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We perform a Bayesian analysis to study possible features in the primordial inflationary power
spectrum of scalar perturbations. In particular, we analyze the possibility of detecting the imprint of
these primordial features in the anisotropy temperature power spectrum of the cosmic microwave
background (CMB) and also in the matter power spectrum PðkÞ. We use the most recent CMB data
provided by the Planck Collaboration and PðkÞ measurements from the 11th data release of the Sloan
Digital Sky Survey. We focus our analysis on a class of potentials whose features are localized at
different intervals of angular scales, corresponding to multipoles in the ranges 10 < l < 60 (Oscill-1)
and 150 < l < 300 (Oscill-2). Our results show that one of the step potentials (Oscill-1) provides a
better fit to the CMB data than does the featureless ΛCDM scenario, with moderate Bayesian evidence
in favor of the former. Adding the PðkÞ data to the analysis weakens the evidence of the Oscill-1
potential relative to the standard model and strengthens the evidence of this latter scenario with respect
to the Oscill-2 model.
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I. INTRODUCTION

The inflationary paradigm offers an elegant theoretical
framework in which the emergence of the primordial
curvature perturbations can be understood. In the simplest
inflationary scenarios a primordial scalar perturbation
with a nearly scale-invariant power spectrum is generated
by a single minimally coupled scalar field ϕ rolling down
a smooth potential VðϕÞ. This framework seems to agree
with the most recent cosmic microwave background
(CMB) data [1,2], which show a preference for plateau-
like1 over monomial potentials, as well as no compelling
statistical evidence for a specific class of scenarios (we
refer the reader to [7–11] for different points of view of
the current observational status of inflation).
Recently, several works have analyzed inflationary mod-

els that account for localized features in the primordial
power spectrum, showing in some cases a better fit to the
data with respect to a smooth power-law spectrum [12–22].
Features in the primordial power spectrum can be generated
following departures from the slow-roll approximation,
which can happen in more general inflationary scenarios
with a symmetry-breaking phase transition. Examples are
the inflationary models with a step in the primordial
potential, whose oscillation in the power spectrum of
curvature perturbations is localized around the scale that
crosses the horizon at the time the phase transition
occurs [23,24].
In principle, this oscillation could be seen in

several observables, such as in the CMB maps and in the

large-scale galaxy distribution, since the primordial scalar
fluctuation is the seed for all the cosmic structures currently
observed. It is therefore expected that data of the temperature
anisotropy power spectrum as well as measurements of the
matter power spectrum PðkÞ from galaxy surveys may
provide hints on the origin of these features. Originally,
steplike inflationary potentials were postulated to study the
“glitch” appearing at the low-l regionof theCMBanisotropy
spectrum. The signatures of this class of models in the
CMB temperature power spectrum and bispectrum
[17–21,25–31] and in the tensor spectrum [32,33] have been
studied in detail using the current data and have shown a
consistent improvement of theΔχ2 values with respect to the
featureless ΛCDM model.
In this work we proceed a step further in this kind of

analysis and employ a Bayesian statistical analysis to
verify the predictions of a class of inflationary steplike
potential models and discuss their observational viability
in a wide range of scales, considering their observational
consequences not only on the present CMB anisotropy
temperature maps but also on the matter power spectrum
PðkÞ. We work with two data sets: the second CMB data
release of the Planck Collaboration [2,34] and a combi-
nation of these CMB data with measurements of the
matter power spectrum from the Baryon Oscillation
Spectroscopic Survey (BOSS) CMASS Data Release-11
sample of the Sloan Digital Sky Survey (DR11-SDSS)
experiment (hereafter “CMBþ SDSS”) [35]. We perform
a Bayesian analysis using both the Metropolis-Hastings
algorithm implemented in COSMOMC [36] and the nested
sampling algorithm of MULTINEST [37–39]. We find that
at least one of the scenarios studied is able to provide a
better fit to the CMB and CMBþ PðkÞ data than does the
standard ΛCDM model.
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1For plateaulike potentialsVðϕÞ→ 0 asϕ→∞ (see, e.g., [3–6]).

PHYSICAL REVIEW D 94, 023526 (2016)

2470-0010=2016=94(2)=023526(8) 023526-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.023526
http://dx.doi.org/10.1103/PhysRevD.94.023526
http://dx.doi.org/10.1103/PhysRevD.94.023526
http://dx.doi.org/10.1103/PhysRevD.94.023526


This paper is organized as follows. Section II reviews the
class of inflationary models considered in this work. We
also discuss observational data sets and priors used in the
analysis as well as the Bayesian model selection method
adopted. In Sec. III we discuss the results and present a
brief comparison with previous analysis. We end the paper
by summarizing the main results in Sec. IV.

II. MODEL AND METHOD

Relaxing the slow-roll condition leaves traces on the
primordial power spectrum. For example, if thewavelengths
cross the horizon during the fast-roll phase, one must expect
deviations from the usual power-law power spectrum. The
brief violation of the slow-roll condition can be shaped, in a
single-fieldmodel, by adding a local feature, such as a step, to
an otherwise flat potential. Following the formalism pre-
sented in Refs. [23,40,41], we consider a model with a local
feature added to a chaotic potential

VðϕÞ ¼ 1

2
m2ϕ2

�
1þ c tanh

�
ϕ − b
d

��
: ð1Þ

The spectrum of primordial perturbations, resulting from the
potential (1), is found to be essentially a power law with
superimposed oscillations. These are centered on a value that
depends on the parameter b, with amplitude set by c and
damping given by d. Asymptotically, the spectrum recovers
the familiar kns−1 form, typical of slow-roll inflationary
models.
In this work we adopt an analytical parametrization for

the scalar primordial spectrum resulting from Eq. (1), as
studied in [25],

PRðkÞ ¼ exp

�
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3
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P0ðkÞ ¼ Asð kk�Þns−1 is the smooth spectrum with the stan-
dard power-law form, Af is the kinetic energy perturbation
of the step, ηf is the step crossing time in units of Mpc, and
xd is the dimensionless damping scale. The oscillating
window function W0ðkηfÞ is modulated by the decaying
envelope kηf= sinhðkηf=xdÞ which is set by the details of
the step. It is worth mentioning that the approximate
approach of Eqs. (2) and (3) allows one to significantly
save computing time with respect to the full numerical
solution of the evolution equations for the potential of
Eq. (1), without a meaningful loss of accuracy [20].
We consider a “vanilla” model with the addition of

features in the primordial spectrum, parametrized as in

Eqs. (2) and (3). In our analysis, we vary the usual
cosmological parameters, namely, the physical baryon
density, Ωbh2, the physical cold dark matter density,
Ωch2, the ratio between the sound horizon and the angular
diameter distance at decoupling, θ, the optical depth, τ, the
primordial scalar amplitude, As, the primordial spectral
index, ns, and the additional Af, ηf, and xd step parameters.
We also vary the nuisance foreground parameters [34] and
consider purely adiabatic initial conditions. The sum of
neutrino masses is fixed to 0.06 eV, and we limit the
analysis to scalar perturbations with k0 ¼ 0.05 Mpc−1.
The posterior probabilities distributions of the parameters

are generated using both the Metropolis-Hastings algorithm
implemented in COSMOMC [36] and the nested sampling
algorithm ofMULTINEST [37–39].We use a modified version
of the CAMB [42] code in order to compute the CMB
anisotropies spectrum for different values of the parameters
describing the steplike inflationary model, as in Eqs. (2) and
(3). The Gelman and Rubin criteria [43,44] are used to
evaluate the convergence of the Monte Carlo Markov chain
(MCMC) analysis, demanding that R − 1 ≤ 0.02. In our
Bayesian analysis we use the most accurate importance
nested sampling (INS) [39,45] instead of the vanilla nested
sampling (NS), requiring INSglobal log-evidence error<0.1.

A. Priors

As mentioned earlier, the class of models considered in
this analysis is able to produce localized oscillations in the
primordial power-law potential. The oscillation spot is set
by the parameter ηf in Eqs. (2) and (3) and depends on the
scale where the wavelengths cross the horizon. We note
that, for increasing values of the step crossing time
parameter, the oscillation is shifted to larger scales (lower
multipoles), until it disappears completely from the temper-
ature angular power spectrum of the CMB (TT spectrum)
for values of lnðη=MpcÞ > 10. At the same time, for values
of lnðη=MpcÞ < 5 the oscillation is shifted to the high-l
part of the spectrum, i.e., to scales without interest to the
present study.
Previous works [20,46] identified two different ranges of

multipoles for these oscillations from the data: the first one
lies in the interval 10 < l < 60 (hereafter Oscill-1),
whereas the second one lies in the interval 150 < l <
300 (hereafter Oscill-2). In particular, these oscillation
ranges are distinguished by different priors on the Af

parameter, i.e., Af > 0.5 for Oscill-1 and Af < 0.5 for
Oscill-2. We run our preliminary test following the guide-
lines of the previous studies, i.e., assuming the same priors
on the feature parameter Af, and setting for the parameters
lnðηf=MpcÞ and ln xd the intervals [5∶10] and [−1∶5],
respectively. Using the COSMOMC we found the value
where the step parameter posterior probability drops to
zero, and we set the priors for our analysis as shown in
Table I. In order to estimate the impact of the prior choice
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on the Af parameter, we also repeat the analysis using the
relaxed priors Af½0∶1�; lnðηf=MpcÞ½5.5∶8.5�, ln xd½0∶2�.
It is important to highlight the central role played, in the

COSMOMC analysis, by the prior ranges choice, since the
introduced ηf and xd step parameters show multimodal
posterior probability distributions. The MCMC analysis,
indeed, can fail to fully explore all peaks which contain
significant probability, especially if the peaks are very
narrow. The MULTINEST algorithm, on the contrary, does
not show the same analysis problem. For this reason we use
the COSMOMC code only for the preliminary parameters
estimation, and we present in this work only the
MULTINEST analysis results.

B. Data sets

We use the second release of Planck data [2,34] (here-
after TTþ lowP), namely the high-l Planck temperature
data (in the range of 30 < l < 2508) from the 100, 143,
and 217 GHz half-mission TT cross spectra and the low-P
data by the joint TT, EE, BB, and TE likelihood (in the
range of 2 < l < 29). More precisely, the latter data come
from the best-fit temperature map obtained by the com-
mander component separation algorithm applied to Planck
30–857 GHz data, jointly with the Wilkinson Microwave
Anisotropy Probe (WMAP) 9-year observations between
23 and 94 GHz [47] and the Haslam et al. 408 MHz survey
[48]; the E and B maps are obtained from the 70 GHz maps
using their 30 and 353 GHz maps as foreground templates.

We combine the CMB data with the matter power
spectrum measurements from the BOSS CMASS Data
Release-11 sample (covering the redshift range z ¼
0.43–0.7) of the DR11-SDSS experiment (CMBþSDSS).
We use the data sets of [35] and publicly available in the
SDSS Collaboration website (http://www.sdss3.org).
The best-fit CMB angular spectra and the matter power

spectra for Oscill-1 and Oscill-2 models are shown in
Figs. 1 and 2. In order to obtain the results we use binned
high-l TT data for the analysis of the Oscill-1 model since
this type of oscillation is placed in the low-l region of the
spectrum, which means that details on the high-l part do
not add any information. On the other hand, for the Oscill-2
model the oscillations are located at small scales and show
higher frequency (see Fig. 1, right panel). Therefore, for the
analysis of this latter model we use the unbinned version of
the high-l TT data in order to maximize the sensitivity of
sharp features that lie inside the single bin.

TABLE I. Priors on the feature parameters of Eqs. (2) and (3).

Parameter Prior (Oscill-1) Prior (Oscill-2)

Af Uniform(0.5, 1) Uniform(0, 0.2)
ln ηf Uniform(7, 8) Uniform(6.5, 8)
ln xd Uniform(0, 1) Uniform(3, 5)
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FIG. 1. Temperature power spectrum for the two inflationary steplike models best-fit values in comparison with the ΛCDMmodel best
fit (black line). Left: best-fit values for the Oscill-1 model using TTþ lowP data. The inset is a zoom at 5 < l < 80. Right: best-fit
values for the Oscill-2 model using CMBþ SDSS data. The inset is a zoom at 150 < l < 280.
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FIG. 2. Matter power spectrum for the best-fit ΛCDM model
(dotted black line) and for the two steplike models: Oscill-1 best-
fit values using TTþ lowP data (red line), Oscill-2 best-fit values
using CMBþ SDSS data (blue line).
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C. Statistical model selection

In order to probe possible features in the primordial
inflationary power spectrum, we perform a Bayesian
model comparison considering three models, namely,
the standard ΛCDM scenario and the two models with
localized oscillations in the power-law potential named
earlier as Oscill-1 and Oscill-2. In this kind of analysis
the “best” model is the one that achieves the best
compromise between quality of fit and predictivity.
Indeed, while a model with more free parameters will
always fit the data better (or at least as good as) a model
with fewer parameters, such added complexity ought to
be avoided whenever a simpler model provides an
adequate description of the observations. The Bayesian
model comparison offers a formal way to evaluate
whether the extra complexity of a model is required by
the data, preferring the model that describes the data well
over a large fraction of their prior volume. In this section,
we briefly review the model comparison and introduce
our notation (we refer the reader to [49–52] for some
recent applications of Bayesian model selection in
cosmology).
Let us consider two competing models, Mi and Mj,

whose nj parameters (of model Mj) are common to Mi,
which in turn has ni − nj extra parameters. The posterior
probability for the parameters vector θ (of length ni)
given the data x under the model Mi comes from Bayes’
theorem,

pðθjx;MiÞ ¼
pðxjθ;MiÞπðθjMiÞ

pðxjMiÞ
; ð4Þ

and similarly for Mj. The term pðxjθ;MiÞ is the like-
lihood, while πðθjMiÞ is the prior probability distribution
function. The normalization constant in the denominator
is called evidence E, and it is the marginal likelihood for
the model Mi,

pðxjMiÞ≡ EMi
¼

Z
dθpðxjθ;MiÞπðθjMiÞ: ð5Þ

The posterior probability of the Mi model given the data
are written as

pðMijxÞ ∝ EMi
πðMiÞ: ð6Þ

Assuming no a priori preference about any model
[πðMjÞ ¼ πðMiÞ], the ratio of the posterior probabilities
of the two models (the so-called Bayes factor) is given by

Bij ¼
EMi

EMj

: ð7Þ

The more complex model Mi will (if Mj is nested)
inevitably lead to a higher (or at least equal) likelihood,
but the evidence will favor the simplest model if the fit is
nearly as good, through the smaller prior volume. We

TABLE II. Confidence limits of 68% for the cosmological and step parameters. The second and third columns refer to a minimal
ΛCDM model with a featureless spectrum, using binned high-l TT data; the fourth and fifth columns show the constraint of the
inflationary steplike model using Oscill-1 prior of Table I and binned high-l TT data; the sixth and seventh columns show the constraint
of the inflationary steplike model using Oscill-2 prior of Table I and unbinned high-l TT data. The Δχ2best and the lnBMM0 of Oscill-2
analysis refer to the difference with respect to the ΛCDM analysis using the unbinned high-l TT data. These results refer to the Bayesian
analysis results of the MULTINEST code analysis.

ΛCDM model Oscillation-1 Oscillation-2
Parameter TTþlowP CMBþSDSS TTþlowP CMBþSDSS TTþlowP CMBþSDSS

100Ωbh2 2.225�0.02 2.232�0.02 2.222�0.021 2.229�0.02 2.225�0.021 2.233�0.02
Ωch2 0.1194�0.0019 0.1182�0.0017 0.1202�0.0019 0.1188�0.0017 0.1195�0.0019 0.1183�0.0017
100θ 1.04091�0.00043 1.04104�0.00042 1.04108�0.00045 1.04097�0.00042 1.04094�0.00043 1.04111�0.00040
τ 0.083�0.008 0.084�0.008 0.083�0.008 0.084�0.008 0.083�0.008 0.083�0.008
ns 0.9664�0.0052 0.9685�0.0050 0.9637�0.0052 0.9660�0.0050 0.9667�0.0053 0.9685�0.0049
ln1010As

a 3.100�0.0162 3.099�0.0166 3.102�0.0164 3.100�0.0166 3.100�0.0163 3.097�0.0170
Af ��� ��� 0.75�0.14 0.75�0.13 0.037�0.027 0.04�0.02
ln ηf=Mpc ��� ��� 7.18�0.10 7.18�0.09 7.316�0.39 7.21�0.33
ln xd ��� ��� 0.49�0.27 0.49�0.27 3.92�0.57 4.0�0.5
σ8 0.835�0.009 0.829�0.009 0.836�0.009 0.831�0.009 0.834�0.009 0.828�0.009
H0

b
67.48�0.83 68.00�0.74 67.10�0.85 67.72�0.73 67.42�0.85 67.98�0.73

Δχ2best ��� ��� 5.8 5 1.7 8.4
lnBij

c ��� ��� 3.91�0.03 1.82�0.03 0.58�0.04 −1.64�0.07
ak0¼0.05Mpc−1.
b[kms−1Mpc−1].
cThe associated error is calculated with the simple error propagation formula, assuming that the two measurements are

uncorrelated: σ2ðlnBijÞ¼σ2ðlnEiÞþσ2ðlnEjÞ.
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assume uniform (and hence separable) priors in each
parameter, such that πðθjMiÞ ¼ ðΔθ1 � � �ΔθniÞ−1 and

Bij ¼
R
dθpðxjθ;MiÞR
dθ0pðxjθ0;MjÞ

ðΔθ1 � � �ΔθniÞ
ðΔθ01 � � �Δθ0njÞ

: ð8Þ

In order to rank the models of interest, we adopted the
following scale to interpret the values of lnBij in terms of
the strength of the evidence of a chosen reference model
(Mj): lnBij ¼ 0–1, lnBij ¼ 1–2.5, lnBij ¼ 2.5–5, and
lnBij > 5 indicate, respectively, an inconclusive, weak,
moderate, and strong preference of the model Mi with
respect to the model Mj. Note that negative values of
lnBij means support in favor of the model Mj. We refer
to [50] for a more complete discussion about this scale
that is a revised and more conservative version of the so-
called Jeffreys’ scale [53].

III. RESULTS

The main quantitative results of our analysis are shown
in Table II. First, we assume the minimalΛCDMmodel and
use the CMB and CMBþ SDSS data sets discussed earlier.
From Fig. 3 one can see that the addition of the galaxy
data (solid line) shows a preference for lower values of
Ωch2 and for higher values of ns, with respect to the
analysis using only CMB (TTþ lowP) data. From Table II
we also note a slight improvement of the constraints on
the Hubble parameter H0 and a preference for a higher
value of σ8. A good concordance between the results
using binned and unbinned high-l TT data is verified.
For brevity, however, we report in Table II only the
ΛCDM analysis using the binned high-l TT data. It is
also worth mentioning that the values of Δχ2best and
lnBij for the Oscill-2 model are obtained with respect
to the ΛCDM analysis using the unbinned high-l TT
data.

FIG. 3. Confidence regions of 68% and 95% on the ΛCDM model for Planck TTþ lowP data (black dotted line) and CMBþ SDSS
data (black solid line). The numerical results of these analyses are reported in the second and third columns Table II.
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For the central mean values given in Table II, we show in
Fig. 4 the primordial scalar power spectrum for the two step
models. We note that the two primordial oscillations start
around the same scale (approximately the same value of ηf)
but show very different amplitude and damping properties,
which in turn produce very different features. The primor-
dial power spectrum of the Oscill-1 model (red line) has a
high amplitude and damping parameter values, and pro-
duces features at the scale interval 10−3 ≲ k≲ 10−2. In
principle, this makes it possible to detect them using only
CMB data, since the current LSS data cover scales of
k≳ 10−2 [35].

In Fig. 5 we show the posterior probability distribution
for the step parameter values. As expected, the addition of
the large-scale structure data improves the constraints on
these parameters, mainly those related to the Oscill-2 model
whose features extend to lower scales (see Fig. 4). In
comparison with the TTþ lowP constraints (blue dashed
line), we note the tighter constraints on the frequency
parameter ln ηf=Mpc, which for the CMBþ SDSS data
show a bimodal distribution.
Table II also shows that the constraints on the usual

cosmologicalmodel parameters are not significantly affected
by the presence of primordial features. Moreover, in the case
of the Oscill-1 model, our bounds on the step parameters are
consistent with previous analysis [20] using the first Planck
release (2013) with the only exception of the amplitude
parameter Af, which now prefers lower values. On the other
hand, our results for the TTþ lowP data also showmoderate
evidence (lnBij ¼ 3.91� 0.03) in favor of the Oscill-1
model with respect to the ΛCDM scenario. If we relax the
step parameter priors to

Af½0∶1�; lnðηf=MpcÞ½5.5∶8.5�; ln xd½0∶2�; ð9Þ

the moderate evidence of Oscill-1 becomes weak, and the
distribution of probability shows a weak secondary peak,
which extends the explored parameter space. Our results
seem to be in disagreement with those of the Planck
Collaboration [2], where a featureless primordial potential
is preferable over the steplike models. Actually, the

FIG. 5. One-dimensional posterior probability densities. Top: Oscill-1 step parameters analysis reported in Table II fourth and fifth
columns, using TTþ lowP data (red dashed line) and CMBþ SDSS data (red solid line). Bottom: Oscill-2 step parameters analysis
reported in the sixth and seventh columns of Table II using TTþ lowP data (blue dashed line) and CMBþ SDSS data (blue line).
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FIG. 4. Primordial power spectrum for the two step models:
Oscill-1 (red line) with Af ¼ 0.75, lnðη=MpcÞ ¼ 7.18 and
ln xd ¼ 0.49 and Oscill-2 (blue line) with Af ¼ 0.04,
lnðη=MpcÞ ¼ 7.21, and ln xd ¼ 4.
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constrained oscillation in Ref. [2] refers to a different
parametrization model [21] and shows different step param-
eter values, whose overall effect is to produce smaller and
deeper oscillations with respect to the results of this work, as
shown inFig. 6.At the same time, the parametrizationused in
this work produced a different behavior in the scales
immediately before where the oscillation occurs.
For the Oscill-2 model, our analysis shows inconclusive

evidence (lnBij ¼ 0.58� 0.04) relative to the ΛCDM
scenario using the TTþ lowP data set. We also observe
that the addition of PðkÞ data weakens the evidence of the
Oscill-1 model relative to the standard cosmology and
strengthens the evidence of this latter with respect to the
Oscill-2 model.

IV. CONCLUSION

We have performed a Bayesian model selection statistics
to compare the observational viability of a class of infla-
tionarymodels with steplike features in the inflaton potential
and the ΛCDM cosmology using the most up-to-date CMB
andLSSdata sets. The steplike inflationarypotentials studied
are able to produce features in the primordial scalar power
spectra, inducing an oscillation in the anisotropy power
spectrumwithmagnitude, extent, and positionwhich depend
on three step parameters. We have considered two types of
models beyond the minimal ΛCDM model: the Oscill-1
model, whose features lie in the multipole range
10 < l < 60, and the Oscill-2 model, which produces
features at multiples 150 < l < 300 (see Fig. 1).

In order to perform our analysis, we have used an
approximate form of the power spectrum, as given in
Eqs. (2) and (3), and two data sets: the most recent data
release of the Planck Collaboration (TTþ lowP) and this
CMB data set added to the PðkÞ measurements from the
DR11 of the SDSS Collaboration. For the ΛCDM model,
our analysis shows a good concordance between the results
using the CMB data only and the extended data set
(CMBþ SDSS). As the main result of this analysis, we
have shown that the Oscill-1 model provides a better
fit to current CMB data than does the standard ΛCDM
model, with moderate Bayesian evidence in favor of the
steplike potential (Oscill-1). Such a result, however,
seems to be in disagreement with the one reported by
the Planck Collaboration, in which a featureless primordial
potential is preferable over the steplike models. When the
extended data set (CMBþ SDSS) is considered, the
evidence of the Oscill-1 model relative to the standard
cosmology becomes weak, just as the Bayesian evidence
of the ΛCDM cosmology with respect to the Oscill-
2 model.
Finally, as shown in Fig. 1, our best-fit scenario

(the Oscill-1 model) deviates significantly from the stan-
dard model only at very low values of k. We, therefore,
expect to verify the reality of these features in the CMB and
matter power spectra with data from the future release of
the Planck Collaboration, as well as from the next gen-
eration of very deep galaxy surveys like, for example,
the Dark Energy Spectroscopic Instrument [54] and
the Javalambre Physics of the Accelerating Universe
Astrophysical Survey [55].
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FIG. 6. Primordial power spectrum for the Oscill-1 best-fit
model (red line) with Af ¼ 0.728, lnðη=MpcÞ ¼ 7.20 and
ln xd ¼ 0.75, and for the parametrization discussed in the
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