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We study a scale-invariant model of quadratic gravity with a nonminimally coupled scalar field. We
focus on cosmological solutions and find that scale invariance is spontaneously broken and a mass scale
naturally emerges. Before the symmetry breaking, the Universe undergoes an inflationary expansion with
nearly the same observational predictions of Starobinsky’s model. At the end of inflation, the Hubble
parameter and the scalar field converge to a stable fixed point through damped oscillations and the usual
Einstein-Hilbert action is recovered. The oscillations around the fixed point can reheat the Universe in
various ways, and we study in detail some of these possibilities.
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I. INTRODUCTION

The wealth of recent observational data has dramatically
reduced the number of viable inflationary models and
opened a debate on the possibilities that are left [1]. For
instance, in the context of single-field inflation, the data
from Planck [2] basically exclude all potentials of the type
V ∼ ϕp with p ≥ 2, thus leaving only a handful of feasible
alternatives. Among these, there is the Starobinsky model
[3], which is based on a minimal extension of general
relativity obtained by the addition of a term quadratic in the
Ricci scalar R. Originally motivated by quantum correc-
tions, this model has been generalized to the class of so-
called fðRÞ gravity (see [4–6] for comprehensive reviews).
The term R2 of the Starobinsky model is dominant over

the linear term during inflation, and this reflects the idea
that, at very high energy, gravity is fundamentally scale
invariant. In fact, the vacuum equations of motion obtained
from the scale-invariant Lagrangian L ∼ ffiffiffi

g
p

R2 with a
Robertson-Walker metric have a general solution that
interpolates between an unstable radiation-dominated uni-
verse (with R ¼ 0) and a stable de Sitter solution (with
R ¼ const). The addition of a term proportional to R breaks
the scale invariance and introduces the Planck mass
together with another mass scale of the order 1013 GeV.
It also changes the stability properties of the solution in
such a way that the Universe now evolves from an unstable
de Sitter solution toward an oscillating phase that opens the
door to reheating via parametric amplification of the field
content of the theory. The Starobinsky model has become
increasingly appealing because of its conceptual simplicity,
because of its close connection to Higgs inflation [7], and,
above all, because the predicted spectral indices are fully
compatible with observations. In particular, the model

predicts a tensor-to-scalar ratio of the order of
r≃ 0.003, which is well inside the upper limit set by
Planck (r < 0.1) and other experiments, such as the
combined Keck and BICEP2 data (r < 0.07) [8].
In this paperwepropose amodelwhere the scale invariance

is broken dynamically. There is only one mass scale that
emerges as the value, at a stable fixed point, of a fundamental
scalar field nonminimally coupled to gravity, but the precise
value of the emergingmass scale is not determined.Oneof the
advantages of this model is that there is no need of a second
mass scale, as in the Starobinsky model, but the predictions
for the spectral indices are essentially the same. In addition, in
thebroken phase, a residual cosmological constant arises.The
latter can be related to the current vacuum energy in the
Universe, which leads, however, to unnaturally small param-
eters (for example, the self-coupling of the quartic scalar
interaction would take the unnatural value of order 10−122).
Therefore the Hubble constant at the broken phase must be
considered as the initial data for the following radiation-
dominated era. From a conceptual point of few, it is also
important to stress that the model assumes scale invariance as
a fundamental symmetry of the system,which helps to restrict
the form of Lagrangian density out of a very large number of
possibilities.
The present paper is also motivated by the renewed

interest in scale-invariant models of gravity in recent years.
To begin with, it has been shown that the most likely form
of fðRÞ, in the absence of matter, compatible with the
measured spectral indices is f ∼ R2−δ, with 0 < δ ≪ 1 [9];
see also [10]. Other studies showed that scale-invariant
gravity with quantum corrections can reproduce inflation
and spectral indices in line with current observations [11]
in the absence of inflaton or any other kind of matter fluid.
Quantum corrections in the context of inflation have been
recently considered in various approaches; see, e.g.,
[12–15]. Recently, a lot of work is being devoted to the
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so-called α-attractors. This model, motivated by super-
gravity, provides a unified description of several infla-
tionary models by means of a unique parameter α related to
the analicity properties of the scalar potential [16]. It was
shown that there exists another class of attractors that are
somewhat orthogonal to these and that have the funda-
mental property of being quasi–scale invariant [17], in
contrast to the α-attractors. Finally, scale-invariant gravity
has been investigated also in the context of black hole
physics where interesting thermodynamical properties were
found [18]. We emphasize throughout the paper the role of
scale symmetry (or dilatations) as a global one, in contrast
to local conformal symmetry in the presence of a dynamical
metric which, being dependent on an arbitrary function is
really to be considered as a gauge symmetry, as amply
explained in [19].
The plan of the paper is the following. In the next section

we present the model, its symmetries, and the equations of
motion. In Sec. III we study the global dynamics, the fixed
points, and their stability, both analytically and numeri-
cally. In Sec. IV we study the inflationary phase in the
Jordan frame. In Sec. V we present various reheating
mechanisms that can be applied to this model. In Sec. VI
we review the inflationary phase in the Einstein frame, and
we prove that the predicted spectral indices are the same as
in the Starobinsky model, at least at the leading order. We
finally conclude in Sec. VII with some considerations.

II. THE LAGRANGIAN AND ITS SYMMETRIES

Our model is based on the scale-invariant Lagrangian

Linv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p �
α

36
R2 þ ξ

6
ϕ2R −

1

2
ð∂ϕÞ2 − λ

4
ϕ4

�
; ð1Þ

where α, λ, and ξ are positive constant. Normally, one
should also add the standard model Lagrangian LSM
although, in most theories of inflation, and in our model
as well, it can be omitted except, eventually, for the Higgs
field. Note that scale invariance forbids the appearance of a
cosmological constant term, although such a term may well
appear after the breaking of the scale symmetry. The field ϕ
is prevented from interacting with the standard model fields
due to the SUð3Þ × SUð2Þ × Uð1Þ gauge symmetry (except
for the Higgs and right-handed neutrinos) but it couples to
them indirectly via the metric, a fact possibly relevant for
the reheating phase. Also, for the conformally flat
Friedmann-Lemaître-Robertson-Walker (FRWL) back-
ground considered here, the term R2 is the only one
surviving the conformally flat space limit since the Weyl
term WαβμνWαβμν vanishes there. We note that if α were to
vanish and ξ ¼ 1, the theory would be conformal invariant,
but not equivalent to standard general relativity with a
Λ-term, as would be the case if the scalar kinetic terms had
the opposite sign. We also remark that scale invariance
alone (as well as local Weyl invariance) cannot restrict the

form of the counterterms in a perturbative expansion
around flat space, as has been suggested in the past
[20], since quantization necessarily breaks it. The fact
remains that the standard model Lagrangian without the
Higgs field but with all the fermions massless is obviously
scale invariant and could also be added to (1), although we
shall not do this for the time being.
Scale invariance is manifest since the action is invariant1

under the following active transformation laws2:

gμνðxÞ ¼ gμνðlxÞ; ϕðxÞ ¼ lϕðlxÞ; ð2Þ
for any constant l, which we call dilatation symmetry.
There is also a rigid internal Weyl symmetry, with
parameter L, under which coordinates do not change,
g0μνðxÞ ¼ L2gμνðxÞ, ϕ0ðxÞ ¼ L−1ϕðxÞ, and which leaves
the Lagrangian density strictly invariant. Finally there is
the product symmetry under which g0μνðxÞ ¼ L2gμνðlxÞ,
ϕ0ðxÞ ¼ L−1lϕðlxÞ. The special case L ¼ l is the usual
diffeomorphism symmetry xμ → l−1xμ under which ϕðxÞ
transform as a scalar field and gμνðxÞ as a tensor field, and it
is never broken. As a result, if the action is invariant, say,
under the Weyl transformation, then it is also invariant
under dilatations, and vice versa. We emphasize, however,
that there really is a two-parameter (L and l) Abelian group
of symmetries, although one cannot break one of these
without breaking the other unless we also break the diff
symmetry.3

The derivative with respect to ϕ, with R fixed, of the
effective potential

Veff ¼ −
ξ

6
ϕ2Rþ λ

4
ϕ4; ð3Þ

vanishes at

ϕ ¼ 0; ϕ2
0 ¼

ξR
3λ

; ð4Þ

the first point being a local maximum and the second a local
minimum. Thus, in principle there can be a classical
symmetry breaking of the scale symmetry (and the discrete
symmetry ϕ → −ϕ as well, possibly leading to a domain
wall structure) that occurs when the scalar field settles in
the minimum over some infinite volume region of space-
time with constant curvature. This automatically introduces
in the theory a mass scale that can be identified with ϕ0. A
similar mechanism was studied in [21], where the quadratic
term in R is replaced by another dynamical scalar field,

1The Lagrangian is not invariant since it transforms as a
density.

2A field with canonical dimension d is usually assumed to
transform as ϕ0ðxÞ ¼ LdϕðLxÞ under x0 ¼ L−1x.

3Precisely because we have a two-parameter group, we
can break scale symmetry without spoiling diffeomorphism
invariance.
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and in a more general context including conformal invari-
ance by Bars et al. [22]. All these models are also inspired
by induced gravity models; see, e.g., [23].
For α ¼ ξ2=λ, the nonderivative part of the Lagrangian

density (1) takes the form

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p λ

4

�
ϕ2 −

ξR
3λ

�
2

; ð5Þ

which vanishes at the minimum [see also Eq. (11) below].
Note that all minima connected by a scale transformation
(under the Weyl or product symmetry) have the same
vanishing energy. Therefore, the potential has flat direc-
tions corresponding to constant Weyl deformations of the
scalar field and of the metric. By defining ϕ ¼
M expðσ=MÞ and gμνðxÞ ¼ expð−2σ=MÞ~gμνðxÞ, for some
mass scale M, we see that the interactions could only
depend on σ via derivative terms since, for constant σ, the
Lagrangian density is invariant. The field σ is the dilaton of
the theory, namely the Goldstone boson associated with the
breaking of the rigid Weyl symmetry, and it transforms
nonlinearly as σ → σ þM logl. In fact, it generates an
Einstein-Hilbert coupling M2ξR=6, which defines the
effective Newton constant (see, for example, [24]). It
should be said that in the logic of effective field theory
there is clearly room for infinitely many more scale-
invariant terms in the Lagrangian containing increasing
powers of derivatives, but we stick here to the lowest order
dominant terms. Having discussed the role of the field ϕ as
a dilaton, we now study the equations of motion on a
cosmological background.
We choose a flat Robertson-Walker (RW) metric of the

form ds2 ¼ −dt2 þ a2ðtÞδijdxidxj. The Hubble parameter
is defined as H ¼ d ln a=dt, and the Ricci scalar is
R ¼ 12H2 þ 6 _H. There are two independent equations
of motion that read

ϕ̈þ 3H _ϕ − 2ξϕ _H − ϕð4ξH2 − λϕ2Þ ¼ 0;

αð2HḦ − _H2 þ 6H2 _HÞ − 1

2
_ϕ2 þ 2ξϕ _ϕH

þ ϕ2

4
ð4ξH2 − λϕ2Þ ¼ 0: ð6Þ

Scale invariance now takes the form of invariance under the
rescaling to new fields defined by

ϕðtÞ ¼ lϕðltÞ; aðtÞ ¼ aðltÞ;

HðtÞ ¼ 1

a
da
dt

¼ lHðltÞ; ð7Þ
for an arbitrary l that leaves these equations unchanged.4

For future calculations, it is convenient to write Eqs. (6) in
terms of the e-folding time N ¼ ln a,

H2ϕ00 þ ðHH0 þ 3H2Þϕ0 − 2ξϕHH0 − ϕð4ξH2 − λϕ2Þ¼ 0;

αH2ð2HH00 þH02 þ 6HH0Þ þ 2ξH2ϕϕ0 −
1

2
ϕ02H2

þ ϕ2

4
ð4ξH2 − λϕ2Þ ¼ 0: ð8Þ

Here, the prime stands for the derivative with respect to N.
The model has three free parameters ðα; ξ; λÞ but, in fact,

one can be eliminated by requiring that, when bothH and ϕ
are constant, the quadratic term in R and the quartic term in
ϕ cancel each other, so that, in the Lagrangian there is a
vanishing cosmological constant in this regime. Thus, by
setting H ¼ H0 and ϕ ¼ ϕ0 in Eqs. (6), we find that

ϕ0 ¼ 0; or ϕ0 ¼ 2H0

ffiffiffi
ξ

λ

r
: ð9Þ

Then, by imposing the relation

λϕ4
0

4
¼ αRðH0Þ2

36
≡ 4αH4

0; ð10Þ

together with the second of the solutions (9), we find that

α ¼ ξ2

λ
; ð11Þ

a relation that will be adopted from now on. Note that the
solutions (9) also coincide with the two extrema of this
potential since, when H is constant, R ¼ 12H2. Their
existence displays the broken symmetry phase since the
spatial volume of the flat RW metric is infinite. We
anticipate that the two extrema correspond also to the only
two fixed points of the system of equations of motion.
Therefore, if at least one of these is attractive and stable, the
system will dynamically relax to one of the minimum of the
effective potential (5) realizing a spontaneous breaking of
the scale symmetry. But since any minimum is as good as
any other, the values of the parameters at the fixed point
will be undetermined. It should be stressed that, were it not
for the presence of the standard model fields, perturbations
around the fixed point corresponding to the minimum of the
potential would still obey scale-invariant field equations,
except that the scale symmetry would perhaps be realized
nonlinearly. In fact, the symmetry is broken in the vacuum,
not in the field equations (or in the Lagrangian).

III. GLOBAL EVOLUTION

The most convenient way to analyze the global evolution
of the two Eqs. (8) is to convert them into a four-dimensional
dynamical system, find its fixed points, and study their
stability. We first use analytical methods to solve the system,
linearized nearby the fixed points. We then verify these
results by solving numerically the full equations.

4They are not invariant under rigid Weyl transformations
because, by choosing the Robertson-Walker metric, we have
gauge fixed the diff symmetry.
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A. Fixed-point analysis

To find the fixed points, we make the substitutions

HðNÞ ¼ x; H0ðNÞ ¼ y;

ϕðNÞ ¼ z; ϕ0ðNÞ ¼ w; ð12Þ
in Eqs. (8) so that we write an equivalent system of four
first-order differential equations that reads

w0 þ yw
x

þ 3w −
2ξzy
x

þ λz3

x2
− 4ξz ¼ 0;

y0 þ y2

2x
þ 3yþ λwz

ξx
−

λ2z4

8ξ2x3
þ λz2

2ξx
−

λw2

4xξ2
¼ 0;

x0 − y ¼ 0;

z0 − w ¼ 0: ð13Þ
By solving the system ðw0 ¼ 0; y0 ¼ 0; x0 ¼ 0; z0 ¼ 0Þ, we
find two families of fixed points given by

ðx; y; z; wÞ ¼ ðx; 0; 0; 0Þ; ðx; y; z; wÞ ¼
�
x; 0;�2

ffiffiffi
ξ

λ

r
x; 0

�
;

ð14Þ
for arbitrary x. Note that the fixed points are also scale
invariant under a redefinition of x (i.e., of H). By
computing the Jacobian and the corresponding eigenvalues,
we find that at least one is vanishing for both points, so we
need to resort to analytical and numerical methods to assess
unambiguously the stability.
We begin by linearizing the system around the point

ðx; 0; 0; 0Þ. The solution is

x ¼ HðNÞ ¼ c1 þ c2e−3N;

z ¼ ϕðNÞ ¼ c3eð−
3
2
þ1

2

ffiffiffiffiffiffiffiffiffiffi
9þ16ξ

p ÞN þ c4eð−
3
2
−1
2

ffiffiffiffiffiffiffiffiffiffi
9þ16ξ

p ÞN; ð15Þ
where c1…4 are constants of integration. Since z0 ¼ w also
vanishes at the fixed point, if we impose that the latter
belongs to the trajectory in the ðz; wÞ plane, then we are
forced to set c3 ¼ c4. On the opposite, if both c3 and c4 are
nonvanishing, then we have a saddle point, as zðNÞ is a
combination of growing and decayingmodes, since ξ > 0 by
hypothesis.We conclude that the point ðx; 0; 0; 0Þ is a saddle
point: the Hubble parameter tends to a constant while the
scalar field grows dragging the system away from it.
Let us analyze the second fixed point, focusing on the

positive solution ðx; 0; 2x ffiffiffiffiffiffiffi
ξ=λ

p
; 0Þ. In this case, the general

solution to the linearized system is

x ¼ c1 þ c2e−3N þ e−
3
2
Nðc3SðNÞ þ c4CðNÞÞ;

z ¼
ffiffiffi
ξ

λ

r �
2c1 þ

c2
2
e−3N þ ξ

2ð1þ 2ξÞ e
−3
2
N

× ðð2Kc4 − 5c3ÞSðNÞ − ð5c4 þ 2Kc3ÞCðNÞÞ
�
; ð16Þ

where K ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7þ 64ξ

p
and SðNÞ ¼ sinðKNÞ, CðNÞ ¼

cosðKNÞ. We clearly see that the fixed point is stable; it
is an attractor that is reached through damped oscillations
of both H and ϕ.
The breaking of the scale invariance occurs when the

solution begins to oscillate around the stable fixed point
and the sum of the quadratic term in R and of the quartic
term in ϕ vanishes through damped oscillations. At this
stage, the prefactor of the linear term in R becomes constant
and dimensionally equivalent to a mass scale. Thus, it is
natural to make the identification

1

6
ξϕ2

0R≡ 1

2
M2

pR; ð17Þ

from which, as anticipated above, we find that

Mp ≡
ffiffiffi
ξ

3

r
ϕ0: ð18Þ

The nonzero value of the Hubble parameter at the stable
fixed point, say H⋆, could in principle account for a
fundamental nonvanishing cosmological constant.
However, this is true, in fact, only if the model that we
have chosen is all there is, so H⋆ would persist for all time.
According to the present understanding, after inflation the
Universe enters a radiation-dominated era during which the
standard model Lagrangian that we omitted initially
becomes important and scale invariance is also broken at
the level of the Lagrangian (for example, by the Higgs mass
term). Therefore, it seems more sensible to think of H⋆ as
the initial value of the Hubble parameter at the onset of the
radiation-dominated era, whose value is valid at some
precise epoch only. From there on it would start decreasing
according to the standard cosmology.
We can appreciate the difference between these two

interpretations in a simple way. If H⋆ is related to a
fundamental cosmological constant, then in the infinite
future, when all the matter content of the Universe is diluted
away and oscillations are damped out, we can write the
equality

H2⋆ ¼ Λ
3
; ð19Þ

where Λ is the “relic” cosmological constant, which is of
order ð10−42 GeVÞ2. With the help of the equations above,
we also find that

Λ ¼ λϕ4
0

4M2
p
: ð20Þ

So this requires a tremendous amount of fine-tuning in λ for
any ξ ∼ 1,5 as it is also apparent from the equivalent formula

5The choice ξ ∼ 1 can be argued on the ground that ξ ¼ 1=6
gives a conformally invariant theory if the scalar field is a ghost, a
situation that one can imagine to occur at even earlier times. Also,
with ξ ∼ 1 one has ϕ0 ∼Mp.
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ξ ¼ 3Mp

2

ffiffiffiffi
λ

Λ

r
: ð21Þ

Alternatively, we can express the parameter ξ in terms
of Λ as

H⋆ ¼ Mp

ffiffiffiffiffi
3λ

p

2ξ
ð22Þ

and treat H⋆ as initial data. The scale of the Hubble
parameter at inflation is roughly H⋆ ∼ 1014 GeV, which
gives, assuming again ξ ∼ 1, a coupling λ ∼ 10−8 (a weakly
coupled scalar is good for inflation). Furthermore, using the
relation

H⋆ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z⋆Þ3 þ Ωrð1þ z⋆Þ4 þ Ωv

q

≃H0Ω
1=2
r ð1þ z⋆Þ2; ð23Þ

where H0 ≃ 10−42 GeV is the present value of the Hubble
constant, we get the redshift z⋆ ¼ 1029 and further 67
e-foldings from there to the present era.
To summarize, the picture that emerges from these

findings is that in the solution space there are trajectories
that connect an inflationary Universe to a graceful exit
characterized by damped oscillations that can produce
particles through standard model reheating mechanisms.
In addition, the model has a “residual” Hubble parameter
H⋆ which can be interpreted either as a residual cosmo-
logical constant, which would be a wrong interpretation, or
as the initial data for the beginning of the radiation-
dominated era. In that case the model does not explain
the late time acceleration, but in the former case it requires a
tremendous amount of fine-tuning and an unnaturally small
coupling parameter λ.

B. Numerical analysis

In this sectionwe solve numericallyEqs. (8), andwe check
that the analytical results found above are consistent. First,
we confirm the stability character of the fixedpoints, and then
we show that there are trajectories that connect an infla-
tionary universe to a graceful exit with a reheating phase.We
choose the values λ ¼ 1=10 and ξ ¼ 15, and we consider for
definitiveness only positive values of z (i.e., of ϕ). In Fig. 1
(left) we plot the section ½HðNÞ;ϕðNÞ� of the phase portrait
of the full system of equations.We choose the initial point of
the trajectory at N ¼ 0 close to the unstable fixed point, by
setting xð0Þ ¼ 1, yð0Þ ¼ zð0Þ ¼ wð0Þ ¼ 10−8, and we let
run the computation for 20 e-foldings. We see that the
trajectory runs away from the initial point and spirals toward
the stable fixed point at Hð20Þ≃ 0.7, ϕð20Þ≃ 17, consis-
tently with the second of the relations (9). In Fig. 1 (right) we
plot the evolution of the Hubble parameter, and we see a
plateau followed by an oscillating phase. The same behavior
occurs for ϕðNÞ as shown in Fig. 2 (left). In Fig. 2 (left) we
plot instead the “effective” cosmological constant, defined as

Λeff ¼
αR2

36
−
λϕ4

4
; ð24Þ

and we verify that it vanishes as the Universe approaches the
stable fixed point. Of course, the true evolution of theHubble
parameter after the oscillating phase is expected to be ruled
by the matter fluid created via preheating, so these plots are
no longer realistic after the first few oscillations of HðNÞ.

IV. INFLATION

The inflationary phase of this model can be identified
with the plateau clearly visible in the plot on the right in
Fig. 1. We can give an approximate analytic description of

FIG. 1. Phase portrait of ϕðNÞ and HðNÞ (left) and plot of HðNÞ (right).

INFLATION AND REHEATING IN THEORIES WITH … PHYSICAL REVIEW D 94, 024009 (2016)

024009-5



this phase in the following way. From the first of Eqs. (8)
we can write the expression of the first Hubble flow
parameter (expressed as a function of N) that reads

ϵ1 ≡ −
H0

H
¼ H2ϕ00 þ 3H2ϕ0 þ λϕ3 − 4ξϕH2

H2ðϕ0 − 2ξϕÞ : ð25Þ

Our goal is to constrain the parameters in such a way that
inflation lasts a sufficiently long time. Conventionally, the
end of inflation is marked by the time Ne at which ϵ1 ¼ 1
while, for N < Ne, ϵ1 < 1. The unstable fixed point is
characterized by an arbitrary value of H and vanishing ϕ.
From Eqs. (15), we know that, around the fixed point, we
can approximate

H ¼ Hi; ϕ ∼ ϕi expðN − NiÞ; ð26Þ

where the subscript i indicates a quantity evaluated at the
beginning of inflation. We neglect the exponentially
decreasing part of HðNÞ as it is irrelevant for the calcu-
lation. By replacing these expressions into Eq. (25), we find
that ϵ1 ¼ 1 when

ΔN ≡ Ne − Ni ¼
1

2
ln

�ð2ξ − 3ÞH2
i

λϕ2
i

�
: ð27Þ

If we assume, as above, that ξ ∼ 1 and that λ ∼ 10−8 we find
that

Hi

ϕi
≃ expðΔN − 9Þ; ð28Þ

which roughly fixes the necessary condition that guarantees
ΔN ¼ 50–60 e-folding of inflation.

These rough estimates are sufficient to show that there is
an infinite number of inflationary trajectories springing
from any point in the phase space close enough to the
unstable fixed point in the Jordan frame. All these trajec-
tories eventually end up at the stable fixed point where a
mass scale emerges. Among these, only the ones satisfying
the constraint (28) are suitable to describe our Universe.

V. REHEATING

From the results in the previous section we learn that the
model (1) can describe an inflationary phase followed by
damped oscillations of the Hubble parameter and of the
scalar field around a stable fixed point that breaks scale
invariance and sets a mass scale. In this section we wish to
study closely the oscillating phase and verify whether it can
provide a reheating mechanism. This is necessary in order
to connect the inflationary universe to a radiation-domi-
nated phase.
By using the explicit expression (16) for HðNÞ close to

the fixed point we find that the scale factor averaged over
several oscillations evolves as a ∼ t2=3. This indicates that
the Universe expands as it was dominated by nonrelativistic
matter; therefore, we need some other mechanism to heat
up the postinflationary universe into radiation domination.
We now explore some of the possibilities.

A. Old reheating scenario

The “old reheating” model is based on the assumption
that the scalar field can decay into boson pairs χ (a pale
simulacrum of the standard model fields) with a decay rate
inversely proportional to the inflaton mass (for reviews on
reheating see [25]). The Lagrangian (1) must therefore be
augmented with new terms related to χ which, in the
minimally coupled case, read

FIG. 2. Plot of ϕðNÞ (left) and of Λeff (right) defined in Eq. (24).
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Ltot ¼ Linv − g2ϕ2χ2 −
1

2
ð∂χÞ2 − 1

2
m2

χχ
2; ð29Þ

where g is the dimensionless coupling andmχ is the mass of
the decay product field χ. Note that the scalar field ϕ is kept
massless as a relic of the overall scale invariance of the
initial action Linv. However, nearby the stable fixed point,
the scalar field oscillates around the equilibrium value ϕ0.
Thus, we can expand the Lagrangian (29) around ϕ0 upon
the replacement ϕ → ϕ − ϕ0. The relevant terms for the
decay ϕ → χ þ χ are given by

Lreh ≃ −
1

2
m2

ϕϕ
2 þ 2gϕ0ϕχ

2 þ � � � ; ð30Þ

where mϕ is the effective mass for the inflaton that reads

m2
ϕ ¼ 3λϕ2

0

2
−
ξhRi
3

≃ λϕ2
0

2
: ð31Þ

where we replaced R with its average value hRi ¼ 12H2
0

and we used the second of Eqs. (9). The decay rate can be
estimated by the quantity

Γ ¼ g2ϕ2
0

8πmϕ
¼

ffiffiffi
2

λ

r
g2ϕ0

8π
; ð32Þ

and, in the case when mχ ≪ mϕ the decay ϕ → χ þ χ is
possible and transfers the energy stored in the field ϕ into
the gas of relativistic particles χ. The process stops at a time
H ∼ Γ when the gas can finally thermalize at the reheating
temperature

Treh ≃
ffiffiffiffiffiffiffiffiffiffi
ΓMp

p ≃ 0.3 × gMpðλξÞ−1=4; ð33Þ

where we used the relation (18).

B. Preheating

A conspicuous particle production is possible via para-
metric resonance of a scalar field χ coupled to ϕ in a way
similar to the preheating scenario [26]. Let us consider once
more the Lagrangian (29), and let us compute the Klein-
Gordon equation associated with ξ, by neglecting for
simplicity the mass term mχ . In terms of Fourier modes,
such an equation can be written in the standard form

χ̈k þ 3H _χk þ
�
k2

a2
þ g2ϕ2

�
χk ¼ 0; ð34Þ

which describes an oscillator with the time dependent
frequency

ωk ¼
�
k2

a2
þ g2ϕ2

�1
2

: ð35Þ

In standard preheating, one defines the adiabaticity
parameter

A ¼
���� _ω

ω2

����; ð36Þ

which characterizes particle production. In general, when-
ever A ≪ 1 the production rate is negligible. When this
condition does not hold anymore, adiabaticity is broken
and particle production can become effective. In the present
case, we have

A≃
����ϕ

0H
gϕ2

����; ð37Þ

where we have considered long wavelength only, i.e.,
modes with k=ðaHÞ ≪ 2π. We see immediately that the
adiabaticity condition is broken when ϕ approaches zero.
However, as we will shortly see, there is another particle

production regime, which occurs when the oscillating
function H periodically vanishes around the fixed point.
In this case, the adiabaticity condition, expressed asA ≪ 1,
is not violated but particle creation can still occur. This
situation arises because there are more degrees of freedom
as in the usual preheating. If we look at the Einstein frame,
we basically have two scalar fields (one corresponding to
the usual inflaton and the other associated with the
quadratic term in R) that can amplify coupled light fields
(for preheating in multifield inflationary scenarios
see [27,28]).
Since we know explicitly the functions HðNÞ and ϕðNÞ

around the stable fixed point [see Eqs. (16)], we can solve
Eq. (34) almost exactly. We first define the new function

Xk ¼ a3=2χk; ð38Þ

in terms of which we can express the comoving kth bosonic
occupation number

nk ¼
ωk

2

�j _Xkj2
ω2
k

þ X2
k

�
−
1

2
; ð39Þ

which is obtained by inverting the usual formula for the
harmonic oscillator (with ℏ ¼ 1)

Ek ¼
ℏωk

2
ð2nk þ 1Þ ¼ 1

2
ðj _Xkj2 þ ω2

kjXkj2Þ: ð40Þ

Then, Eq. (34) becomes, in terms of N derivatives,

X00
k þ

H0X0
k

H
þ
�

k2

a2H2
þ g2ϕ2

H2

�
Xk ¼ 0: ð41Þ

Let us now consider Eqs. (16). We neglect the fast decaying
part (i.e., we set c2 ¼ 0), and we consider K ≫ 1. As a
result we can approximate these functions as
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HðNÞ ¼ H0 þ TðNÞe−3
2
N;

ϕðNÞ ¼ ϕ0 − γT 0ðNÞe−3
2
N; ð42Þ

where H0 and ϕ0 are related by the second of Eqs. (9) and
where

TðNÞ ¼ c3 sinðKNÞ þ c4 cosðKNÞ; γ ¼ ξ

1þ 2ξ

ffiffiffi
ξ

λ

r
:

ð43Þ

If we further assume that, at least during the first oscil-
lations, H0 ≪ TðNÞ and ϕ0 ≪ γT 0ðNÞ, then Eq. (41) can
be written as

X00
k þ

�
T 0

T
−
3

2

�
X0
k þ

�
P2 þ g2γ2

T 02

T2

�
Xk ¼ 0; ð44Þ

where we consider P ¼ k=ðaHÞ ≪ 1 and constant. This
equation can be solved in two distinct physical regimes,
both yielding particle production.

C. ϕ-amplification

We have seen that the condition (37) is violated when ϕ
vanishes. This corresponds to T 0ðNÞ → 0 while TðNÞ is
finite. In this regime, which occurs periodically, Eq. (44)
simplifies into

X00
k −

3

2
X0
k þ P2Xk ≃ 0; ð45Þ

which can be solved with a linear combination of the modes

Xk ∼ exp

�
3

4
� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 16P2

p �
; ð46Þ

as a general solution. With these, it follows immediately
that the comoving number mode evolves as

nk ∼
TðNÞ
P

exp

�
3

2
N

�
ð47Þ

every time N is close to the critical value for which T 0ðNÞ
vanishes. Therefore, we recover the standard preheating
picture of a periodic burst of particles every time the
adiabaticity condition is violated. Note that this result is
independent of the sign of g2, so it can occur also for
tachyonic couplings.

D. H-amplification

As an alternative to standard preheating that occurs when
ϕðNÞ vanishes, there can be another particle production
mechanism whenHðNÞ vanishes. In this regime, in fact, we
can expand Eq. (44) as

X00
k −

1

N − N0

X0
k þ

�
P2 þ g2γ2

ðN − N0Þ2
�
Xk ≃ 0; ð48Þ

where N0 ¼ − 1
K arctanðc4=c3Þ. This is a standard equation

that can be solved in terms of Bessel’s functions

XkðzÞ ¼ z½b1JνðPzÞ þ b2YνðPzÞ�; ð49Þ

where z≡ N − N0, b1;2 are integration constants and

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2γ2

p
. In the limit of small z, the second term

becomes dominant so [29]

XkðzÞ ∼ z1−ν; ð50Þ

which becomes very large for small z when 1 < ν, namely
when −g2 > 0. It is not hard to see that the same happens
for the comoving particle number nk; see Eq. (39). This
means that we can have particle production in the regime
when HðNÞ approaches zero while ϕðNÞ is finite, provided
the interaction term in Lχ has g2 < 0, as in the tachyonic
preheating mechanism [30].
In summary, according to the sign of g2, we have two

distinct particle amplification mechanisms. The first is the
usual preheating model, which occurs when the oscillation
of the field ϕ is no longer adiabatic, and it is valid for either
signs of g2. The second occurs when g2 is negative as in
tachyonic preheating, which implies “negative” effective
square masses in the action but poses no stability problems
if the potential is bounded from below.

VI. ANALYSIS IN THE EINSTEIN FRAME

We now come back to the inflationary phase of the
model. As mentioned above, the analysis of this case is
more transparent in the Einstein frame. The Lagrangian (1)
can be written in the form

Lffiffiffi
g

p ¼ χR −
αφ2

36
−
1

2
ð∂ϕÞ2 − λ

4
ϕ4; ð51Þ

where we define the auxiliary variable [31]

χ ¼ αφ

18
þ ξϕ2

6
: ð52Þ

The variation with respect to φ vanishes only for φ ¼ R;
thus, we can transfer the extra degree of freedom embedded
in the R2 term by formally introducing in (51) the field

φ≡ 18χ

α
−
3ξϕ2

α
; ð53Þ

to obtain the equivalent Lagrangian
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Lffiffiffi
g

p ¼ χR −
1

2
ð∂ϕÞ2 − 9

α

�
χ −

ξ

6
ϕ2

�
2

¼ χR −
1

2
ð∂ϕÞ2 − λ

2
ϕ4 þ 3λχϕ2

ξ
−
9λχ2

ξ2
; ð54Þ

where we have used the relation (11). This form describes
two coupled scalar fields still in the Jordan frame. Note that
χ has canonical mass-dimension two, just like the Brans-
Dicke scalar, and that the action still enjoys the rigid Weyl
symmetry scaling defined by χ0ðxÞ ¼ L−2χðxÞ along with
ϕ0ðxÞ ¼ L−1ϕðxÞ and g0μνðxÞ ¼ L2gμνðxÞ.
To study the dynamics in the Einstein frame we apply the

conformal transformation ~gμν ¼ Ω2gμν whereΩ2 ¼ 2χ=M2.
As a word of caution, we note that the mass scale M is
arbitrary, and it is inserted uniquely for dimensional con-
sistency. In particular, we note that under the rigid Weyl
symmetry scaling above, Ω is invariant if, and only if,
M → L−1M. As wewill emphasize below,M has no relation
with the breaking of scale invariance, which is still there, nor
with any dynamically generated mass in the theory.
If we further define the field

ψ ¼
ffiffiffi
6

p
M lnΩ; ð55Þ

the Einstein frame Lagrangian becomes

LE ¼
ffiffiffi
~g

p �
M2

2
~R −

1

2
~gμν∂μψ∂νψ −

1

2
exp

�
−

ffiffiffi
2

p
ψffiffiffi

3
p

M

�

× ~gμν∂μϕ∂νϕ − Vðϕ;ψÞ − 9λM4

4ξ2

�
; ð56Þ

where ~R is the Ricci tensor in the Einstein frame (see
Appendix D of [32]) and where

Vðϕ;ψÞ ¼ λϕ4

2
exp

�
−
2

ffiffiffi
2

p
ψffiffiffi

3
p

M

�
−
3λM2ϕ2

2ξ
exp

�
−

ffiffiffi
2

p
ψffiffiffi

3
p

M

�
:

ð57Þ

The Lagrangian is not yet canonical because of the factor
that multiplies the kinetic term of ϕ. Eventually, this term
can be written in canonical form provided one introduces
the new scalar field defined by the differential relation

d ~ϕ ¼ Ω−1dϕ; ð58Þ

but, for our purposes, this is not necessary.
To study the equations of motion, we find it convenient

to define the following quantities:

fðtÞ ¼ M exp

�
−

ffiffiffi
2

p
ψðtÞ

2
ffiffiffi
3

p
M

�
;

Λ ¼ 9λM2

4ξ2
;

V ¼ f2ϕ2ð−q1 þ q2f2ϕ2Þ;

q1 ¼
3λ

2ξ
; q2 ¼

λ

2M4
: ð59Þ

The Lagrangian finally reads

LE ¼ ffiffiffi
g

p �
M2

2
ðR − 2ΛÞ − 3M2

f2
ð∂fÞ2 − f2

2M2
ð∂ϕÞ2 − V

�
;

ð60Þ

where we dropped the tilde to simplify notation. The
Friedmann equations, with a flat Robertson-Walker metric,
are

H2 ¼
_f2

f2
þ f2 _ϕ2

6M4
þ Λ

3
þ V
3M2

;

_H ¼ −
3_f2

f2
−
f2 _ϕ2

2M4
; ð61Þ

while the Klein-Gordon equations for the two scalar fields
are

ϕ̈þ 3H _ϕþ 2 _ϕ _f
f

þM2

f2
∂V
∂ϕ ¼ 0;

f̈ þ 3H _f −
_f2

f
−
f3 _ϕ2

6M4
þ f2

6M2

∂V
∂f ¼ 0: ð62Þ

We stress once again that scale invariance is still present in
the equations above, despite the appearance of the mass
scaleM. In fact, the equations of motion are invariant under
the (actively interpreted) scale transformations

HðtÞ ¼ lHðltÞ; ϕðtÞ ¼ lϕðltÞ;
fðtÞ ¼ lfðltÞ; M ¼ lM; ð63Þ

consistent with the transformations (7). The last trans-
formation may seem a trivial change of units, but actually it
is not sinceM is the scale of a dynamical field, which is not
neutral under dilatations. To be more precise, since dila-
tations (both in classical theories as well as in their quantum
version) map the square of the four momentum P2 into
l−2P2, scale invariance requires that all masses either
vanish or form a continuous spectrum, but says nothing
about parameters like M that are introduced only for
dimensional purposes and are not part of the mass spectrum
(after all, the scalar field itself is a mass from the
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dimensional analysis point of view, although its scale is
arbitrary anyway).
As it will be apparent below, all the observables of

interest here (such as number of e-folds and spectral
indices) are independent of M, which reflects the fact that
M is a so-called redundant parameter, as we explicitly show
in the Appendix. For these reasons, in the following we
keep considering M as an arbitrary mass scale.
The analysis of the dynamical system associated with the

equations above, analogous to the one made in the Jordan
frame, confirms that there are two fixed points. As before,
one is unstable and located at

Hunst ¼
ffiffiffiffiffi
3λ

p
M

2ξ
; ϕunst ¼ 0; funst ¼ arbitrary;

ð64Þ

for arbitrary funst. The instability is confirmed by solving
the linearized system around this point, which yields ψ ∼ t,
ϕ ∼� ffiffiffiffiffiffiffiffiffiffi

3λ=ξ
p

Mt, revealing that both fields have growing
modes.
The second fixed point is stable and located in

Hstab ¼
ffiffiffiffiffi
3λ

p
M

2
ffiffiffi
2

p
ξ
; ϕstab ¼ ϕ0 ¼ arbitrary;

fstab ¼
ffiffiffi
3

p
M2ffiffiffiffiffi

2ξ
p

ϕ0

¼ Mffiffiffi
2

p ; ð65Þ

where, for the last identity, we used the relation (18) and the
fact that the ϕ-coordinate of the unstable fixed point is
unchanged upon the conformal transformation. The general
solution of the linearized system contains oscillating,
decreasing, and growing modes, but, since this fixed point
must also have _f ¼ _ϕ ¼ 0, the latter are excluded from the
spectrum. Therefore, the physical solution is a combination
of decaying (and oscillating) modes only. Note that, as in
the Jordan frame, the potential and the cosmological
constant term cancel each other at the stable fixed point.
Note also that the ratio

Hunst

Hstab
¼

ffiffiffi
2

p
ð66Þ

is independent of the parameters.
An observation is in order here. The relation between the

Hubble parameter in the Jordan frame (HJ) and the one in
the Einstein frame (HE) is given by HJ ¼ ΩHE [33]. One
can easily check that this formula holds at the stable fixed
point, where Ωstab ¼

ffiffiffi
2

p
. For the unstable one it holds as

well provided one recognizes that the conformal factor at
the unstable point depends on funst, which is arbitrary. This
is why HJ

unst is arbitrary while HE
unst is not.

After these general considerations, let us focus on the
inflationary solutions. However, it is important to clarify
first that Hunst does not characterize the inflationary value
of the Hubble parameter in the Einstein frame. In fact, the
inflationary trajectories are uniquely determined by the
condition jϕj ¼ j _ϕj ≪ 1, which is the same as in the Jordan
frame (we stress once again that the scalar field is the same
in the two frames). Therefore, Eq. (66) is not the ratio
between the current Hubble parameter and the inflationary
one. With this in mind, we consider ϕ very small and
constant, so we can neglect the term ð∂ϕÞ2, and write the
Lagrangian (60) as

L ¼ ffiffiffi
g

p �
M2

2
R −

1

2
ð∂ψÞ2 −W

�
; ð67Þ

where

W ¼ λϕ4

2
exp

�
−
2

ffiffiffi
2

p
ψffiffiffi

3
p

M

�
−
3λM2ϕ2

2ξ
exp

�
−

ffiffiffi
2

p
ψffiffiffi

3
p

M

�

þ 9λM4

4ξ2
: ð68Þ

We see that the effective action is quite similar to the
Starobinsky model written in the Einstein frame. In fact, we
now show that the model (67) predicts the same spectral
indices, at least to the first order in the slow-roll parameters.
To see this, we compute

ϵ ¼ M2

2

�
1

W
∂W
∂ψ

�
2

; η ¼ M2

W
∂2W
∂ψ2

; ð69Þ

and the scalar spectral index and the tensor-to-scalar ratio,
given respectively by

ns ¼ 1þ 2η − 6ϵ; r ¼ 16ϵ: ð70Þ

Since ϕ is constant, we can eliminate it by combining ns
and r. The resulting expression is quite involved but can be
expanded for ns → 1, giving

r≃ 3ðns − 1Þ2; ð71Þ

which is the same expression found for the Starobinsky
model. Let us now define the function

N ¼ 1

M2

Z
dψ

����Wð∂W
∂ψÞ

−1
����: ð72Þ

The number of e-foldings between some initial value of ψ i
and the end of inflation at ψf is defined by

N⋆ ¼ Nðψ iÞ − NðψfÞ: ð73Þ
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The value ψf is conventionally set at the earliest time at
which ϵ ¼ 1 or jηj ¼ 1. In our case we find that ϵ ¼ 1
occurs before jηj ¼ 1 and that NðψfÞ≃ 0.78. Since infla-
tion must last at least N⋆ ¼ 50 e-foldings we can safely
neglect NðψfÞ. At last, since during inflation (i.e., near the
unstable fixed point) we also have ϕ=M ≪ 1, we expand
the expression for ϵ around ϕ ¼ 0, we integrate Eq. (72),
we identify N⋆ ¼ Nðψ iÞ, and we find

N⋆ ≃ 9M2

4ξϕ2
exp

� ffiffiffi
2

p
ψ iffiffiffi
3

p
M

�
: ð74Þ

If we insert this result into the expressions (69) and (70) to
eliminate again ϕ, we find

ϵ≃ 3

4ðN⋆Þ2 ; η≃ −
1

N⋆ ; → ns ≃ 1 −
2

N⋆ −
3

2ðN⋆Þ2 :

ð75Þ

These results coincide with the prediction of the Starobinsky
model, independently of the the value ψ i and with the only
condition ϕ=M ≪ 1, i.e., that inflation begins close enough
to the unstable fixed point of the system.
As anticipated above, these results are independent of the

choice ofM, which is arbitrary in light of the intrinsic scale
invariance of the model. We believe that a more sophis-
ticated analysis of the perturbations, which goes beyond the
scope of this paper, can determine to what measure this
model differs from the original Starobinsky model; see,
e.g., [34] for suitable techniques.

VII. CONCLUSION

In this paper we have examined a simple theory based on
a scale-invariant Lagrangian with quadratic gravity and a
nonminimally coupled scalar field. Scale invariance spon-
taneously breaks when the field configuration approaches a
stable fixed point, where a mass scale emerges. The latter
can be identified with the Planck mass, but the inflationary
observables are independent of such a choice. In fact, as
there are infinitely many minima, the precise choice of the
value of M has to be made by hand or possibly via
anthropic arguments. The model as it is cannot predict
the value of the effective Planck mass. If no other fields are
introduced into the model, the perturbations around the
fixed point are still governed by scale-invariant field
equations, with the symmetry realized nonlinearly (the
symmetry is broken in the vacuum, not in the Lagrangian).
However, this is unrealistic: according to standard lore,
during reheating the standard model fields get excited and
even perturbations breaks the original scale invariance,
which is lost forever.
The global evolution of the system brings the Universe

from an inflationary phase to a graceful exit, when the
Universe reheats through various mechanisms that have

been reviewed. From the phenomenological point of view,
the inflationary predictions of this model are the same as
Starobinsky’s inflation but, in contrast to the latter, there is
no need to introduce a second mass scale.
An interesting feature is that, in principle, the model

depends only on two parameters, namely the strength of the
nonminimal coupling of the scalar field to gravity and the
strength of the scalar quartic self-interaction. However,
the inflationary predictions are, in fact, independent of
these parameters, at least at the leading term, and this
reflects again the underlying scaling symmetry.
The dynamical evolution of this system toward the stable

fixed point at a nonzero value of the Hubble parameter can
be interpreted as the existence of a relic cosmological
constant, which may be compatible with current observa-
tions at the price of an extreme fine-tuning of the scalar
self-coupling. In this case one should remember that the
effective value of the cosmological constant can be affected
by several other kinds of contributions, including the
vacuum energy of quantum fields or the classical dynamics
of Yang-Mills fields [35]. Alternatively, it can be consid-
ered as the initial value of the following radiation era, in
which case it will start to decrease in the usual way from a
value around 1014 GeV to the present, but the late time
acceleration has to be obtained by other means.
There are several aspects that are left for future work.

First of all, the weight of quantum corrections has not been
computed here. In fact, it may be possible that these alter
the stability configuration of the system or the inflationary
predictions. Another aspect to be studied is preheating in
the Einstein frame, where there are two scalar fields
interacting. At the classical level, these fields undergo
damped oscillation but, at the quantum level, they might
interact and produce other particles through resonant
amplifications. In addition, the inflationary dynamics is
essentially determined by both scalar fields, although the
fixed point analysis justifies the choice of a very small and
constant ϕ made in the previous section. In general, it
would be interesting to study the model also when these
conditions on ϕ are relaxed. Finally, the theory presented
here is minimal, in the sense that there are several other
terms that are scale invariant and that could be added to the
Lagrangian (1). We believe that our model is sufficient to
capture the main characteristics but it would certainly be
interesting to consider more general setups.
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APPENDIX: REDUNDANT PARAMETER M

After the metric rescaling ~gμν ¼ Ω2gμν, where Ω2 ¼
2χ=M2 and M is an arbitrary mass parameter, the action
associated with the Lagrangian (54) reads
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S ¼
Z

d4x
ffiffiffi
g

p �
M2R
2

−
3M2

Ω2
ð∂ΩÞ2 −Ω2

2
ð∂ϕÞ2

−
λϕ4Ω4

2
−
9λM4

4ξ2
þ 3λϕ2M2Ω2

2ξ

�
: ðA1Þ

We now prove that M is a redundant parameter, following
the definition given in [36]. The trace of the Einstein
equations obtained from (A1) is

R −
6

Ω2
ð∂ΩÞ2 − 9λM2

ξ2
¼ Ω2

M2
ð∂ϕÞ2 þ 2λϕ4Ω4

M2
−
6λϕ2Ω2

ξ
:

ðA2Þ

The Klein-Gordon equation for ϕ is

1ffiffiffi
g

p ∂μð
ffiffiffi
g

p
Ω2∂μϕÞ ¼ 2λϕ3Ω4 −

3λϕM2Ω2

ξ
: ðA3Þ

By differentiating with respect to M we find

1

M
∂S
∂M ¼

Z
d4x

ffiffiffi
g

p �
R −

6

Ω2
ð∂ΩÞ2 − 9λM2

ξ2
þ 3λϕ2Ω2

ξ

�
:

ðA4Þ

Substituting Eqs. (A2) and (A3) into the above equation
gives

M
∂S
∂M ¼

Z
d4x

ffiffiffi
g

p
Ω2ð∂ϕÞ2 þ

Z
d4xϕ∂μð

ffiffiffi
g

p
Ω2∂μϕÞ;

ðA5Þ

which vanishes upon integration by parts of the second
term. This shows thatM is a redundant parameter since the
variation of the action with respect to M vanishes by using
the field equations.
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