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We use a description based on differential forms to systematically explore the space of scalar-tensor
theories of gravity. Within this formalism, we propose a basis for the scalar sector at the lowest order in
derivatives of the field and in any number of dimensions. This minimal basis is used to construct a finite and
closed set of Lagrangians describing general scalar-tensor theories invariant under local Lorentz
transformations in a pseudo-Riemannian manifold, which contains ten physically distinct elements in
four spacetime dimensions. Subsequently, we compute their corresponding equations of motion and find
which combinations are at most second order in derivatives in four as well as an arbitrary number of
dimensions. By studying the possible exact forms (total derivatives) and algebraic relations between the
basis components, we discover that there are only four Lagrangian combinations producing second-order
equations, which can be associated with Horndeski’s theory. In this process, we identify a new second-
order Lagrangian, named kinetic Gauss-Bonnet, that was not previously considered in the literature.
However, we show that its dynamics is already contained in Horndeski’s theory. Finally, we provide a full
classification of the relations between different second-order theories. This allows us to clarify, for instance,
the connection between different covariantizations of Galileons theory. In conclusion, our formulation
affords great computational simplicity with a systematic structure. As a first step, we focus on theories with
second-order equations of motion. However, this new formalism aims to facilitate advances towards
unveiling the most general scalar-tensor theories.
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I. INTRODUCTION

Gravity is central to many of the unsolved problems in
physics, from the origin of the Universe and its fate to the
unification of the fundamental interactions. Despite its
fantastic successes, Einstein’s theory might not be the final
answer, and it is necessary to explore different paradigms to
shed light on these deep questions. In this sense, alternative
theories of gravity can be viewed as effective descriptions
of the underlying theory of quantum gravity or tools to
solve other theoretical issues, such as the cosmological
constant problem.
Recent advances in cosmology also motivate the pro-

posal and investigations of alternatives to Einstein’s theory.
The discovery of the current era of accelerated expansion
[1,2] requires a radical change in our description of gravity,
either by the inclusion of new gravitational degrees of
freedom or by the introduction of a tiny cosmological
constant that challenges our interpretation of gravity as an
effective field theory [3]. Moreover, mounting evidence

indicates that the early Universe underwent another phase
of accelerated expansion, cosmic inflation, that shaped the
large scale features of the Universe and seeded perturba-
tions that evolved into galaxies and other large scale
structures [4,5]. Cosmic inflation could not be caused by
a cosmological constant and requires additional degrees of
freedom able to strongly affect the gravitational dynamics.
Finally, alternative paradigms are necessary to put our

notions of gravity to the test in disparate regimes and honor
the effort of experimental collaborations. Earth experiments
and Solar System measurements provide very precise data
through a variety of post-Newtonian effects [6]. Cosmo-
logical observations of the expansion of the Universe and the
evolution of large scale structure provide complementary
information on the largest scales available to observation
[7–9]. Finally, astrophysical systems [10] such as binary
pulsars [11] and our central black hole [12] can be used to
explore gravity in the strong field regime in which general-
relativistic effects are dominant. The recent discovery of
gravitational waves from a black holemerger at cosmological
distance [13] provides a double-edged tool for this effort,
allowing us to extract information both from the strong field
regime and from the cosmological expansion.
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The theoretical questions and the experimental enterprise
have motivated the construction of novel, alternative
theories of gravity. Among them, scalar-tensor (ST) theo-
ries provide the minimal extension of Einstein’s theory,
with one single additional degree of freedom. Such a degree
of freedom, the scalar field, has historically been used in
effective field theories to describe phenomena of which the
energy scale is not accessible, e.g. in the Landau-Ginzburg
theory of superconductivity [14] before Bardeen-Cooper-
Schriffer electron-hole pairs and condensate [15], or the
description of pions [16] before the discovery of quarks
[17]. There could be fundamental scalars like the Higgs,
recently discovered at the LHC [18,19], but most of these
fields are effective descriptions of a more complicated
underlying dynamics, like the scalaron in the case of
Starobinsky inflation [20,21]. In any case, the inclusion
of a scalar partner of the graviton in scalar-tensor theories
seems the most economical extension of Einstein gravity.
In addition, the simplicity of the scalar field under Lorentz

transformations enables one to couple it to the metric in
many different ways, allowing the introduction of a rich
pattern of possible interactions with the tensor degrees of
freedom. Moreover, it is easy to propose ST models with
interesting cosmologies, as shown by the plethora of infla-
tionary models considered in the literature [4,5]. In contrast,
other theories with more degrees of freedom are far more
restricted. Such is the case of theories with massive
gravitons, which were only recently developed [22,23]
(see Refs. [24,25] for reviews) and lead to either non-
dynamical solutions [26], instabilities [27], or lack of
distinctive signatures [28] in their application to cosmology.
For this reasons, ST theories have become the standard for
tests of gravity as well as models for cosmic acceleration.
In the pursuit of generality, systematic approaches are

essential to characterize alternative paradigms and ensure that
every possibility is addressed. In this sense, Ostrogradski’s
theorem allows us to distinguish theories with additional and
ghost degrees of freedom caused by higher derivatives in the
action [29] (for amodernpresentation, seeRef. [30]). Further-
more, this result also allows us to classify ST theories depen-
ding on the mechanism by which they avoid Ostrogradski’s
result. The first generation of theories contains no second
derivatives of the scalar and are given by generalizations of
Jordan-Brans-Dicke theories [31]. Theories in the second
generation are described by second-order equations of
motion and are characterized by Horndeski’s theory [32].
Finally, a third generation of theories with higher-derivative
dynamical equationsbut noadditional degrees of freedomhas
been recently identified [33,34]. This new family of ST
theories is now an active area of research aimed at finding the
most general framework for ghost-free ST gravity.1

A general and systematized classification of gravitational
theories is a very challenging task, and several attempts
have relied on simplifying assumptions in order to con-
struct the most possible general interactions. This has been
particularly fruitful in the context of cosmology, where the
high degree of symmetry of the background solution
facilitates the characterization of possible gravitational
interactions order by order in the perturbations. This effort
led to the effective field theory of inflation [36], which was
latter generalized to its dark energy analog to explore late-
time cosmic acceleration [37,38] (with refinements within
specific frameworks [39–41] and extensions [42]). One of
our objectives is to provide the tools to systematically
explore this landscape of theories and understand their
features without relying on such simplifying assumptions.
At the same time, systematic approaches have also

appeared for gravitational theories with only tensorial
degrees of freedom. In this field, the basic work was made
by Lovelock [43], who found the most general second-
order Euler-Lagrange equations for a single massless spin-2
particle in arbitrary dimensions. Then, he found the
associated Lagrangian, which is the natural generalization
of Einstein’s theory. In this sense, Horndeski’s theory is just
the scalar-tensor extension of Lovelock’s theory in four
dimensions. To apply these theories to the real world, one
must remember that in order to couple fermions to gravity,
the gravitational theory must be reformulated in the tangent
space [44], which can be easily done using differential
forms language [45]. From this point of view, systematic
studies have been performed, too, for instance in
Refs. [46,47]. Despite the actual need of coupling fermions
to gravity, the differential form version of Lovelock’s
theory has been very useful to simplify the computations
and understand the inner structure of the theory.
Differential forms have also been used in theories involving
massive gravitons [48], but such an analysis had not been
performed yet in the case of scalar-tensor theories.
In this paper, we are going to investigate the space of ST

theories using the language of differential forms. The
advantage will be that we are going to find a finite and
closed basis of Lagrangians. Moreover, the antisymmetric
structures used to derive, for instance, Horndeski’s theory
[32] or generalized Galileons (G2) [49], which could seem
ad hoc at first sight, naturally arise from the requirement
that the building blocks of the Lagrangian are differential
forms. Remarkably, this approach also clearly disentangles
the internal relations between different ST theories, pre-
senting in a systematic way all the equivalences through
total derivatives or algebraic identities.
In Sec. II, we present the set of differential forms that

will act as building blocks for our basis of ST theories.
Since this section is going to be discussed using the
mathematics of differential forms, we have included a
summary of the key concepts in Appendix A. In Sec. III, we
analyze which Lagrangians of our basis (or combinations

1Out of this classification, an alternative route to avoid
Ostrogradski’s instabilities is to have nonlocal, infinite deriva-
tives theories [35].
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thereof) give rise to second-order equations of motion,
thus becoming automatically free of Ostrogradski’s insta-
bilities.2 We will first consider the scalar equations of
motion, Sec. III A, and then the tensorial ones, Sec. III B.
Subsequently, we will study the relations between different
second-order theories in Sec. IV. This will allow us to identify
which second-order Lagrangians are independent. Finally, in
Sec. V,wewill conclude by summarizing themain results and
discussing the advantages and potential of our approach.

II. GENERAL BASIS FOR SCALAR-TENSOR
THEORIES

Scalar-tensor theories are generally described by an action
functional S, which corresponds to the integral of the
Lagrangian L over the curved space-time. In this paper,
we are going to exploit the fact that, mathematically,
integration is an operation defined in terms of the space
of differential forms ΩqðMÞ, where q is the order of the q-
form and the dimension of the base manifold M. Since the
action is defined as an integral over a D-dimensional curved
space-time manifold, the Lagrangian must be a D-form, i.e.

S ¼
Z
M

L: ð1Þ

Crucially, aD-form is characterized for being proportional to
the volume element η ¼ ffiffiffiffiffiffi−gp

dx1 ∧ … ∧ dxD, leading to a
direct connection with the usual component notation.
Furthermore, due to the fact that ΩqðMÞ is constructed
as the space of totally antisymmetric ð0; qÞ-tensors, if we
construct our D-form Lagrangians with exterior products of
differential forms, the set of possibilities will be finite.
In order to determine a general basis for scalar-tensor

Lagrangians, we must first identify the appropriate building
blocks written in differential form language. From the
tensorial side, we have the usual geometrical quantities
characterizing a manifold. In particular, we will work with
differentiable manifolds with an associated metric g and
1-form connection ωa

b. Also, we will fix the metric to
have a Lorentzian signature. Moreover, we will focus
on manifolds with a vanishing torsion Ta ¼ 0 and a
metric-compatible connection ωab ¼ −ωba, i.e. pseudo-
Riemannian manifolds. In such a case, the connection is
uniquely determined by the noncoordinate basis elements
θa, which can be related to the curved space-time metric via
the flat Minkowski metric ηab, i.e. g ¼ ηabθ

a ⊗ θb.

Introducing an exterior covariant derivative D constructed
from ωa

b, the geometry of the manifold is encoded in the
2-form curvature, defined asRa

b ¼ Dωa
b. This will be our

building block characterizing the tensorial part of the
action. In components, it reads

Ra
b ¼

1

2
Ra

bcdθ
c ∧ θd; ð2Þ

where Ra
bcd is the corresponding Riemann tensor. One

should notice that, throughout the text, we will use Latin
indices to denote noncoordinate components and Greek
indices for coordinate ones. Both bases are linked with the
vielbein eaμ by θa ¼ eaμdxμ. Moreover, the 1-form con-
nection ω and the Levi-Civitá connection Γ are related by
the vielbein postulate ∇μeaν ¼ 0. In this language,
Bianchi’s second identity simply implies that DRa

b ¼ 0.
In case the reader is not familiar with this notation, we have
included in Appendix A a short review on differential
geometry in differential forms language.
Subsequently, we must encounter possible q-forms

describing the scalar field and its derivatives. The scalar
field ϕ itself defines a 0-form. Its partial derivative is also
a well-defined 1-form, corresponding to the exterior
derivative of the scalar field dϕ ¼ ∇μϕdxμ. However, it
is not trivial to introduce the second covariant derivative of
the scalar field ∇μ∇νϕ because it is a symmetric (0,2)-
tensor. Consequently, we must find an appropriate anti-
symmetric tensor which encodes the information from the
second derivatives. Since the tensor is symmetric, we
cannot apply directly an antisymmetric operator, i.e.
∇½μ∇ν�ϕ ¼ 0. If we apply an antisymmetric operator to
only one of the indices, in order to finally obtain a q-form,
we will end up with a D-form, which is a trivial case
since it is already proportional to the volume element.
Additionally, using Poincare lemma, the exterior deriva-
tive of the gradient field vanishes, i.e. ddϕ ¼ 0. Moreover,
by definition, the wedge product of dϕ with itself is also
zero, i.e. dϕ ∧ dϕ ¼ 0. This means that using this 1-form
we could never construct the kinetic term, because it
contains two first derivatives. Clearly, we need more
adequate definitions of the q-forms representing the first
and second derivatives of the scalar field. In the following,
we propose a minimal setup, in which derivatives of the
field appear in the lowest possible order while fulfilling
our requirements. This leads to two derivatives of the
scalar in each element of the basis. In Appendix B 1, we
introduce a nonlinear generalization of the scalar-tensor
theories we are going to present next.
Let us define two vector-valued 1-forms that encode the

first and second covariant derivatives of ϕ:

Ψa ≡∇aϕ∇bϕθ
b; ð3Þ

Φa ≡∇a∇bϕθ
b: ð4Þ

2Here and throughout the text, we refer to theories with
covariant second-order equations of motion. Whenever this
condition is relaxed, subtleties can arise since, as it was shown
in Ref. [50], any linear combination of Galileons’ Lagrangians
can be rewritten in a way in which the equations of motion are
second order with respect to time but higher order in space
derivatives. However, not all such models are viable as it can be
proved analyzing the primary constraints arising from the
degeneracy of these Lagrangians [51,52].
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Then, we will construct the most general scalar-tensor
theory obeying the following:

(i) It is described by an action principle in which
the Lagrangian is a D-form invariant under local
Lorentz transformations (LLT) defined in a pseudo-
Riemannian manifold.

(ii) The Lagrangian is built up out of exterior products
of the vielbein θa, the 2-form curvature Rab, first
derivatives of the scalar field Ψa, and second
derivatives of the scalar field Φa.

As a consequence, in order to have a Lagrangian invariant
under LLT, there cannot be free indices. Thus, they must be
contracted with the tangent space metric ηab and the totally
antisymmetric symbol ϵa1…aD , which are invariant objects.

3

Moreover, the fact that we restrict to pseudo-Riemannian
manifolds, i.e. manifolds with a metric-compatible connec-
tion and a vanishing torsion, implies that all the tensorial
dynamics are contained in the 2-form curvature (2). With
these two conditions, we can define a basis of Lagrangian
given by

LðlmnÞ ¼ ⋀
l

i¼1

Raibi ∧ ⋀
m

j¼1

Φcj ∧ ⋀
n

k¼1

Ψdk

∧ θ⋆a1b1…alblc1…cmd1…dn ; ð5Þ
where ⋀ is an abbreviation for a set of consecutive wedge
products and l; m; n ∈ N. In this notation, if any of the
subindices of the Lagrangian are zero, the corresponding
terms in the rhs do not appear. Here, θ⋆a1…ak is theHodge dual
basis, and it is defined as

θ⋆a1…ak ¼
1

ðD − kÞ! ϵa1…akakþ1…aDθ
akþ1 ∧ … ∧ θaD: ð6Þ

One should notice that the previous result dϕ ∧ dϕ ¼ 0
appears in this notation making LðlmnÞ vanish for n > 1.
Additionally, it must hold that 2lþmþ n ≤ D due to the
antisymmetry by the Hodge dual basis. This will be very
important because it means that for a given dimensionD our
basis of Lagrangians will be finite. Interestingly, if we do not
include the scalar field, settingm ¼ n ¼ 0, theseLagrangians

correspond to Lovelock’s theory [43] written in differential
forms (see Ref. [53] for a modern summary using our
notation). Therefore, this basis of Lagrangians could be seen
as its scalar-tensor extension. Finally, it is important to remark
that there are three additional Lagrangians that fulfill our
premisesbutarenot included inourbasis (5).Theycorrespond
to Lagrangians in which the indices of the building blocks are
contracted among them, e.g.Rab ∧ Φa ∧ Ψb. However, they
do not lead to second-order equations of motion. Thus, we
discard them from the beginning. For completeness, we
present them in Appendix B 2.
In the scalar-tensor theories represented by the basis (5),

the action will be the sum over all possible Lagrangians with
different l,m, andn integrated over the space-timemanifold,
i.e.

S ¼
Xp≤D
l;m;n

Z
M

αlmnLðlmnÞ; ð7Þ

where p≡ 2lþmþ n and n ≤ 1. In this context, the
coefficients αlmn represent 0-forms, which, in general,4

can be functions of the scalar field and its derivatives
αlmn ¼ αlmnðϕ; X; ½Φ�;…Þ, wherewe are using the notation,
exemplified in detail in Appendix A 3, for which a square
bracket represents the contraction of two free indices, e.g.
½tμν�≡ tμμ, and an angle bracket represents the contraction
with partial derivatives of the scalar field, e.g.
htμνi≡ ϕ;μtμνϕ;ν. Also, partial derivatives are shortened
by a comma, ∂μϕ ¼ ϕ;μ, and covariant derivatives are
shortened by a semicolon, ∇μ∇νϕ ¼ ϕ;μν. Lastly, we write
the contractions of second derivatives as Φn

μν ¼
ϕ;μα1ϕ

;α1
;α2…ϕ;αn−1

;ν and define −2X ≡ ϕ;μϕ;μ.
In four dimensions, we have 15 possible Lagrangians in

our basis. In order to translate them into the usual component
notation, we only need to apply the definition of the wedge
product and the Hodge dual basis. For completeness, we
present in Appendix A 3 the explicit component expression
for a generalLðlmnÞ.Here,we showfor the first cases how this
general recipeworks.Recalling thatη ¼ θ1 ∧ … ∧ θD is the
volume element, we find the following Lagrangians:

(i) p ¼ 0

Lð000Þ ¼ θ⋆ ¼ η; ð8Þ

(ii) p ¼ 1

Lð010Þ ¼ Φa ∧ θ⋆a ¼
1

3!
ϕ;a

;eϵabcdϵ
ebcdη ¼ ½Φ� · η; ð9Þ

4Here, it will be important that the coefficient is a 0-form and that we are constructing the geometrical quantities out of the
2-form curvatureRab. Consequently, we will not consider any dependence in curvature scalars in αlmn, e.g. R2 or RabRab. In this sense,
we will not be covering theories such as fðRÞ [54] or more generally fðLovelockÞ [55], which are automatically free of Ostrogradski’s
instabilities. Nevertheless, such theories can be described as scalar-tensor theories in most cases [55].

3We will choose the convention ηab ¼ diagð−1; 1; 1; 1Þ for the metric signatures and ϵ0123 ¼ þ1 for the antisymmetrizations.
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Lð001Þ ¼ Ψa ∧ θ⋆a ¼
1

3!
ϕ;aϕ;eϵabcdϵ

ebcdη ¼ −2X · η; ð10Þ

(iii) p ¼ 2

Lð100Þ ¼ Rab ∧ θ⋆ab ¼
1

2 · 2!
Ra

befϵabcdϵ
efcdη ¼ R · η; ð11Þ

Lð020Þ ¼ Φa ∧ Φb ∧ θ⋆ab ¼
1

2!
ϕ;a

;eϕ
;b
;fϵabcdϵ

efcdη ¼ ð½Φ�2 − ½Φ2�Þη; ð12Þ

Lð011Þ ¼ Φa ∧ Ψb ∧ θ⋆ab ¼
1

2!
ϕ;a

;eϕ
;bϕ;fϵabcdϵ

efcdη ¼ −ðhΦi þ 2X½Φ�Þη; ð13Þ

(iv) p ¼ 3

Lð110Þ ¼ Rab ∧ Φc ∧ θ⋆abc ¼ −2GabΦabη; ð14Þ

Lð030Þ ¼ Φa ∧ Φb ∧ Φc ∧ θ⋆abc ¼ ð½Φ�3 − 3½Φ�½Φ2� þ 2½Φ3�Þη; ð15Þ

Lð101Þ ¼ Rab ∧ Ψc ∧ θ⋆abc ¼ −2hGiη; ð16Þ

Lð021Þ ¼ Φa ∧ Φb ∧ Ψc ∧ θ⋆abc ¼ 2ðhΦ2i − hΦi½Φ� − Xð½Φ�2 − ½Φ2�ÞÞη; ð17Þ

(v) p ¼ 4

Lð200Þ ¼ Rab ∧ Rcd ∧ θ⋆abcd ¼ ðRabcdRabcd − 4RefRef þ R2Þη; ð18Þ

Lð120Þ ¼ Rab ∧ Φc ∧ Φd ∧ θ⋆abcd ¼ ðRð½Φ�2 − ½Φ2�Þ − 4Rabð½Φ�Φab − Φ2
abÞ þ 2RabcdΦacΦbdÞη; ð19Þ

Lð040Þ ¼ Φa ∧ Φb ∧ Φc ∧ Φd ∧ θ⋆abcd ¼ ð½Φ�4 − 6½Φ�2½Φ2� þ 3½Φ2�2 þ 8½Φ�½Φ3� − 6½Φ4�Þη; ð20Þ

Lð111Þ ¼ Rab ∧ Φc ∧ Ψd ∧ θ⋆abcd
¼ ð4ðhRabΦbci þ X½RΦ�Þ − RðhΦi þ 2X½Φ�Þ þ 2ðhRabcdΦbdi − hRi½Φ�ÞÞη; ð21Þ

Lð031Þ ¼ Φa ∧ Φb ∧ Φc ∧ Ψd ∧ θ⋆abcd
¼ ð6ðhΦ2i½Φ� − hΦ3iÞ − 3hΦið½Φ�2 − ½Φ2�Þ − 2Xð½Φ�3 − 3½Φ�½Φ2� þ 2½Φ3�ÞÞη; ð22Þ

whereR is the Ricci scalar,Rab is the Ricci tensor, andGab is
the Einstein tensor, given by Gab ¼ Rab − 1

2
gabR. As a

consequence of the above expressions, we can easily relate
our results with the current literature. For instance, the
modern version of Horndeski’s theory [32] is a linear
combination of (8), (9), (11)–(12), and (14)–(15), and the
class of viable theories beyond Horndeski known as gener-
alized generalized Galileons (G3) [34] are simply (17) and
(22). In addition, terms such as (16) and (21) appear when
doing a Kaluza-Klein compactification of higher dimen-
sional Lovelock’s densities [56] and correspond respectively
to “John” and “Paul” Lagrangians of the Fab Four theory
[57]. Furthermore,whenwe are in flat space,Galileon theory
[58] is built up with (9), (10), (13), (17), and (22). In this
work, we will show that there is a well-established inter-
connection between all these Lagrangians. In fact, not all of
them are independent, as we will see in Sec. IV, and only

certain linear combinations give rise to second-order equa-
tions of motion, cf. Sec. III.
Before computing the Euler-Lagrange equations, we

should consider an extension of our basis (5), which
naturally appears when one applies an exterior derivative
to the previous expressions. ActingD on the scalar 1-forms
Ψa and Φa, given in (3) and (4), we find5

DΨa¼Dð∇aϕÞ∧Dϕþ∇aϕ∧DðDϕÞ¼Φa∧Dϕ; ð23Þ

DΦa ¼ DðDð∇aϕÞÞ ¼ dωa
b ∧ ϕ;b þ ωa

c ∧ ωc
b ∧ ϕ;b

¼ Ra
z∇zϕ; ð24Þ

5In components, they will read DΨa¼∇½bð∇aϕ∇c�ϕÞθb∧θc¼
∇½bð∇aϕÞ∇c�ϕθb∧θc¼Φa∧dϕ and DΦa ¼ ∇½bð∇a∇c�ϕÞθb ∧
θc ¼ 1

2
Ra

dbc∇dϕθb ∧ θc ¼ Ra
d∇dϕ.
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where we have used the explicit definition of the
covariant derivative Dva ¼ dva þ ωa

b ∧ vb and the fact
that dϕ ¼ Dϕ. Also, we have assumed a vanishing torsion,
which in terms of D reads Ta ¼ Dθa ¼ 0, implying that
Dθ⋆a1…ak ¼ 0. Lastly, we have used that Φa ¼ Dð∇aϕÞ.
Thus, a covariant exterior derivative applied on Φa

introduces a contraction of the 2-form curvature with the
first derivative of the scalar field. Moreover, if we
apply this derivative to a general coefficient αlmn ¼
αlmnðϕ; X; ½Φ�;…Þ, we obtain

Dαlmn ¼ αlmn;ϕDϕ − αlmn;X∇aϕΦa þOðαlmn;½Φ�Þ; ð25Þ

where αlmn;ϕ ¼ ∂αlmn=∂ϕ and αlmn;X ¼ ∂αlmn=∂X. Here,
Oðαlmn;½Φ�Þ encodes higher-order terms coming from the
dependence of αlmn in second-order derivative scalars such
as ½Φ�. Again, we observe that, when we apply exterior
derivatives, contractions of the building blocks with gra-
dient fields appear. For that reason, we enlarge the two
defining conditions of the basis of Lagrangians LðlmnÞ
presented above to allow contractions with the gradient
field ∇aϕ. In the following, we summarize all the relevant
new terms of the extended basis in

Lðl̄m0Þ ¼ ∇ā1ϕR
ā1b1 ∧ ⋀

l

i¼2

Raibi

∧ ⋀
m

j¼1

Φcj ∧ θ⋆a1b1…alblc1…cm∇a1ϕ ð26Þ

and

Lðlm̄0Þ ¼ ⋀
l

i¼1

Raibi ∧ Φc̄1∇c̄1ϕ

∧ ⋀
m

j¼2

Φcj ∧ θ⋆a1b1…alblc1…cm∇c1ϕ; ð27Þ

where we have introduced a bar over the indices of LðlmnÞ
to indicate that a contraction with a gradient field has
been performed. Importantly, due to the antisymmetry
of the Hodge dual basis, only one element can be contracted
at a time. Additionally, a Ψa term is also incompatible
with a contraction since Lðl̄m1Þ¼Lðlm̄1Þ¼0 and Lðlm1̄Þ ¼
−2XLðlm1Þ. As before, this general Lagrangian written in
differential forms can be translated into components. We
include the component expression of the ten possible con-
tracted Lagrangians in four dimensions in Appendix C 1.

III. EQUATIONS OF MOTION

In order to obtain the equations ofmotion (e.o.m.),wemust
vary the action (7).Whenwevarywith respect to the frame θa,
we end up with the vielbein e.o.m (equivalent to Palatini
variation). In this respect, wewill restrict our computations to
the second-order formalism; i.e. we will consider the con-
nection 1-formas a unique function of thevielbein,ω ¼ ωðθÞ
(equivalent to metric variation). However, as it will become

clear later, our approach can be easily extrapolated to a first-
order formalism,whereωab and θa are independent variables.
Whenwe varywith respect to the scalar fieldϕ, we obtain the
scalar e.o.m. We will include a zero-form coefficient in front
of everyLagrangian,namelyαlmn. The functional dependence
of these coefficients αlmn ¼ αlmnðϕ; X; ½Φ�;…Þ will be rel-
evant to derive the e.o.m. In fact, it will be a crucial ingredient
for analyzing thederivativeorderof the e.o.m.Ourgoalwill be
to compute the e.o.m. associated to each possible LðlmnÞ.
Then, we will look for combinations of those Lagrangians
giving rise to second-order e.o.m., thus automatically evading
Ostrogradski instabilities [29]. Since there is a well-defined
hierarchy in terms of the number of fields, or the number p,
definedasp≡ 2lþmþ n,wewill followthat order toobtain
the e.o.m., from lower to higher p.
Before computing the e.o.m., we will have to work out

some expressions. Since we want to work in a manifestly
covariant way, we will use the exterior covariant derivative
D. In this notation, Cartan’s structure equations are simply
Ta ¼ Dθa and Ra

b ¼ Dωa
b. Accordingly, Bianchi iden-

tities read DTa ¼ Ra
b ∧ θb and DRa

b ¼ 0. For the scalar
1-forms Ψa and Φa, we have already seen that acting with
D yields (23) and (24). Also, we will make use of the
generalized Stoke’s theorem [59],Z

M
Dω ¼

Z
∂M

ω: ð28Þ

Assuming that the boundary contribution vanishes, this
could be used, for instance, to move the derivative from one
q-form to another in a wedge product, recalling that the
exterior derivative follows a graded Leibniz rule, i.e.
dðαq ∧ βrÞ ¼ ðdαqÞ ∧ βr þ ð−1Þqαq ∧ ðdβrÞ, where αq
is a q-form. In addition, wewill use the following identities,

∇aΦz ¼ ∇zΦa − i∇ϕRaz; ð29Þ
∇zRab ∧ θ⋆ab ¼ −2∇aRbz ∧ θ⋆ab; ð30Þ

where iVω represents the interior product6 of a q-form ω
with respect to a vector field V. The first identity (29) is just
the differential form version of the commutator of two
covariant derivatives. The second one (30) is the analog of
Bianchi’s second identity. Furthermore, thanks to the
vanishing of the torsion, Ta ¼ Dθa ¼ 0, and the vielbein
postulate, ∇μeaν ¼ 0, the derivatives act trivially on the
Hodge dual basis, i.e. Dθ⋆a1…ak ¼ 0 and ∇bθ⋆a1…ak ¼ 0.
Finally, one should notice that the possible higher-

derivative terms, meaning higher than two derivatives in
ϕ or θa, will be∇zΦa and∇zRab. However, whenever all of
the indices are contracted with the Hodge dual basis, the
previous terms are not dangerous due to the antisymmetry

6For more details in the definition of this operation, one can
read Appendix A, where the component expression is presented
in (A5).
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of its indices. In the first case, a commutator of covariant
derivatives naturally appears. In the second case, the whole
expression vanishes due to the Bianchi second identity. To
make this point more visual, we will use the first letters of
the Latin alphabet, a; b; c;…, to indicate indices of the
Hodge dual basis. Conversely, we will use the last letters of
the Latin alphabet, z; y; x;…, to denote indices not con-
tracted with the Hodge dual. Indeed, one could notice that
we have implicitly introduced this index notation in
previous expressions. Furthermore, to make the computa-
tions as clear as possible, we will underline the dangerous
higher-derivative terms. When the line is dashed, e.g. ,
it will indicate that this particular higher-derivative term is
compensated with another term in the same expression. This
cancellation of higher derivatives will be caused by the
commutation of covariant derivatives (29) or by applying
the Bianchi identity (30). On the contrary, when the higher-
derivative term is not cancelled within that expression, we
will underline the term with a solid line, e.g. ∇zRab. The
philosophy will be to investigate if the remaining solid
underlined terms of different Lagrangians can be eliminated
by choosing appropriate coefficients among them. If the
final Lagrangian can be directly related with the standard
formulation ofHorndeski’s theory,wewill dub itLH

i . For the
rest, we will write LNH

i . Later on, in Sec. IV, we will totally
clarify the role of LNH

i and its connection with LH
i .

A. Scalar equations of motion

We begin the computation with the scalar e.o.m. As it was
stated before, we will classify the different Lagrangians by
the order of the q-form constructed with the curvature
2-form and the first- and second-derivative 1-forms, i.e.
by an increasing number p. At each level, we will consider
separately the Lagrangians with n ¼ 0 and n ¼ 1, because
they have a different structure. One should notice that the
only building blocks of our basis depending onϕ areΨa and
Φa. Their variations with respect to the scalar field follow

δΨa ¼ ∇aδϕDϕþ∇aϕDδϕ; ð31Þ
δΦa ¼ D∇aδϕ; ð32Þ

where we have used that the variation commutes with the
covariant derivatives. Additionally, wewill have to consider
the variation of the coefficient in front of each Lagrangian
LðlmnÞ. In the following, wewill focus first in the case of four
dimensions, wherewewill denote the coefficients byGi,Fi,
Ei, and Hi for shortness. Since the structure of the compu-
tation will be very similar, wewill only include the details of
the calculations for the first cases. For the rest, we will
include the full result only in Appendix C 2. Afterward, we
will generalize the result toD dimensions, wherewewill use
the general notation for the coefficients αlmn because it will
be important to analyze terms with different ðlmnÞ. As we
have mentioned above, the coefficients can, in principle,

depend on higher-derivative scalars, e.g. ½Φ�. However, we
will argue in the next computation that they must depend
only in ϕ and X in order to have second-order equations.

(i) p ¼ 0:
For this first case, we only need to consider

G2Lð000Þ ¼ G2 ∧ θ⋆. The scalar e.o.m are simply
given by the variation of the coefficient G2 ¼
G2ðϕ; X; ½Φ�;…Þ, i.e.
δðG2Lð000ÞÞ ¼ δG2 ∧ θ⋆

¼
�∂G2

∂ϕ δϕþ ∂G2

∂ϕ;z∇zδϕ

þ ∂G2

∂ϕ;yz∇y∇zδϕþ � � �
�

∧ θ⋆: ð33Þ

Therefore, in order to obtain second-order e.o.m, we
only need to imposeG2 ¼ G2ðϕ; XÞ. Importantly, this
will also happen for the rest of the cases. The point is
that if the coefficient depends on second derivatives or
higher, therewill always be a higher-derivative term in
the e.o.m. proportional to the original Lagrangian, e.g.
∇z∇zðGi;½Φ�ÞLðlmnÞ. Thus, it cannot be cancelled with
another term in the e.o.m. since any other variation
changes the original Lagrangian.7 Moreover, it cannot
be eliminated with similar terms from other Lagran-
gians since theywill beproportional todifferentLðlmnÞ.
Consequently, we will have to imposeGi ¼ Giðϕ; XÞ
in the following calculations. In this particular case,
Lð000Þ ¼ η, choosing G2 ¼ G2ðϕ; XÞ also eliminates
the possible degeneracy of having G2 equal to the
component form of any other LðlmnÞ; see (9)–(22).
Nevertheless, there is a remaining degeneracy between
G2ðϕ; XÞ ∧ Lð000Þ and Lð001Þ ¼ −2Xη that we will
deal with in Sec. IVB. In conclusion, for p ¼ 0, we
have found that the e.o.m. of the followingLagrangian
are at most second order,

LH
2 ¼ G2 ∧ θ⋆ ¼ G2ðϕ; XÞη: ð34Þ

Since this Lagrangian can be directly linked with
Horndeski’s theory, we have used the superscript H.

(ii) p ¼ 1:
At this level, we have two possible Lagrangians,

Lð010Þ and Lð001Þ. As mentioned above, we are going
to consider separately the ones with n¼0 and n ¼ 1.
We begin with G3Lð010Þ ¼G3∧Φa∧θ⋆a. Its e.o.m.
reads

7Unless Gi;½Φ� only depends on first derivatives and these are
canceled by other terms, cf. (35) and (36). However, this would
only work if Gi reproduces the component expression of any of
the Lagrangians LðlmnÞ considered in the next computations.
Obviously, this would imply a repetition of the same results.
Thus, in the following, we are going to set Gi ¼ Giðϕ; XÞ to
eliminate this degeneracy.
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δðG3Lð010ÞÞ ¼ δG3 ∧ Φa ∧ θ⋆a þG3 ∧ δΦa ∧ θ⋆a
¼ ðG3;ϕδϕ − G3;X∇zϕ∇zδϕþOðG3;½Φ�ÞÞ ∧ Φa ∧ θ⋆a þ G3 ∧ D∇aδϕ ∧ θ⋆a
¼ δϕ ∧ ðG3;ϕ ∧ Φa ∧ θ⋆a þ∇zðG3;X∇zϕ ∧ Φa ∧ θ⋆aÞ þ∇aDðG3 ∧ θ⋆aÞÞ þOðG3;½Φ�Þ: ð35Þ

Here, OðG3;½Φ�Þ encodes higher-order terms coming from the dependence of G3 in second-order derivative scalars
such as ½Φ�. In going from the second to the third line of (35), we have used Stoke’s theorem (28) and assumed
vanishing contributions at the boundary. We can expand the above expression further:

ð36Þ

Now, using the commutation of covariant derivatives (29),
we can eliminate the higher derivatives of the terms
underlined with a dashed line, retaining only a curvature
term. Moreover, from the previous argument for p ¼ 0, we
must impose that G3 ¼ G3ðϕ; XÞ to avoid higher than two
Euler-Lagrange equations. Consequently, any OðG3;½Φ�Þ-
term is zero. In the following computations, we will write
directly the expanded expression after applying Stoke’s
theorem.
In conclusion, imposing G3 ¼ G3ðϕ; XÞ ensures that

the e.o.m. from Lð010Þ remain second order and, thus,

automatically ghost free. Therefore, we have found that the
e.o.m. of

LH
3 ¼ G3 ∧ Φa ∧ θ⋆a ¼ G3ðϕ; XÞ½Φ�η ð37Þ

are at most second order. We have included the component
expression of LH

3 to express that it can be directly linked
with Horndeski’s theory.
Subsequently, we study E2Lð001Þ ¼ E2 ∧ Ψa ∧ θ⋆a. Its

e.o.m. reads

δðE2Lð001ÞÞ ¼ δE2 ∧ Ψa ∧ θ⋆a þ E2 ∧ δΨa ∧ θ⋆a
¼ δϕ ∧ ðE2;ϕ ∧ Ψa ∧ θ⋆a þ∇zðE2;X∇zϕ ∧ ΨaÞ ∧ θ⋆aÞ − δϕ ∧ ð∇aðE2 ∧ DϕÞ ∧ θ⋆a þDðE2∇aϕÞ ∧ θ⋆aÞ
þOðE2;½Φ�Þ: ð38Þ

In this case, if we impose E2 ¼ E2ðϕ; XÞ, then the e.o.m. directly remain second order, obtaining

LNH
2 ¼ E2 ∧ Ψa ∧ θ⋆a ¼ −2XE2ðϕ; XÞη: ð39Þ

Although in this case it is trivial to see that this Lagrangian belongs to LH
2 , we will postpone this discussion until

Sec. IV.
(iii) p ¼ 2:

At this order, when n ¼ 0, we encounter two possible terms, G4Lð100Þ ¼ G4 ∧ Rab ∧ θ⋆ab and F4Lð020Þ ¼
F4 ∧ Φa ∧ Φb ∧ θ⋆ab. A priori, the coefficients of each Lagrangian G4 and F4 are unrelated. We analyze each of
them separately. First, we have

δðG4Lð100ÞÞ ¼ δG4 ∧ Rab ∧ θ⋆ab
¼ δϕ ∧ ðG4;ϕ ∧ Rab þ∇zðG4;X∇zϕÞ ∧ Rab þ G4;X∇zϕ ∧ ∇zRabÞ ∧ θ⋆ab þOðG4;½Φ�Þ: ð40Þ

Second, we compute

EZQUIAGA, GARCÍA-BELLIDO, and ZUMALACÁRREGUI PHYSICAL REVIEW D 94, 024005 (2016)

024005-8



ð41Þ

Subsequently, we can analyze the higher-derivative terms,
recalling thatwhen all the indices are antisymmetrized there is
no such problematic term. As in the previous case, using the
commutation of covariant derivatives (29), we can rewrite the
dashed underlined terms of (41) as a curvature 2-form.
Moreover, we can rearrange the solid underlined term of
(40), recalling the Bianchi identity, (30), in order to compen-
sate the corresponding one of (41). Doing so, we learn that
these higher-derivative terms only cancel each other if F4 ¼
G4;X. Additionally, second-order e.o.m. are only achieved if
G4 ¼ G4ðϕ; XÞ. Altogether, we have obtained that

LH
4 ¼ G4 ∧ Rab ∧ θ⋆ab þ G4;X ∧ Φa ∧ Φb ∧ θ⋆ab
¼ ðG4RþG4;Xð½Φ�2 − ½Φ2�ÞÞη ð42Þ

is a second-order Lagrangian. Clearly, writing
it in components, we recover the well-known L4 of
Horndeski’s theory. For the rest of the cases,
the process of finding a Lagrangian with second-
order e.o.m. will be analogous to the one just
described: using the commutation of covariant deriv-
atives (29), one eliminates the higher derivatives of the
dashed underlined terms, and using the Bianchi
identity (30), and setting the appropriate coefficient,
one cancels the unwanted parts underlined with solid
lines.
Whenn ¼ 1, we encounterE3Lð011Þ ¼ E3 ∧ Φa ∧

Ψb ∧ θ⋆ab. Thus, the e.o.m. follows:

ð43Þ

Again, recalling the commutation of covariant deri-
vatives (29), one can eliminate the higher derivatives
of the terms underlined with a dash line. Consequently,
if E3 ¼ E3ðϕ; XÞ, the e.o.m. are at most second order,
reading

LNH
3 ¼ E3Φa ∧ Ψb ∧ θ⋆ab ¼ −E3ðhΦi þ 2X½Φ�Þη: ð44Þ

In Sec. IV, wewill clarify the role of this Lagrangian.
(iv) p ¼ 3:

Now, due to the fact that the calculations are
going to be analogous to the ones presented in the
previous cases, we show the results directly.
Nevertheless, we include the complete computation
in Appendix C 2. When n ¼ 0, there are two

Lagrangians Lð110Þ and Lð030Þ. We find that the
following Lagrangian,

LH
5 ¼ G5 ∧ Rab ∧ Φc ∧ θ⋆abc

þ 1

3
G5;X ∧ Φa ∧ Φb ∧ Φc ∧ θ⋆abc

¼ −2
�
G5GabΦab −

1

6
G5;Xð½Φ�3

− 3½Φ�½Φ2� þ 2½Φ3�Þ
�
η; ð45Þ

has second-order e.o.m. Clearly, we have recovered
L5 of Horndeski’s theory.
When n ¼ 1, we can have Lð101Þ and Lð021Þ. We

obtain that
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LNH
4 ¼ E4 ∧ Rab ∧ Ψc ∧ θ⋆abc þ E4;X ∧ Φa ∧ Φb ∧ Ψc ∧ θ⋆abc

¼ −2ðE4hGi − E4;XðhΦ2i − hΦi½Φ� þ Xð½Φ�2 − ½Φ2�ÞÞη ð46Þ

has no Ostrogradski instabilities. Interestingly, this Lagrangian has structural similarities with LH
4 in (42).

(v) p ¼ 4:
Finally, we analyze the case in which p is maximum. Similarly to the previous case, we present directly the result

and incorporate the details of the calculations in Appendix C 2. Considering first the Lagrangians with n ¼ 1,
corresponding to Lð111Þ and Lð031Þ, we find that they can be combined as

LNH
5 ¼ E5 ∧ Rab ∧ Φc ∧ Ψd ∧ θ⋆abcd þ

1

3
E5;X ∧ Φa ∧ Φb ∧ Φc ∧ Ψd ∧ θ⋆abcd

¼ ðE5ð4ðhRabΦbci þ X½RΦ�Þ − RðhΦi þ 2X½Φ�Þ þ 2ðhRabcdΦbdi − hRi½Φ�ÞÞ

þ 1

3
E5;XððhΦ2i½Φ� − hΦ3iÞ − 3hΦið½Φ�2 − ½Φ2�Þ − 2Xð½Φ�3 − 3½Φ�½Φ2� þ 2½Φ3�ÞÞη ð47Þ

to give second-order e.o.m. One should notice that the four Lagrangians of Horndeski’s theory have already
appeared. However, until Sec. IV, we cannot conclude anything about this possible new Lagrangian.
When n ¼ 0, there are three possible terms: Lð200Þ, Lð120Þ, and Lð040Þ. Nevertheless, the computation is

equivalent to the previous cases in which we had two higher-derivative terms arising from each of the Lagrangians
that cancel each other choosing the right coefficient. In this case, Lð120Þ will have two higher-derivative terms that
will be eliminated with two others coming from Lð200Þ and Lð040Þ (see details in Appendix C 2). At the end, we
find that

LNH
6 ¼ E6 ∧ Rab ∧ Rcd ∧ θ⋆abcd þ 2E6;XRab ∧ Φc ∧ Φd ∧ θ⋆abcd þ

1

3
E6;XXΦa ∧ Φb ∧ Φc ∧ Φd ∧ θ⋆abcd

¼
�
E6ðRabcdRabcd − 4RefRef þ R2Þ þ 2E6;XðRð½Φ�2 − ½Φ2�Þ − 4Rabð½Φ�Φab − Φ2

abÞ þ 2RabcdΦacΦbdÞ

þ 1

3
E6;XXð½Φ�4 − 6½Φ�2½Φ2� þ 3½Φ2�2 þ 8½Φ�½Φ3� − 6½Φ4�Þ

�
η ð48Þ

has no higher derivatives in the e.o.m. In the following,
we will refer to the above theory as kinetic Gauss-
Bonnet. To the best of our knowledge, this general
Lagrangian was not considered previously in the liter-
ature. Nevertheless, the particular case when E6 ¼ E6ðϕÞ
describes a Gauss-Bonnet (GB) gravity coupled with a
scalar function, which is a model extensively studied in
the literature; see e.g. Ref. [60]. In fact, in Ref. [61], it
was claimed that fðϕÞGB is already contained in
Horndeski’s theory. In the next section, we will inves-
tigate if this result holds for the more general Lagrangian
presented in (48).
In order to conclude the analysis of the scalar e.o.m., we

are going to study a general LðlmnÞ in D dimensions. This
calculation will help us understand how the higher than
second-order terms in the e.o.m. can be cancelled in D
dimensions and what is the origin of the concrete numerical

factors obtained. In particular, we are looking for relations
between different coefficients in front of each LðlmnÞ that
build up automatically ghost-free combinations of
Lagrangians, as we have done before. In this computation,
since we are considering a general case, we will use the
general notation for the coefficient αlmn. As we have
discussed for the e.o.m. in four dimensions, a dependence
of αlmn in second derivatives or higher induces higher than
two derivatives terms in the e.o.m. that cannot be cancelled
since they are proportional to the original Lagrangian, e.g.
∇z∇zðαlmn;½Φ�ÞLðlmnÞ. For that reason, we impose from the
beginning that αlmn ¼ αlmnðϕ; XÞ. Also, we will be mostly
interested in the remaining higher-derivative terms.
Therefore, we will try to keep the rest as simple as possible.
Making a variation with respect to the scalar field, we
obtain
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δðαlmnLðlmnÞÞ ¼ δαlmn ∧ LðlmnÞ þ αlmn ∧ δLðlmnÞ
¼ δαlmn ∧ LðlmnÞ þmαlmn ∧ δΦa ∧ ½Lðlðm−1ÞnÞ�a þ nαlmn ∧ δΨa ∧ ½Lðlmðn−1ÞÞ�a
¼ δϕ ∧ ððαlmn;ϕ þ∇zðαlmn;X∇zϕÞÞ ∧ LðlmnÞ þ αlmn;X∇zϕðl∇zRab ∧ ½Lððl−1ÞmnÞ�ab
þm∇zΦa ∧ ½Lðlðm−1ÞnÞ�a þ n∇zΨa ∧ ½Lðlmðn−1ÞÞ�aÞ þmð∇aðαlmn;ϕDϕ ∧ ½Lðlðm−1ÞnÞ�aÞ
− αlmn;X∇zϕ∇aΦz ∧ ½Lðlðm−1ÞnÞ�a − Φz ∧ ∇aðαlmn;X∇zϕ½Lðlðm−1ÞnÞ�aÞÞ
þmðm − 1Þðαlmn∇zϕ∇aRbz ∧ ½Lðlðm−2ÞnÞ�ab þRbz ∧ ∇aðαlmn∇zϕ½Lðlðm−2ÞnÞ�abÞÞ
þmn∇aðαlmnDΨb ∧ ½Lðlðm−1Þðn−1ÞÞ�abÞ þ nαlmn ∧ δΨa ∧ ½Lðlmðn−1ÞÞ�aÞ; ð49Þ

where ½LðlmnÞ�a1…ak indicates that the first k indices of the
Hodge dual basis of LðlmnÞ are free. From the above result,
we can see that there are four higher-derivative terms,
underlined with a solid line,

mαlmn;X∇zϕ∇zΦa ∧ ½Lðlðm−1ÞnÞ�a; ð50Þ

−mαlmn;X∇zϕ∇aΦz ∧ ½Lðlðm−1ÞnÞ�a; ð51Þ

−2lαlmn;X∇zϕ∇aRbz ∧ ½Lððl−1ÞmnÞ�ab; ð52Þ

mðm − 1Þαlmn∇zϕ∇aRbz ∧ ½Lðlðm−2ÞnÞ�ab; ð53Þ
where we have already used the Bianchi identity (30)
to rewrite the third one. Clearly, the first two terms safely
add up to give a Riemann tensor, since they form a
commutator of covariant derivatives, cf. (29). However,
the last two terms must be canceled with extra Lagrangians
with different ðlmnÞ. These new terms added will contrib-
ute also with other higher-derivative terms. We can repeat
this process iteratively until we reach a Lagrangian
that does not contribute with extra higher-order terms.
Thus, the resulting combination that avoids higher-order
derivatives is

L2ndðαlmnÞ ¼ αlmnLðlmnÞ þ
Xl

j¼1

αðl−jÞðmþ2jÞnLððl−jÞðmþ2jÞnÞ

þ
Xm=2

k¼1

αðlþkÞðm−2kÞnLððlþkÞðm−2kÞnÞ; ð54Þ

where the coefficients are related iteratively by

αðl−jÞðmþ2jÞn ¼
2ðl − ðjþ 1ÞÞ

ðmþ 2jÞðmþ 2j − 1Þ

×
∂ðαðl−ðj−1ÞÞðmþ2ðj−1ÞÞnÞ

∂X ; ð55Þ

αðlþkÞðm−2kÞn ¼
ðm − 2ðk − 1ÞÞðm − 1 − 2ðk − 1ÞÞ

2ðlþ kÞ
×
Z

αðlþðk−1ÞÞðm−2ðk−1ÞÞndX: ð56Þ

With these general expression, we can easily derive, for
instance, Horndeski Lagrangians, i.e. (34), (37), (42),
and (45). Although in D dimensions there are ðDþ 1Þ×
ðDþ 2Þ=2 possible Lagrangians LðlmnÞ, the above result
indicates that there are only 2Dþ 1 independent linear
combinations giving second-order e.o.m.

B. Vielbein equations of motion

Subsequently, we proceed to compute the corresponding
equations of motion for the frame field θa. In doing so, we
will apply a second-order approach, which means that we
define the 1-form connection as a function of the vielbein
only, i.e. ω ¼ ωðθÞ. This is equivalent to the metric formal-
ism, inwhich it is assumed that the only dynamical degrees of
freedom are contained in the metric, i.e. ΓðgÞ. Alternatively,
one could have chosen a first-order approach (or Palatini
formalism), in which the connection 1-form and the vielbein
are independent variables. As it will become clear in the
computation, our method can be easily extrapolated to that
situation. Having developed the general framework to taking
variations with respect to differential forms, we will directly
study the general D-dimensional case.
A first point to consider is how to relate the 1-form

connection and the vielbein. We can do this by fixing a
metric-compatible and torsionless connection, i.e. ωab ¼
−ωba and Ta ¼ Dθa ¼ 0, respectively. If we have two
different connections ωab and ~ωab, arising from θa and ~θa,
we find that they are related by

~ωab ¼ ωab þ 1

2
ði~ebðD~θaÞ − i~eaðD~θbÞ þ i~eaði~ebðD~θcÞÞ~θcÞ;

ð57Þ

which is nothing but the differential form version of the
usual torsionless spin connection in supergravity [62].
Alternatively, it is the noncoordinate analog of the relation
between two different Levi-Civitá connections [63]. To
clarify this formal definition, we include a more detailed
discussion in Appendix A. Therefore, if we define a
perturbed connection δωab, to linear order in the perturba-
tions of δθa, it will be
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δωab ¼ 1

2
ðiebðDδθaÞ − ieaðDδθbÞ þ ieaðiebðDδθcÞÞθcÞ

¼ ∇bδθa −∇aδθb: ð58Þ

Thus, we have a relation that links δω with δθ.
As a consequence, the vielbein e.o.m. are going to be

given by

δL ¼ δθa ∧ δL
δθa

þ δθa ∧ δωbc

δθa
∧ δL
δωbc

¼ δθa ∧ δL
δθa

− δθa ∧ ∇b

�
δL
δωab

�
þ δθb ∧ ∇a

�
δL
δωab

�
;

ð59Þ

where in the second line we have used the variation of the
1-form connection given in (58) and integrated by parts,
neglecting the surface terms. Nevertheless, if we want to
analyze the higher derivatives only, we do not need to
calculate all the terms. First, we should notice that θa

appears linearly (with an exterior product) in Φa, Ψa, and
θ⋆a1…ak . Consequently, since our Lagrangian does not
contain higher than second derivatives by construction,
the variation with respect to θa is not going to introduce
them in the dynamical equations. Next, we should notice
that the 1-form connection appears linearly in the second
derivative of the scalar field, i.e. Φa ¼ d∇aϕþ ωab∇bϕ,
and through a covariant exterior derivative in the 2-form
curvature, i.e.Rab ¼ Dωab. For these reasons, the variation
with respect to the connection, δω, takes the form

δωðαlmnLðlmnÞÞ ¼ lδωðRabÞ ∧ αlmn½Lððl−1ÞmnÞ�ab þmδωðΦaÞ ∧ αlmn½Lðlðm−1ÞnÞ�a
¼ δωab ∧ ðlðαlmn;ϕDϕ ∧ ½Lððl−1ÞmnÞ�ab − αlmn;X∇zϕΦz ∧ ½Lððl−1ÞmnÞ�ab
þmαlmnRcd∇dϕ ∧ ½Lððl−1Þðm−1ÞnÞ�abc þ nαlmnΦc ∧ Dϕ ∧ ½Lððl−1Þmðn−1ÞÞ�abcÞ
þmαlmn∇bϕ ∧ ½Lðlðm−1ÞnÞ�aÞ; ð60Þ

where we are taking αlmn ¼ αlmnðϕ; XÞ for the same arguments discussed previously (see Sec. III A). Then, to obtain the
contribution to the e.o.m., we only need to apply the covariant derivative. The first term will be

δθa ∧ ∇b

�
δðαlmnLðlmnÞÞ

δωab

�
¼ δθa ∧ ðlð∇bðαlmn;ϕDϕ ∧ ½Lððl−1ÞmnÞ�abÞ − Φz ∧ ∇bðαlmn;X∇zϕ½Lððl−1ÞmnÞ�abÞ

− αlmn;X∇zϕ∇bΦz ∧ ½Lððl−1ÞmnÞ�ab þmRcz ∧ ∇bðαlmn∇zϕ½Lððl−1Þðm−1ÞnÞ�abcÞ
þmαlmn∇zϕ∇bRcz ∧ ½Lððl−1Þðm−1ÞnÞ�abc þ∇bðnαlmnΦc ∧ Dϕ ∧ ½Lððl−1Þmðn−1ÞÞ�abcÞÞ
þmð∇zðαlmn∇zϕÞ ∧ ½Lðlðm−1ÞnÞ�a þ nαlmn∇zϕ∇zΨb ∧ ½Lðlðm−1Þðn−1ÞÞ�ab
þ lαlmn∇zϕ∇zRbc ∧ ½Lððl−1Þðm−1ÞnÞ�abc þ ðm − 1Þαlmn∇zϕ∇zΦb ∧ ½Lðlðm−2ÞnÞ�abÞÞ; ð61Þ

and the second one will be

δθb ∧ ∇a

�
δðαlmnLðlmnÞÞ

δωab

�
¼ δθb ∧ ðlð∇aðαlmn;ϕDϕ ∧ ½Lððl−1ÞmnÞ�abÞ − Φz ∧ ∇aðαlmn;X∇zϕ½Lððl−1ÞmnÞ�abÞ

− αlmn;X∇zϕ∇aΦz ∧ ½Lððl−1ÞmnÞ�ab þmRcz ∧ ∇aðαlmn∇zϕ½Lððl−1Þðm−1ÞnÞ�abcÞ
þmαlmn∇zϕ∇aRcz ∧ ½Lððl−1Þðm−1ÞnÞ�abc þ∇aðnαlmnΦc ∧ Dϕ ∧ ½Lððl−1Þmðn−1ÞÞ�abcÞÞ
þm∇aðαlmn∇bϕ ∧ ½Lðlðm−1ÞnÞ�aÞÞ; ð62Þ

where we have used the fact that a covariant derivative
contracted with θ⋆a1…ak , in this case shown by the indices
½L�a1…ak , acting on another term contracted with θ⋆a1…ak ,
too, is not generating higher derivatives because the indices
are antisymmetric. We observe that (61) has the following
higher-derivative terms, underlined with a solid line:

− lαlmn;X∇zϕ∇bΦz ∧ ½Lððl−1ÞmnÞ�ab ð63Þ

þ lmαlmn∇zϕ∇bRcz ∧ ½Lððl−1Þðm−1ÞnÞ�abc ð64Þ

þmlαlmn∇zϕ∇zRbc ∧ ½Lððl−1Þðm−1ÞnÞ�abc ð65Þ
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þmðm − 1Þαlmn∇zϕ∇zΦb ∧ ½Lðlðm−2ÞnÞ�ab: ð66Þ

On the other hand, Eq. (62) has the following higher-
derivative terms,

− lαlmn;X∇zϕ∇bΦz ∧ ½Lððl−1ÞmnÞ�ab ð67Þ

þ lmαlmn∇zϕ∇bRcz ∧ ½Lððl−1Þðm−1ÞnÞ�abc; ð68Þ

where we have exchanged a and b in order to get more
expressions similar to the above ones and introduced the
relative sign between (61) and (62) appearing in (59). Using
the usual commutation of indices, it is straightforward to
see that the sum of (64), (65), and (68) is zero. Thus, we are
led with only two higher-derivatives terms,

− 2lαlmn;X∇zϕ∇bΦz ∧ ½Lððl−1ÞmnÞ�ab ð69Þ

þmðm − 1Þαlmn∇zϕ∇zΦb ∧ ½Lðlðm−2ÞnÞ�ab; ð70Þ

where the first one corresponds to the sum of (63) and (67)
and the second one is (66).
As a consequence, in order to eliminate the higher-

derivative terms of the e.o.m., we have to add counterterms
iteratively, equivalently to the previous case of scalar e.o.m.
In fact, we find that the result is the same, i.e. the
Lagrangian given by (54). It is interesting that in the scalar
case the higher terms come from the derivatives of the
curvature, while in the vielbein case they appear from third
derivatives of the field. This result has important conse-
quences because it means that the Lagrangian (54) is a
scalar-tensor theory in D dimensions of which the Euler-
Lagrange equation is second order in derivatives.

IV. COMPLETENESS OF THE FORMULATION

After computing the e.o.m., we must investigate what is
the role of those Lagrangians LNH

i that cannot be directly
linked with Horndeski’s theory. To accomplish this task, we
must first study if there are redundancies in our basis of
Lagrangians, meaning that different LðlmnÞ give the same
e.o.m. This could happen if two Lagrangians are related by
an exact form, the differential form analog of a total
derivative, or by an algebraic identity. Consequently, we
will study first the space of exact forms defined by LðlmnÞ.
Then, we will analyze algebraic identities due to the
antisymmetry of the Hodge dual basis. In both cases, we
will start the analysis in D dimensions and then particu-
larize for four dimensions. Finally, we will apply all these
identities, which will act as constraints linking different
Lagrangians, to conclude what is the most general basis and
what are their corresponding combinations with second-
order e.o.m.

A. Exact forms

We begin the analysis of the completeness of the
formulation by computing the possible exact forms. An
exact form is a q-form defined as an exterior derivative of a
(q − 1)-form, i.e. ωq ¼ dωq−1. It is important to consider
them because by applying Stoke’s theorem (28), assuming
no contribution at the boundary, they do not contribute to
the e.o.m. We can build the space of exact D-forms in an
analogous way to LðlmnÞ in (5). However, since the exterior
derivative is a mapping from q-forms to (qþ 1)-forms, we
should start with an LðlmnÞ satisfying p ≤ D − 1. Moreover,
we should be aware that the final outcome must be part of
the basis of Lagrangians in order to have a closed set. For
that reason, we cannot directly consider the reduction of
LðlmnÞ with an interior product, which is a mapping from q-
forms to (q − 1)-forms, because terms such as Dði∇ϕRabÞ
or Dði∇ϕΦaÞ do not belong to the set of LðlmnÞ, Lðl̄m0Þ and
Lðlm̄0Þ presented in (5), (26), and (27), respectively. Thus,
Dði∇ϕLðlmnÞÞ cannot be used.
Alternatively, we could define the space of exact forms

by contracting one of the indices of the Hodge dual basis
with a gradient of the scalar field. This is because the
Hodge dual basis θ⋆a1…ak is a (D − k)-form. Thus, adding
one index is equivalent to reducing one order in the
differential form, which is exactly what we were looking
for. This could be seen, too, as applying the interior product
i∇ϕ only to θ⋆a1…ak . Noticeably, applying the interior
product to Ψa, one obtains the same result with an extra
−2X factor. For all these arguments, we find that the
appropriate space of exact forms is

DLD−1
ðlmnÞ½Gi� ¼ D

�
Gi ⋀

l

i¼1

Raibi ∧ ⋀
m

j¼1

Φcj ∧ ⋀
n

k¼1

Ψdk

∧ θ⋆ea1b1…alblc1…cmd1…dn∇eϕ

�
; ð71Þ

where the contraction of the last index of the Hodge dual
ensures that we have a (D-1)-form inside the exterior
derivative. One should notice that the above expression
identically vanishes if n ≠ 0. This is becauseΨa ¼ ∇aϕDϕ
and the antisymmetry of the Hodge dual basis kills it, i.e.
θ⋆ab∇aϕ∇bϕ ¼ 0. This cancellation will happen again for
any Lagrangian containing Ψ. In contrast to the previous
expression, this exact form only generates terms belonging
to LðlmnÞ, Lðl̄mnÞ, and Lðlm̄nÞ.
Since we have already worked out the action of D in all

of the building blocks for the e.o.m., we can easily expand
the exact form (71)

DLD−1
ðlmnÞ½Gi� ¼ Gi;ϕLðlmðnþ1ÞÞ − Gi;XLðlðmþ1ÞnÞ

þ GiðLðlðmþ1ÞnÞ −mLððlþ1Þðm−1ÞnÞ

− nLðlðmþ1ÞnÞÞ: ð72Þ
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This expression sets the general shape of an exact form. It
implies that there is a linear dependence between some
LðlmnÞ and their contracted version Lðl̄mnÞ and Lðlm̄nÞ. In
D ¼ 4, there are six nonzero exact forms, i.e.

DLD−1
ð000Þ½G2� ¼ G2;ϕLð001Þ − G2;XLð01̄0Þ þ G2Lð010Þ; ð73Þ

DLD−1
ð010Þ½G3� ¼ G3;ϕLð011Þ − G3;XLð02̄0Þ

þ G3ðLð020Þ − Lð1̄00ÞÞ; ð74Þ

DLD−1
ð100Þ½G4� ¼ G4;ϕLð101Þ − G4;XLð11̄0Þ þ G4Lð110Þ; ð75Þ

DLD−1
ð020Þ½F4� ¼ F4;ϕLð021Þ − F4;XLð03̄0Þ

þ F4ðLð030Þ − 2Lð1̄10ÞÞ; ð76Þ

DLD−1
ð110Þ½G5� ¼ G5;ϕLð111Þ − G5;XLð12̄0Þ

þ G5ðLð120Þ − Lð2̄00ÞÞ; ð77Þ

DLD−1
ð030Þ½F5� ¼ F5;ϕLð031Þ − F5;XLð04̄0Þ

þ F5ðLð040Þ − 3Lð1̄20ÞÞ: ð78Þ

In Appendix C 3, we include the explicit computation of
each of them. We will make full use of these expressions in
the next subsections.

B. Antisymmetric degeneracies

To continue the analysis of possible degeneracies in the
set of Lagrangians, we consider now identities derived from
the antisymmetry of the Hodge dual basis θ⋆a1…an . Using its
definition (6), it is easy to prove that Hodge dual bases with
a different number of indices are related by

θa ∧ θ⋆b1…bk
¼ δabkθ

⋆
b1…bk−1

− δabk−1θ
⋆
b1…bk−2bk

þ � � �
þ ð−1Þk−1δab1θ⋆b2…bk−1

: ð79Þ

In fact, this identity, rewritten in components via the totally
antisymmetric tensor, was used by Horndeski to rewrite its
equations of motion in Ref. [32]. Also, it was utilized by
Ref. [53] in their study of Lovelock’s theories.
Applying this identity, we observe that it can be used to

relate different Lagrangians. We conclude that a general
LðlmnÞ with n ¼ 1 can be related with other Lagrangians
with n ¼ 0 through

Lðlm1Þ ¼ −2lLðl̄m0Þ −mLðlm̄0Þ − 2XLðlm0Þ: ð80Þ

Since we are working in D ¼ 4, we can find nine new
identities, i.e.

Lð001Þ ¼ − 2XLð000Þ; ð81Þ

Lð011Þ ¼ − Lð01̄0Þ − 2XLð010Þ; ð82Þ

Lð101Þ ¼ − 2Lð1̄00Þ − 2XLð100Þ; ð83Þ

Lð021Þ ¼ − 2Lð02̄0Þ − 2XLð020Þ; ð84Þ

Lð111Þ ¼ − 2Lð1̄10Þ − Lð11̄0Þ − 2XLð110Þ; ð85Þ

Lð031Þ ¼ − 3Lð03̄0Þ − 2XLð030Þ: ð86Þ

Lð201Þ ¼ − 4Lð2̄00Þ − 2XLð200Þ ¼ 0; ð87Þ

Lð121Þ ¼ − 2Lð1̄20Þ − 2Lð12̄0Þ − 2XLð120Þ ¼ 0; ð88Þ

Lð041Þ ¼ − 4Lð04̄0Þ − 2XLð040Þ ¼ 0: ð89Þ

These nine new relations together with the previous six
exact forms add up to a total of 15 constraints. Thus, if we
sum all the possible LðlmnÞ in D ¼ 4, i.e. 15, and all the
possible Lðl̄mnÞ and Lðlm̄nÞ, i.e. 10, we are left with ten
independent Lagrangians. Among them, there is a certain
freedom in the choice, that we summarize in Fig. 1. From
all the possibilities, one could choose to have the six terms
of Horndeski theory, i.e.Lð000Þ,Lð010Þ,Lð100Þ,Lð020Þ,Lð110Þ,
and Lð030Þ; the two of beyond Horndeski’s G3, i.e. Lð021Þ
and Lð031Þ; and two additional terms, which we choose to
be Lð040Þ and the Gauss-Bonnet term Lð200Þ. In the next
subsection, we will see how these constraints affect the
Lagrangians that we have found with second-order e.o.m.,
which are the relevant ones at the end.

C. Relations between second-order theories

After computing all the relations that connect different
terms in our basis of Lagrangians, the key question is: do
these Lagrangians represent any viable/second-order sector
different from Horndeski? To analyze this point, we will
look at the combinations of Lagrangians of which the e.o.m.
are second order.We recall that in Sec. III we have found two
sets of Lagrangians LH

i and LNH
i satisfying the latter

condition. We summarize the first set of Lagrangians in

LH
2 ½G2� ¼ G2Lð000Þ; ð90Þ

LH
3 ½G3� ¼ G3Lð010Þ; ð91Þ

LH
4 ½G4� ¼ G4Lð100Þ þG4;XLð020Þ; ð92Þ

LH
5 ½G5� ¼ G5Lð110Þ þ

1

3
G5;XLð030Þ; ð93Þ

which is nothing but the differential form version of
Horndeski’s theory. We can englobe the whole set in
LH ¼ P

5
i¼2 L

H
i . The second set we found was
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LNH
2 ½E2� ¼ E2Lð001Þ; ð94Þ

LNH
3 ½E3� ¼ E3Lð011Þ; ð95Þ

LNH
4 ½E4� ¼ E4Lð101Þ þ E4;XLð021Þ; ð96Þ

LNH
5 ½E5� ¼ E5Lð111Þ þ

1

3
E5;XLð031Þ; ð97Þ

LNH
6 ½E6� ¼ E6Lð200Þ þ 2E6;XLð120Þ þ

1

3
E6;XXLð040Þ: ð98Þ

Consequently, the aspect that we need to address is if
Eqs. (94)–(98) contain any dynamics beyond Eqs. (90)–(93).
Our analysis will be systematic. Starting with the terms

with lowest p, we will apply all the exact forms and
antisymmetric redundancies at that level. Then, we will do
the same with the next level. We find that:

(i) p ¼ 0:
There are no LNH

i at this level. The only possible
term of this kind is Lð000Þ, which already belongs
to LH

2 .
(ii) p ¼ 1:

At this level, we have LNH
2 . This term is very

simple because it is proportional to −2X, which can
be reabsorbed in the free function. More explicitly,
using the algebraic relation (81), we can see that

LNH
2 ½E2� ¼ −2XLH

2 ½E2� ¼ LH
2 ½−2XE2�: ð99Þ

Thus, as it was trivial to see, LNH
2 belongs to LH

2 .
(iii) p ¼ 2:

Then, we have LNH
3 . Here, we will use the first

exact form (73). Additionally, we will apply the next
antisymmetric redundancy (82) to rewrite Lð01̄0Þ in
terms of Lð011Þ and Lð010Þ. We obtain that

DLD−1
ð000Þ½G2� ¼ G2;ϕLð001Þ þ ðG2 þ 2XG2;XÞLð010Þ

þ G2;XLð011Þ: ð100Þ

This expression can be rewritten to show that

LNH
3 ½G2;X� ¼ −LNH

2 ½G2;ϕ� − LH
3 ½ðG2 þ 2XG2;XÞ�

þDLD−1
ð000Þ½G2�: ð101Þ

Due to the fact that we have already seen that
LNH
2 ⊂ LH, we conclude that LNH

3 also belongs to
Horndeski since the exact form does not modify the
e.o.m. One should notice that this structure, in which
we obtain that a givenLNH

i is equal to a combination
of LNH

i−1 , L
H
i and DLD−1, will appear again in the

forthcoming cases. Then, we will argue that, since

FIG. 1. Summary of the interconnections between different Lagrangians LðlmnÞ, Lðl̄mnÞ, and Lðlm̄nÞ, defined, respectively, by (5), (26),
and (27) in four dimensions. A close set of arrows indicates that the Lagrangians in the vertices are related by the identity referred in the
interior, which can be either an exact form (73)–(78), presented with dotted arrows, or an algebraic antisymmetric identity (81)–(89),
plotted with dashed arrows. Here, a dash-dotted arrow indicates that two Lagrangians are related by both types of identities. In total,
there are ten independent Lagrangians. In the figure, we show a possible choice, framing each term in a rectangle, corresponding to
Horndeski theory (red rectangles), beyond Horndeski’s G3 (red dashed rectangles) and Lð200Þ and Lð040Þ (red dotted rectangles). Finally,
we emphasize the structure by levels indicating in the left the number of building blocks p≡ 2lþmþ n.
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we have proven that LNH
i−1 is included Horndeski,

LNH
i also belongs.

(iv) p ¼ 3:
Now, we have to analyze LNH

3 . We will start with
the exact form relation (74). This expression can be
rewritten, using the antisymmetric identities (83)–
(84), into

DLD−1
ð010Þ½G3� ¼ G3;ϕLð011Þ þ

1

2
G3;XLð021Þ

þ ðG3 þ XG3;XÞLð020Þ

þ 1

2
G2ðLð101Þ þ 2XLð100ÞÞ: ð102Þ

Remarkably, the above equation can be translated
into

LNH
4 ½G3� ¼ −2LNH

3 ½G3;ϕ� − 2LH
4 ½XG3�

þ 2DLD−1
ð010Þ½G3�: ð103Þ

Therefore, this result implies thatLNH
4 belongs to the

Horndeski theory, for same arguments as before and
applying that we already know that LNH

3 ⊂ LH.
Interestingly, this result is telling us that Lð101Þ
can be seen as a linear combination of Horndeski’s
theory up to quartic order and Lð021Þ. In the
discussion, we will extend on this issue.

(v) p ¼ 4:
Finally, we have two more Lagrangians: LNH

5 and
LNH
6 . For analyzing LNH

5 , we begin with the exact
form (75) to show that

G4;XLð11̄0Þ ¼ G4;ϕLð101Þ þ G4Lð110Þ −DLD−1
ð100Þ½G4�:

ð104Þ
Then, we use another exact form (76) and apply the
algebraic relations (85)–(86)

DLD−1
ð020Þ½G4;X� ¼ G4;ϕLð101Þ þ G4;ϕXLð021Þ

þ ð2XG4;X þ G4ÞLð110Þ

þ
�
2X
3

G4;XX þG4;X

�
L030

þG4;XLð111Þ þ
1

3
G4;XXL031

−DLD−1
ð100Þ½G4�; ð105Þ

which again simplifies into

LNH
5 ½G4;X� ¼ −LNH

4 ½G4;ϕ� − LH
5 ½2XG4;X

þG4� þDLD−1
ð020Þ½G4;X� þDLD−1

ð100Þ½G4�:
ð106Þ

Thus, we find that LNH
5 belongs to the Horndeski

theory, too, due to the fact that LNH
4 ⊂ LH. Again, it

will be interesting to discuss later the relation
between Lð111Þ, Lð031Þ, and Horndeski theory.
Lastly, we try to uncover LNH

6 . Using the exact
form (77) and the antisymmetric relation (87), we
realize that we can write Lð12̄0Þ as

G5;XLð12̄0Þ ¼ G5;ϕLð111Þ þG5L120

þ X
2
G5Lð200Þ −DLD−1

ð110Þ½G5�: ð107Þ

Now, plugging the above expression in the last exact
form (78) together with the remaining algebraic
identities (88) and (89), step by step, we find that

DLD−1
ð030Þ½G5;X� ¼ G5;ϕXLð031Þ þ 3G5;ϕLð111Þ

þ
�
G5;X þ X

2
G5;XX

�
Lð040Þ

þ 3ðG5 þ XG5;XÞLð120Þ

þ 3X
2

G5L200 − 3DLD−1
ð110Þ½G5�;

ð108Þ

implying that

LNH
6

�
3X
2

G5

�
¼ −LNH

5 ½3G5;ϕ� þDLD−1
ð030Þ½G5;X�

þ 3DLD−1
ð110Þ½G5�: ð109Þ

Therefore, LNH
6 also belongs to Horndeski, since we

have proven before that LNH
5 ⊂ LH. This result

generalizes the one obtained by Ref. [61], in which
they showed that fðϕÞGB belongs to Horndeski
using the e.o.m. Here, we show explicitly that a
kinetic Gauss-Bonnet term as LNH

6 , which contains
the case studied by [61], belongs to the Horndeski
Lagrangian. Furthermore, from the above expres-
sion, we also learn that if G5 is only a function of X,
LNH
6 becomes an exact form itself. We should point

out that LNH
6 with a coefficient depending on ϕ and

X has not been previously studied in the literature.
Here, we have shown that such a new Lagrangian
has second-order e.o.m., but its dynamics is already
described by Horndeski’s theory.

In conclusion, we have seen that there is a total of ten
independent Lagrangians, which can be chosen to be the six
of Horndeski, plus beyond Horndeski, i.e.Lð021Þ andLð031Þ,
plus Lð040Þ and the Gauss-Bonnet Lð200Þ. From them, there
are only four independent combinations giving rise to
second-order e.o.m. These four independent Lagrangians
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can be chosen to be the ones of Horndeski, i.e. (90)–(93).
We realize that with this procedure we are not able to
conclude anything whether Lð021Þ and Lð031Þ are well
behaved by themselves, as they do in beyond Horndeski
theories (G3) [34]. This would require a Hamiltonian
analysis. However, this result tells us that the higher-
derivative structure of G3 model, i.e. Lð021Þ and Lð031Þ, is
precisely the same as the one of Lð101Þ and Lð111Þ,
respectively. This seems to indicate that those terms might
also be ghost free.

V. DISCUSSION

In this work, we have developed a new formulation for
scalar-tensor theories in the language of differential forms.
We have found a finite and closed basis that describes
general theories of this class in arbitrary dimensions,
including Horndeski and the G3 set of beyond
Horndeski theories. Within this basis, we have been able
to systematically classify the relations between different
physical theories and to find all possible Lagrangians
leading to second-order equations of motion in four as
well as an arbitrary number of spacetime dimensions. At
this point, it is crucial to discuss the implications of our
work in connection to the recent literature.
In the field of general scalar-tensor theories, the funda-

mental analysis wasmade byHorndeski [32], who found the
most general second-order scalar-tensor Euler-Lagrange
equations in four dimensions. In practice, Horndeski’s
theorem was first proven at the level of the equations of
motion, imposing a relation between the divergence of the
metric and the scalar field equations arising from diffeo-
morphism invariance. He then classified all the possible
terms compatible with this requirement and proceeded by
finding an action that produced them in the equations of
motion. In this sense, our work has followed the opposite
direction. We have started by looking for the most general
action satisfying invariance under local Lorentz transforma-
tions in a pseudo-Riemannian manifold and constructed
with a fixed set of building blocks; the vielbein θa, the
curvature 2-form Rab, the 1-form Ψa encoding first deriv-
atives of the scalar field, and the 1-form Φa containing
second derivatives linearly. Then, we have looked for the
combinations which give rise to second-order e.o.m. It is
important to remark that in this paper we have not proven
Horndeski’s theorem, since, as we have discussed in Sec. II,
our basis of Lagrangians can begeneralized to higher powers
of the derivatives of the field, cf. Appendix B 1. However,
what we have proven is that Horndeski’s theory corresponds
to the most general second-order 4-form Lagrangian invari-
ant under LLT in a pseudo-Riemannian manifold and
constructed with θa, Rab, Ψa, and Φa. Consequently,
Horndeski’s theorem guarantees that any nonlinear exten-
sion of our basis will be either equivalent to it or charac-
terized by higher-derivative e.o.m.

More recently, Horndeski’s theory was encountered in
the context of covariant Galileons [49]. These models are
the curved-space extensions of the Galileon theory [58]
described by second-order equations of motion. Galileons
in turn represents the most general scalar theory in flat
space with only second-order derivatives (since the
Galileon symmetry ϕ → ϕþ cþ bμxμ eliminates all first
derivatives). This model has different formulations that
differ only by total derivatives (exact forms in our notation).
The original one, denoted by LGal;1

N in Ref. [64], corre-
sponds in our notation to the terms Lð0N1Þ, where N runs
from 0 to D − 1. The other relevant formulation, named
LGal;3
N also in Ref. [64], can be written in the context of this

paper as XLð0N0Þ, where again N ¼ 0;…; D − 1. From
these two versions of the Galileon theory, a curved-space
extension has been performed.
On the one hand, Ref. [65] started from LGal;1

N . They
found a general result in D dimensions that yields second-
order e.o.m. Their result is equivalent to our Lagrangian
(54) with n ¼ 1. Since they are considering always terms
with n ¼ 1, they obtain D different Lagrangians, provided
that 2lþmþ 1 ≤ D. On the other hand, Ref. [64] found a
covariant Galileon theory from LGal;3

N . Their result can be
written as our Lagrangian (54) with n ¼ 0. Due to the fact
that they wanted to reproduce Galileon theory in flat space,
they only considered D different Lagrangians. Therefore,
they did not considered the possible second-order
Lagrangian satisfying 2lþm ¼ D. This Lagrangian
LNH
6 ½E6ðϕ; XÞ�, which we named kinetic Gauss-Bonnet

and presented in (98), has not been previously studied in the
literature. However, we have also shown in this work that
its dynamics is already contained in the full Horndeski’s
theory. A particular case of this Lagrangian, when
E6 ¼ E6ðϕÞ, is the well-known scalar coupling to the
Gauss-Bonnet term fðϕÞGB [60]. In this respect, with
the previous result, we have additionally proven explicitly
that such a theory belongs to Horndeski, as it was claimed
in Ref. [61]. Interestingly, when there is only kinetic
dependence in the coefficient, i.e. E6 ¼ E6ðXÞ, the kinetic
Gauss-Bonnet Lagrangian becomes identically an exact
form. As an additional remark, with our set of exact forms
and algebraic relation, summarized in Fig. 1, one can easily
link the two covariantized forms of Galileon theory [64,65].
This relation is not trivial, as pointed out by Ref. [64], and it
was missing in the literature.
Lastly, a new line of analysis has been opened for scalar-

tensor theories in the last few years. It consists in studying
theories with higher than two time derivatives in the e.o.m.
but with hidden constraints that save from Ostrogradski’s
instabilities, implying the existence of viable theories
beyond Horndeski [33]. At the end, the key ingredient
to avoid the presence of ghosts is to have a degenerate
theory [51], as it is clearly explained in Ref. [30].
Lagrangians of this type include the G3 theory [34,66],
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which in our notation correspond to Lð021Þ and Lð031Þ,
cf. (17) and (22), respectively. Such theories need a
Hamiltonian analysis in order to properly disentangle the
physical degrees of freedom [67]. In fact, several subtleties
can arise to make the theory inviable; such is the case of a
generic combination of Horndeski and beyond Horndeski
Lagrangians that becomes nondegenerate even though each
term is degenerate by itself [51,68]. Within this work, we
have focused in scalar-tensor theories with second-order
Euler-Lagrange equations, and we cannot conclude any-
thing about the viability of this third generation of scalar-
tensor theories. However, from our analysis, one learns that
the form of these higher-derivative terms in the e.o.m. is the
same for Lð101Þ and Lð021Þ, and for Lð111Þ and Lð031Þ. This
fact seems to point out that Lð101Þ and Lð111Þ, given by (16)
and (21), will also propagate only the graviton and the
scalar field.8 As stressed, a specific Hamiltonian analysis in
this direction would be needed to confirm this argument.
In the ground of general field theoretical studies of

gravity, our work could be seen as a scalar-tensor extension
of the analysis of Lovelock’s theory [43] in differential
forms [47] (see a recent review in Ref. [53]). Moreover, we
have been able to systematically classify every possible
Lagrangian in our basis and present its interconnections
with the others, uncovering the internal structure of the
scalar-tensor theories. These relations lead to a minimal
basis of ten independent Lagrangians, of which four
independent combinations produce second-order Euler-
Lagrange equations. Along this paper, we have followed
the common choice of considering the modern version of
Horndeski’s theory as the basic set, together with the extra
Lagrangians present in G3 beyond Horndeski theories, plus
an additional Lð200Þ and Lð040Þ. Ultimately this choice of
basis is a matter of taste, and we want to emphasize the
different possibilities through Fig. 1.
As a final remark, it is important to note that our

formalism greatly simplifies the computations. The fact
that the full e.o.m. of a general scalar-tensor theory can be
presented in a few lines is an example of the power of this
new notation. Then, using the dictionary between differ-
ential forms and component notation included in
Appendix A 3, the connection with the literature is direct.
Moreover, the compact differential form version of the
scalar-tensor Lagrangians compared to the usual tensorial
form represents a great advantage. Additionally, the well-
established relations between different building blocks
through derivative operations allow for a simple connection
between Lagrangians with a different number of fields and

derivatives. For these reasons, the potential application of
this new formulation for scalar-tensor theories extends to
many possible grounds of research interest.
The simplicity afforded by differential forms encourages

a broad range of applications. Our formalism could be
easily adapted to study the role of field redefinitions in
scalar-tensor theories in a manner analogous to the use of
total derivatives and algebraic relations, extending the
scope of previous works and potentially finding new sets
of equivalences [70–73]. These tools are also suited to
analyze other phenomenological and theoretical properties
of scalar-tensor theories: for example, simplifications of the
equations of motion in the presence of symmetries become
very transparent in this formalism. Finally, these tools can
be applied to a fundamental analysis of the degrees of
freedom present in general Lagrangians, paving the way
towards the discovery and characterization of the most
general scalar-tensor theories of gravity.
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APPENDIX A: NOTATION

The aim of this Appendix is to summarize the notation
used throughout this work. In order to achieve this task, we
must first review some key concepts about differential
geometry. For a complete and detailed introduction to this
subject, one could read, for instance, Ref. [59]. Afterward,
we will present particular notation of this work introduced
to simplify the calculations.

1. Differential forms

Let us begin with the fundamental building block in
which we rewrite our scalar-tensor theory, a differential
q-form. A q-form is a totally antisymmetric ð0; qÞ-tensor.
Due to its antisymmetric character, the space of q-forms,
ΩqðMÞ, has a finite dimension D!

ðD−qÞ!q!, where D is the

dimension of the space-time manifold M. For conven-
ience, we will work in a noncoordinate basis θa, assuming,
as it is required by physical arguments, that our base
manifold M posses a metric g. Then, we can define the
metric as

8In fact, as pointed out in Sec. II, Lð101Þ and Lð111Þ correspond
respectively to “John” and “Paul” Lagrangians of the Fab Four
theory [57]. In Ref. [69], where extended Fab Four models were
studied, it was found the same conclusion, i.e. these Lagrangians
can be related to a beyond Horndeski term plus Horndeski
Lagrangians, cf. Eq. (103) and (106).
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g ¼ gμνdxμ ⊗ dxν ¼ ηabθ
a ⊗ θb; ðA1Þ

using that θa is related with the cotangent basis vector dxμ

through the vielbeins eaμ by θa ¼ eaμdxμ. Here, ηab is the
Minkowski metric. Along the work, we will use Greek
indices to represent coordinate components and Latin
indices for noncoordinate ones.
The basic operations that one can build on the space of

q-forms ΩqðMÞ are:
(i) Wedge product:

It is a totally antisymmetric tensor product that
maps ∧ ∶ ΩqðMÞ × ΩrðMÞ → ΩqþrðMÞ. In com-
ponents, if we start with ω ¼ 1

q!ωa1…aqθ
a1 ∧ …

∧ θaq and v ¼ 1
r! vb1…brθ

b1 ∧ … ∧ θbr , the wedge
product of ω and v is given by

ω ∧ v ¼ 1

q!r!
ωa1…aqvb1…brθ

a1 ∧ …

∧ θaq ∧ θb1 ∧ … ∧ θbr : ðA2Þ
Importantly, this product possesses the property
ω ∧ v ¼ ð−1Þq·rv ∧ ω. Moreover, it can be used
to construct the whole space of q-forms in D
dimensions. In particular, there is only one inde-
pendent D-form, the volume element η, which can
be written as

η ¼ θ1 ∧ … ∧ θD ¼ ffiffiffiffiffiffi
−g

p
dx1 ∧ … ∧ dxD; ðA3Þ

where g corresponds to the determinant of the metric
tensor gμν. One should notice that the volume
element can be equivalently written as η ¼
1
D!
ϵa1…aDθ

a1 ∧ … ∧ θaD , where ϵa1…aD is the totally
antisymmetric symbol. The term

ffiffiffiffiffiffi−gp
appears due

to the antisymmetrization of the vielbeins when we
change from θa to dxμ. Naturally, we can now define
the integral of a function f, i.e. a zero-form, over a
manifold M by

R
M f ∧ η.

(ii) Exterior derivative:
It is a derivative operation that maps

d∶ ΩqðMÞ → Ωqþ1ðMÞ. If we introduce the
partial-derivative 1-form operator ∂, then the
exterior derivative is defined by

dω ¼ ∂ ∧ ω: ðA4Þ
Relevantly, this derivative satisfies a graded
Leibniz rule dðω∧vÞ¼ðdωÞ∧vþð−1Þqω∧ ðdvÞ.
Additionally, it also fulfills that d2 ¼ 0. When a q-
form α can written in terms of (q − 1)-form β via
α ¼ dβ, it is said that α is an exact form. Whenever
we have a q-form ω such that dω ¼ 0, ω is called a
closed form.

(iii) Interior product:
It is an operation that maps iX∶ ΩqðMÞ →

Ωq−1ðMÞ, where X is a vector field. In components,
it contracts the first index of the q-form with the
vector field, i.e.

iXω ¼ 1

ðq − 1Þ!X
a1ωa1a2…aqθ

a2 ∧ … ∧ θaq : ðA5Þ

Interestingly, one can now relate the exterior deriva-
tive and the Lie derivative through LXω ¼
iXðdωÞ þ dðiXωÞ.

(iv) Hodge dual:
It is an operation that arises in manifolds endowed

with a metric and maps ⋆∶ ΩqðMÞ → ΩD−qðMÞ.
Its action on the noncoordinate basis is

⋆ðθa1 ∧…∧ θaqÞ¼ 1

ðD−qÞ!ϵ
a1…aq

apþ1…aDθ
aqþ1 ∧…

∧ θaD: ðA6Þ

Since, we will need this expression many times, we
will dub it the Hodge dual basis and denote it by
θ⋆a1…aq . In addition, this operation is the dual of the
wedge product, and it can be used to the define the
inner product of two q-forms α and β
by ðα; βÞ ¼ R

α ∧ ⋆β.

2. Differential geometry

Once we have introduced the standard operations, we are
ready to present the geometrical quantities characterizing a
curved manifold. First, we introduce the connection 1-form
ωa

b, which is matrix-valued 1-form. Subsequently, we can
bring in the torsion 2-form Ta, i.e. Ta ¼ 1

2
Ta

bcθ
b ∧ θc, and

the curvature 2-form Ra
b, i.e. Ra

b ¼ 1
2
Ra

bcdθ
c ∧ θd. The

connection is linked to the torsion and curvature through
the Cartan’s structure equations,

Ta ¼ dθa þ ωa
b ∧ θb; ðA7Þ

Ra
b ¼ dωa

b þ ωa
c ∧ ωc

b: ðA8Þ

These equations can be further simplified if we introduce an
exterior covariant derivative D, constructed from the
connection ωa

b. In this notation, we have Ta ¼ Dθa and
Ra

b ¼ Dωa
b. Moreover, Bianchi’s identities, which are

just the result of applying D on Cartan’s structure equa-
tions, read

DTa ¼ dTa þ ωa
b ∧ Tb ¼ Ra

b ∧ θb; ðA9Þ

DRa
b ¼ dRa

b þ ωa
c ∧ Rc

b −Ra
c ∧ ωc

b ¼ 0: ðA10Þ

Additionally, it will be relevant in the calculations the
generalized version of Stoke’s theorem,

Z
M

Dω ¼
Z
∂M

ω; ðA11Þ
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which summarizes all the usual calculus integration theo-
rems. With this tool, and assuming that the surface terms
vanish, we will be able to eliminate the exact forms from
our Lagrangians.
For the purpose of our physical discussion, we will

restrict our analysis to manifolds in which the con-
nection is uniquely determined by the vielbein, i.e.
space-times in which the nonmetricity and the torsion
vanish (see Ref. [62] for a specific discussion in more
general manifolds). These two conditions translate into
the antisymmetry of the 1-form connection indices,
ωab ¼ −ωba, and into Ta ¼ 0, respectively. In this
context, we will be interested in finding the relation
between two connections associated to different viel-
beins. With this result, we will be able to find the actual
relation between ωab and θa. We start with a metric
compatible and torsionless connection, i.e. ωab ¼ −ωba,
and Ta ¼ 0, associated to a given vielbein θa. Then, we
define another connection ~ωab, which is also metric
compatible and torsionless, arising from a vielbein ~θa. If
we parametrize the difference between the two con-
nections with a 1-form Xab ¼ ~ωab − ωab, the vanishing
of the torsion tells us that

~Ta ¼ ~D~θa ¼ D~θa þ Xa
b ∧ ~θb ¼ 0: ðA12Þ

Now, using the basic operations of the exterior algebra
presented above, we can find a unique solution for ~ωab

in terms of ~θa that is also metric compatible, i.e.

~ωab ¼ ωab þ 1

2
ði~ebðD~θaÞ − i~eaðD~θbÞ þ i~eaði~ebðD~θcÞÞ~θcÞ;

ðA13Þ

where ~θa ¼ ~eaμdxμ. This result is the differential form
version of the usual tensorial expression for the spin
connection used in supergravity, as it can be found, for
instance, in Ref. [62]. If we impose the vielbein postulate,
i.e. ∇μeaν ¼ 0, this result is directly linked to the Levi-
Civitá connection ΓðgÞ. The component expression of ~Γð~gÞ
can be found, for example, in Ref. [63].
In this work, the explicit expression of the 1-form

connection (A13) will be important because it will allow
us to compute the variation of the connection δωab as a
function of the variation of the frame, given by
~θa ¼ θa þ δθa. Using that Ta ¼ Dθa ¼ 0 and keeping at
first order in the perturbations,9 we find that

δωab ¼ 1

2
ðiebðDδθaÞ − ieaðDδθbÞ

þ ieaðiebðDδθcÞÞθcÞ ¼ ∇bδθa −∇aδθb: ðA14Þ

This relation will be very useful for computing the
vielbein e.o.m. in the second-order formalism, see
Sec. III B.

3. Contractions with the Hodge dual basis

Finally, we present the dictionary between the differ-
ential forms language used throughout this work and the
standard tensorial notation appearing in the literature of
scalar-tensor theories. For that purpose, we are going to
introduce some extra notation following Ref. [33]. The
possible powers of second derivatives of a scalar field ϕ are
encoded in

Φn
μν ¼ ϕ;μα1ϕ

;α1
;α2…ϕ;αn−1

;ν; ðA15Þ
where the covariant derivatives follow ∇μ∇νϕ ¼ ϕ;μν

and ∇μϕ ¼ ϕ;μ ¼ ∂μϕ. In this context, the Riemann
curvature tensor appear via the commutator of two covar-
iant derivatives acting on a vector, i.e. ½∇μ;∇ν�vλ ¼
Rλ

γμνvγ.
In addition, we denote the contraction of a (0,2)-tensor

tμν with the metric, i.e. the trace, by ½tμν�≡ tμνgμν. In the
same fashion, we denote its contraction with first deriva-
tives of the scalar field by htμνi≡ ϕ;μtμνϕ;ν. Applying these
concepts to the Riemann tensor, we can have, for instance,

½Rμν� ¼ Rμνgμν; hRμνi ¼ ϕ;μRμνϕ
;ν;

and hRμνργΦνγi ¼ ϕ;μRμνργΦνγϕ;ρ: ðA16Þ
In the case of the contractions of the second derivatives, we
can omit the indices inside the brackets since there is no
ambiguity, i.e.

½Φn� ¼ Φn
μνgμν; and hΦni ¼ ϕ;μΦn

μνϕ
;ν: ðA17Þ

Subsequently, we show how to translate a general
Lagrangian written in differential forms, such as (5), in
components. We simply need to use the definitions pre-
sented before for the Hodge dual basis and the exterior
product. One should notice that, as a Lagrangian consists in
a D-form, it is going to be proportional to the volume
element η, since there is only one independent D-form.
Then, the component structure of the total set of wedge
products can be read from θa1 ∧ … ∧ θaD ¼ ϵa1…aDη.
Afterward, the remaining free indices can be contracted
using the definition of the Hodge dual basis in (A6). Lastly,
we only need to recall the component expression for the
different building blocks of the theory, i.e. Ra

b ¼
1
2
Ra

bcdθ
c ∧ θd, Φa ¼ ∇a∇bϕθ

b, and Ψa ¼ ∇aϕ∇bϕθ
b.

Therefore, a general Lagrangian given by (5) can be written
in components as

9A linear perturbation theory implies that if the vielbein is
defined as ~eaμ ¼ eaμ þ δeaμ its inverse must be
~eaμ ¼ eaμ − δeaμ. One should notice also that, at first order,
the indices of the perturbed vielbein δeaμ are raised with the
original vielbein eaμ.
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LðlmnÞ ¼
η

2lðD − pÞ!
Yl
i¼0

Raibi
eifi

Ym
j¼0

ϕ;cj
;gj ×

Yn
k¼0

ϕ;dkϕ;hkϵa1b1…alblc1…cmd1…dnp1…pD−N
ϵe1f1…elflg1…gmh1…hnp1…pD−p ; ðA18Þ

where p ¼ 2lþmþ n. To exemplify this general recipe,
we can particularize for specific cases, for instance,

Lð010Þ ¼ Φa ∧ θ⋆a ¼
1

3!
ϕ;a

;eϵabcdϵ
ebcdη ¼ ½Φ�η; ðA19Þ

Lð100Þ ¼ Rab ∧ θ⋆ab ¼
1

2 · 2!
Rab

efϵabcdϵ
efcdη ¼ Rη;

ðA20Þ

Lð030Þ ¼ Φa ∧ Φb ∧ Φc ∧ θ⋆abc
¼ ϕ;a

;eϕ
;b
;fϕ

;c
;gϵabcdϵ

efgdη

¼ ð½Φ�3 − 3½Φ�½Φ2� þ 2½Φ3�Þη: ðA21Þ

APPENDIX B: GENERALIZATIONS

1. Higher-order Lagrangians

In this Appendix, we are going to present a generaliza-
tion of the basis of Lagrangians LðlmnÞ introduced in (5).
We are going to consider building blocks for our theory that
depend nonlinearly on the power of derivatives of the
fields. In particular, we are going to substitute our 1-form
encoding the second derivatives of the scalar Φa, given in
(4), by

ðΦnÞa ≡ Φn a
bθ

b; ðB1Þ

which contains any possible contraction of the field’s
second derivatives. Also, we are going to generalize the
first-derivative 1-form Ψa, defined in (3), to

ðΨmnÞa ≡ Φma
bϕ

;bϕ;cΦn
cdθ

d; ðB2Þ

where Φna
b can be found in (A15). With these new

building blocks and imposing invariance under local
Lorentz transformations, we can construct a generalized
version of LðlmnÞ (5) as

LðuvÞðlm1…mun1…nstÞ

¼ ⋀
l

i¼1

Raibi ∧ ⋀
u

r¼1

⋀
mr

jr¼1

ðΦrÞcjr ∧ ⋀
v

s¼1

⋀
s

t¼1

⋀
nst

kst¼1

ðΨstÞdkst

∧ θ⋆a1b1…alblc1…cmr…cmud1…dnst…dnvv
; ðB3Þ

which shares the same structure of (5) but including any
possible higher-order 1-form ðΦnÞa and ðΨmnÞa. The
difference is that, now, for maximum power u, we have
u possible building blocks ðΦmÞa appearingmu times each.

Also, for maximum power v, we have v2 possible building
blocks ðΨmnÞa appearing nst times each, where s; t < v.
In this more general framework, we can accommodate

the extended basis Lðl̄mnÞ and Lðlm̄nÞ presented in (27) and
(26), which were formed contracting with partial deriva-
tives of the scalar field, introducing ðΨ01Þa ¼ ϕ;aϕ;bΦbcθ

c.
The only terms that are not contained are those involving a
direct contraction of the curvature 2-form with gradients of
the scalar field.

2. Pontryagin forms

Here, we are going to show the terms that complete the
set of Lagrangians LðlmnÞ to give the most general basis
satisfying invariance under local Lorentz transformations in
a pseudo-Riemannian manifold and constructed with the
vielbein θa, the curvature 2-form Rab, Ψa, and Φa.
However, as we are going to argue, they are not very
interesting because they cannot give rise to second-
order e.o.m.
These extra terms appear by direct contraction of the

indices of the building blocks. They are the scalar-tensor
equivalent of the Pontryagin forms in Lovelock-Cartan
theories [47]. Since we cannot introduce the Hodge dual
basis θ⋆a1…ak , they must satisfy that p≡ 2lþmþ n ¼ D.
In four dimensions, we obtain that there are five possible
terms, labeled with an upper P from Pontryagin, but only
three are nonzero, i.e.

LP
1 ¼ Rab ∧ Rab; ðB4Þ

LP
2 ¼ Rab ∧ Φa ∧ Φb; ðB5Þ

LP
3 ¼ Rab ∧ Φa ∧ Ψb; ðB6Þ

LP
4 ¼ Φa ∧ Φb ∧ Φa ∧ Φb ¼ 0; ðB7Þ

LP
5 ¼ Φa ∧ Φb ∧ Φa ∧ Ψb ¼ 0; ðB8Þ

where we have used in the last two lines that
Φa ∧ Φa ¼ ∇a∇bϕ∇a∇cθ

b ∧ θc ¼ Φ2
bcθ

b ∧ θc ¼ 0,
which is a consequence of the symmetry of the indices of
Φm

ab. As a comment, one could notice that LP
1 ¼ Rab ∧

Rab is a topological term, since it does not depend on the
vielbein. In fact, it is the only topological term, apart from
the Gauss-Bonnet Lð200Þ ¼ Rab ∧ Rcd ∧ θ⋆abcd, character-
izing a pseudo-Riemannian manifold in four dimensions.
Due to the fact that we have computed the Euler-

Lagrange equations for a general LðlmnÞ, we can easily
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analyze the case of Pontryagin forms. As we have exten-
sively discussed in Sec. III, there are higher than two
derivatives terms associated with the variation of each
Lagrangian that must be canceled, in order to avoid
Ostrogradski instabilities. The case under study now is
similar to case studied in which p ¼ 4, where we found two
viable combinations LNH

5 and LNH
6 , given in (97) and (98).

However, there is an important difference now. Two of the
Lagrangians with p ¼ 4 are identically zero, i.e. (B7) and
(B8). Consequently, they cannot be used to erase the higher
derivative of the other terms. In conclusion, there cannot be
constructed Lagrangians with second-order e.o.m. out of
the Pontryagin forms.

APPENDIX C: EXPLICIT COMPUTATIONS

1. Contracted Lagrangians in four dimensions

In this Appendix, we present the explicit component
expression for the contracted Lagrangians arising from
Lðl̄mnÞ, (26), and Lðlm̄nÞ, (27), in four dimensions. We find:

(i) p ¼ 1:

Lð01̄0Þ ¼ ϕ;aΦa ∧ θ⋆bϕ;b ¼ hΦiη ðC1Þ

Lð001̄Þ ¼ϕ;aΨa∧θ⋆bϕ;b¼ð−2XÞΨa∧θ⋆a¼4X2η:

ðC2Þ

(ii) p ¼ 2:

Lð1̄00Þ ¼ ϕ;aRab ∧ θ⋆cbϕ;c ¼ hRabiη ðC3Þ

Lð02̄0Þ ¼ ϕ;aΦa ∧ Φb ∧ θ⋆cbϕ;c ¼ ðhΦi½Φ� − hΦ2iÞη
ðC4Þ

Lð01̄1Þ ¼ ϕ;aΦa ∧ Ψb ∧ θ⋆cbϕ;c ¼ 0 ðC5Þ

Lð011̄Þ ¼ ϕ;bΦa ∧ Ψb ∧ θ⋆caϕ;c

¼ ð−2XÞΦa ∧ Ψb ∧ θ⋆ab: ðC6Þ

(iii) p ¼ 3:

Lð1̄10Þ ¼ ϕ;aRab ∧ Φc ∧ θ⋆dbcϕ;d ¼ ðhRabi½Φ� − hRabΦbci − hRabcdΦbdiÞη ðC7Þ

Lð11̄0Þ ¼ ϕ;cRab ∧ Φc ∧ θ⋆dabϕ;d ¼ ðRhΦi − 2hRabΦbciÞη ðC8Þ

Lð1̄01Þ ¼ ϕ;aRab ∧ Ψc ∧ θ⋆dbcϕ;d ¼ 0 ðC9Þ

Lð101̄Þ ¼ ϕ;cRab ∧ Ψc ∧ θ⋆dabϕ;d ¼ ð−2XÞRab ∧ Ψc ∧ θ⋆abc ðC10Þ

Lð03̄0Þ ¼ ϕ;aΦa ∧ Φb ∧ Φc ∧ θ⋆dbcϕ;d ¼ ð2hΦ3i − 2hΦ2i½Φ� þ hΦið½Φ�2 − ½Φ2�ÞÞη ðC11Þ

Lð02̄1Þ ¼ ϕ;aΦa ∧ Φb ∧ Ψc ∧ θ⋆dbcϕ;d ¼ 0 ðC12Þ

Lð021̄Þ ¼ ϕ;cΦa ∧ Φb ∧ Ψc ∧ θ⋆dabϕ;d ¼ ð−2XÞΦa ∧ Φb ∧ Ψc ∧ θ⋆abc: ðC13Þ

(iv) p ¼ 4:

Lð2̄00Þ ¼ ϕ;aRab ∧ Rcd ∧ θ⋆ebcdϕ;e ¼ ðhRabcdRebcdi − 2hRabRbci − 2hRabcdRbdi þ hRabiRÞη ðC14Þ

Lð1̄20Þ ¼ ϕ;aRab ∧ Φc ∧ Φd ∧ θ⋆ebcdϕ;e

¼ 2ðhRabið½Φ�2 − ½Φ2�Þ − 2½Φ�ðhRabΦbci þ hRabcdΦbdiÞ þ 2ðhRabΦ2
bci þ hRabcdΦ2

bdi þ hRabcdΦbdΦeciÞÞη
ðC15Þ

Lð12̄0Þ ¼ ϕ;cRab ∧ Φc ∧ Φd ∧ θ⋆eabdϕ;e

¼ ðRðhΦi½Φ� − hΦ2iÞ − 2ðhRabΦbci½Φ� þ hΦi½RΦ�Þ þ 2ðhRabΦ2
bci þ hΦabRbcΦcdi þ hRabcdΦbdΦeciÞÞη

ðC16Þ
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Lð1̄11Þ ¼ ϕ;aRab ∧ Φc ∧ Ψd ∧ θ⋆ebcdϕ;e ¼ 0 ðC17Þ

Lð11̄1Þ ¼ ϕ;cRab ∧ Φc ∧ Ψd ∧ θ⋆eabdϕ;e ¼ 0 ðC18Þ

Lð111̄Þ ¼ ϕ;dRab ∧ Φc ∧ Ψd ∧ θ⋆eabcϕ;e ¼ ð−2XÞRab ∧ Φc ∧ Ψd ∧ θ⋆abcd ðC19Þ

Lð04̄0Þ ¼ ϕ;aΦa ∧ Φb ∧ Φc ∧ Φd ∧ θ⋆ebcdϕ;e

¼ ð6hΦ4i − 6hΦ3i½Φ� þ 3hΦ2i½Φ�2 − hΦi½Φ�3 − 3hΦ2i½Φ2� þ 3hΦi½Φ�½Φ2� − 2hΦi½Φ3�Þη ðC20Þ

Lð03̄1Þ ¼ ϕ;aΦa ∧ Φb ∧ Φc ∧ Ψd ∧ θ⋆ebcdϕ;e ¼ 0 ðC21Þ

Lð031̄Þ ¼ ϕ;dΦa ∧ Φb ∧ Φc ∧ Ψd ∧ θ⋆abceϕ;e ¼ ð−2XÞΦa ∧ Φb ∧ Φc ∧ Ψd ∧ θ⋆abcd: ðC22Þ

As it is clear in the above results, any ðl̄m1Þ or ðlm̄1Þ term is zero since we are contracting two equal vectors with an
antisymmetric tensor (it is the same argument that limits n to be zero or 1). In addition, the terms of the form ðlm1̄Þ do not
introduce new structures since they are equal to ðlm1Þ with an extra ð−2XÞ factor in front. In total, there are only ten
independent Lagrangians.

2. Scalar equations of motion in four dimensions

We continue the calculation presented in Sec. III, for the scalar e.o.m.:
(iv) p ¼ 3:

When n ¼ 0, we have two different contributions, G5Lð110Þ ¼ G5 ∧ Rab ∧ Φc ∧ θ⋆abc and F5Lð030Þ ¼
F5 ∧ Φa ∧ Φb ∧ Φc ∧ θ⋆abc. We proceed as before and analyze each term separately. First, we have

ðC23Þ

Using the commutation of covariant derivatives (29), we can eliminate the unwanted contribution of the higher-
derivative terms, underlined with a dashed line. Also, we can see that the second term of the last line is identically
zero due to Bianchi’s identity and the antisymmetry of its indices. The only remaining higher-order term is
underlined with a solid line.
Then, we have

ðC24Þ

Doing a similar analysis as before, we can see that the dashed underlined terms add up in the appropriate way.
Moreover, the third terms of both the fourth and last line are well behaved due to the antisymmetry of their indices.
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Finally, we are left again with only one higher-order contribution, i.e. the solid underlined term. Remarkably, we can
eliminate the higher terms of (C23) and (C24) by applying the Bianchi identity (30). We obtain that this cancellation
occurs if F5 ¼ 1

3
G5;X. As in all the previous cases, we also must to impose G5 ¼ G5ðϕ; XÞ to avoid higher than

second-order terms in the e.o.m. Doing so, we obtain the Lagrangian presented in Eq. (45).
When n ¼ 1, we also have two different contributions, E4Lð101Þ ¼ E4 ∧ Rab ∧ Ψc ∧ θ⋆abc and H4Lð021Þ ¼

H4 ∧ Φa ∧ Φb ∧ Ψc ∧ θ⋆abc. We continue similarly to previous cases and investigate term by term. First, we have

δðE4Lð101ÞÞ ¼ δE4 ∧ Rab ∧ Ψc ∧ θ⋆abc þ E4 ∧ Rab ∧ δΨc ∧ θ⋆abc
¼ δϕ ∧ ðE4;ϕ ∧ Rab ∧ Ψc ∧ θ⋆abc þ∇zðE4;X∇zϕ ∧ ΨcÞ ∧ Rab ∧ θ⋆abcÞ
þ δϕ ∧ E4;X∇zϕ ∧ ∇zRab ∧ Ψc ∧ θ⋆abc
− δϕ ∧ ð∇aðE4Dϕ ∧ RbcÞ þDðE4∇aϕ ∧ RbcÞÞ ∧ θ⋆abc þOðE4;½Φ�Þ: ðC25Þ

In this expression, the only higher-order term is underlined with a solid line. Then, we have

ðC26Þ

Similarly to previous cases, after applying the commutator of covariant derivatives (29), we are left with only one
higher-order contribution. We can eliminate the higher terms of (C25) and (C26) by applying the Bianchi identity
(30). We obtain that this cancellation occurs if H4 ¼ E4;X. As in all the previous cases, we also must to impose
E4 ¼ E4ðϕ; XÞ to avoid higher than second-order terms in the e.o.m. Thus, we obtain the Lagrangian presented
in Eq. (46).

(v) p ¼ 4:
In this last case, we find five different Lagrangians: E5Lð111Þ ¼ E5 ∧ Rab ∧ Φc ∧ Ψd ∧ θ⋆abcd, H5Lð031Þ ¼

H5 ∧ Φa ∧ Φb ∧ Φc ∧ Ψd ∧ θ⋆abcd, E6Lð200Þ¼E6∧Rab∧Rcd∧θ⋆abcd, E7Lð120Þ¼E7∧Rab∧Φc∧Φd∧θ⋆abcd,
and H6Lð040Þ ¼ H6 ∧ Φa ∧ Φb ∧ Φc ∧ Φd ∧ θ⋆abcd. As usual, we investigate them one by one.
The first Lagrangian yields

ðC27Þ

The second one gives
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ðC28Þ

Applying the same analysis as in previous cases, and settingH5 ¼ 1
3
E5;X, we obtain a Lagrangian with second-order

e.o.m. This Lagrangian was already presented in (47).
Continuing with the e.o.m., we analyze the third term. It corresponds to the Gauss-Bonnet Lagrangian, which only

depends on ϕ through its coefficient E6. Thus, we find

δðE6Lð200ÞÞ ¼ δE6 ∧ Rab ∧ Rcd ∧ θ⋆abcd
¼ δϕ ∧ ððE6;ϕ þ∇zðE6;X∇zϕÞÞ ∧ Rab þ 2E6;X∇zϕ ∧ ∇zRabÞ ∧ Rcd ∧ θ⋆abcd þOðE6;½Φ�Þ: ðC29Þ

The fourth one will be very similar to (C24). We obtain

ðC30Þ

Finally, the last possibility becomes

ðC31Þ

Then, again, in order to cancel the higher-derivative underlined terms, we must chooseH6 ¼ 1
6
E7;X and E7 ¼ 2E6;X.

In that case, we obtain the Lagrangian (48).

3. Exact forms in four dimensions

Here, we present the detailed computation of the exact forms in four dimensions We classify the possible terms as before,
depending on the number of fields, p ¼ 2lþmþ n. We obtain:
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(i) p ¼ 0:

DLD−1
ð000Þ ¼ DðG2 ∧ θ⋆a∇aϕÞ

¼ ðG2;ϕ ∧ Dϕ −G2;X∇αϕ ∧ ΦαÞ ∧ θ⋆a∇aϕþG2 ∧ Φa ∧ θ⋆a
¼ G2;ϕ ∧ Ψa ∧ θ⋆a −G2;X∇αϕ ∧ Φα ∧ θ⋆a∇aϕþ G2 ∧ Φa ∧ θ⋆a
¼ G2;ϕLð001Þ −G2;XLð01̄0Þ þG2Lð010Þ; ðC32Þ

(ii) p ¼ 1:

DLD−1
ð010Þ ¼ DðG3 ∧ Φa ∧ θ⋆ba∇bϕÞ

¼ G3;ϕ ∧ Ψb ∧ Φa ∧ θ⋆ba −G3;X∇αϕ ∧ Φα ∧ Φa ∧ θ⋆ba∇bϕþ G3 ∧ Raα∇αϕ ∧ θ⋆ba∇bϕ

− G3Φa ∧ Φb ∧ θ⋆ba
¼ G3;ϕLð011Þ − G3;XLð02̄0Þ þ G3ðLð020Þ − Lð1̄00ÞÞ; ðC33Þ

(iii) p ¼ 2:

DLD−1
ð100Þ ¼ DðG4 ∧ Rab ∧ θ⋆abc∇cϕÞ

¼ G4;ϕ ∧ Ψc ∧ Rab ∧ θ⋆abc −G4;X∇αϕ ∧ Φα ∧ Rab ∧ θ⋆abc∇cϕþ G4 ∧ Rab ∧ Φc ∧ θ⋆abc
¼ G4;ϕLð101Þ −G4;XLð11̄0Þ þG4Lð110Þ ðC34Þ

DLD−1
ð020Þ ¼ DðF4 ∧ Φa ∧ Φb ∧ θ⋆abc∇cϕÞ

¼ F4;ϕ ∧ Ψc ∧ Φa ∧ Φb ∧ θ⋆abc − F4;X∇αϕ ∧ Φα ∧ Φa ∧ Φb ∧ θ⋆abc∇cϕ

þ 2F4 ∧ Raα∇αϕ ∧ Φb ∧ θ⋆abc∇cϕþ F4Φa ∧ Φb ∧ Φc ∧ θ⋆abc
¼ F4;ϕLð021Þ − F4;XLð03̄0Þ þ F4ðLð030Þ − 2Lð1̄10ÞÞ; ðC35Þ

(iv) p ¼ 3:

DLD−1
ð110Þ ¼ DðG5 ∧ Rab ∧ Φc ∧ θ⋆dabc∇dϕÞ

¼ G5;ϕ ∧ Ψd ∧ Rab ∧ Φc ∧ θ⋆dabc −G5;X∇αϕ ∧ Φα ∧ Rab ∧ Φc ∧ θ⋆dabc∇dϕ

þ G5 ∧ Rab ∧ Rcα∇αϕ ∧ θ⋆dabc∇dϕ −G5 ∧ Rab ∧ Φc ∧ Φd ∧ θ⋆dabc
¼ G5;ϕLð111Þ −G5;XLð12̄0Þ þ G5ðLð120Þ − Lð2̄00ÞÞ ðC36Þ

DLD−1
ð030Þ ¼ DðF5 ∧ Φa ∧ Φb ∧ Φc ∧ θ⋆abcd∇dϕÞ

¼ F5;ϕ ∧ Ψd ∧ Φa ∧ Φb ∧ Φc ∧ θ⋆abcd − F5;X∇αϕ ∧ Φα ∧ Φa ∧ Φb ∧ Φc ∧ θ⋆abcd∇dϕ

þ 3F5 ∧ Raα∇αϕ ∧ Φb ∧ Φc ∧ θ⋆abcd∇dϕ − F5 ∧ Φa ∧ Φb ∧ Φc ∧ Φd ∧ θ⋆abcd
¼ F5;ϕLð031Þ − F5;XLð04̄0Þ þ F5ðLð040Þ − 3Lð1̄20ÞÞ: ðC37Þ

Altogether, the above expressions represent six constraints in the basis of scalar-tensor Lagrangians. A graphical
representation of them can be found in Fig. 1.
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