensor fμν and the coupling function is given by

ωðΦÞ ¼ −
3Φ

2ð1þ ΦÞ : ð5Þ

Using the radion equation of motion in the trace of the
field equation (3), we obtain R ¼ κ2

l T
B, where R is the

curvature scalar on the visible brane. Note that this is
the c0 ¼ −1 case discussed earlier. Therefore, traceless
matter implies R ¼ 0 in this theory. Using the transforma-
tion ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ Φ
p

, we can express the radion equation of
motion in the form

∇α∇αξ −
R
6
ξ ¼ κ2

6l
TAξ: ð6Þ

In the subsequent sections, we obtain our new solutions.
It is important to note that the solutions could either be
viewed as solutions in a scalar-tensor theory which has no
link with extra dimensions or as solutions in the context of
braneworld gravity. In obtaining the solutions, we take the
Planck brane to be devoid of matter, i.e., TA

μν ¼ 0. Further,
henceforth, we refer to this on-brane scalar-tensor gravity
as the Kanno-Soda theory of gravity because of the specific
form of the coupling function ωðΦÞ given in Eq. (5).

III. R= 0 SPACETIMES

We begin with the static, spherically symmetric line
element given as

ds2 ¼ −f2ðrÞdt2 þ dr2

1 − bðrÞ
r

þ r2ðdθ2 þ sin2θdϕ2Þ

where fðrÞ and bðrÞ are unknown functions to be deter-
mined. We are interested in vanishing curvature scalar
(R ¼ 0) solutions. The R ¼ 0 constraint yields the follow-
ing second-order differential equation for fðrÞ:
�
1 −

b
r

�
f00ðrÞ þ 4r − 3b − b0r

2r2
f0ðrÞ − b0

r2
fðrÞ ¼ 0: ð7Þ

The above equation can also be rewritten as a first-order
differential equation for bðrÞ. Attempts have been made to
findR ¼ 0 spacetime solutions in thepast [1,2,19–24,26,27].
In most of these articles, the authors have (a) considered
known forms of fðrÞ and obtained solutions by solving the
first-order differential equation for bðrÞ or (b) used some
knownR ¼ 0 solutions present in the literature and analyzed
them in the context of an effective theory of gravity. In our
work, we take a different route. We specify the form of bðrÞ
and solve the second-order differential equation for fðrÞ.
This way we hope to obtain a more general solution different
from those obtained earlier. Another advantage of specifying
the form of the shape function bðrÞ is that we can choose to
have wormhole solutions with a desired spatial shape. One
can take different forms of bðrÞ. In our work here, we take

bðrÞ ¼ 2mþ β
r. Putting fðrÞ ¼ FðrÞ

r in the R ¼ 0 equation,
we obtain

�
1 −

2m
r

−
β

r2

�
F00ðrÞ þ

�
m
r2

þ β

r3

�
F0ðrÞ − m

r3
FðrÞ ¼ 0:

After some manipulations, the above equation can be
rewritten in the form

d
dr

�
1

r
ðr2 − 2mr − βÞ3=2 d

dr

�
FðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − 2mr − β
p ��

¼ 0

which can be integrated to obtain

fðrÞ ¼ C1

�
mþ β

r

�
þ C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

−
β

r2

r
ð8Þ

whereC1 andC2 are integration constants. Therefore, the line
element becomes
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ds2 ¼ −
�
C1

�
mþ β

r

�
þ C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

−
β

r2

r �2
dt2

þ dr2

1 − 2m
r − β

r2
þ r2dΩ2: ð9Þ

It is useful to note that, whenm ¼ 0 or β ¼ 0, the jg00j is of
the general form, ðC3bðrÞ þ C4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bðrÞ

r

q
Þ2. However, when

m, β are both nonzero, this generic formdoes not hold andwe

have jg00j ¼ ðC3b1ðrÞ þ C4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bðrÞ

r

q
Þ2. However, it is

important to note that, in all cases, the redshift function is
finite and nonzero everywhere.
We now look at special cases of our general solution.

Some of these special cases reproduce the R ¼ 0 space-
times obtained earlier by other authors. For β ¼ 0,
C1m ¼ κ and C2 ¼ λ, the spacetime takes the form

ds2 ¼ −
�
κ þ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r �2
dt2 þ dr2

1 − 2m
r

þ r2dΩ2: ð10Þ

This spatially Schwarzschild spacetime has been obtained
in Refs. [1,2,19,27]. This spacetime represents either a
wormhole or a naked singularity for κ ≠ 0. For κ ¼ 0 and
λ ¼ 1, the spatially Schwarzschild solution reduces to the
Schwarzschild spacetime. Taking κ ¼ 1 and λ ¼ 0 in this
solution, we obtain the spatial Schwarzschild wormhole

obtained in Ref. [20]. For 2m¼ r2
0

r0−M
, β ¼ − Mr2

0

r0−M
, C1m ¼ 1

and C2 ¼ 0, the general metric takes the form

ds2 ¼ −
�
1 −

2M
r

�
2

dt2 þ dr2

ð1 − r0
r Þð1 − r1

r Þ
þ r2dΩ2 ð11Þ

where r1 ¼ Mr0
r0−M

. This metric has been obtained in
Refs. [20,21]. This metric reduces to the extreme
Reissner-Nordström form for r1 ¼ r0, i.e., r0 ¼ 2M. The
above metric fails to produce spatial Ellis geometry because
r1 ¼ −r0 implies r0 ¼ r1 ¼ 0. However, we can obtain
spatial Ellis geometry from our general solution by taking
m ¼ 0 and β ¼ r20. The line element becomes

ds2 ¼ −
�
C1r20
r

þ C2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r20
r2

r �2

dt2 þ dr2

1 − r2
0

r2

þ r2dΩ2:

ð12Þ

This new metric has not been obtained before. Note that,
due to the presence of the 1

r factor in jg00j, the above metric
is different from the spatial Ellis geometry obtained in
Ref. [28] for a vanishing torsion scalar in the context of
modified teleparallel gravity. For β ¼ −Q2, the general
metric reduces to the spatial Reissner-Nordström metric.

The spatial Reissner-Nordström metric further reduces to
the Reissner-Nordström metric for C1 ¼ 0 and C2 ¼ 1.
Our focus is on the general metric (9). Depending on the

signs and values of m, β, C1 and C2, the general spacetime
may represent a black hole, a wormhole or a naked
singularity. The nature of the solution depends on the
presence of the zeros of fðrÞ and gðrÞ. We will focus on
solutions for which m > 0, β > 0 and η ¼ C2

C1m
> −1. The

solution for such choices does represent a Lorentzian
wormhole.
For later use, let us now write down the solution in

isotropic coordinates. The transformation from the
Schwarzschild radial coordinate r to the isotropic coor-
dinate R is given as

r ¼
�
1þm

R
þm2 þ β

4R2

�
R: ð13Þ

Using the transformation between r and R we obtain, in
isotropic coordinates, the line element,

ds2 ¼ −
h2ðRÞ
U2ðRÞ dt

2 þU2ðRÞðdR2 þ R2dΩ2
2Þ ð14Þ

where

hðxÞ ¼ ðC1m − C2Þðq1 þ xÞðq2 þ xÞ; ð15Þ

UðxÞ ¼ 1þ x2 þ 2μx ð16Þ

and

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ β

p
2R

; μ ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ β

p : ð17Þ

The constants q1 and q2 are given as

q1 ¼
μð1þ ηÞ

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2η2 þ 1 − μ2

p ; q2 ¼
μð1þ ηÞ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2η2 þ 1 − μ2

p
ð18Þ

and η ¼ C2

C1m
. It is easy to show that η and μ are related to q1

and q2 as follows:

μ ¼ q1q2 þ 1

q1 þ q2
; η ¼ q1q2 − 1

q1q2 þ 1
: ð19Þ

It can be shown that, for a spacetime without a horizon
η > −1 is necessary. We will use the isotropic coordinate
form of the line element while discussing the weak energy
condition.
Defining ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ ϕ
p

one can solve the radion field
equation as shown in Ref. [2]. Obviously one ends up
introducing a new constant which we denote as γ. We have
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ξ ¼ 2γ

q1 − q2
log

���� q1 þ x
q2 þ x

���� ð20Þ

where we have omitted an overall additive constant. It is
easy to see that ξ2 − 1 is never zero as long as q1 > q2 > 0.
Note that the domain of x is from 0 to 1, where x ¼ 1
corresponds to the wormhole throat.
We will now turn towards analyzing the weak energy

condition inequalities and demonstrate that it can indeed be
satisfied for the wormhole we have constructed.

IV. WEAK ENERGY CONDITION

The weak energy condition comprises the inequalities

ρ ≥ 0; ρþ τ ≥ 0; ρþ p ≥ 0

for a diagonal energy-momentum tensor with energy
density ρ, radial pressure τ and tangential pressure p
defined in the static observer’s frame. Physically, the
WEC means that the matter energy density is always
non-negative in any frame of reference.
For our case here, we have, for the lhs of the WEC

inequalities,

κ2

l
ρ ¼ 16μ2ðμ2 − 1Þx4

m2U2
ðξ2 − 1Þ þ 16γμ2x4

m2ðq1 þ xÞ2ðq2 þ xÞ2
�
γ − ξ

q1 þ q2 − 2q1q2μþ 2xð1 − q1q2Þ þ x2ð2μ − q1 − q2Þ
U

�
;

ð21Þ

κ2

l
ðρþ τÞ ¼ 8μ2x3

m2ðq1 þ xÞ2ðq2 þ xÞ2

×

�
8γ2xþ 4γξðq1q2 − x2Þ − ðq1 þ q2 þ 2xþ ðq1 þ q2Þx2 þ 2q1q2xÞðq1 þ xÞðq2 þ xÞ

U
ðξ2 − 1Þ

�
; ð22Þ

κ2

l
ðρþ pÞ ¼ κ2

l

�
2ρ −

1

2
ðρþ τÞ

�
ð23Þ

where the last equation follows from the traceless require-
ment on the matter energy-momentum tensor.
For arbitrary values of the parameters it is not possible to

satisfy these inequalities. However, one can isolate the
negativity by looking at the requirements that emerge near
x ¼ 0. In the limit x → 0, we have

κ2

l
ρ ¼ 16μ2

m2

�
ðμ2 − 1Þðξ20 − 1Þ þ γ2

q21q
2
2

−
γξ0
q21q

2
2

ðq1 þ q2 − 2μq1q2Þ
�
x4 þOðx5Þ; ð24Þ

κ2

l
ðρþ τÞ ¼ 8μ2

m2q1q2
½−ðξ20 − 1Þðq1 þ q2Þ þ 4γξ0�x3

þOðx4Þ; ð25Þ

κ2

l
ðρþ pÞ ¼ −

κ2

2l
ðρþ τÞ þOðx4Þ ð26Þ

where ξ0 ¼ ξðx ¼ 0Þ. Note that, at the leading order, [i.e.,
terms which areOðx3Þ], (ρþ τ) and (ρþ p) are opposite in
sign. This violates the WEC in the limit x → 0. Therefore,
we must set the coefficient of x3 in (ρþ τ) to zero. This
yields the following expression for γ:

γ2 ¼ ðq1 − q2Þ2ðq1 þ q2Þ
4ðq1 þ q2Þðlog q1

q2
Þ2 − 8ðlog q1

q2
Þðq1 − q2Þ

ð27Þ

which reduces to the expression quoted in Ref. [2] for
q1 ¼ q and q2 ¼ 1. With the above condition satisfied, it
can be shown that in (ρþ τ), the Oðx4Þ term vanishes as
well and the Oðx5Þ term is always positive for any positive
q1 and q2. Therefore, it is clear from the traceless condition
that, at the Oðx4Þ, positivity of ρ implies positivity of
(ρþ p). Note that, at this point, q1 and q2 can be chosen
so that ρ and γ2 are positive. However, we choose those
values of q1 and q2 for which the coefficient of the Oðx4Þ
term in ρ vanishes. This gives us the following requirement
on γ2:

γ2 ¼ ðq1 − q2Þ2q21q22ð1 − μ2Þ
4ð1 − μ2Þq21q22ðlog q1

q2
Þ2 þ 2ðq1 − q2Þðq1 þ q2 − 2q1q2μÞ log q1

q2
− ðq1 − q2Þ2

: ð28Þ
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Equating the above two expressions for γ2, one arrives at a
relation between q1 and q2 which must be obeyed:

½8q21q22ð1 − μ2Þ þ 2ðq1 þ q2Þðq1 þ q2 − 2q1q2μÞ�
× log

q1
q2

¼ q21 − q22: ð29Þ

Thus, once we are able to choose a q1 and a q2 which
satisfy the above relation, we can use their values to find γ.
The set of values for q1, q2 and γ can therefore be used to
write down the line element and the scalar field profile for a
Lorentzian wormhole in scalar-tensor gravity which will
satisfy all the WEC inequalities.
The central issue at this point is whether we can obtain an

analytical handle on the relation between q1 and q2. To get
rid of the logarithm, we can assume q1 ¼ q2ey. This will
eventually lead us to a quartic equation in q2 for which we
can obtain the positive, real-valued roots in terms of y.
Choosing y one can then obtain q1, q2 and then γ.
We will now illustrate the above statements with exam-

ples and also demonstrate our claim that the WEC is indeed
satisfied for the wormholes we have constructed. Putting
q1 ¼ q2ey in Eq. (29), we obtain

Aq42 þ Bq22 þ C ¼ 0 ⇒ q22 ¼
−B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p

2A
ð30Þ

where,

A ¼ −4; B ¼ 2ðe−y − 1Þ2; ð31Þ

C ¼ ðe−2y − 1Þ2 þ 2e−yðe−2y þ 1Þ

−
1

2y
ðe−y þ 1Þ2ð1 − e−2yÞ: ð32Þ

Therefore, we fix q1 and q2 and hence μ, η and γ by
choosing a particular value of y. It can be shown that −1 <
η < 1 for the whole range −∞ < y < ∞. Therefore, the
definitions of q1 and q2 indicate that both are positive.
Figure 1 shows the parametric plot for q1 and q2. Figure 2
shows the dependence of γ on q1. Figures 3–5 show the lhs
of the WEC inequalities for three sets of parameter values.
It is to be noted that WEC inequalities are satisfied.

V. THE m= 0 LIMIT AND WEC

Let us now take the limit m → 0. In this limit μ → 0 and
η diverges. But, the product δ ¼ μη is finite. In terms of δ,
we have

q1 ¼
δ

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p ; q2 ¼
δ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p ;

q1q2 ¼ −1: ð33Þ

Therefore, q1 and q2 have opposite signs. In this limit, the

factor μ2

m2 in the energy density and pressures must be
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FIG. 1. Plot of q2 as a function of q1.
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FIG. 2. Plot showing γ as a function of q1.
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FIG. 3. Plots of κ2

l ρ (blue dashed curve), κ
2

l ðρþ τÞ (red dotted
curve) and κ2

l ðρþ pÞ (black dot-dashed curve) as a function of x
for y ¼ 0.2948 which corresponds to η≃ −0.5, q1 ≃ 0.669,
q2 ≃ 0.498, γ ≃ 3.419 and μ≃ 1.142.
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replaced by 1
β. It can be shown that hðxÞ does not have zeros

in the range 0 ≤ x ≤ 1 for δ > 0, thereby representing a
wormhole. But, for δ < 0, it does have a zero and
represents a naked singularity. Let us first consider the
case δ > 0. Like the m ≠ 0 case, here also, one must
consider the expression (27). With this, it can be shown
that, in the limit x → 0, the coefficient of the Oðx4Þ term in
ρ cannot be set to zero since it is negative for all δ > 0,
thereby violating the WEC. It also implies that the
expression in Eq. (28) is not valid. However, we can make
use of the freedom to add an additive constant to ξ and
make this coefficient positive. If we do so, then we find that
γ2 < 0 in Eq. (27), i.e., γ is imaginary. On the other hand, it
can be shown that if we force γ2 to be positive, then either ρ
or (ρþ τ) or both become negative in the limit x → 0.
Therefore, the wormholes without the mass term “m”
violate the WEC. Figure 6 shows the WEC violation for
m ¼ 0. We have carried out a similar analysis for the naked

singularity case (δ < 0) where we found that the WEC can
be satisfied in the limit x → 0, but the radion field ξ
vanishes at a point between the singularity and spatial
infinity. This gives an invalid solution. Therefore, WEC
cannot be satisfied for the naked singularity.

VI. GRAVITATIONAL REDSHIFT

Let us now look at the gravitational redshift of a light
signal propagating in the R ¼ 0 wormhole spacetimes
discussed above. Note that by virtue of having a g00 which
is everywhere finite and nonzero, the gravitational redshift
is always finite. By definition, wormhole spacetimes are
horizon-free. Assume that a light signal is emitted at a
frequency ω0 from the wormhole throat (x ¼ 1) and it
travels to spatial infinity (x ¼ 0) where a static observer
receives it at a frequency ω∞. Therefore, the fractional
change in frequency due to the gravitational redshift is
given by the standard formula.

Δω
ω∞

¼ jg00ðx ¼ 0Þj1=2
jg00ðx ¼ 1Þj1=2 − 1 ¼ 2q1q2ð1þ μÞ

ðq1 þ 1Þðq2 þ 1Þ − 1: ð34Þ

We choose values of q1 and q2 which satisfy Eq. (29) and
hence, the WEC. Figure 7 shows the fractional change in
frequency as a function of q1. It is worth noting that the
light signal may have a negative gravitational redshift, i.e.,
a gravitational blueshift (Δω < 0) for certain values of q1
and q2. For the three sets of q1 and q2 given in Figs. 3–5, Δωω∞

are respectively −0.429, −0.066 and 0.3265. For q1 ≃
1.672 and q2 ≃ 0.713, Δω

ω∞
vanishes. Therefore, the worm-

holes can exhibit both redshift and blueshift. It can be
shown that, for those q1 and q2 satisfying the WEC, the

maximum redshift is Δω
ω∞

jmax ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffi

5
pp

− 1Þ≃ 0.798.
This redshift does not exceed 80% for such values of q1 and
q2. However, we can have more than 80% redshift if we
choose q1 and q2 arbitrarily, which obviously violates the
WEC. Thus, in a certain sense, as mentioned above, the
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l ðρþ pÞ (black dot-dashed curve) as a function of x
for y ¼ 1.5267 which corresponds to η≃ 0.5, q1 ≃ 3.716,
q2 ≃ 0.807, γ ≃ 2.4 and μ≃ 0.884.
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WEC does restrict the gravitational redshift to an amount
below 80%. It is possible to use this result (along with other
signatures) to identify whether the cause of an observed
gravitational frequency shift is indeed due to a wormhole.

VII. EFFECTIVE POTENTIALS, CIRCULAR
ORBITS AND TRAVERSABILITY

A. Effective potentials and circular orbits

The geodesic equations for a test particle moving in the
equatorial (θ ¼ π

2
) plane of the spacetime (9) reduce to the

following first integrals:

_t ¼ E
f2ðrÞ ;

_ϕ ¼ L
r2
;

f2ðrÞ_r2
1 − bðrÞ

r

þ VðrÞ ¼ E2 ð35Þ

where the energy E and the angular momentum L are
constants of motion. An overdot represents differentiation
with respect to the parameter λ (affine for timelike and
arbitrary for null geodesics). The effective potential VðrÞ is
given by

VðrÞ ¼
�
−sþ L2

r2

�
f2ðrÞ ð36Þ

where the normalization constant s ¼ _xμ _xμ is −1 for
timelike geodesics and is 0 for null geodesics. We now
look for circular orbits which correspond to _r ¼ 0 (i.e.
V ¼ E2) and V 0ðrÞ ¼ 0 (i.e. extrema of the effective
potential). Minima [V 00ðrÞ > 0] and maxima [V 00ðrÞ < 0]
of the effective potential correspond to the stable and
unstable circular orbits, respectively. For the line element in
Eq. (9), the effective potential can be written as

VðzÞ ¼
�
−sþ μ2l2

ð1þ μÞ2 z
2

�
f2ðzÞ ð37Þ

where

fðzÞ ¼ 1

ð1þ ηÞ
�
1þ 1− μ

μ
zþ η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2μ

1þ μ
z−

1− μ

1þ μ
z2

s �
;

ð38Þ

l ¼ L
m and z ¼ r0

r ¼ mþ
ffiffiffiffiffiffiffiffiffi
m2þβ

p
r ¼ mð1þμÞ

μr , with r0 being the
throat radius. Here, we have normalized fðrÞ by dividing it
by (C1αþ C2) such that jgttj → 1 as r → ∞. The effective
potential is plotted in Figs. 8 and 9 for the parameter values
satisfying the WEC. By choosing y, we find q2 from
Eq. (30), q1 from q1 ¼ q2ey and hence μ and η from
Eq. (19). It should be noted that both stable and unstable
circular orbits exist for the timelike case. However, for the
null case, no stable circular orbit exists for the parameter
values satisfying the WEC. But, stable circular orbits exist
if we choose the parameter values arbitrarily which, of
course, violates the WEC. To check this, we first note that
the extrema zex of the potential are given by

1

fðzexÞ
df
dz

����
zex

þ 1

zex
¼ 0: ð39Þ

Using Eqs. (7) and (39), it can be shown that

d2V
dz2

����
zex

¼ −
4l2μ3

ð1þ μÞ3
f2ðzexÞ

1− 2μ
1þμ zex −

1−μ
1þμ z

2
ex

�
1þ μ

μ
−
3

2
zex

�
:

ð40Þ

Therefore, minima (d
2V
dz2 > 0) exist if zex are real and

zex >
2ð1þμÞ

3μ . Note that we must have 0 ≤ zex ≤ 1. This is
possible when μ > 2. Figure 10 shows the plots for the
potential for parameter values chosen arbitrarily. We have
checked that theWEC is violated for these parameter values.
Therefore, stable null circular orbits exist if the WEC is
violated. It should be noted that, for the parameter values
used in Fig. 10, q1 and q2 become complex conjugates of
each other because the square root terms in the expressions of
q1 and q2 become imaginary. But, the metric function hðxÞ
still remains real since (q1 þ q2) and q1q2 are real. It can also
be shown that ξðxÞ is real. To verify this, let q1 ¼ aþ ib
where a and b are real. Therefore, q2 ¼ a − ib.
Writing ðq1 þ xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ xÞ2 þ b2

p
eiθðxÞ and ðq2 þ xÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaþ xÞ2 þ b2
p

e−iθðxÞ where tan θðxÞ ¼ b
aþx, we obtain

ξðxÞ ¼ 2γ

2ib
log

�
aþ ibþ x
a − ibþ x

�
¼ 2γθðxÞ

b
ð41Þ

which is real.

0 5 10 15 20
1.0

0.5

0.0

0.5

q1

FIG. 7. Plot showing the fractional change in frequency
suffered by a signal emitted from the wormhole throat and
propagating to spatial infinity, as a function of q1 with q2 and q1
satisfying Eq. (29).
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B. Traversability

Traversability of a wormhole demands that the tidal force
felt by a human traveler moving radially, must be within
tolerable limits. In an orthonormal basis fe0̂0 ; e1̂0 ; e2̂0 ; e3̂0 g
attached to the traveler frame, the tidal acceleration
between two parts of his/her body, separated by the
deviation vector ξî

0
is given by [29]

Δaĵ0 ¼ −c2Rĵ0

0̂0k̂00̂0
ξk̂

0
; ð42Þ

where Rî0
ĵ0k̂0 l̂0

is the Riemann tensor. At the throat, the

components of the tidal acceleration are given by

Δa1̂0 jr0 ¼

8>><
>>:

βc2

r4
0

ξ1̂
0 ∶C1 ≠ 0;�

2m
r3
0

þ 3β
r4
0

�
c2ξ1̂

0 ∶C1 ¼ 0;
ð43Þ

Δa2̂0;3̂0 jr0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ β

p
r30

γ̄20v
2
0ξ

2̂0;3̂0 ð44Þ

where γ̄ ¼ ð1 − v2

c2Þ−
1
2 and v ¼ �

ffiffiffiffi
grr

p
drffiffiffiffiffiffi

jgttj
p

dt
is the radial veloc-

ity of the traveler as measured by a static observer. v0
denotes the radial velocity at the throat. For the wormhole
solutions, we must have C1 ≠ 0. Note that, the radial
component of the tidal acceleration vanishes for β ¼ 0.
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FIG. 9. Plots of the effective potential for null geodesics for
different y. Red dots represent unstable circular orbits. Here, we
have taken l ¼ 1.0.
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Therefore, it can be made arbitrarily small by choosing an
appropriate value of β. We now restrict the radial compo-
nent below one Earth gravity, i.e., jΔa1̂0 j ≤ g. Thus, for a
traveller of typical size jξj ∼ 2 meters, we obtain

m ≥

ffiffiffiffiffiffiffi
2c2

g

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2jð1 − μÞj
ð1þ μÞ3

s
; ð45Þ

β

8<
:

≥ 2c2
g

jð1−μÞjð1−μÞ
ð1þμÞ2 ∶μ ≤ 1;

≤ 2c2
g

jð1−μÞjð1−μÞ
ð1þμÞ2 ∶μ ≥ 1

ð46Þ

where we have used the expressions μ ¼ mffiffiffiffiffiffiffiffiffi
m2þβ

p and

r0 ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ β

p
¼ mð1þμÞ

μ . Note thatm and β are related
through μ. For a given metric parameter μ, the constraint on
m (and hence on β) puts a constraint on the throat radius.
The constraint on r0 is given by

r0 ≥

ffiffiffiffiffiffiffi
2c2

g

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð1 − μÞj
ð1þ μÞ

s
: ð47Þ

For μ ¼ 0.934 which corresponds to Fig. 4, we obtain
r0 ≥ 3.9RE, where RE ¼ 6400 km is the Earth’s radius.
However, we can reduce the lower limit on r0 if we choose
μ to be close to 1.
If the wormhole is to be traversable, not only the tidal

acceleration but also the magnitude of acceleration felt by
the traveler as he or she travels through it, must be within
tolerable limits. In the orthonormal basis of the traveler
frame, the magnitude of the acceleration is given by [29]

a ¼ ∓ 1

fðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

bðrÞ
r

r
ðγ̄fðrÞÞ0c2: ð48Þ

Let us now consider both γ̄ and γ̄0 to be finite at the throat.
Therefore, at the throat r0, we have

jajr0 ¼
jC2j
jC1jr20

γ̄0c2 ¼
mjηj
r20

γ̄0c2: ð49Þ

For the wormhole solutions, we must have η > −1.
Therefore, for a given r0 and m which restrict the tidal
acceleration below one Earth gravity, the magnitude of the
acceleration can be made arbitrarily small by taking η to be
very close to zerowhich, of course, satisfies theWEC(Fig. 4).

VIII. CONCLUSION

In this work, we have obtained a class of static, spheri-
cally symmetric R ¼ 0 spacetimes which generalize certain
known R ¼ 0 line elements. We have shown that our
spacetimes can arise in a scalar-tensor theory of gravity,
an example of which is the low-energy, effective on-brane
gravity theory developed by Kanno and Soda [16] in the
context of the Randall-Sundrum two-brane model. Some
special cases of the general solution reproduce the R ¼ 0
spacetimes obtained earlier by other authors in the context
of GR and in the on-brane effective gravity theory due to
Shiromizu-Maeda-Sasaki [18] for a single-brane scenario.
A subclass of the general spacetimes found by us represents
R ¼ 0 Lorentzian wormholes. We have studied the WEC
for the matter that supports such wormholes and have
shown that they can satisfy WEC. This is in contrast to GR,
where such wormholes must violate WEC. We have also
shown that the mass term in the metric functions is
necessary to satisfy the WEC for these wormholes. Note
that most of the wormhole solutions obtained in Ref. [6] are
in vacuum-Brans-Dicke theory. However, the solutions we
have obtained include both matter and a nonconstant, i.e., a
Φ-dependent coupling ωðΦÞ. As an additional curiosity, we
also looked at the WEC for the naked singularity with the
parameter m ¼ 0, and have found that it is violated.
Apart from constructing solutions and checking the

WEC, we have calculated the gravitational redshift of a
light signal traveling in such wormholes and have found
that the WEC restricts the amount of redshift to be below
80%. Furthermore, we obtained the effective potentials for
particle motion and investigated the possibility of circular
orbits in these wormhole spacetimes. It has been shown that
both stable and unstable circular orbits exist for the timelike
case. For the null case, only unstable circular orbits are
possible if the WEC is satisfied. But, stable null circular
orbits exist if the WEC is violated. Finally, we analyzed
traversability in such wormholes and found that they are
traversable for values of the metric parameters satisfying
the WEC. Therefore, we now have wormholes which
satisfy the WEC and are traversable. In addition, they
may also be viewed as on-brane spacetimes if one considers
the existence of warped extra dimensions of the Randall-
Sundrum variety, in a two-brane context. In such a context
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FIG. 10. Plots of the effective potential for null geodesics for
different η. The green and red dots represent respectively the
stable and unstable circular orbits. Here, we have taken μ ¼ 5.0
and l ¼ 1.0.
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the scalar field (radion) is related to the inter-brane distance
and we have seen that this can always be kept finite and
nonzero everywhere.
Recently, it has been argued that the universal ringdown

waveforms from a binary coalescence indicate the presence
of light rings, rather than of horizons [30]. Therefore, an
object (e.g. a traversable wormhole) with a light ring will
display a similar initial ringdown stage (waveform), even
when its quasinormal mode spectrum is completely differ-
ent from that of a black hole. However, their late-time
ringdown stages are different [30,31]. It has further been
shown that, if one does not use the thin-shell wormhole (the
one used in Ref. [30]) obtained by special matching near
the Schwarzschild radius but prefers a wormhole configu-
ration constructed without thin shells instead, a wormhole
may ring like a black hole or differently at all times,
depending on the values of the wormhole and black hole
parameters [32]. This leads to the hope that the Lorentzian
wormholes we have obtained here, may be relevant in such

studies and may have an observational consequence in
astrophysics, in the future.
Further, it is to be noted that the R ¼ 0 spacetime

solution we have obtained can be used in the context of
any other theory of gravity (different from the one
considered here) to study the relation between the energy
conditions and wormholes. We have noted that a subclass
of our R ¼ 0 spacetimes represents naked singularities.
Therefore, as an observational test, it will be interesting to
study gravitational lensing in the spacetimes we have
obtained here and to see whether we can find ways to
distinguish between wormholes and naked singularities
[33] through observations.
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