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In the cosmological scenario in f(T) gravity, we find analytical solutions for an isotropic and
homogeneous universe containing a dust fluid and radiation and for an empty anisotropic Bianchi I
universe. The method that we apply is that of movable singularities of differential equations. For the
isotropic universe, the solutions are expressed in terms of a Laurent expansion, while for the anisotropic
universe we find a family of exact Kasner-like solutions in vacuum. Finally, we discuss when a nonlinear
f(T)-gravity theory provides solutions for the teleparallel equivalence of general relativity and derive
conditions for exact solutions of general relativity to solve the field equations of an f(T) theory.
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I. INTRODUCTION

One of the most important unsolved problems of modern
astronomy and particle physics is the identity of the “dark
energy” that is evidently responsible for the observed
acceleration of the universal expansion. The dynamics
can be quite accurately described by the inclusion of a
simple cosmological constant term to Einstein’s equations
but its required magnitude is mysterious and unmotivated
by fundamental physics. Some new fundamental theory
might eventually be able to provide a natural explanation
(see, for an example, [1]) or there may be more complicated
explanations in which the dark energy is not a constant
stress but some time-dependent scalar (or effective scalar)
field. Effective scalar fields are available in the many
deviant theories of gravity that have been proposed as
generalizations of Einstein’s general theory of relativity.
In the past it had been expected that deviations from
Einstein’s theory would only arise in situations of high, or
formally infinite, spatial curvature—so-called curvature
“singularities”—where the entire theory breaks down.
However, the unusual challenge posed by the acceleration
of the Universe is that it may require modifications to
Einstein’s theory in the late Universe when spatial curva-
ture is very low. So-called “modified theories of gravity”
provide one of these scenarios to explain the acceleration of
the Universe. In contrast to the explicit dark-energy models,
such as quintessence, phantom fields, Chaplygin gas or
many others (see [2-5], and references therein), in which an
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energy-momentum tensor which violates the strong energy
condition is added to the field equations of general
relativity (GR), in modified gravity theories the dark energy
often has a geometric origin and is related to new
dynamical terms which follow from the modification of
the Einstein-Hilbert action.

A particular modified theory of gravity which has
attracted the interests of cosmologists is so-called f(T)
teleparallel gravity' [7-9]. Inspired by the formulation of
f(R) gravity, in which the Lagrangian of the gravitational
field equations is a function, f, of the Ricci scalar R of the
underlying geometry [10], f(7) gravity is a similar
generalization. Now, instead of using the torsionless
Levi-Civita connection of GR, the curvatureless
Weitzenbock connection is used in which the correspond-
ing dynamical fields are the four linearly independent
vierbeins, and 7 is related to the antisymmetric connection
which follows from the nonholonomic basis [11-13].

A linear f(T) theory leads to the teleparallel equivalent
of GR (TEGR) [14]. However, f(T) gravity does not
coincide with f(R) gravity. One of the main differences is
that for a nonlinear f(R) function, gravity is a fourth-order
theory, whereas f(7) gravity is always a second-order
theory. This follows because 7 includes only first deriv-
atives of the vierbeins. Moreover, while f(7') gravity is a
second-order theory and in the limit of a linear function,
f =R, GR is recovered, in general f(7T) gravity provides
different structural properties from those of GR. However,
from the analysis of the cosmological data and the Solar
System tests of GR we know that deviations from GR must

'For a recent review on f(T) gravity see [6].
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be small, and so f(7) must be close to a linear form
[15-18].

Even though f(T') gravity is a second-order theory, very
few exact analytical solutions of the field equations are
known. Some power-law solutions in a Friedmann-Lemaitre-
Robertson-Walker (FLRW) spacetime can be found in
[19,20], while some power-law solutions in anisotropic
spacetimes are given in [21]. Finally, some analytical
solutions in the case of static spherically symmetric space-
times can be found in [22,23], and references therein.

In this work we are interested to determine exact
solutions of the field equations in f(7) gravity in the
cosmological scenario of an isotropic and homogeneous
universe and for the Bianchi I spacetime. Specifically, the
method that we use is that of the singularity analysis of
differential equations. Singularity analysis is complemen-
tary to symmetry analysis (for a discussion between the two
methods see [24]). The application of Noether point
symmetries for f(7) gravity can be found in [19,20,22].
Recently, singularity analysis was applied in the cosmo-
logical scenario of R + aR" gravity [25] and it was proved
that, if n 1s a rational number and »n > 1, then the
gravitational field equations pass the singularity test and
the analytical solution of the field equations can be written
as a Laurent expansion around the movable singularity of
the field equations. The application of singularity analysis
in gravitational studies is not new and has provided
interesting results [26-28].

The plan of the paper is as follows. In Sec. II we define
our model with f(T) gravity in a spatially flat FLRW
spacetime and the resulting gravitational field equations are
presented. The singularity analysis of the field equations for
some functions proposed in the literature for f(7) is
performed in Secs. III and IV. Specifically, we consider
the power-law model f(T) = T + a(—T)", which has been
proposed in [7] as was the same model with the cosmo-
logical constant term: f(7) = T 4+ a(-=T)" — A. For these
two models we find that the solution of the field equations
for the FLRW universe can be written analytically in a
Laurent expansion. However, the singularity analysis fails
in the Bianchi I spacetime, but in the latter model we find
that there exists an exact vacuum solution of the field
equation which leads to a Kasner-like universe. In Sec. V,
we construct conditions which allow solutions of GR to be
recovered in f(7) gravity. Finally, in Sec. VI, we discuss
our results and draw our conclusions.

IL f(T) GRAVITY

We briefly discuss the basic assumptions of f(7) tele-
parallel gravity. The vierbein fields e;(x*), as nonholo-
nomic frames in spacetime, are the dynamical variables of
teleparallel gravity and consequently of the f(7T) gravity.
The vierbein fields form an orthonormal basis for the
tangent space at each point x* of the manifold, that is,
glei.e;) = e;-e; =mn;;, where n;; is the line element of
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four-dimensional Minkowski spacetime. In a coordinate
basis the vierbeins can be written as e; = h%(x)0;, for
which the metric tensor is defined as follows:

G (%) = 151, (X) (%) . (1)

The curvatureless Weitzenbock connection, which is
considered in teleparallel gravity, has the non-null torsion
tensor [29,30]

Tﬁv - fgﬂ - fgu = hf}(aﬂhix - auh/lt)’ (2)

while the Lagrangian density of the teleparallel gravity,
from which the gravitational field equations are derived, is
the scalar

T = S,;"”Tﬂm,, (3)

where
1
St =5 (K" + §T%y — 85T ) (4)

and K", is the contorsion tensor that is defined by

1
K"’wﬁ:—E(T’w/}—TD”ﬂ—TﬁMD). (5)

It equals the difference between the Levi-Civita connec-
tions in the holonomic and the nonholonomic frame.
The action for f(T) gravity is

1

Ssry = T6rG d*xe(f(T)) + S, (6)

in which e = det(ej,) = \/=g. Variation with respect to the
vierbein gives the gravitational field equations:

e_laﬂ(eepS ”D)fT - e?T/)ﬂﬂS/)DﬂfT

1=p
1
+ €78, 0,(T) frr + 1 el f(T)
= 4nGelT ", (7)
where f7 and f77 denote the first and second derivatives,
respectively, of the function f(7') with respect to T and the

tensor 7 ,* denotes the energy-momentum tensor of the

matter source S,,. Furthermore, from (7) we recover GR
when fTT =0.

A. Modified Friedmann equations

In order to recover the cosmological scenario of a
spatially flat FLRW spacetime, we consider the diagonal
frame for the vierbein:

hj(1) = diag(1, a(r), a(1), a(t)). (8)

In the holonomic frame the spacetime has the line element
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ds* = —di* + a*(1)(dx* + dy* + dz*),

where a(7) is the cosmological scale factor. For this frame
we calculate the Lagrangian density

T=-6 (Z)z = —6H, 9)

where H = a/a is the Hubble parameter, while the
gravitational field equations (7) become

12H2f1(T) + f(T) = 162Gp (10)

and

48HH f17(T) — 4(H + 3H*)f1(T) - f(T) = 162G,

(11)

in which p and p denote the energy density and pressure,
respectively, of the energy-momentum tensor 7 %, from
which we have the conservation equation

p+3H(p+p)=0. (12)
However, Egs. (10) and (11) can be rewritten as

87G

# =22 (p+pr) (13)

and

2H + 3H* = -82G(p + pr), (14)

where pr and pr are the effective energy density and
pressure, respectively, of the geometric fluid which follow
from the modification of the gravitational action integral.

Specifically, p; and py depend upon T and f; and are
1
T)-T 1
pr=1e=RTF(T) = f()=T]  (15)
and
PT = T6x G[4H(2Tfrr( )+ fr(T) = D] =pr.  (16)

An effective equation of state parameter for the geometric
fluid can be defined as usual by

AH2T fr1(T T)-1
pr 2Tf+(T) = f(T) =T
From this, if we consider that f(7) = T + F(T), then (17)
takes the simpler form

F—TF; +2T*Fr
(1+F;+2TFpp)(F=2TF7)

In [16], the model f; = f(T) =T + a(=T)" has been
proposed as an alternative to the dark-energy models and fits

Wr = —

(18)
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some of the cosmological data quite well. Furthermore, the
parameters of that model have been derived from cosmog-
raphy in [31], while in [17] it has been constrained within the
Solar System and it has been found that the perturbation to
GR solution is given in terms of powers r2~" of distance r
from a central point mass. Furthermore, in [17], they
performed the analysis by including the cosmological
constant term, i.e..f;; = f(T) =T + a(-T)" — A. These
two models, f; and f;;, are the models we study here. In
what follows we will consider the two models f;(7) and
fu(T), with n #0, 1 (as we are in the teleparallel equiv-
alence of GR) and n # % (so we are close to GR in the limit).
In order to check the latter condition, consider f(7) =
F(T) + pv/-T, in (6), where F(T) is an arbitrary function.
Then,

| \ B
= F(T
1671G/dxe() 162G

where, using (9), the second term becomes a total derivative,
ie.,eV/-T = da’a = 14 (a?), which does not affect the field

d*xev/-T, (19)

equations. Furthermore, if we consider that F(T) = —fA,
then the action (6) with the use of (9) becomes
_ /5 4 3 _ ﬂ 4 3
= 162G d*x(a*a—a’*A) = e x(a’A).
(20)

Hence. the field equations (9)—(11) cannot be recovered.
Consider the diagonal frame

(2).a(7).a(7).a(z).  (21)

where the line element is that of FLRW spacetime with a
lapse function N(7) = a~>(z), i.e., dt = N(z)dr. Again,
/=T is a linear function of a, and the gravitational
Lagrangian is a total derivative, which is something that
has not been observed recently in [32].

However, in the case of vacuum, Eq. (10) can be written as

f=2Tf;r =0, (22)

which indeed admits as a solution the case f(7) = v/—T but
also has a special solution f(7)|;_., = 0, which means that
a(t) = const, and we have the solution of GR in empty
spacetime.

For the fluid components of the field equations, we take a
dust fluid, with p,, = 0, and a radiation fluid, p, = % pr We
assume that the two fluids are not interacting and are
minimally coupled to gravity; hence, (12) for each fluid
gives p,, = pmoa> and p, = p,pa*. At this point we
should mention that Eq. (11), which is a second-order
equation with respect to the scale factor, still has to be
solved and the solution is constrained by the first modified
Friedmann equation (10).

hi (1) = diag(a~
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B. Anisotropic Bianchi I spacetime

The second scenario that we consider in this work is the
determination of an analytical solution in a Bianchi I
spacetime. To do that we consider the diagonal frame

ni (1) = diag(1, a(t), b(1). c(t)), (23)

where the line element is that of Bianchi I spacetime with
unknown scale factors a(t), b(t) and c¢(1):

ds® = —dt* + a*(1)dx* + b(t)dy* + c(1)dz>. (24)

The Lagrangian density for (23) is

o) . .
T _ . - . )
s (cab+bac+abi), (25)

from which we can see that (9) is recovered in the isotropic
scenario, a(t) = b(t) = c(¢), which is the spatially flat
FLRW universe.

With the use of a Lagrange multiplier in (6) the
Lagrangian of the field equations can be constructed:

L(a.b,c,a.b,é,T) =2f 7(cab+baé—+ab¢)
+abe(f 2T = f). (26)

where we have assumed that there is no other matter source.

The gravitational field equations are the Euler-Lagrange

equations with respect to the variables a, b and c, Eq. (25),
OL

which follow from 5 =0, and the constraint equation

2f r(cab+baé+abé) —abe(f T —f)=0. (27)

This can be derived from the variation of the lapse function
N, when dt = N(r)dr, where we have assumed that
N(t) = 1. For the spacetime (23), we perform our analysis
for the same models f;(7) and f;;(T) introduced explicitly
in the last section.

III. ANALYTICAL SOLUTIONS IN FLRW
SPACETIMES

In order to determine the analytic solution of the field
equations we apply the method of singularity analysis and
we follow the Ablowitz-Ramani-Segur algorithm [33-35],
which is based upon the existence of movable singularities
for the differential equations and is in the spirit of the
approach of Kowalevski [36]. We refer the reader to the
following works for the basic properties of the singularity
analysis: Refs. [37-39].

We perform our analysis for the two different models, f;
and f;, that we discussed above for the two cases for the
fluid terms: (a) dust and (b) dust plus radiation.

PHYSICAL REVIEW D 94, 023525 (2016)
A. Dust fluid

The analyses for the two different models with only a
dust fluid present are as follows.

1. Model f{(T)

We substitute a(7) = ayr’ in (11) and we search for the
dominant terms in order to determine the power o. Note that
7= (t—1tg) and f; is the position of the singularity. We
have two different possibilities, » < 1 and n > 1 with
n # % Note that n = 1 is the special case of teleparallel GR.

(a) Case n < 1.—For values of n smaller than one we
find the dominant behavior ¢ = % for ag an arbitrary value.
That means that the singularity of the differential equation
is that when a(#y) — 0, while in the same time a(t;) — .
In order to determine the position of the resonances we
substitute a(7) = aozs + mz3 in (11), linearize around the
m =0 and solve the remaining polynomial which follows
from the dominant terms determining s. The polynomial is
s(s + 1) = 0, which gives the two solutions s; = —1 and
s, = 0. The value of s, is essential for the existence of the
singularity and gives a check that our analysis is correct.
The second resonance gives us the position of the second
constant of integration which is at the dominant term.
Recall that one constant of integration is the position of the
singularity #,. Furthermore, as the dominant term is not a
solution of (11) because there are remainder terms, the
solution is expressed in a right Painlevé series with a
step 1, so

“+o0
a(t) = ays + > ayt. (28)
N=1

In the solution (28), the only arbitrary constants are the
position of the singularity, ¢, and the coefficient ay. The
coefficients ay have to be determined from (11) and (10).

First consider the case n = —1. We substitute the
solution (28) into (11) and (10) which gives
1672Gp,, ) = %ag. The nonzero coefficients ay are the ay,
with M =124, A€ N and ”u—loz = —%a, ary = 13—630aa12,

as3e = BB aay, etc., occur every 12 terms.

Since there are so many zero coefficients of the ay very
close to the singularity at a(f), the solution of the field
equation is well approximated by the power-law solution
a(t) = agt3, which is that of the dust fluid. That means that
close to the singularity the dominant term in the gravita-
tional field equations is the linear term 7, while the
dynamical parts contributed by 7" only change the dynam-
ics far from the movable singularity.

(b) Case n> 1—For n > 1, the dominant term is
a(t) = ayr™". We assume that In ¢ N* and we calculate

that the dominant terms are 7-2t3""5_ which gives the
resonances s = —1, s = 0, so as before the solution is
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expressed in a right Painlevé series. In contrast to the n < 1

case, n now has to be a rational number in order for the

singularity analysis to work. The step of the right Painlevé

series depends on n and is determined from the denom-
2

inator of the dominant term with o = Fn.

On the other hand, when n = % u, 4 € N*, in order to
perform the singularity analysis we substitute a — b~ (7),
from which we see that the dominant behavior is
b(7) = byr™*. The resonances are again at s = —1 and
s = 0 but, as the dominant behavior is not a solution of the
field equations, the solution is expressed again as a right
Painlevé series with step one.

Now consider the case n = 2. The analytical solution is

+00
@ =+ Z aNT#, (29)
do N=1

where the only nonzero coefficients are the ay with X = 64,
A € N. The constant of integration is a,. For the leading
coefficients we have ag=(288a)7!, a;, = 17(2880a) ' as,
a13=3835(205632a) " ay,, etc., and 167Gp,,0 = — %2 ala,
which means that ¢ < O for p,,; > 0. We can see that the
solution (29) passes the consistency test. Before we proceed
to our analysis for the second model f;;(7), we note that
the dominant term follows from the (—7)" term of the
action and it is the power solution of the power-law model
f(T) = (=T)" [20]; that is, the universe is dominated by
the geometric effective fluid py, py. The fluid has a
constant equation of state parameter wy; = ”n;l which is
always positive for n > 1.

On the other hand, for n = %,

solution for the scale factor is

which means p = 1, the

(a(0))™" = byr~! + f byt . (30)
N=1

For the coefficients by, we have the relations 7+ =
(12v6a)~, 2=-(12V6a)™' 2, 3 = (9(12V6)*a?)! 173
ﬁ—(ﬁ(lzf 6)*a*)"? ”" , etc., while (10) gives 162Gp,,0=

12f

¢ >0. From (30), we observe that near the singularity

the effective fluid is that of radiation. We continue our
analysis with the model f;;(T) in which the cosmological
constant is considered.

2. MOdelfII(T>

The singularity analysis for f;;(T) provides the same
results as that of f;(7T). This means that the cosmological
constant term does not effect the dominant behavior near
the singularity or the resonances. The only differences
which arise are that the coefficient terms of the Laurent
expansion now also depend upon A. We demonstrate this

PHYSICAL REVIEW D 94, 023525 (2016)

by deriving the coefficients for the cases n = —1, n =2
and n = %

For n = —1, the solution of the field equations for f;(T)
is again given by (28), where the nonzero coefficients are
now aj with M =61, 1 € N. In the analysis above the
nonzero coefficients occurred every 12 steps. The values of
the first coefficients are now

dg A apn A2 —8la
=)=, ) =—— and
ao 24 agp 2880
aig) _ A(A% = 1994q)
a0 362880

Thus, we can see, for A = 0, that the coefficients have
the values of the model f;(T) Note that we
have 162Gp,,0 = $343.

In the case when n = 2, the solution of field equation is
the right Painlevé series, (29). The nonzero coefficients are
as, with ¥ = 641, 1 € N, where the first coefficients are

dg ]
(a0> (288a)"
2
<a12>10a(17—162a/\)( ) and
ap ago

arg 3
= 84(167 — 1944aA) etc.
do o

Hence, we can see that the cosmological constant affects
the dynamics from the twelfth term of the Laurent
expansion and for A =0 we have the same coefficients
as before. Furthermore, the first Friedmann equation
gives 162Gp,,o = — % aja.

Finally, for the case of n = % the solution of the field

[n—>—1-

equations is (30), where from (10) we have 16zGp,,, =

—lzb‘g/ga and from (11) that
0
b\ .
1) = (12v6a) ",
bo

(Zz) —(12v/6a)™" (bo> and

by 1-542’A
by  7776V/6a3

From these coefficients we can see that, when A = 0, the
solution reduces to that of the model f;(7)

|n—>%'

B. Dust and radiation fluids

In a more general scenario we assume that the matter
source of the field equations includes a part from the cold
dark matter (dust), a radiation component. We use the
model f;;(T), because the cosmological constant does not
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affect the dominant term or the resonances. Again, we
consider two possible cases, n < 1 and n > 1.

(a) Case n < 1.—We follow the same steps as before
and we find that the dominant term of Eq. (11) is
a(r) = agrs. Now a, is not arbitrary as above, but
Pro = 3(ag)*, where p,y =1%p ;. This means that the
radiation fluid dominates in the early universe as expected.
For the resonances, we find that they are s; = —1 and
) :% and now the position of the second constant of
integration in the Laurent expansion is in the coefficient a; .
The Laurent expansion is a right Painlevé series and is

(31)

+
1 = 1N
a(t) = ag? + a;7 + E ayt 2.
N=2

In this case it is important to prove the consistency of the
solution. We do that by replacing (31) in (11). We assume
that n = —1. We find that

1 7a2
-1 4 __'4
Pro = ) (aO) s as 8610 s
5a3 273a}  ay ote
a3 =-—, a3 =————+-—A, .
37 4q, 4 1284, 18

where again p, =1(ap)* and from (10) we have
162Gp,,0 = 9a3a,.

(b) Case n > 1.—When n > 1 the dominant term in the
movable singularity of the field equation (11) follows from
the term (—7')" in the action and does not correspond to a
radiation fluid as occurred in the previous case with n < 1.
We find that the dominant behavior is a(z) = aoz", for
%n ¢ N*. Straightforwardly, we calculate the resonances
and they are s; = —1 and s, = 0O; that is, the solution is
expressed in a right Painlevé series where the coefficient a,
is the second constant of integration. This is possible
for n € Q.

Again, when %n =pu €N*, we change variable via
a(r) — (b(r))~!. We find that the field equations pass
the singularity analysis when g is an even number, u = 2,
where the dominant behavior is b(z) = by, with p,q =
—273¢37119%(6¢ — 1)ag* with resonances s; = —1 and
s) =3(. Hence the solution is expressed in a right
Painlevé series in which the step is % for ¢ an odd number
and 1 when ¢ is an even number. The position of the second
constant of integration depends upon the value of the
resonance s,.

IV. ANALYTICAL SOLUTIONS IN BIANCHI I
SPACETIME

The exact solution of the vacuum field equations which
follow from the Lagrangian function (26) in GR, ie.,
f(T) =T, is the Kasner spacetime where the coefficient

PHYSICAL REVIEW D 94, 023525 (2016)

functions of the spacetime (24) are power law, that is,
x(t) = 171, and the p; = (p;, p2, p3) are solutions of the
following system:

3
Sh=t Y-t
i i=1

These are called Kasner’s relations.

However, in modified theories of gravity it is possible for
Kasner-like solutions to exist but Kasner’s relations may
have to be modified because the components of the geo-
metric fluids exist. This has been considered first for the
higher-order theories of gravity by Barrow and Clifton in
[40-42]. Kasner-like solutions have been studied for the
f(X)=R", f(X) = (R,R*)" and f(X) = (R,,,,R"")"
theories of gravity. Specifically Kasner’s relations (32) have
been modified such that the right-hand sides of Eq. (32) do
not equal one but depend upon the power n defining the
Lagrangian of the theory, but Kasner’s metric or that of
Minkowski spacetime can still be recovered.

Before we study the existence of analytical solutions in
the models f;(T) and f;;(T) we consider the power-law
theory f(T) = (=T)" for which we study the existence of a
Kasner-like solution.

(32)

A. Kasner-like solution
Consider f(T) = (-=T)", and assume that

a(t) = ayt?r, b(1) = byt?, c(t) = cot?>.

We find that the field equations which follow from the
Lagrangian (24) are satisfied either when

1
P1 = P2 = P3, where n = E, (33)
or when p; satisfies the two conditions
3 3
Zpi:Zn—l, Zp%:@n—l)z, for n > 0,
i=1 i=1
(34)

or

3

3
> pi=po. Y _pP=p; forn>1. (35)

i=1 i=1

Solution (33) has been derived in [43], but it is that of an
isotropic universe for the theory f(T) = V/-T, but (as
discussed above) this Lagrangian cannot recover the field
equations of GR in an appropriate limit. Furthermore, from
(34), Kasner’s spacetime is recovered only when n =1,
while from (35), and for n > 1, Kasner’s solution is
recovered always for po = 1. Moreover, there exists con-
sistency of (34) for every value of n, while solution (34) has
the universe expanding when n > % in (34), or pg > 0 in

023525-6



COSMOLOGICAL SOLUTIONS OF f(T) GRAVITY

(35), and ¢ = 0 describes the position of the spacetime
Weyl curvature singularity. Finally, from (34), we observe
that for positive values of n (or positive p,) one of the
resonances always has a different sign from the others, i.e.,
if p,, p3 are positive, then p; < 0. This means that the
chaotic dynamical behavior on approach to the singularity
in the Mixmaster universe, via an infinite sequence of
Kasner eras, can occur as in GR,

We see that by rescaling via p; = Tl_lp,-, or p; = plop,-,
conditions (34) and (35) simply become the GR Kasner
relations

3
Zl_?izlv ZP?=1- (36)
P P

The existence of solutions (34) and (35) means that the
field equations in f(T) gravity, for the diagonal frame (23),
admit an anisotropic exact solution. This is contrary to the
claim in a recent review of f(T') gravity [6], which is based
on results in Ref. [43]. To see this more clearly, note that the
constraint equation 5}8 =0, where f}’j is the modified
Einstein tensor, is again Eq. (22) for the case of vacuum.
This admits the general solution f(T) = /T and also the
particular solution 7 =0, with f(T)|;_, =0, for the
power-law case. It is easy to see that the solution (34)
allows (25) to take a zero value.

B. Singularity analysis

We perform our singularity analyses for the models
f1(T) and f;;(T). As in the case of the isotropic universe,
we will study the two different cases for which n < 1
and n > 1.

1. Model f(T)

(a) Case n < 1.—For values of n < 1, we find that the
dominant term in the field equations is the linear term in the
action; that is, we are in the limit of GR as for the FLRW
universe in the previous section. Hence, the dominant terms
are (a(t),b(t),c(t)) = (agt’, bot?2, cot?), where ay, by,
co are arbitrary constants and the p; satisfy the Kasner
relations (32). However, since the p; satisfy the Kasner
relations we have that 7'(¢#) = 0. Hence the singularity
analysis fails.

(b) Case n > 1.—In the second case, when n > 1, we
find that the dominant terms are (a(t),b(1),c(t)) =
(apt?', bytP2, cot?), where again agy, by, ¢ are arbitrary
constants and the p; satisfy the modified Kasner relations
(34). This solution also gives T(z) = 0, which means that
the singularity analysis fails. However in this case we
observe that Kasner’s solution (32) solves the field
equations.

2. Modelf”(T)

For the second model, namely f;;(T), the singularity
analysis fails to provide us with a solution because the
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dominant terms ensure 7(¢f) = 0. In contrast to the model
f1(T), we now find f;;(T) # 0, which means that the field
equations are not satisfied.

V. TEGR IN NONLINEAR f(T) GRAVITY

We rewrite the gravitational field equations (7) as
follows:

1
Gfr+ e [(f=Tfr)+ efspwaﬂ (M) frr= 471'Ge¢7pbv
(37)

where G is the Finstein tensor in the teleparallel
equivalence

1
G = (e—laﬂ(ee{.’spﬂ”) — &l T? S, + Ze’{T). (38)

Recall that the Lagrangian density 7 is related to the
Ricci scalar by

T =—-R+2e7'0,(eT,"™). (39)

If (f = Tfr) =0, thatis f(T) =T or f(T);_, = 0 and
T = 0, then Eq. (37) becomes

Gfr+elS0,(T)frr = 4nGelT " (40)

A vacuum solution of f(7) gravity is therefore also a
vacuum solution of GR if and only if

R =2¢;'0,(eT,*) =0. (41)

However, if we assume a nonzero energy-momentum
tensor €7, then solution (40) is again one of GR if
fr#0, €S 9,(T)frr =0 and condition R=
2¢;'0,(eT,”) holds. The latter conditions have been
derived in [44]. In the case of vacuum it is not necessary
that f; be a nonzero constant. It can be also zero when GR
is recovered as we saw in Sec. IV A with the case of power-
law f(T).

We conclude that vacuum solutions in GR can be
recovered in f(T') gravity as in the case of the fourth-order
f(R) gravity [45]. However, it is necessary to select the
correct frame in which R = 2¢,'9,(eT ,**). Note also that a
vacuum solution of GR may correspond only to a special
solution of f(T') gravity and may not be stable in initial data
space [46].

For the Bianchi I model, a power-law solution,
a(t) = agt™, b(t) = bot™, c(t) = cot??, solves the vac-
uum field equations if 7 =0, f(T)|;_, = 0, which pro-
vides the constraint equation

(P1p2 + P1p3 + Pap3) =0, (42)
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if and only if the left-hand side of (40) is well defined. In
the case of f(T)=T+a(-T)", where f(0)=0,
fr(0) =1, we have that ¢/S,%*0,(T)frr = 0 only when
n > 1 and then GR is recovered.

On the other hand, in f(T) = (=T)" gravity we have that
f(0) =0, f7(0) =0 and €/S,*0,(T)frr =0 for n > 1,
where condition (43) provides us with (35), where the
Kasner solution is recovered again for py = 1 without
necessarily having f;(0) # 0. However, for values of n
where n € (0, 1), the quantities f7(0), f77(0) are infinite
but if the constant p, has the value py = 2n — 1, then the
right-hand side part of (40) is well defined.

A. Cosmological constant

If we include the cosmological constant, then Eq. (37)
becomes

1
G+ N)fr + 3 If = (T + N)fp)] + €S, 0,(T)f 17
= 42GT . (43)

The above analysis holds and we reduce to the solutions of
GR with the cosmological constant when f(7);7_, =0
and T = —A [44]. Again, in the vacuum scenario, f 7(—A)
can be zero and GR can be recovered with the proper frame
for the cosmological constant A.

In order to demonstrate this, note that in (10) and (11)
and for the diagonal frame we considered in Sec. II, that
f(T)= (=T —A)"; this means that f(—A)=0, and
fr(=A) = 0forn>1or fr(—A) - oo for n < 1.

From the field equations, (10) and (11), we find the de
Sitter solutions

a(t) = agexp (i’ /6(1/—X2n)t>’ n#0, (44)

a(t) = agexp (i

and

a(t) = agexp (i\/§t>, n> 1. (46)

The latter is that in which T = —A. This is the solution
through which we recover GR. We observe that (44) and
(45) provide us with GR solutions but for a cosmological
constant A = =, A = A(1 + A). This means that in
f(T) = (=T — A)" gravity there exists a solution in which
the geometric fluid with components p;, py has a constant
equation of state parameter wy = —1. That follows from the
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results of [44] because f(T) # 0 for T = 2. Then, a new

cosmological constant has to be considered. Recall that for
n = 4, the function f(T) = (-T — A)z is well defined for
A # 0, in contrast to the situation when A = 0.

Including a matter source in (10) and (11), like that of a
dust fluid, in order to recover ACDM cosmology we can
see that the use of the condition 7 = —A gives the scale
factor (46), which means that GR cannot be recovered by
that condition—at least for the frame that we have
considered. We know that f(7) gravity is not invariant
under Lorentz transformations which is one of the main
issues with the theory; see [47,48]. Therefore, in order for
GR to be recovered, the frame should be that such condition
(41) is satisfied.

Consider again the field equations (10) and (11) without
a matter source p, p, for a function f such as T = —A,
f(=A) =0, with /S,#0,(T) frr = 0. The field equations
become

(=T +MNfr+ (=T +M)fr) =162Gp  (47)

and

—(H =T+ A)fr—(f = (T+ A fr) +48H*Hf 7
= 162Gp. (48)

The de Sitter solution (46) solves (47) and (48) when

p=-pandp= 8";—21\, with f 7 # 0, or when fr =0. In
the latter case we can say directly that f(7) provides us
with the solution of the teleparallel equivalence of general
relativity with a cosmological constant in the vacuum,
while for f 7 # 0 a new fluid term has to be introduced in
order to eliminate the remaining terms of f(7') gravity. This
is something that is not necessary when A = 0.

Before we close this section we should remark that when
f(=A) and f7(—A) are nonzero constants then the gravi-
tational field equations become those of GR with a
cosmological constant A which is different to A. Indeed,
their solution will be that of TEGR while we cannot say that
GR is always recovered because of the constraint equation

R =2¢;10,(eT,™) + A, (49)

VI. CONCLUSIONS

In this paper the method of movable singularities of
differential equations was applied in order to determine
analytical solutions of the field equations in f(7) gravity in
a cosmological scenario. The models that we considered
are f1(T) =T+ a(-T)" and fo(T) =T+ a(-T)" — A,
where GR is recovered for a« — 0. For the right-hand side of
the field equations, i.e., the energy-momentum tensor, we
have considered two perfect fluids: a dust fluid which
corresponds to the cold dark matter and a blackbody
radiation term. We prove that the solution of these models
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is given as a right Painlevé series and the cosmological
constant does not play any significant role in the existence
of the movable singularity or on the resonances. The
cosmological constant modifies only the coefficients of
the Painlevé series.

We studied two different cases in which the total fluid is
(a) dust and (b) dust plus radiation. For the case (a) we
found that the field equations always pass the singularity
test. When n < 1, the dominant term gives with dust term,
as in GR, while far from the movable singularity, which
corresponds to a(ty) — 0, a(ty) — oo, the term a(-T)" —
A plays a dominant role. On the other hand, when n > 1,
the dominant term corresponds to the (—=7)" term of the
action, which provides an effective perfect fluid with a
constant equation of state parameter, wy = ”T‘l

However, the situation is different when we add a
radiation fluid. In this case we showed that, when n < 1,
the dominant behavior is that of a radiation fluid in GR. For
n > 1 we have two possible cases. For n such that %n ¢ N*
the dominant term is that of (—7)" and, when $n € N*, we
found that the field equations pass the singularity test only
if %n is an even number. The dominant term is then

a(r) = agr?". Furthermore, for both cases (a) and (b),
the field equations pass the singularity analysis for n > 1
only if n is a rational number.

We compare our results with the fourth-order gravity
defined by the Lagrangian f;(R) = R + aR" that has been
studied from the point of view of the singularity analysis in
[25] without a radiation fluid. There, it was found that the
field equations pass the singularity test when n is a rational
number greater than one and the dominant term is that of
the term R" in the Lagrangian for n > 1 with n # %, 2. Of
course, the two different theories f(7) = 7" and f(R) =
R™ provide power-law solutions. That means that at a level
close to the movable singularity the two different theories,
f1(T) and f;(R), provide a similar behavior for n, m > 1.

Another issue that deserves comment is that the movable
singularity in the modified Friedmann equation (11) for the
models studied corresponds to a spacetime singularity
because either [when a(fy) — 0] the Hubble function,
the deceleration parameter, or one of their higher deriva-
tives of the scale factor becomes singular. Of course, that
does not mean that the method of movable singularities of
differential equations cannot be applied in cosmological
models with no singularities. A movable singularity at
t — ty, when it exists, can provide a solution such as
a(ty) — oo. That is possible when the dominant behavior is
negative. This is clear from the analysis we perform in the
Bianchi I spacetime.

When considering the Bianchi I spacetime we found that
the vacuum field equations admit an anisotropic Kasner-
like solution which is contrary to the existing results in the
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literature [6,43]. We did that by studying the field equations
for the power-law model f(T) = (-T)". The modified
Kasner relations depend upon the power n and the sum of
the Kasner indices, and their squares are (2n — 1) and
(2n—1)2, or py and pj3, respectively, where for n =1 or
po = 1 we are in the limit of teleparallel equivalence of GR.
As far as the two models f;(T) and f;;(T) are concerned,
we found that the singularity analysis failed to provide us
with the analytical solution of the field equations. However,
the dominant terms are also solutions of the field equations
for the f;(7') model, where for n < 1 the Kasner solution is
recovered, while for n > 1 the Kasner-like solution fol-
lows. Furthermore, we note that the results are different
from that of f(R) = R™ gravity, where two families of
Kasner-like solutions exist while the power m of the theory
cannot be arbitrary.

In f(T) gravity for the two spacetimes that we consid-
ered we show that the vacuum field equations are satisfied
when the solution guarantees 7 = 0 and f(7)|;_, = 0. In
the case of the FLRW spacetime the solution is that of the
four-dimensional Minkowski spacetime. For the Bianchi I
spacetime if we consider a power-law solution, then
condition (42) should be satisfied and the Kasner metric
solves (42). We expect that an f(7") Mixmaster universe to
have similar chaotic behavior to that displayed in GR on
approach to a spacetime singularity.

We also studied when solutions of the teleparallel
equivalence of GR can be recovered in f(T) gravity. We
found that when T = Ty and f(T,) = 0, the field equations
do not admit terms which diverge at infinity. The solution
of GR is recovered for the proper frame for an arbitrary
value of f7(T) for the vacuum case with or without a
cosmological constant and also when f(7) # 0 when a
fluid is included in the field equations.

The knowledge that the field equations form an inte-
grable system is important for the existence of real
solutions. Symmetries and singularity analyses are two
independent methods which they provide us with informa-
tion if the system is integrable. In a forthcoming work we
would like to extend that approach and in other gravita-
tional theories.
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