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In the cosmological scenario in fðTÞ gravity, we find analytical solutions for an isotropic and
homogeneous universe containing a dust fluid and radiation and for an empty anisotropic Bianchi I
universe. The method that we apply is that of movable singularities of differential equations. For the
isotropic universe, the solutions are expressed in terms of a Laurent expansion, while for the anisotropic
universe we find a family of exact Kasner-like solutions in vacuum. Finally, we discuss when a nonlinear
fðTÞ-gravity theory provides solutions for the teleparallel equivalence of general relativity and derive
conditions for exact solutions of general relativity to solve the field equations of an fðTÞ theory.
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I. INTRODUCTION

One of the most important unsolved problems of modern
astronomy and particle physics is the identity of the “dark
energy” that is evidently responsible for the observed
acceleration of the universal expansion. The dynamics
can be quite accurately described by the inclusion of a
simple cosmological constant term to Einstein’s equations
but its required magnitude is mysterious and unmotivated
by fundamental physics. Some new fundamental theory
might eventually be able to provide a natural explanation
(see, for an example, [1]) or there may be more complicated
explanations in which the dark energy is not a constant
stress but some time-dependent scalar (or effective scalar)
field. Effective scalar fields are available in the many
deviant theories of gravity that have been proposed as
generalizations of Einstein’s general theory of relativity.
In the past it had been expected that deviations from
Einstein’s theory would only arise in situations of high, or
formally infinite, spatial curvature—so-called curvature
“singularities”—where the entire theory breaks down.
However, the unusual challenge posed by the acceleration
of the Universe is that it may require modifications to
Einstein’s theory in the late Universe when spatial curva-
ture is very low. So-called “modified theories of gravity”
provide one of these scenarios to explain the acceleration of
the Universe. In contrast to the explicit dark-energy models,
such as quintessence, phantom fields, Chaplygin gas or
many others (see [2–5], and references therein), in which an

energy-momentum tensor which violates the strong energy
condition is added to the field equations of general
relativity (GR), in modified gravity theories the dark energy
often has a geometric origin and is related to new
dynamical terms which follow from the modification of
the Einstein-Hilbert action.
A particular modified theory of gravity which has

attracted the interests of cosmologists is so-called fðTÞ
teleparallel gravity1 [7–9]. Inspired by the formulation of
fðRÞ gravity, in which the Lagrangian of the gravitational
field equations is a function, f, of the Ricci scalar R of the
underlying geometry [10], fðTÞ gravity is a similar
generalization. Now, instead of using the torsionless
Levi-Civita connection of GR, the curvatureless
Weitzenböck connection is used in which the correspond-
ing dynamical fields are the four linearly independent
vierbeins, and T is related to the antisymmetric connection
which follows from the nonholonomic basis [11–13].
A linear fðTÞ theory leads to the teleparallel equivalent

of GR (TEGR) [14]. However, fðTÞ gravity does not
coincide with fðRÞ gravity. One of the main differences is
that for a nonlinear fðRÞ function, gravity is a fourth-order
theory, whereas fðTÞ gravity is always a second-order
theory. This follows because T includes only first deriv-
atives of the vierbeins. Moreover, while fðTÞ gravity is a
second-order theory and in the limit of a linear function,
f ¼ R, GR is recovered, in general fðTÞ gravity provides
different structural properties from those of GR. However,
from the analysis of the cosmological data and the Solar
System tests of GR we know that deviations from GR must*anpaliat@phys.uoa.gr
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be small, and so fðTÞ must be close to a linear form
[15–18].
Even though fðTÞ gravity is a second-order theory, very

few exact analytical solutions of the field equations are
known.Somepower-law solutions in a Friedmann-Lemaître-
Robertson-Walker (FLRW) spacetime can be found in
[19,20], while some power-law solutions in anisotropic
spacetimes are given in [21]. Finally, some analytical
solutions in the case of static spherically symmetric space-
times can be found in [22,23], and references therein.
In this work we are interested to determine exact

solutions of the field equations in fðTÞ gravity in the
cosmological scenario of an isotropic and homogeneous
universe and for the Bianchi I spacetime. Specifically, the
method that we use is that of the singularity analysis of
differential equations. Singularity analysis is complemen-
tary to symmetry analysis (for a discussion between the two
methods see [24]). The application of Noether point
symmetries for fðTÞ gravity can be found in [19,20,22].
Recently, singularity analysis was applied in the cosmo-
logical scenario of Rþ αRn gravity [25] and it was proved
that, if n is a rational number and n > 1, then the
gravitational field equations pass the singularity test and
the analytical solution of the field equations can be written
as a Laurent expansion around the movable singularity of
the field equations. The application of singularity analysis
in gravitational studies is not new and has provided
interesting results [26–28].
The plan of the paper is as follows. In Sec. II we define

our model with fðTÞ gravity in a spatially flat FLRW
spacetime and the resulting gravitational field equations are
presented. The singularity analysis of the field equations for
some functions proposed in the literature for fðTÞ is
performed in Secs. III and IV. Specifically, we consider
the power-law model fðTÞ ¼ T þ αð−TÞn, which has been
proposed in [7] as was the same model with the cosmo-
logical constant term: fðTÞ ¼ T þ αð−TÞn − Λ. For these
two models we find that the solution of the field equations
for the FLRW universe can be written analytically in a
Laurent expansion. However, the singularity analysis fails
in the Bianchi I spacetime, but in the latter model we find
that there exists an exact vacuum solution of the field
equation which leads to a Kasner-like universe. In Sec. V,
we construct conditions which allow solutions of GR to be
recovered in fðTÞ gravity. Finally, in Sec. VI, we discuss
our results and draw our conclusions.

II. f ðTÞ GRAVITY

We briefly discuss the basic assumptions of fðTÞ tele-
parallel gravity. The vierbein fields eiðxμÞ, as nonholo-
nomic frames in spacetime, are the dynamical variables of
teleparallel gravity and consequently of the fðTÞ gravity.
The vierbein fields form an orthonormal basis for the
tangent space at each point xμ of the manifold, that is,
gðei; ejÞ ¼ ei · ei ¼ ηij, where ηij is the line element of

four-dimensional Minkowski spacetime. In a coordinate
basis the vierbeins can be written as ei ¼ hμi ðxÞ∂i, for
which the metric tensor is defined as follows:

gμνðxÞ ¼ ηijhiμðxÞhjνðxÞ: ð1Þ

The curvatureless Weitzenböck connection, which is
considered in teleparallel gravity, has the non-null torsion
tensor [29,30]

Tβ
μν ¼ Γ̂β

νμ − Γ̂β
μν ¼ hβi ð∂μhiν − ∂νhiμÞ; ð2Þ

while the Lagrangian density of the teleparallel gravity,
from which the gravitational field equations are derived, is
the scalar

T ¼ SβμνTβ
μν; ð3Þ

where

Sβμν ¼
1

2
ðKμν

β þ δμβT
θν

θ − δνβT
θμ

θÞ ð4Þ

and Kμν
β is the contorsion tensor that is defined by

Kμν
β ¼ −

1

2
ðTμν

β − Tνμ
β − Tβ

μνÞ: ð5Þ

It equals the difference between the Levi-Civita connec-
tions in the holonomic and the nonholonomic frame.
The action for fðTÞ gravity is

SfðTÞ ¼
1

16πG

Z
d4xeðfðTÞÞ þ Sm; ð6Þ

in which e ¼ detðeiμÞ ¼ ffiffiffiffiffiffi−gp
. Variation with respect to the

vierbein gives the gravitational field equations:

e−1∂μðeeρi SρμνÞfT − eλi T
ρ
μλSρνμfT

þ eρi Sρ
μν∂μðTÞfTT þ 1

4
eνi fðTÞ

¼ 4πGeρi T ρ
ν; ð7Þ

where fT and fTT denote the first and second derivatives,
respectively, of the function fðTÞ with respect to T and the
tensor T ρ

ν denotes the energy-momentum tensor of the
matter source Sm. Furthermore, from (7) we recover GR
when fTT ¼ 0.

A. Modified Friedmann equations

In order to recover the cosmological scenario of a
spatially flat FLRW spacetime, we consider the diagonal
frame for the vierbein:

hiμðtÞ ¼ diagð1; aðtÞ; aðtÞ; aðtÞÞ: ð8Þ
In the holonomic frame the spacetime has the line element
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ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ;

where aðtÞ is the cosmological scale factor. For this frame
we calculate the Lagrangian density

T ¼ −6
�
_a
a

�
2

¼ −6H2; ð9Þ

where H ¼ _a=a is the Hubble parameter, while the
gravitational field equations (7) become

12H2fTðTÞ þ fðTÞ ¼ 16πGρ ð10Þ
and

48H2 _HfTTðTÞ − 4ð _H þ 3H2ÞfTðTÞ − fðTÞ ¼ 16πGp;

ð11Þ
in which ρ and p denote the energy density and pressure,
respectively, of the energy-momentum tensor T ρ

ν, from
which we have the conservation equation

_ρþ 3Hðρþ pÞ ¼ 0: ð12Þ
However, Eqs. (10) and (11) can be rewritten as

H2 ¼ 8πG
3

ðρþ ρTÞ ð13Þ

and

2 _H þ 3H2 ¼ −8πGðpþ pTÞ; ð14Þ
where ρT and pT are the effective energy density and
pressure, respectively, of the geometric fluid which follow
from the modification of the gravitational action integral.
Specifically, ρT and pT depend upon T and fT and are

ρT ¼ 1

16πG
½2TfTðTÞ − fðTÞ − T� ð15Þ

and

pT ¼ 1

16πG
½4 _Hð2TfTTðTÞ þ fTðTÞ − 1Þ� − ρT: ð16Þ

An effective equation of state parameter for the geometric
fluid can be defined as usual by

wT ≡ pT

ρT
¼ −1þ 4 _H½2TfTTðTÞ þ fTðTÞ − 1�

2TfTðTÞ − fðTÞ − T
: ð17Þ

From this, if we consider that fðTÞ ¼ T þ FðTÞ, then (17)
takes the simpler form

wT ¼ −
F − TFT þ 2T2FTT

ð1þ FT þ 2TFTTÞðF − 2TFTÞ
: ð18Þ

In [16], the model fI ≡ fðTÞ ¼ T þ αð−TÞn has been
proposed as an alternative to the dark-energymodels and fits

some of the cosmological data quite well. Furthermore, the
parameters of that model have been derived from cosmog-
raphy in [31], while in [17] it has been constrainedwithin the
Solar System and it has been found that the perturbation to
GR solution is given in terms of powers r2−2n of distance r
from a central point mass. Furthermore, in [17], they
performed the analysis by including the cosmological
constant term, i.e.,fII ≡ fðTÞ ¼ T þ αð−TÞn − Λ. These
two models, fI and fII , are the models we study here. In
what follows we will consider the two models fIðTÞ and
fIIðTÞ, with n ≠ 0, 1 (as we are in the teleparallel equiv-
alence of GR) and n ≠ 1

2
(so we are close to GR in the limit).

In order to check the latter condition, consider fðTÞ ¼
FðTÞ þ β

ffiffiffiffiffiffiffi
−T

p
, in (6), where FðTÞ is an arbitrary function.

Then,

S ¼ 1

16πG

Z
d4xeFðTÞ þ β

16πG

Z
d4xe

ffiffiffiffiffiffiffi
−T

p
; ð19Þ

where, using (9), the second term becomes a total derivative,
i.e., e

ffiffiffiffiffiffiffi
−T

p ¼ a2 _a ¼ 1
3
d
dt ða3Þ, which does not affect the field

equations. Furthermore, if we consider that FðTÞ ¼ −βΛ,
then the action (6) with the use of (9) becomes

S ¼ β

16πG

Z
d4xða2 _a − a3ΛÞ ¼ −

β

16πG

Z
d4xða3ΛÞ:

ð20Þ
Hence. the field equations (9)–(11) cannot be recovered.
Consider the diagonal frame

hiμðtÞ ¼ diagða−3ðτÞ; aðτÞ; aðτÞ; aðτÞÞ; ð21Þ
where the line element is that of FLRW spacetime with a
lapse function NðτÞ ¼ a−3ðτÞ, i.e., dt ¼ NðτÞdτ. Again,ffiffiffiffiffiffiffi
−T

p
is a linear function of _a, and the gravitational

Lagrangian is a total derivative, which is something that
has not been observed recently in [32].
However, in the case of vacuum, Eq. (10) can bewritten as

f − 2TfT ¼ 0; ð22Þ

which indeed admits as a solution the case fðTÞ ¼ ffiffiffiffiffiffiffi
−T

p
but

also has a special solution fðTÞjT−>0 ¼ 0, whichmeans that
aðtÞ ¼ const, and we have the solution of GR in empty
spacetime.
For the fluid components of the field equations, we take a

dust fluid, with pm ¼ 0, and a radiation fluid, pr ¼ 1
3
ρr. We

assume that the two fluids are not interacting and are
minimally coupled to gravity; hence, (12) for each fluid
gives ρm ¼ ρm0a−3 and ρr ¼ ρr0a−4. At this point we
should mention that Eq. (11), which is a second-order
equation with respect to the scale factor, still has to be
solved and the solution is constrained by the first modified
Friedmann equation (10).
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B. Anisotropic Bianchi I spacetime

The second scenario that we consider in this work is the
determination of an analytical solution in a Bianchi I
spacetime. To do that we consider the diagonal frame

hiμðtÞ ¼ diagð1; aðtÞ; bðtÞ; cðtÞÞ; ð23Þ

where the line element is that of Bianchi I spacetime with
unknown scale factors aðtÞ, bðtÞ and cðtÞ:

ds2 ¼ −dt2 þ a2ðtÞdx2 þ bðtÞdy2 þ cðtÞdz2: ð24Þ

The Lagrangian density for (23) is

T ¼ −
2

abc
ðc _a _bþb _a _cþa _b _cÞ; ð25Þ

from which we can see that (9) is recovered in the isotropic
scenario, aðtÞ ¼ bðtÞ ¼ cðtÞ, which is the spatially flat
FLRW universe.
With the use of a Lagrange multiplier in (6) the

Lagrangian of the field equations can be constructed:

Lða; b; c; _a; _b; _c; TÞ ¼ 2f;Tðc _a _bþb _a _cþa _b _cÞ
þ abcðf;TT − fÞ; ð26Þ

where we have assumed that there is no other matter source.
The gravitational field equations are the Euler-Lagrange

equations with respect to the variables a, b and c, Eq. (25),
which follow from ∂L

∂T ¼ 0, and the constraint equation

2f;Tðc _a _bþb _a _cþa _b _cÞ − abcðf;TT − fÞ ¼ 0: ð27Þ

This can be derived from the variation of the lapse function
N, when dt ¼ NðτÞdτ, where we have assumed that
NðtÞ ¼ 1. For the spacetime (23), we perform our analysis
for the same models fIðTÞ and fIIðTÞ introduced explicitly
in the last section.

III. ANALYTICAL SOLUTIONS IN FLRW
SPACETIMES

In order to determine the analytic solution of the field
equations we apply the method of singularity analysis and
we follow the Ablowitz-Ramani-Segur algorithm [33–35],
which is based upon the existence of movable singularities
for the differential equations and is in the spirit of the
approach of Kowalevski [36]. We refer the reader to the
following works for the basic properties of the singularity
analysis: Refs. [37–39].
We perform our analysis for the two different models, fI

and fII , that we discussed above for the two cases for the
fluid terms: (a) dust and (b) dust plus radiation.

A. Dust fluid

The analyses for the two different models with only a
dust fluid present are as follows.

1. Model f IðTÞ
We substitute aðτÞ ¼ a0τσ in (11) and we search for the

dominant terms in order to determine the power σ. Note that
τ ¼ ðt − t0Þ and t0 is the position of the singularity. We
have two different possibilities, n < 1 and n > 1 with
n ≠ 1

2
. Note that n ¼ 1 is the special case of teleparallel GR.

(a) Case n < 1.—For values of n smaller than one we
find the dominant behavior σ ¼ 2

3
for a0 an arbitrary value.

That means that the singularity of the differential equation
is that when aðt0Þ → 0, while in the same time _aðt0Þ → ∞.
In order to determine the position of the resonances we
substitute aðτÞ ¼ a0τ

2
3 þmτ

2
3
þs in (11), linearize around the

m≃ 0 and solve the remaining polynomial which follows
from the dominant terms determining s. The polynomial is
sðsþ 1Þ ¼ 0, which gives the two solutions s1 ¼ −1 and
s2 ¼ 0. The value of s1 is essential for the existence of the
singularity and gives a check that our analysis is correct.
The second resonance gives us the position of the second
constant of integration which is at the dominant term.
Recall that one constant of integration is the position of the
singularity t0. Furthermore, as the dominant term is not a
solution of (11) because there are remainder terms, the
solution is expressed in a right Painlevé series with a
step 1

3
, so

aðτÞ ¼ a0τ
2
3 þ
Xþ∞

N¼1

aNτ
2þN
3 : ð28Þ

In the solution (28), the only arbitrary constants are the
position of the singularity, t0, and the coefficient a0. The
coefficients aN have to be determined from (11) and (10).
First consider the case n ¼ −1. We substitute the

solution (28) into (11) and (10) which gives
16πGρm0 ¼ 8

3
a30. The nonzero coefficients aN are the aM

with M ¼ 12λ, λ ∈ N and a12
a0

¼ − 9
320

α, a24 ¼ 33
160

αa12,

a36 ¼ 23373
45760

αa24, etc., occur every 12 terms.
Since there are so many zero coefficients of the aN very

close to the singularity at aðt0Þ, the solution of the field
equation is well approximated by the power-law solution
aðτÞ ¼ a0τ

2
3, which is that of the dust fluid. That means that

close to the singularity the dominant term in the gravita-
tional field equations is the linear term T, while the
dynamical parts contributed by Tn only change the dynam-
ics far from the movable singularity.
(b) Case n > 1.—For n > 1, the dominant term is

aðτÞ ¼ a0τ
2
3
n. We assume that 2

3
n ∉N� and we calculate

that the dominant terms are τ−2þ2
3
nþs, which gives the

resonances s ¼ −1, s ¼ 0, so as before the solution is
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expressed in a right Painlevé series. In contrast to the n < 1
case, n now has to be a rational number in order for the
singularity analysis to work. The step of the right Painlevé
series depends on n and is determined from the denom-
inator of the dominant term with σ ¼ 2

3
n.

On the other hand, when n ¼ 3
2
μ, μ ∈ N�, in order to

perform the singularity analysis we substitute a → b−1ðτÞ,
from which we see that the dominant behavior is
bðτÞ ¼ b0τ−μ. The resonances are again at s ¼ −1 and
s ¼ 0 but, as the dominant behavior is not a solution of the
field equations, the solution is expressed again as a right
Painlevé series with step one.
Now consider the case n ¼ 2. The analytical solution is

aðτÞ
a0

¼ τ
4
3 þ
Xþ∞

N¼1

aNτ
4þN
3 ; ð29Þ

where the only nonzero coefficients are the aΣ with Σ ¼ 6λ,
λ ∈ N. The constant of integration is a0. For the leading
coefficients we have a6¼ð288αÞ−1, a12 ¼ 17ð2880αÞ−1a6,
a18¼835ð205632αÞ−1a12, etc., and 16πGρm0 ¼ − 1024

3
a30α,

which means that α < 0 for ρm0 > 0. We can see that the
solution (29) passes the consistency test. Before we proceed
to our analysis for the second model fIIðTÞ, we note that
the dominant term follows from the ð−TÞn term of the
action and it is the power solution of the power-law model
fðTÞ ¼ ð−TÞn [20]; that is, the universe is dominated by
the geometric effective fluid ρT , pT . The fluid has a
constant equation of state parameter wT ¼ n−1

n which is
always positive for n > 1.
On the other hand, for n ¼ 3

2
, which means μ ¼ 1, the

solution for the scale factor is

ðaðτÞÞ−1 ¼ b0τ−1 þ
Xþ∞

N¼1

bNτ−1þN: ð30Þ

For the coefficients bN , we have the relations b1
b0
¼

ð12 ffiffiffi
6

p
αÞ−1, b2

b0
¼−ð12 ffiffiffi

6
p

αÞ−1b1b0,
b3
b0
¼ ð9ð12 ffiffiffi

6
p Þ2α2Þ−1 b1

b0
,

b4
b0
¼ð15

19
ð12 ffiffiffi

6
p Þ4α4Þ−1b1b0, etc., while (10) gives 16πGρm0¼

12
ffiffi
6

p
b3
0

α>0. From (30), we observe that near the singularity

the effective fluid is that of radiation. We continue our
analysis with the model fIIðTÞ in which the cosmological
constant is considered.

2. Model f IIðTÞ
The singularity analysis for fIIðTÞ provides the same

results as that of fIðTÞ. This means that the cosmological
constant term does not effect the dominant behavior near
the singularity or the resonances. The only differences
which arise are that the coefficient terms of the Laurent
expansion now also depend upon Λ. We demonstrate this

by deriving the coefficients for the cases n ¼ −1, n ¼ 2

and n ¼ 3
2
.

For n ¼ −1, the solution of the field equations for fIIðTÞ
is again given by (28), where the nonzero coefficients are
now aM̄ with M̄ ¼ 6λ, λ ∈ N. In the analysis above the
nonzero coefficients occurred every 12 steps. The values of
the first coefficients are now�

a6
a0

�
¼ Λ

24
;

�
a12
a0

�
¼
�
Λ2 − 81α

2880

�
and

�
a18
a0

�
¼ ΛðΛ2 − 1994αÞ

362880
:

Thus, we can see, for Λ ¼ 0, that the coefficients have
the values of the model fIðTÞjn→−1. Note that we
have 16πGρm0 ¼ 8

3
a30.

In the case when n ¼ 2, the solution of field equation is
the right Painlevé series, (29). The nonzero coefficients are
aΣ, with Σ ¼ 6λ, λ ∈ N, where the first coefficients are�

a6
a0

�
¼ ð288αÞ−1;�

a12
a0

�
¼ 10αð17 − 162αΛÞ

�
α6
a0

�
2

and�
a18
a0

�
¼ 84ð167 − 1944αΛÞ

�
α6
a0

�
3

; etc:

Hence, we can see that the cosmological constant affects
the dynamics from the twelfth term of the Laurent
expansion and for Λ ¼ 0 we have the same coefficients
as before. Furthermore, the first Friedmann equation
gives 16πGρm0 ¼ − 1024

3
a30α.

Finally, for the case of n ¼ 3
2
, the solution of the field

equations is (30), where from (10) we have 16πGρm0 ¼
12
ffiffi
6

p
b3
0

α and from (11) that

�
b1
b0

�
¼ ð12

ffiffiffi
6

p
αÞ−1;�

b2
b0

�
¼ −ð12

ffiffiffi
6

p
αÞ−1

�
b1
b0

�
and

b3
b0

¼ 1 − 54α2Λ

7776
ffiffiffi
6

p
α3

:

From these coefficients we can see that, when Λ ¼ 0, the
solution reduces to that of the model fIðTÞjn→3

2
.

B. Dust and radiation fluids

In a more general scenario we assume that the matter
source of the field equations includes a part from the cold
dark matter (dust), a radiation component. We use the
model fIIðTÞ, because the cosmological constant does not
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affect the dominant term or the resonances. Again, we
consider two possible cases, n < 1 and n > 1.
(a) Case n < 1.—We follow the same steps as before

and we find that the dominant term of Eq. (11) is
aðτÞ ¼ a0τ

1
2. Now a0 is not arbitrary as above, but

ρ̄r0 ¼ 1
2
ða0Þ4, where ρ̄r0 ¼ 16πG

3
ρr0. This means that the

radiation fluid dominates in the early universe as expected.
For the resonances, we find that they are s1 ¼ −1 and
s2 ¼ 1

2
and now the position of the second constant of

integration in the Laurent expansion is in the coefficient a1.
The Laurent expansion is a right Painlevé series and is

aðτÞ ¼ a0τ
1
2 þ a1τ þ

Xþ∞

N¼2

aNτ
1þN
2 : ð31Þ

In this case it is important to prove the consistency of the
solution. We do that by replacing (31) in (11). We assume
that n ¼ −1. We find that

ρ̄r0 ¼
1

2
ða0Þ4; a2 ¼ −

7

8

a21
a0

;

a3 ¼
5

4

a31
a0

; a4 ¼ −
273

128

a41
a0

þ a0
18

Λ; etc:;

where again ρ̄r0 ¼ 1
2
ða0Þ4 and from (10) we have

16πGρm0 ¼ 9a20a1.
(b) Case n > 1.—When n > 1 the dominant term in the

movable singularity of the field equation (11) follows from
the term ð−TÞn in the action and does not correspond to a
radiation fluid as occurred in the previous case with n < 1.
We find that the dominant behavior is aðτÞ ¼ a0τ

2
3
n, for

2
3
n ∉N�. Straightforwardly, we calculate the resonances

and they are s1 ¼ −1 and s2 ¼ 0; that is, the solution is
expressed in a right Painlevé series where the coefficient a0
is the second constant of integration. This is possible
for n ∈ Q.
Again, when 2

3
n ¼ μ ∈ N�, we change variable via

aðτÞ → ðbðτÞÞ−1. We find that the field equations pass
the singularity analysis when μ is an even number, μ ¼ 2ζ,
where the dominant behavior is bðτÞ ¼ b0τ−

3
2
ζ, with ρ̄r0 ¼

−2−3ζ3−1þ9ζð6ζ − 1Þa−40 with resonances s1 ¼ −1 and
s2 ¼ 3

2
ζ. Hence the solution is expressed in a right

Painlevé series in which the step is 1
2
for ζ an odd number

and 1 when ζ is an even number. The position of the second
constant of integration depends upon the value of the
resonance s2.

IV. ANALYTICAL SOLUTIONS IN BIANCHI I
SPACETIME

The exact solution of the vacuum field equations which
follow from the Lagrangian function (26) in GR, i.e.,
fðTÞ ¼ T, is the Kasner spacetime where the coefficient

functions of the spacetime (24) are power law, that is,
χðtÞ ¼ tpi , and the pi ¼ ðpi; p2; p3Þ are solutions of the
following system:

X3
i¼1

pi ¼ 1;
X3
i¼1

p2
i ¼ 1: ð32Þ

These are called Kasner’s relations.
However, in modified theories of gravity it is possible for

Kasner-like solutions to exist but Kasner’s relations may
have to be modified because the components of the geo-
metric fluids exist. This has been considered first for the
higher-order theories of gravity by Barrow and Clifton in
[40–42]. Kasner-like solutions have been studied for the
fðXÞ ¼ Rn, fðXÞ ¼ ðRμνRμνÞn and fðXÞ ¼ ðRμνσλRμνσλÞn
theories of gravity. Specifically Kasner’s relations (32) have
been modified such that the right-hand sides of Eq. (32) do
not equal one but depend upon the power n defining the
Lagrangian of the theory, but Kasner’s metric or that of
Minkowski spacetime can still be recovered.
Before we study the existence of analytical solutions in

the models fIðTÞ and fIIðTÞ we consider the power-law
theory fðTÞ ¼ ð−TÞn for which we study the existence of a
Kasner-like solution.

A. Kasner-like solution

Consider fðTÞ ¼ ð−TÞn, and assume that

aðtÞ ¼ a0tp1 ; bðtÞ ¼ b0tp2 ; cðtÞ ¼ c0tp3 :

We find that the field equations which follow from the
Lagrangian (24) are satisfied either when

p1 ¼ p2 ¼ p3; where n ¼ 1

2
; ð33Þ

or when pi satisfies the two conditions

X3
i¼1

pi ¼ 2n − 1;
X3
i¼1

p2
i ¼ ð2n − 1Þ2; for n > 0;

ð34Þ
or

X3
i¼1

pi ¼ ρ0;
X3
i¼1

p2
i ¼ ρ20; for n > 1: ð35Þ

Solution (33) has been derived in [43], but it is that of an
isotropic universe for the theory fðTÞ ¼ ffiffiffiffiffiffiffi

−T
p

, but (as
discussed above) this Lagrangian cannot recover the field
equations of GR in an appropriate limit. Furthermore, from
(34), Kasner’s spacetime is recovered only when n ¼ 1,
while from (35), and for n > 1, Kasner’s solution is
recovered always for ρ0 ¼ 1. Moreover, there exists con-
sistency of (34) for every value of n, while solution (34) has
the universe expanding when n > 1

2
in (34), or ρ0 > 0 in
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(35), and t ¼ 0 describes the position of the spacetime
Weyl curvature singularity. Finally, from (34), we observe
that for positive values of n (or positive ρ0) one of the
resonances always has a different sign from the others, i.e.,
if p2, p3 are positive, then p1 < 0. This means that the
chaotic dynamical behavior on approach to the singularity
in the Mixmaster universe, via an infinite sequence of
Kasner eras, can occur as in GR,
We see that by rescaling via p̄i ¼ 1

2n−1pi, or p̄i ¼ 1
ρ0
pi,

conditions (34) and (35) simply become the GR Kasner
relations X3

i¼1

p̄i ¼ 1;
X3
i¼1

p̄2
i ¼ 1: ð36Þ

The existence of solutions (34) and (35) means that the
field equations in fðTÞ gravity, for the diagonal frame (23),
admit an anisotropic exact solution. This is contrary to the
claim in a recent review of fðTÞ gravity [6], which is based
on results in Ref. [43]. To see this more clearly, note that the
constraint equation ~G0

0 ¼ 0, where ~Gμ
ν is the modified

Einstein tensor, is again Eq. (22) for the case of vacuum.
This admits the general solution fðTÞ ¼ ffiffiffiffiffiffiffi

−T
p

and also the
particular solution T ¼ 0, with fðTÞjT→0 ¼ 0, for the
power-law case. It is easy to see that the solution (34)
allows (25) to take a zero value.

B. Singularity analysis

We perform our singularity analyses for the models
fIðTÞ and fIIðTÞ. As in the case of the isotropic universe,
we will study the two different cases for which n < 1
and n > 1.

1. Model f IðTÞ
(a) Case n < 1.—For values of n < 1, we find that the

dominant term in the field equations is the linear term in the
action; that is, we are in the limit of GR as for the FLRW
universe in the previous section. Hence, the dominant terms
are ðaðtÞ; bðtÞ; cðtÞÞ ¼ ða0tp1 ; b0tp2 ; c0tpÞ, where a0, b0,
c0 are arbitrary constants and the pi satisfy the Kasner
relations (32). However, since the pi satisfy the Kasner
relations we have that TðtÞ ¼ 0. Hence the singularity
analysis fails.
(b) Case n > 1.—In the second case, when n > 1, we

find that the dominant terms are ðaðtÞ; bðtÞ; cðtÞÞ ¼
ða0tp1 ; b0tp2 ; c0tpÞ, where again a0, b0, c0 are arbitrary
constants and the pi satisfy the modified Kasner relations
(34). This solution also gives TðtÞ ¼ 0, which means that
the singularity analysis fails. However in this case we
observe that Kasner’s solution (32) solves the field
equations.

2. Model f IIðTÞ
For the second model, namely fIIðTÞ, the singularity

analysis fails to provide us with a solution because the

dominant terms ensure TðtÞ ¼ 0. In contrast to the model
fIðTÞ, we now find fIIðTÞ ≠ 0, which means that the field
equations are not satisfied.

V. TEGR IN NONLINEAR f ðTÞ GRAVITY

We rewrite the gravitational field equations (7) as
follows:

eρiGfT þ
1

4
eρi ½ðf−TfTÞ�þeρi Sρ

μν∂μðTÞfTT ¼ 4πGeρi T ρ
ν;

ð37Þ

where G is the Einstein tensor in the teleparallel
equivalence

eρiG ¼
�
e−1∂μðeeρi SρμνÞ − eλi T

ρ
μλSρνμ þ

1

4
eνi T

�
: ð38Þ

Recall that the Lagrangian density T is related to the
Ricci scalar by

T ¼ −Rþ 2e−1∂νðeTρ
ρνÞ: ð39Þ

If ðf − TfTÞ ¼ 0, that is fðTÞ ¼ T or fðTÞjT→0 ¼ 0 and
T ¼ 0, then Eq. (37) becomes

eρiGfT þ eρi Sρ
μν∂μðTÞfTT ¼ 4πGeρi T ρ

ν: ð40Þ

A vacuum solution of fðTÞ gravity is therefore also a
vacuum solution of GR if and only if

R ¼ 2e−1ν ∂νðeTρ
ρνÞ ¼ 0: ð41Þ

However, if we assume a nonzero energy-momentum
tensor eρi T ρ

ν, then solution (40) is again one of GR if
fT ≠ 0, eρi Sρ

μν∂μðTÞfTT ¼ 0 and condition R ¼
2e−1ν ∂νðeTρ

ρνÞ holds. The latter conditions have been
derived in [44]. In the case of vacuum it is not necessary
that fT be a nonzero constant. It can be also zero when GR
is recovered as we saw in Sec. IVAwith the case of power-
law fðTÞ.
We conclude that vacuum solutions in GR can be

recovered in fðTÞ gravity as in the case of the fourth-order
fðRÞ gravity [45]. However, it is necessary to select the
correct frame in which R ¼ 2e−1ν ∂νðeTρ

ρνÞ. Note also that a
vacuum solution of GR may correspond only to a special
solution of fðTÞ gravity and may not be stable in initial data
space [46].
For the Bianchi I model, a power-law solution,

aðtÞ ¼ a0tp1 , bðtÞ ¼ b0tp2 , cðtÞ ¼ c0tp3 , solves the vac-
uum field equations if T ¼ 0, fðTÞjT→0 ¼ 0, which pro-
vides the constraint equation

ðp1p2 þ p1p3 þ p2p3Þ ¼ 0; ð42Þ
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if and only if the left-hand side of (40) is well defined. In
the case of fðTÞ ¼ T þ αð−TÞn, where fð0Þ ¼ 0,
fTð0Þ ¼ 1, we have that eρi Sρ

μν∂μðTÞfTT ¼ 0 only when
n > 1 and then GR is recovered.
On the other hand, in fðTÞ ¼ ð−TÞn gravity we have that

fð0Þ ¼ 0, fTð0Þ ¼ 0 and eρi Sρ
μν∂μðTÞfTT ¼ 0 for n > 1,

where condition (43) provides us with (35), where the
Kasner solution is recovered again for ρ0 ¼ 1 without
necessarily having fTð0Þ ≠ 0. However, for values of n
where n ∈ ð0; 1Þ, the quantities fTð0Þ, fTTð0Þ are infinite
but if the constant ρ0 has the value ρ0 ¼ 2n − 1, then the
right-hand side part of (40) is well defined.

A. Cosmological constant

If we include the cosmological constant, then Eq. (37)
becomes

eρi ðGþ ΛÞfT þ 1

4
eρi ½ðf − ðT þ ΛÞfTÞ� þ eρi Sρ

μν∂μðTÞfTT
¼ 4πGeρi T ρ

ν: ð43Þ

The above analysis holds and we reduce to the solutions of
GR with the cosmological constant when fðTÞjT→Λ ¼ 0

and T ¼ −Λ [44]. Again, in the vacuum scenario, f;Tð−ΛÞ
can be zero and GR can be recovered with the proper frame
for the cosmological constant Λ.
In order to demonstrate this, note that in (10) and (11)

and for the diagonal frame we considered in Sec. II, that
fðTÞ ¼ ð−T − ΛÞn; this means that fð−ΛÞ ¼ 0, and
f;Tð−ΛÞ → 0 for n > 1 or f;Tð−ΛÞ → ∞ for n < 1.
From the field equations, (10) and (11), we find the de

Sitter solutions

aðtÞ ¼ a0 exp

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ

6ð1 − 2nÞ

s
t

!
; n ≠ 0; ð44Þ

aðtÞ ¼ a0 exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
6
ð1þ ΛÞ

r
t

�
; n ¼ 1

2
; Λ ≠ −1;

ð45Þ

and

aðtÞ ¼ a0 exp

�
�

ffiffiffiffi
Λ
6

r
t

�
; n > 1: ð46Þ

The latter is that in which T ¼ −Λ. This is the solution
through which we recover GR. We observe that (44) and
(45) provide us with GR solutions but for a cosmological
constant ~Λ ¼ Λ

1−2n, Λ̄ ¼ Λð1þ ΛÞ. This means that in
fðTÞ ¼ ð−T − ΛÞn gravity there exists a solution in which
the geometric fluid with components ρT , pT has a constant
equation of state parameter wT ¼ −1. That follows from the

results of [44] because fðTÞ ≠ 0 for T ¼ Λ
1−2n. Then, a new

cosmological constant has to be considered. Recall that for
n ¼ 1

2
, the function fðTÞ ¼ ð−T − ΛÞ12 is well defined for

Λ ≠ 0, in contrast to the situation when Λ ¼ 0.
Including a matter source in (10) and (11), like that of a

dust fluid, in order to recover ΛCDM cosmology we can
see that the use of the condition T ¼ −Λ gives the scale
factor (46), which means that GR cannot be recovered by
that condition—at least for the frame that we have
considered. We know that fðTÞ gravity is not invariant
under Lorentz transformations which is one of the main
issues with the theory; see [47,48]. Therefore, in order for
GR to be recovered, the frame should be that such condition
(41) is satisfied.
Consider again the field equations (10) and (11) without

a matter source ρ, p, for a function f such as T ¼ −Λ,
fð−ΛÞ ¼ 0, with eρi Sρ

μν∂μðTÞfTT ¼ 0. The field equations
become

ð−T þ ΛÞfT þ ðf − ðT þ ΛÞfTÞ ¼ 16πGρ ð47Þ
and

− ð4 _H − T þ ΛÞfT − ðf − ðT þ ΛÞfTÞ þ 48H2 _HfTT

¼ 16πGp: ð48Þ
The de Sitter solution (46) solves (47) and (48) when

p ¼ −ρ and ρ ¼ f;T
8πGΛ, with f;T ≠ 0, or when fT ¼ 0. In

the latter case we can say directly that fðTÞ provides us
with the solution of the teleparallel equivalence of general
relativity with a cosmological constant in the vacuum,
while for f;T ≠ 0 a new fluid term has to be introduced in
order to eliminate the remaining terms of fðTÞ gravity. This
is something that is not necessary when Λ ¼ 0.
Before we close this section we should remark that when

fð−ΛÞ and fTð−ΛÞ are nonzero constants then the gravi-
tational field equations become those of GR with a
cosmological constant Λ̂ which is different to Λ. Indeed,
their solution will be that of TEGRwhile we cannot say that
GR is always recovered because of the constraint equation

R ¼ 2e−1ν ∂νðeTρ
ρνÞ þ Λ: ð49Þ

VI. CONCLUSIONS

In this paper the method of movable singularities of
differential equations was applied in order to determine
analytical solutions of the field equations in fðTÞ gravity in
a cosmological scenario. The models that we considered
are f1ðTÞ ¼ T þ αð−TÞn and f2ðTÞ ¼ T þ αð−TÞn − Λ,
where GR is recovered for α → 0. For the right-hand side of
the field equations, i.e., the energy-momentum tensor, we
have considered two perfect fluids: a dust fluid which
corresponds to the cold dark matter and a blackbody
radiation term. We prove that the solution of these models
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is given as a right Painlevé series and the cosmological
constant does not play any significant role in the existence
of the movable singularity or on the resonances. The
cosmological constant modifies only the coefficients of
the Painlevé series.
We studied two different cases in which the total fluid is

(a) dust and (b) dust plus radiation. For the case (a) we
found that the field equations always pass the singularity
test. When n < 1, the dominant term gives with dust term,
as in GR, while far from the movable singularity, which
corresponds to aðt0Þ → 0, _aðt0Þ → ∞, the term αð−TÞn −
Λ plays a dominant role. On the other hand, when n > 1,
the dominant term corresponds to the ð−TÞn term of the
action, which provides an effective perfect fluid with a
constant equation of state parameter, wT ¼ n−1

n .
However, the situation is different when we add a

radiation fluid. In this case we showed that, when n < 1,
the dominant behavior is that of a radiation fluid in GR. For
n > 1 we have two possible cases. For n such that 2

3
n ∉N�

the dominant term is that of ð−TÞn and, when 2
3
n ∈ N�, we

found that the field equations pass the singularity test only
if 2

3
n is an even number. The dominant term is then

aðτÞ ¼ a0τ
1
2
n. Furthermore, for both cases (a) and (b),

the field equations pass the singularity analysis for n > 1
only if n is a rational number.
We compare our results with the fourth-order gravity

defined by the Lagrangian fIðRÞ ¼ Rþ αRn that has been
studied from the point of view of the singularity analysis in
[25] without a radiation fluid. There, it was found that the
field equations pass the singularity test when n is a rational
number greater than one and the dominant term is that of
the term Rn in the Lagrangian for n > 1 with n ≠ 5

4
, 2. Of

course, the two different theories fðTÞ ¼ Tn and fðRÞ ¼
Rm provide power-law solutions. That means that at a level
close to the movable singularity the two different theories,
fIðTÞ and fIðRÞ, provide a similar behavior for n, m > 1.
Another issue that deserves comment is that the movable

singularity in the modified Friedmann equation (11) for the
models studied corresponds to a spacetime singularity
because either [when aðt0Þ → 0] the Hubble function,
the deceleration parameter, or one of their higher deriva-
tives of the scale factor becomes singular. Of course, that
does not mean that the method of movable singularities of
differential equations cannot be applied in cosmological
models with no singularities. A movable singularity at
t → t0, when it exists, can provide a solution such as
aðt0Þ → ∞. That is possible when the dominant behavior is
negative. This is clear from the analysis we perform in the
Bianchi I spacetime.
When considering the Bianchi I spacetime we found that

the vacuum field equations admit an anisotropic Kasner-
like solution which is contrary to the existing results in the

literature [6,43]. We did that by studying the field equations
for the power-law model fðTÞ ¼ ð−TÞn. The modified
Kasner relations depend upon the power n and the sum of
the Kasner indices, and their squares are (2n − 1) and
ð2n − 1Þ2, or ρ0 and ρ20, respectively, where for n ¼ 1 or
ρ0 ¼ 1we are in the limit of teleparallel equivalence of GR.
As far as the two models fIðTÞ and fIIðTÞ are concerned,
we found that the singularity analysis failed to provide us
with the analytical solution of the field equations. However,
the dominant terms are also solutions of the field equations
for the fIðTÞmodel, where for n < 1 the Kasner solution is
recovered, while for n > 1 the Kasner-like solution fol-
lows. Furthermore, we note that the results are different
from that of fðRÞ ¼ Rm gravity, where two families of
Kasner-like solutions exist while the power m of the theory
cannot be arbitrary.
In fðTÞ gravity for the two spacetimes that we consid-

ered we show that the vacuum field equations are satisfied
when the solution guarantees T ¼ 0 and fðTÞjT→0 ¼ 0. In
the case of the FLRW spacetime the solution is that of the
four-dimensional Minkowski spacetime. For the Bianchi I
spacetime if we consider a power-law solution, then
condition (42) should be satisfied and the Kasner metric
solves (42). We expect that an fðTÞ Mixmaster universe to
have similar chaotic behavior to that displayed in GR on
approach to a spacetime singularity.
We also studied when solutions of the teleparallel

equivalence of GR can be recovered in fðTÞ gravity. We
found that when T ¼ T0 and fðT0Þ ¼ 0, the field equations
do not admit terms which diverge at infinity. The solution
of GR is recovered for the proper frame for an arbitrary
value of fTðT0Þ for the vacuum case with or without a
cosmological constant and also when fTðT0Þ ≠ 0 when a
fluid is included in the field equations.
The knowledge that the field equations form an inte-

grable system is important for the existence of real
solutions. Symmetries and singularity analyses are two
independent methods which they provide us with informa-
tion if the system is integrable. In a forthcoming work we
would like to extend that approach and in other gravita-
tional theories.
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