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In this work, we investigate localized and extended objects for gravitating, self-interacting phantom
fields. The phantom fields come from two scalar fields with a “wrong-sign” (negative) kinetic energy term
in the Lagrangian. This study covers several solutions supported by these phantom fields: phantom balls,
traversable wormholes, phantom cosmic strings, and “phantom” domain walls. These four systems are
solved numerically, and we try to draw out general, interesting features in each case.
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I. INTRODUCTION

The current astronomical and cosmological observa-
tions indicate that the Universe is in an epoch of
accelerated expansion. The source of this acceleration,
dubbed dark energy (DE), is now under active inves-
tigation (for a review, see the book [1] and references
therein). One of the distinctive properties of DE is its
large negative pressure, which is comparable in magni-
tude to its energy density. To model DE, various
approaches are employed, from the simplest ΛCDM
model, where the DE energy density comes from a
cosmological constant which does not change during
the evolution of the Universe, to modified and multidi-
mensional theories of gravity.

One of the most popular ways to describe DE is through
models with various scalar fields. For such fields, one can
introduce some effective equation of state p ¼ wε, relating
the pressure of the fields (i.e., p) with the energy density of
the fields (i.e., ε). It then becomes possible to subdivide all
such fields into two large classes: nonphantom fields, for
which w > −1 (for instance, quintessence scalar fields),
and phantom fields, for which the equation-of-state param-
eter w is less than −1. The recent observational estimates
give w ¼ −1.10� 0.14ð1σÞ [2] and w ¼ −1.069þ0.091

−0.092 [3];
i.e., the possibility is not excluded that some of the matter
filling the Universe acts as phantom matter.
When describing the accelerated expansion of the

Universe, it is usually assumed that DE is distributed
homogeneously and isotropically on the largest scales.
This, however, does not exclude a possibility that DE may
cluster on relatively small scales comparable to sizes of
galaxies or even of stars where one might expect an
interesting interplay between the normal tendency of
gravity to pull matter together versus the tendency of
DE to act repulsively. For these cases, one could form
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compact objects, dubbed DE stars, both with a trivial and
with a nontrivial topology of the associated spacetime [4].
In particular, if these types of objects contain phantom
scalar fields one can construct localized solutions that can
be used in describing configurations both with a trivial
(starlike) [5] and with a nontrivial (wormholelike) space-
time topologies [6].
Apart from the aforementioned star- and wormholelike

spherically symmetric configurations, one can consider
extended objects supported by scalar fields but having
symmetries other than spherical. One can look for cylin-
drically symmetric cosmic strings. Cosmic strings are
extended configurations which could form in the early
Universe at phase transitions associated with spontaneous
symmetry breaking [7]. Different types of cosmic strings
have been considered in the literature (see, e.g., Ref. [8]).
Of particular interest to the phantom cosmic strings found
in this paper are cosmic strings constructed from various
types of scalar fields [9,10], including models with two
interacting scalar fields [11].
Another category of extended objects are planar

symmetric domain walls which are topological defects
arising in both particle physics and cosmology (see, e.g.,
Refs. [8,12] and references therein). They separate a
spacetime into several domains along a single coordinate.
The domain walls we find here arise from regions with fast
spatial variation of the scalar fields. Depending on the
behavior of the field near the wall, solutions describing
such objects can be subdivided into thin-wall solutions
(see, e.g., [13]), for which the scalar-field energy density
can be replaced by the delta function, and thick-wall
solutions [14].
It is clear that the characteristics of the aforementioned

compact and extended objects will depend on the specific
type of fields employed in their modeling. In the present
paper, we consider all four types of configurations (domain
walls, boson “stars”, wormholes, cosmic strings) con-
structed from two interacting phantom scalar fields. One
caveat in regards to the “star” solutions of the present work
is that they have masses on the order of the Planck mass—
they are not objects with a stellar mass. For this reason, the
spherically symmetric solutions that we find in this work
are called phantom balls. The systems with two ordinary
scalar fields are well known from quantum field theory,
where they are used to obtain solitary wave solutions [15].
When a gravitational field is present, such systems have
also been repeatedly considered in the cosmological and
astrophysical contexts (see Ref. [16]). In our previous
works, we have obtained a number of solutions with two
scalar fields (both normal scalar fields and phantom scalar
fields) which can be employed to describe astrophysical
objects and also when considering cosmological solutions.
We have considered regular spherically and cylindrically
symmetric solutions [17–19], cosmological solutions
[20,21], and thick brane solutions supported by normal

and ghost scalar fields [22]. Here we will extend those
studies.

II. GENERAL EQUATIONS

In the simplest case, a phantom scalar field can be
introduced by changing the sign of the kinetic term in
the Lagrangian. Consistent with this, we choose the
Lagrangian for two scalar fields ϕ, χ as in Ref. [18],

L ¼ −
R

16πG
−
�
1

2
∂μϕ∂μϕþ 1

2
∂μχ∂μχ − Vðϕ; χÞ

�
; ð1Þ

where R is the scalar curvature, G is the Newtonian
gravitational constant. We have designated the two scalar
fields in (1) as phantom fields due to fact that we have taken
their kinetic terms (i.e.,− 1

2
∂μϕ∂μϕ and− 1

2
∂μχ∂μχ) to have

the “wrong” sign (i.e., a −sign) rather than a the “correct”
sign (i.e., a þsign). More precisely, though, phantom fields
require that the equation of state parameter w1 should
satisfy w < −1. Putting a − in front of the scalar field
kinetic energy term can give w < −1, as in the original
work on phantom fields by Caldwell [23], but this is not
necessarily true. We will find that for most of our systems
that our scalar fields are phantom (i.e., w < −1) for some
range of coordinates, but will be nonphantom (i.e.,
w > −1) for other ranges of coordinates. The correspond-
ing energy-momentum tensor will then be

Tν
μ ¼ −

�
∂μϕ∂νϕþ ∂μχ∂νχ

− δνμ

�
1

2
∂μϕ∂μϕþ 1

2
∂μχ∂μχ − Vðϕ; χÞ

��
: ð2Þ

Since T0
0 ¼ ρ and Ti

i ¼ −p, we can use (2) to calculate the

equation of state parameter w ¼ p
ρ ¼ − Ti

i

T0
0

. As mentioned

above, we will find (for three of the four systems studied)
that the w < −1 for some range of spatial coordinates while
being w > −1 for other ranges. Thus, the scalar fields, ϕ, χ
are partially phantom fields in that they satisfy w < −1 for
some range of coordinates, but do not give w < −1
everywhere, and variation of the Lagrangian (1) gives
the Einstein and scalar field equations in the form

Gν
μ ¼ κTν

μ; ð3Þ

1ffiffiffiffiffiffi−gp ∂
∂xμ

� ffiffiffiffiffiffi
−g

p
gμν

∂ðϕ; χÞ
∂xν

�
¼ −

∂V
∂ðϕ; χÞ ; ð4Þ

where κ ¼ 8πG. Below we will consider only static
problems, for which Eqs. (3)–(4) give the system of

1The equation of state parameter is the ratio of the pressure to
the energy density of the field or fluid, namely, w≡ p

ρ.
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ordinary nonlinear differential equations with the potential
energy

Vðϕ; χÞ ¼ λ1
4
ðϕ2 −m2

1Þ2 þ
λ2
4
ðχ2 −m2

2Þ2 þ ϕ2χ2 − V0:

ð5Þ
Here m1 and m2 are the masses of the scalar fields, λ1, λ2
are the coupling constants, and V0 is some constant whose
value will be given for each of the four types of solutions
considered below. Our previous investigations of such kind
of systems [17–22] indicate that regular solutions of the
system (3)–(4) with the potential (5) do exist only for
certain eigenvalues of the parameters m1, m2. We will find
the same result here—that only certain values of m1, m2

lead to regular solutions.
In the following four sections, we will present the details

of the four different kind of phantom field solutions—
planar “phantom” domain wall, spherically symmetric
phantom ball, phantom wormhole and cylindrical phantom
cosmic string. Many of the comments concerning the
physical viability of these various solutions (or not) we
will save for the concluding section.

III. “PHANTOM” DOMAIN WALLS

We begin by studying the simplest extended solution
supported by two phantom scalar fields—the domain wall.
The reason for the scare quotes around “phantom” in the
section heading is due to the fact that, although our two
scalar fields have the wrong sign in front of their kinetic
energy terms, the equation of state parameter for these
domain walls will never be less then −1 as we show at the
end of this section. Since domain walls have planar
symmetry, we choose the metric in the following form:

ds2 ¼ a2ðxÞðdt2 − dy2 − dz2Þ − dx2: ð6Þ
The metric function aðxÞ depends on the coordinate x only.
This metric describes a two-dimensional domain wall
embedded in a (3þ 1)-dimensional spacetime. Using
Eqs. (2), (3), and (4), one can derive the following
Einstein and scalar field equations:

3

�
a0

a

�
2

¼ −
1

2
ðϕ02 þ χ02Þ þ V; ð7Þ

a00

a
−
�
a0

a

�
2

¼ 1

2
ðϕ02 þ χ02Þ; ð8Þ

ϕ00 þ 3
a0

a
ϕ0 ¼ ϕ½2χ2 þ λ1ðϕ2 −m2

1Þ�; ð9Þ

χ00 þ 3
a0

a
χ0 ¼ χ½2ϕ2 þ λ2ðχ2 −m2

2Þ�: ð10Þ

Here we have absorbed κ via the following rescaling:
x=

ffiffiffi
κ

p
→ x, ϕ

ffiffiffi
κ

p
→ ϕ, χ

ffiffiffi
κ

p
→ χ, and m1;2

ffiffiffi
κ

p
→ m1;2. The

primes denote differentiation with respect to x. Looking at
(7) and (8), one can see that these are essentially the
Friedman equations but with the role of space and time
coordinates exchanged (i.e., t ↔ x). The constant from the
potential (5) is chosen to be

V0 ¼
λ1
4
½ϕ2ð0Þ −m2

1�2 þ
λ2
4
½χ2ð0Þ −m2

2�2 þ ϕ2ð0Þχ2ð0Þ;
ð11Þ

where the initial values, ϕð0Þ and χð0Þ, are given below.
From (7) one can see that this choice for V0 ensures that
a0ð0Þ ¼ 0. From (2) and for the metric in (6), the energy
density is

T0
0 ¼ −

ϕ02 þ χ02

2
− Vðϕ; χÞ: ð12Þ

We choose the boundary conditions at x ¼ 0 in the
following form:

ϕð0Þ ¼
ffiffiffi
3

p
; ϕ0ð0Þ ¼ 0;

χð0Þ ¼ 0.4; 0.6; 0.8; 1.1; 1.3 χ0ð0Þ ¼ 0;

að0Þ ¼ 1.0: ð13Þ

Following the procedure for finding solutions of
Refs. [18,20], we found the masses m1;2 presented in
Table I.
The results of numerical calculations for the scalar fields

are given in Figs. 1 and 2; for the metric functions aðxÞ, see
Fig. 3, and for the energy density T0

0, see Fig. 4.
Let us estimate an asymptotic behavior of the solutions.

One can see from Eq. (8) that the right-hand side goes
asymptotically to zero, and the solution of this equation is

aðxÞ ≈ a0eαx; ð14Þ

where a0 and α are integration constants. This solution
corresponds to an anti–de Sitter-like solution for the spatial

TABLE I. The eigenvalues m1;2 versus χð0Þ with ϕð0Þ ¼ ffiffiffi
3

p
for domain walls. The coupling constants are

λ1 ¼ 0.1 and λ2 ¼ 1.

χð0Þ 0.4 0.6 0.8 1.1 1.3

m1 2.143597496 2.406090154 2.58469019 2.660693093 2.614816239
m2 2.64382729 2.796605957 2.98694478 3.348871789 3.655616217
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variable x. Then, using (14) we look for the asymptotic
form of the scalar fields from Eqs. (9)–(10). Asymptotically
we find that ϕ approaches m1 and χ approaches zero so we
write the field ϕ as ϕ ≈m1 − δϕ where δϕ ≪ 1 as
x → �∞. In this way, we obtain from Eqs. (9)–(10) the
asymptotic equations for δφ and χ:

δϕ00 þ 3αδϕ0 ≈ 2λ1m2
1δϕ; ð15Þ

χ00 þ 3αχ0 ≈ ð2m2
1 − λ2m2

2Þχ: ð16Þ

The damping solutions to these equations are

δϕ ≈ Cϕ exp

�
−
x
2
ð3αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α2 þ 8λ1m2

1

q
Þ
�
; ð17Þ

χ ≈ Cχ exp

�
−
x
2
ð3αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α2 þ 4ð2m2

1 − λ2m2
2Þ

q
Þ
�
; ð18Þ

where Cϕ, Cχ are integration constants. So we have
solutions that tend asymptotically to the local minimum
of the potential (5) at φ ¼ m1 and χ ¼ 0. Note that with this
asymptotic form of the scalar fields and for the choice of
potential constant V0 from (11) asymptotically T0

0 < 0 as
seen in Fig. 4. Actually T0

0 < 0 for the entire range of x.
While potentially unphysical, this negative energy density
is not unexpected since in the case of some other types of
planar solution [24], one also finds T0

0 < 0.
Finally, in Fig. 5, we have given the equation of state

parameter which is the ratio of the pressure to energy

density of the field, namely, w ¼ px
ρ ¼ − T1

1

T0
0

where px ¼
−T1

1 ¼ −ðϕ02þχ02
2

− VÞ and ρ ¼ T0
0 ¼ − ϕ02þχ02

2
− V. The sub-

script x indicates this is the pressure in the x direction. The
different components of the scalar field energy-momentum
tensor are calculated via (2). There are also equation of state
parameters for the two directions perpendicular to x which
are determined via the pressures, −T2

2 and −T3
3. Since we

only assumed x dependence, these two perpendicular

FIG. 1. The scalar fields ϕðxÞ for the domain walls. In
Figs. 1–4, the solid curve corresponds to χð0Þ ¼ 1.3, the dotted
curve corresponds to χð0Þ ¼ 1.1, the dashed-dotted corresponds
to χð0Þ ¼ 0.8, the dashed curve corresponds to χð0Þ ¼ 0.6, and
the dash-double dotted curve corresponds to χð0Þ ¼ 0.4.

FIG. 2. The scalar fields χðxÞ for the domain walls.

FIG. 3. The functions a0ðxÞ=aðxÞ for the domain walls.

FIG. 4. The energy densities T0
0ðxÞ for the domain walls.

FIG. 5. The x-direction equation of state for the domain wall,
w ¼ pxðxÞ=ϵðxÞ.
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equation of state parameters are identically equal to −1, i.e.,
− T2

2

T0
0

¼ − T3
3

T0
0

¼ −1. In contrast, the radial equation of state

parameter, w ¼ − T1
1

T0
0

, has more interesting behavior as

shown in Fig. 5—it starts at w ¼ 0 at x ¼ 0 and asymp-
totically approaches−1. Thus, for this case, the scalar fields
are not phantom fields since w ≥ −1 for all x. Thus, one
cannot call these phantom domain walls. This is the reason
for the scare quotes in the section heading.

IV. PHANTOM BALL

In looking for spherically symmetric solutions of the
above system of gravity plus two phantom scalar fields,
with the requirement of trivial topology, we find that unlike
our previous study [5] there are no boson star solutions. We
do find spherically symmetric solution but the “mass” is of
the order of the Planck mass rather than of astrophysical
scale. Furthermore the mass of these solutions (obtained by
integrating their energy density) leads to negative masses,
making the physical use of these solutions extremely
questionable. In our previous study, we assumed spheri-
cally symmetric solutions supported by one (complex)
scalar field. Here we consider such spherically symmetric
configurations created by two real phantom scalar fields.
To do so, let us choose the metric in Schwarzschild

coordinates:

ds2 ¼ BðrÞdt2 − AðrÞdr2 − r2ðdθ2 þ sin2θdφ2Þ: ð19Þ

Then the Einstein equations (3) and the scalar field
equations (4) will be

1

r
A0

A2
þ 1

r2

�
1 −

1

A

�
¼ −

1

2A
ðϕ02 þ χ02Þ − Vðϕ; χÞ; ð20Þ

1

r
B0

AB
−

1

r2

�
1 −

1

A

�
¼ −

1

2A
ðϕ02 þ χ02Þ þ Vðϕ; χÞ; ð21Þ

B00

B
−
1

2

�
B0

B

�
2

−
1

2

A0

A
B0

B
−
1

r

�
A0

A
−
B0

B

�

¼ 2A
�
1

2A
ðϕ02 þ χ02Þ þ Vðϕ; χÞ

�
; ð22Þ

ϕ00 þ
�
2

r
þ B0

2B
−

A0

2A

�
ϕ0 ¼ Aϕ½2χ2 þ λ1ðϕ2 −m2

1Þ�; ð23Þ

χ00 þ
�
2

r
þ B0

2B
−

A0

2A

�
χ0 ¼ Aχ½2ϕ2 þ λ2ðχ2 −m2

2Þ�: ð24Þ

In order to numerically solve the above system of coupled
equations, we have introduced dimensionless variables via
the following definitions: r=

ffiffiffi
κ

p
→ r, ϕ

ffiffiffi
κ

p
→ ϕ, χ

ffiffiffi
κ

p
→ χ,

andm1;2
ffiffiffi
κ

p
→ m1;2. The primes denote differentiation with

respect to the rescaled r. Since from the solutions below we

find that the asymptotic values of the scalar fields are ϕ ¼
m1 and χ ¼ 0 we pick the constant in the potential (5) as
V0 ¼ ð1=4Þλ2m4

2. This has results in the energy density
being equal zero as r → ∞. Equation (22) is a consequence
of Eqs. (20) and (21), so we only have to solve the latter two
equations for the metric functions AðrÞ, BðrÞ.
Using Eqs. (20)–(24), one can find the following

asymptotic behavior of the metric functions AðrÞ, BðrÞ
and phantom scalar fields ϕ, χ:

A ≈ 1 −
r0
r
; ð25Þ

B ≈ B∞

	
1þ r0

r



; ð26Þ

ϕ ≈m1 − Cϕ
exp ð−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ1m2

1

p
rÞ

r
; ð27Þ

χ ≈ Cχ
exp ð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m2

1 − λ2m2
2Þ

p
rÞ

r
; ð28Þ

where r0 and B∞ are constants; Cϕ, Cχ are integration
constants. In effect, r0 defines the total mass of the system
and B∞—the rate of flow of time at infinity. By rescaling
the time variable t, we can provide B∞ ¼ 1 as r → ∞, i.e.,
asymptotically we have flat Minkowski spacetime.
Here we expand on the studies of the spherically

symmetric solutions performed in Ref. [18]. For this
purpose, we will consider the properties of solutions
depending on the central value of the scalar field χ0.
The boundary conditions at r ¼ 0, for starting our numeri-
cal integration, are taken in the form:

ϕð0Þ ¼ 0.5; ϕ0ð0Þ ¼ 0;

χð0Þ ¼ 0.2; 0.5; 0.8; 1.0; 1.2; χ0ð0Þ ¼ 0;

Að0Þ ¼ 1.0; Bð0Þ ¼ 1.0: ð29Þ

Since (20) and (21) are first order in the derivative we only
need Að0Þ, Bð0Þ. Recall that (22) is redundant so in
numerically solving the coupled system we only use
(20), (21), (23), and (24). For a given value of χð0Þ there
are only certain values of m1, m2 which lead to regular
solutions. These values of m1, m2 are found via the
procedure described in [18,20]. The masses m1;2 which
yield regular solutions are shown in Table II as a function of
χð0Þ. One may think of m1, m2 as eigenvalues.

TABLE II. The eigenvalues m1;2 versus χð0Þ with ϕð0Þ ¼ 0.5
for phantom ball solutions. The coupling constants are taken as
λ1 ¼ 0.1, λ2 ¼ 1.

χð0Þ 0.2 0.5 0.8 1. 1.2

m1 0.64929 0.941025 1.26 1.4882 1.73298
m2 0.86731 1.14404 1.42583 1.61421 1.80206
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The results of the numerical calculations for the scalar
fields are presented in Figs. 6 and 7; for the metric functions
AðrÞ, BðrÞ, see Figs. 8 and 9, and for the energy density T0

0,
see Fig. 10.
In Fig. 11, we have plotted the radial equation of state

parameter, w ¼ pr
ρ ¼ − T1

1

T0
0

, for the phantom ball. As was the

case with the domain wall, the equation of state parameters

for the two perpendicular directions (i.e., w ¼ pθ
ρ ¼ − T2

2

T0
0

and w ¼ pφ

ρ ¼ − T3
3

T0
0

) are identically equal to −1. The

divergence of w seen in Fig. 11 comes from the places
where T0

0 → 0 as can be seen in Fig. 10.
From the equation of state parameter in Fig. 11, we find

that for some range of r near the origin the two scalar fields
are phantom fields with w < −1, but for r → ∞ the scalar
fields have less exotic equations of state and for some
parameters go to the dust equation of state w ¼ 0. It is
because of the phantom behavior near r ¼ 0 that we call
these solutions “phantom ball” solutions. To further exam-
ine the physical character of these solutions, we turn to their
total mass. We begin by defining the dimensionless mass of
a phantom ball as

FIG. 6. The scalar fields ϕðrÞ for the phantom ball. In
Figs. 6–12, the solid curve corresponds to χð0Þ ¼ 1.2, the dashed
curve corresponds to χð0Þ ¼ 1.0, the dashed-dotted corresponds
to χð0Þ ¼ 0.8, the dotted curve corresponds to χð0Þ ¼ 0.5, and
the dash-double dotted curve corresponds to χð0Þ ¼ 0.2.

FIG. 7. The scalar fields χðrÞ for the phantom ball.

FIG. 8. The metric functions AðrÞ for the phantom ball.

FIG. 9. The metric functions BðrÞ for the phantom ball.

FIG. 10. The energy density profiles for the phantom ball.

FIG. 11. The radial equation of state for the phantom ball
w ¼ prðrÞ=ϵðrÞ.
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mpb ¼ 4π

Z∞

0

r2
ffiffiffiffiffiffiffiffiffi
AðrÞ

p
ϵpbdr; ð30Þ

ϵpb ≡ T0
0 ¼ −

ϕ02 þ χ02

2A
− Vðϕ; χÞ; ð31Þ

where ϵpb is the total energy density. This corresponds to
the proper mass of the system [25] which is the Newtonian
mass of the system (i.e., 4π

R
∞
0 r2ϵpbdr) plus the binding

energy. The profile of mpb as a function of ϕð0Þ for χð0Þ ¼
0.5 is presented in Fig. 12. The values of ϕð0Þ are
ϕð0Þ ¼ 0.2; 0.5; 0.8; 1.; 1.2; 1.5; 1.7; 2.5; 5; 10. For each
different ϕð0Þ we needed to calculate the associated masses
m1, m2. The main thing to note is that mpb < 0 which
makes the physical use of these solutions questionable.
Also, taking into account the rescaling that was performed
on the coordinates, fields and parameter, the magnitude of
mpb is of the order of the Planck mass. Thus, even if mpb

were positive, these would not be astrophysical solutions
but would be a Planck mass particlelike solution. One could
compare the phantom ball solutions to GUT magnetic
monopole solutions [26]. Unlike GUT monopoles the
present solutions do not involve gauge fields. In the next
section, by changing our metric form from Schwarzschild-
like to wormholelike, we do find positive mass solutions for
some parameters.

V. PHANTOM TRAVERSABLE WORMHOLES

We seek static solutions of Eqs. (3)–(4) for the wormhole
metric in polar Gaussian coordinates [27],

ds2 ¼ BðrÞdt2 − dr2 − AðrÞðdθ2 þ sin2θdφ2Þ; ð32Þ

where AðrÞ, BðrÞ are even functions depending only on the
coordinate rwhich covers the entire range −∞ < r < þ∞.
Using this metric, one can obtain the following complete
system of the Einstein and scalar field equations:

A00

A
−
1

2

�
A0

A

�
2

−
1

2

A0

A
B0

B
¼ ϕ02 þ χ02; ð33Þ

A00

A
þ 1

2

A0

A
B0

B
−
1

2

�
A0

A

�
2

−
1

2

�
B0

B

�
2

þ B00

B

¼ 2

�
1

2
ðϕ02 þ χ02Þ þ V

�
; ð34Þ

1

4

�
A0

A

�
2

−
1

A
þ 1

2

A0

A
B0

B
¼ −

1

2
ðϕ02 þ χ02Þ þ V; ð35Þ

ϕ00 þ
�
A0

A
þ 1

2

B0

B

�
ϕ0 ¼ ϕ½2χ2 þ λ1ðϕ2 −m2

1Þ�; ð36Þ

χ00 þ
�
A0

A
þ 1

2

B0

B

�
χ0 ¼ χ½2ϕ2 þ λ2ðχ2 −m2

2Þ�; ð37Þ

where the prime denotes differentiation with respect to r.
Eq. (33) is obtained by subtracting the ðrrÞ component of
Eqs. (3) from the ðttÞ component, and Eqs. (34) and (35) are
the ðθθÞ and ðrrÞ components of Eqs. (3). In Eqs. (33)–(37),
the following rescaling has been introduced: r →

ffiffiffi
κ

p
r,

φ→φ=
ffiffiffi
κ

p
, χ→ χ=

ffiffiffi
κ

p
, m1;2→m1;2=

ffiffiffi
κ

p
, AðrÞ→8πGAðrÞ.

The arbitrary potential constant was chosen as V0 ¼
ðλ2=4Þm4

2 so that the value of the potential in the local
minimum (i.e., ϕ ¼ m1 and χ ¼ 0) was equal to
zero—Vðϕ ¼ m1; χ ¼ 0Þ ¼ 0. This choice of V0 also
ensures zero value of the energy density as r → �∞
[see Fig. 17].
Taking into account the Z2 symmetry of the problem,

the boundary conditions are chosen in the following
form:

FIG. 12. The mass of the phantom ball for χð0Þ ¼ 0.5 and as a
function of ϕð0Þ ¼ 0.2; 0.5; 0.8; 1.; 1.2; 1.5; 1.7; 2.5; 5; 10.

FIG. 13. The behavior of the scalar field χðrÞ for the traversable
wormhole. In Figs. 13–17, the solid curve corresponds to
χð0Þ ¼ 1.2, the dashed curve corresponds to χð0Þ ¼ 1.0, the
dashed–dotted corresponds to χð0Þ ¼ 0.8, the dotted curve
corresponds to χð0Þ ¼ 0.7, and the dash-double dotted curve
corresponds to χð0Þ ¼ 0.5.
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ϕð0Þ ¼
ffiffiffi
3

p
; ϕ0ð0Þ ¼ 0;

χð0Þ ¼ 0.5; 0.7; 0.8; 1.0; 1.2; χ0ð0Þ ¼ 0;

Að0Þ ¼ −
1

Vðϕð0Þ; χð0ÞÞ ; A0ð0Þ ¼ 0;

Bð0Þ ¼ 1.0; B0ð0Þ ¼ 0; ð38Þ

where the condition for Að0Þ is chosen so as to satisfy
the constraint (35) at r ¼ 0, Vðϕð0Þ; χð0ÞÞ is the value of
the potential at r ¼ 0, and the coupling constants are
λ1 ¼ 0.1 and λ2 ¼ 1. Then, using the procedure for
finding solutions of Refs. [18,20], we obtained the results
presented in Figs. 13–19. The values of the masses m1;2

for the five values of χð0Þ from (38) are given in
Table III.
The asymptotic behavior of the solutions is

A ≈ r2 þ r20; ð39Þ

B ≈ B∞

�
1 −

r20
r2

�
; ð40Þ

ϕ ≈m1 − Cϕ
exp ð−r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ1m2

1

p
Þ

r
; ð41Þ

χ ≈ Cχ
exp ð−r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

1 − λ2m2
2

p
Þ

r
; ð42Þ

where r0, B∞, Cϕ, Cχ are integration constants.
In Fig. 18, we have plotted the equation of state

parameter w ¼ pr
ρ ¼ − T1

1

T0
0

for the r direction (again the

equation of state for the two perpendicular directions yields

w ¼ pθ
ρ ¼ − T2

2

T0
0

¼ −1 and w ¼ pφ

ρ ¼ − T3
3

T0
0

¼ −1). As with

the phantom ball solutions there is a region near the origin

FIG. 14. The behavior of the scalar field ϕðrÞ for the traversable
wormhole.

FIG. 15. The metric function AðrÞ for the traversable
wormhole.

FIG. 16. The metric function BðrÞ for the traversable worm-
hole.

FIG. 17. The energy densities distributions for the traversable
wormhole.

FIG. 18. The equation of state w ¼ prðrÞ=ϵðrÞ for the worm-
hole solutions.
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where the fields have a phantom equation of state with
w < −1. The divergences in w again come from the places
where T0

0 ¼ 0 which can be seen in Fig. 17. Unlike the
phantom ball solutions, we now show that the wormhole
solutions do allow positive mass.
The mass of the wormhole is taken to be the effective

mass defined in [27] as follows:

mwhðrÞ ¼
Rð0Þ
2G

þ 4π

Z
r

Rð0Þ
T0
0R

2dR: ð43Þ

The mass in (43) uses a wormhole metric in the form

ds2 ¼ BðrÞdt2 − dr2 − R2ðrÞðdθ2 þ sin2θdφ2Þ: ð44Þ

The ansatz function RðrÞ in (44) is related to the metric
ansatz function used in this work by RðrÞ ¼ ffiffiffiffiffiffiffiffiffi

AðrÞp
. In the

limit r → ∞, the wormhole mass, for the form of the metric
given in (32), becomes

mwhð∞Þ ¼ 4π
ffiffiffiffiffiffiffiffiffiffi
Að0Þ

p
þ 2π

Z
∞

0

T0
0

ffiffiffiffi
A

p dA
dr

dr; ð45Þ

where the energy density is given as

T0
0 ¼ −

ϕ02 þ χ02

2
−
λ1
4
ðϕ2 −m2

1Þ2

−
λ2
4
ðχ4 − 2χ2m2

2Þ − ϕ2χ2; ð46Þ

where we set V0 ¼ λ2
4
m4

2 to get the potential part energy
density to have the form given in (46) The wormhole mass
mwhð∞Þ has been rescaled using the same rescaling of the

masses, m1;2, namely mwhð∞Þ → mwhð∞Þ= ffiffiffiffiffiffiffiffiffi
8πG

p
. The

profile of mwh as a function of χð0Þ is shown in Fig. 19.

VI. PHANTOM COSMIC STRINGS

In this section, we consider the case of an extended one
dimensional solution—the global cosmic string. Global
cosmic strings are built from scalar fields only. In contrast,
local cosmic string involve scalar fields plus gauge fields.
This type of solution has cylindrical symmetry and we
describe it via the following metric,

ds2 ¼ e2νðρÞdt2 − e2ðγðρÞ−ψðρÞÞdρ2 − e2ψðρÞdz2

− ρ2e−2ψðρÞdφ2; ð47Þ
and the assumption that the scalar fields are only dependent
on ρ. Substituting this into the Einstein and scalar field
equations (3)–(4), one can obtain the following set of
equations:

γ0

ρ
− ψ 02 ¼ −κ

�
1

2
ϕ02 þ 1

2
χ02 þ e2ðγ−ψÞVðϕ; χÞ

�
; ð48Þ

ν0 þ ψ 0

ρ
− ψ 02 ¼ −κ

�
1

2
ϕ02 þ 1

2
χ02 − e2ðγ−ψÞVðϕ; χÞ

�
;

ð49Þ

ψ 00 − ν00 − ψ 0γ0 þ ν0γ0 − ν02 þ ψ 0 þ γ0 − ν0

ρ

¼ κ

�
−
1

2
ϕ02 −

1

2
χ02 − e2ðγ−ψÞVðϕ; χÞ

�
; ð50Þ

− ψ 00 − ν00 þ ψ 0γ0 þ ν0γ0 − 2ψ 02 − 2ψ 0ν0 − ν02

¼ κ

�
−
1

2
ϕ02 −

1

2
χ02 − e2ðγ−ψÞVðϕ; χÞ

�
; ð51Þ

ϕ00 þ ϕ0
�
1

ρ
− γ0 þ ψ 0 þ ν0

�
¼ e2ðγ−ψÞϕ½2χ2 þ λ1ðϕ2 −m2

1Þ�;

ð52Þ

χ00 þ χ0
�
1

ρ
− γ0 þ ψ 0 þ ν0

�
¼ e2ðγ−ψÞχ½2ϕ2 þ λ2ðχ2 −m2

2Þ�:

ð53Þ
As in the case of the phantom balls and the traversable
wormhole, we have taken the potential constant as V0 ¼
ðλ2=4Þm4

2 so that the potential will go to zero as ρ → ∞.

FIG. 19. Wormhole mass as a function of χð0Þ ¼ 0.7, 0.8, 0.9,
1.0, 1.1, 1.2.

TABLE III. The eigenvalues m1;2 versus χð0Þ with ϕð0Þ ¼ ffiffiffi
3

p
for phantom traversable wormholes.

χð0Þ 0.5 0.7 0.8 1.0 1.2

m1 2.2899327 2.565822825 2.693582264 2.931316954 3.155579948
m2 2.712082667 2.866518677 2.949800162 3.12411743 3.304034608
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To simplify the above equations we also make the
additional assumption that two of the metric functions
are equal i.e., ν ¼ ψ . After some algebraic manipulations,
and performing the rescaling ρ=

ffiffiffi
κ

p
→ ρ, ϕ

ffiffiffi
κ

p
→ ϕ,

χ
ffiffiffi
κ

p
→ χ, and m1;2

ffiffiffi
κ

p
→ m1;2 we get the following equa-

tions for the metric functions γðρÞ, ψðρÞ and phantom
scalar fields ϕðρÞ, χðρÞ:

γ0

ρ
− ψ 02 ¼ −

�
1

2
ϕ02 þ 1

2
χ02 þ e2ðγ−ψÞVðϕ; χÞ

�
; ð54Þ

2
ψ 0

ρ
− ψ 02 ¼ −

�
1

2
ϕ02 þ 1

2
χ02 − e2ðγ−ψÞVðϕ; χÞ

�
; ð55Þ

ψ 00 þ ψ 0

ρ
¼ e2ðγ−ψÞð1 − 2ρψ 0ÞVðϕ; χÞ; ð56Þ

ϕ00 þ ϕ0
�
1

ρ
− γ0 þ 2ψ 0

�
¼ e2ðγ−ψÞϕ½2χ2 þ λ1ðϕ2 −m2

1Þ�;

ð57Þ

χ00 þ χ0
�
1

ρ
− γ0 þ 2ψ 0

�
¼ e2ðγ−ψÞχ½2ϕ2 þ λ2ðχ2 −m2

2Þ�;

ð58Þ

where the prime denotes differentiation with respect to the
rescaled radial coordinate ρ.

To numerically integrate the above equations we will use
(54), (56), (57), and (58), along with the definition of
Vðϕ; χÞ in (5). Equation (55) is redundant. The boundary
conditions are chosen at the center (ρ ¼ 0) in the following
form:

γð0Þ ¼ 0;

ψð0Þ ¼ 0; ψ 0ð0Þ ¼ 0;

ϕð0Þ ¼
ffiffiffi
3

p
; ϕ0ð0Þ ¼ 0;

χð0Þ ¼ 0.1; 0.4; 0.6; 0.8; χ0ð0Þ ¼ 0: ð59Þ

As before, for a given initial value of χð0Þ, there are special
values (eigenvalues) for m1, m2 for which solutions are
found with acceptable asymptotic behavior. The procedure
for finding these special values of m1, m2 is that given in
Refs. [18,20]. The value of these masses m1, m2 as a
function of χð0Þ is shown in Table IV.
The results of numerical calculations for the scalar fields,

ϕ and χ, are given in Figs. 20 and 21. The behavior of the
scalar fields is similar to what was found for the phantom
balls. The scalar field ϕ started at ϕ ¼ 0 and as ρ → ∞
approached some constant, nonzero value. The scalar field
χ started at some nonzero value and approached χ ¼ 0 as
ρ → ∞. The metric functions γðρÞ, ψðρÞ are given in
Figs. 22 and 23. These metric functions both approach

TABLE IV. The eigenvalues m1;2 versus χð0Þ with ϕð0Þ ¼ 0.5
for phantom cosmic strings. The coupling constants λ1 ¼ 0.1,
λ2 ¼ 1.

χð0Þ 0.1 0.4 0.6 0.8

m1 1.7720039 2.044828 2.2706674 2.515715
m2 2.4896351 2.7060905 2.8649473 3.0277392

FIG. 20. The scalar fields ϕðρÞ for the phantom cosmic strings.
For Figs. 20–24, the solid curve corresponds to χð0Þ ¼ 0.8, the
dashed curve corresponds to χð0Þ ¼ 0.6, the dashed-dotted
corresponds to χð0Þ ¼ 0.4, and the dotted curve corresponds
to χð0Þ ¼ 0.1.

FIG. 21. The scalar fields χðρÞ for the phantom cosmic strings.

FIG. 22. The metric functions γðρÞ for the phantom cosmic
strings.
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some constant negative value as ρ → ∞. The energy
density, T0

0, is given in Fig. 24. Near ρ ≈ 0.5 the energy
density, T0

0, changes sign and then goes asymptotically to
zero from below.
Since the cosmic string is of infinite length its total mass

is infinite, but the relevant quantity is mass per unit length.
To obtain this we integrate the energy density, T0

0, over the
full range of ρ and φ but along zwe integrate a finite length,
L, and then divide by this to get mass per unit length. The
energy density (2) is

T0
0 ¼ −

1

2
ðϕ02 þ χ02Þeð2ψ−2γÞ − Vðϕ; χÞ: ð60Þ

Now the mass of a length L of the cosmic string is

mcs ¼ 2πL
Z

∞

0

T0
0ρe

ðγ−ψÞdρ; ð61Þ

where the φ integration gives 2π and the z integration gives
L. The factor ρeðγ−ψÞ comes from

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g3

p
, the volume

factor for the spatial part of the metric in (47). From (61)
and (60) the mass per unit length, μcs ≡mcs=L, of the
cosmic string solution is

μcs ¼ 2π

Z
∞

0

T0
0ρe

ðγ−ψÞdρ

¼
Z

∞

0

�
−
ρ

2
ðϕ02 þ χ02Þeðψ−γÞ − ρVðϕ; χÞeðγ−ψÞ

�
dρ:

ð62Þ
We calculated μcs for a range of different initial values of
χð0Þ and ϕð0Þ and in general found that μcs < 0. In one case
when ϕð0Þ ¼ 0 and χð0Þ ¼ 0, we did find by extrapolation
that a very small positive value for μcs. However, for this
point we could not trust the extrapolation. Thus, in this case,
the conclusion was that μcs < 0 in general.

The equation of state parameter, w ¼ − T1
1

T0
0

for the cosmic

string is shown in Fig. 25. As in the previous three cases,
we have defined the equation of state parameter in terms of
the radial pressure (for the cosmic string this means
pressure in the ρ direction). The equation of state parameter
has some range of ρ near ρ ¼ 0 for which w < −1 (i.e., the
scalar fields have a phantom equation of state) and so we
call these solutions phantom cosmic strings. As with the
wormhole and phantom ball solutions the region where one
has phantom behavior is near the origin. From Fig. 25, one
can see that w diverges. These divergences occur at the
places where T0

0 → 0 as shown in Fig. 24.

VII. DISCUSSION AND CONCLUSIONS

We have studied several hypothetical compact and
extended astrophysical objects supported by two phantom
scalar fields. When distributed homogeneously and iso-
tropically over the Universe such phantom fields could be
the source of the present accelerated expansion of the
Universe. However, one can imagine situations when in the
process of evolution of the Universe there could arise
inhomogeneous distributions of such phantom fields that
might lead to the formation of localized or partially
localized configurations such as those considered here.
The “phantom” domain walls investigated in Sec. III are,

in fact, not phantom since, despite having negative-sign
kinetic energy terms for the scalar fields, the equation of
state parameter associated with the x direction is always

FIG. 24. The energy density profiles for the phantom cosmic
strings.

FIG. 25. The equation of state w ¼ pρðρÞ=ϵðρÞ for the cosmic
string solutions.

FIG. 23. The metric functions ψðρÞ for the phantom cosmic
strings.
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w ≥ −1 as shown in Fig. 5. Leaving aside the equation of
state parameter, these domain wall solutions do have the
“unphysical” characteristic that their energy density, T0

0, is
everywhere negative T0

0 < 0. This leads one to strongly
suspect that these solutions are unstable, i.e., that they
would dissipate rapidly. This is actually a good, physical
feature since normal domain walls tend to dominate the
energy density of the Universe [28] and can be ruled out
observationally. Thus, the domain walls studied here,
exactly because of their hypothesized unstable nature,
could be of more consequence than normal domain
walls—these domain walls might form and quickly dis-
sipate, perhaps leaving some small imprint on the CMB. In
regards to observational constraints, regular domain walls
are more problematic. However, one would still need to
confirm that these domain walls are unstable by performing
some stability analysis as in [29], and one would need to
determine if they would leave some imprint on observables
from the early Universe.
In Sec. IV, we found phantom ball solutions. In contrast

to the domain wall solutions, the phantom ball solutions
can properly be call “phantom solutions” since for some
range of r near the origin their equation of state parameter
does satisfy w < −1 as seen in Fig. 11. These solutions
might be viewed as phantom versions of magnetic
monopole solutions [26] that occur in grand unified
theories (GUT), except that the phantom ball solutions
of Sec. IV involve scalar fields coupled to gravity, while
the GUT monopoles are a combination of gauge and
scalar fields. These GUT monopoles have been shown to
be problematic to cosmological observations [30] (one can
solve the “GUT monopole problem” via inflation). The
phantom ball solutions had some range of r where the
energy density was positive, T0

0 > 0 as seen in Fig. 10.
However, when integrating the energy density over all
space we found that the mass of the phantom balls was
negative as seen in Fig. 12. Thus, as with the domain
walls, the phantom ball solutions are probably unstable (of
course, for both solutions, one should check this in detail,
but it would be odd and interesting if either of these
solutions were stable under a more detailed analysis). As
with the domain walls, this indication that the phantom
ball solutions are unstable or unphysical is good from the
physical standpoint in that both of these solutions would
not remain around long due to their postulated instability.
However, these two solutions might form in the early
Universe and leave some signature on observables from
the early Universe (e.g., they might leave an small imprint
on the CMB) yet due to their postulated instability, decay
away before causing problems with cosmological obser-
vations like those associated with regular domain walls
and/or GUT magnetic monopoles.

In Sec. V, we found wormhole solutions supported by the
phantom fields. The wormhole solutions were the only
solutions of the four types that we studied that had (at least
for some set of parameters) positive mass as shown by
Fig. 19. Since these solutions did not have any horizons
(i.e., the metric ansatz functions, AðrÞ and BðrÞ, did not got
to zero or become negative), the wormholes are traversable
“in principle” meaning [27] simply that they do not have
horizons. Determining if these wormhole solutions are
traversable “in practice” (meaning that the tidal forces
can be engineered to be small enough to allow an observer
to pass through the wormhole throat without being tidally
disrupted [27]) is difficult, given that the solutions were
obtained numerical. However, given the wide range of
shapes for the metric ansatz functions AðrÞ and BðrÞ, it is
likely that one could also engineer these phantom worm-
holes to be traversable “in practice”.
Finally, in Sec. VI, we found global, phantom cosmic

string solutions. Similar to the cases of the phantom ball
solutions and phantom wormhole solutions, the equation of
state parameter satisfied w < −1 for some range of ρ, as
shown in Fig. 25, making the term phantom cosmic string
appropriate. Also, as in the case of the phantom ball
solutions, although for some ranges of ρ the energy density
of these cosmic strings was positive, T0

0 > 0, the mass per
unit length was negative, μcs < 0. (There was a very
particular choice of initial conditions, namely, ϕð0Þ ¼ 0
and χð0Þ ¼ 0, which might have given a very small, positive
μcs, but we could not determine if this was a numerical
artifact or not). As with the domain wall solutions and the
phantom ball solutions, the fact that μcs < 0 indicates that
these solutions are likely not stable. Now in the case of the
domain wall and phantom ball solutions, this postulated
instability is desirable from a physical point of view, since
ordinary domain walls and GUT magnetic monopole sol-
utions (the rough equivalent of the phantom ball solutions)
cause difficulties in regards to cosmological observations.
On the other hand normal cosmic strings are thought to play
a potential role in structure formation [7] in the Universe.
The postulated instability of our phantom cosmic string
solution would rule out their use for structure formation, but
as with the domain wall and phantom ball solutions, the
phantom cosmic strings might leave some imprint on
cosmological observables such as the CMB.
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