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According to statistical mechanics, microstates of an isolated physical system (say, a gas in a box) at time
t0 in a given macrostate of less-than-maximal entropy typically evolve in such a way that the entropy at time
t increases with jt − t0j in both time directions. In order to account for the observed entropy increase in only
one time direction, the thermodynamic arrow of time, one usually appeals to the hypothesis that the initial
state of the Universe was one of very low entropy. In certain recent models of cosmology, however, no
hypothesis about the initial state of the Universe is invoked. We discuss how the emergence of a
thermodynamic arrow of time in such models can nevertheless be compatible with the above-mentioned
consequence of statistical mechanics, appearances to the contrary notwithstanding.
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I. BACKGROUND

The goal of this paper is to discuss an explanation for the
ultimate origin of the thermodynamic arrow of time that
was recently proposed by Carrol and Chen [1–3] and later
explored also by Barbour et al. [4–6]. The cosmological
models proposed by these authors undergo an entropy
increase as demanded by the second law of thermodynam-
ics but do not postulate a special low entropy initial state of
the Universe. As we explain, such a behavior would appear
to be excluded by standard facts of statistical mechanics,
but, as we also explain, in fact it is not. We begin with
describing the problem that these models address.
Why should there be an arrow of time in our Universe,

governed as it is, at the fundamental level, by reversible
microscopic laws? Part of the answer is that a system in a
state of low entropy, corresponding classically to a small
phase space volume, will tend to evolve to a (more likely)
state of higher entropy, corresponding to much larger
volume. This leads to the question, What is the origin of
the low entropy initial states? If they are so unlikely, why
should systems find themselves in such states? In many
cases, the answer is that we created them from states of
lower entropy still. If we continue to ask such questions, we
come to the conclusion that the cause of low entropy states
on Earth is a cosmological low entropy state in the distant
past for the Universe as a whole; see, e.g., [[7], Chap. 7],
[[8], II §87], [9–13].

And what about the origin of this state? Penrose [7]
estimated the volume of the region of phase space corre-
sponding to the possible initial states of the Universe to be
one part in 1010

123

of the entire relevant phase space. Why
should the Universe have begun in such an exceedingly
improbable macrostate?
An answer that has often been suggested, starting with

Boltzmann [[8], II §90], is that such a state arose from a
fluctuation out of equilibrium. In fact, if the universal
dynamics were ergodic, such a fluctuation would even-
tually occur, repeatedly, for all phase points with the
possible exception of a set of measure 0. Nonetheless, this
fluctuation scenario is quite unsatisfactory; indeed, accord-
ing to Feynman [14] [p. 115] it is “ridiculous.” The problem
is that if the explanation of entropy increase and the arrow
of time in our Universe is that they have emerged from a
low entropy state that arose from a fluctuation, then that
fluctuation should have been no larger than necessary—that
is, to a state like the present state of the Universe, and not to
a state of much lower entropy as seems to have existed in
the past. In the words of Eddington [15], “A universe
containing mathematical physicists will at any assigned
date [in a fluctuation scenario] be in the state of maximum
disorganization which is not inconsistent with the existence
of such creatures.” Here is a quotation from Feynman,
referring to astronomy, to history books and history, and to
paleontology: “Since we always make the prediction that in
a place where we have not looked we shall see stars in a
similar condition, or find the same statement about
Napoleon, or that we shall see bones like the bones that
we have seen before, the success of all those sciences
indicates that the world did not come from a fluctuation…
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Therefore I think it is necessary to add to the physical laws
the hypothesis that in the past the universe was more
ordered … than it is today—I think this is the additional
statement that is needed to make sense, and to make an
understanding of the irreversibility” [14] [p. 115, emphasis
added]. Henceforth, adopting the terminology of Albert
[17], we shall refer to what has been italicized, an idea
originally due to Boltzmann, as the past hypothesis: that at
the big bang, the Universe was in an appropriate low
entropy macrostate. (Albert meant a bit more than this by
the past hypothesis. He meant that the initial microstate of
the Universe should be regarded as uniformly distributed in
the appropriate low entropy macrostate.)

II. ARROW OF TIME WITHOUT THE
PAST HYPOTHESIS

That the past hypothesis, or some hypothesis on uni-
versal initial conditions [12], is needed to account for the
origin of the arrow of time has long been the received view.
We discuss here an alternative view developed by Carroll
and Chen [1–3] and explored also by Barbour et al. [4–6].
Carroll and Chen proposed a cosmological model in which
(what is usually called) the big bang does not involve a
space-time singularity and is not the beginning of space-
time; in fact, in their model time extends infinitely into the
past. As a consequence, the time of the big bang is not the
initial time, and to add to the physical laws a condition on
the state at that time seems unnatural. Accordingly, Carroll
and Chen (and Barbour et al.) do not postulate a past
hypothesis. They claim that its consequences can nonethe-
less be derived from the dynamical laws and the typical
behavior of the solutions. If that is correct, such an
explanation of the arrow of time may be attractive because
it avoids the postulation of an extremely unlikely state.
Carroll and Chen’s claim that they do not need the past

hypothesis is surprising. After all, if one assumes that the
Universe is governed by equations of motion that are
reversible (and volume preserving, in the classical case, or
unitary, in the quantum case) and one does not invoke
anything like the past hypothesis, then it would seem that
the probabilistic reasoning that leads us to expect that
entropy increases towards the future, given the evidence of
the present macrostate, would lead us also to expect the
same increase toward the past. In a similar vein, it would
seem that without the past hypothesis, a typical solution of
the equations of motion should describe a universe that is in
global thermal equilibrium throughout its history (except
for fluctuations) [10,18], in contrast to our Universe. It
would seem, in other words, that without the past hypoth-
esis we would be stuck with the fluctuation scenario
discussed above.
Notwithstanding the above reasoning, Carroll and Chen

have proposed a cosmological model without any past
hypothesis which has, nevertheless, an arrow of time.

In fact, in this model, and in that of Barbour et al., the
following is true:
Fact 1. The entropy SðtÞ increases monotonically with t

(except for fluctuations) for t > τ and decreases monoton-
ically with t for t < τ from some “central time” τ; thus, the
(thermodynamic) arrow of time always points away from τ.
A key ingredient of this model is that the volume of (the

relevant) physical 3-space grows unboundedly as t → �∞,
with matter distributed in it in such a way that there is no
upper bound for the entropy, and thermal equilibrium is
never attained. This may explain, at least in part, why the
model universe is not in global thermal equilibrium
throughout its history. But there is also the following
standard fact (see, e.g., [8, II §88], [9,10,13,18,19]) of
the statistical mechanics of a closed system:
Fact 2. Most microstates in a macrostate with less-than-

maximal entropy S0 at time t0 (for example the present)
evolve so that SðtÞ increases with jt − t0j in both time
directions.
And, since t0 in Fact 2 is different from τ in Fact 1, the

following problem remains: how can Fact 2 be reconciled,
without the invocation of a past hypothesis, with the
existence of a time τ, significantly before t0, such that
the entropy SðtÞ monotonically increases with t for t > τ?
We address this question by means of a simple toy model
(also due to Carroll) that has all features relevant to our
purposes.
In the next section we describe the toy model. In the rest

of the paper we elaborate on the conflict between Fact 1 and
Fact 2. We first describe and resolve an apparent math-
ematical contradiction associated with the facts. We then
formulate a more detailed argument that Fact 2 shows that
the past hypothesis cannot be avoided, after which we
describe what is wrong with that argument.

III. TOY MODEL

Consider a gas of N ≫ 1 noninteracting classical par-
ticles moving freely in three-dimensional Euclidean space.
That is, the position of the ith particle (i ¼ 1;…; N) at time
t is given by

qiðtÞ ¼ qið0Þ þ tpið0Þ; ð1Þ

the particle’s momentum is piðtÞ ¼ pið0Þ, and its mass is
mi ¼ 1. As t → �∞, the particles will be dispersed over
larger and larger regions. We shall work in the center-of-
mass Galilean frame, in which at time 0 and thus at any t,
qcm ¼ N−1PN

i¼1 qi ¼ 0 and pcm ¼ P
ipi ¼ 0.

As a quantitative measure of the size of the region in
3-space occupied by the gas, we use the total moment of
inertia1

1Actually, the total moment of inertia (i.e., the trace of the
moment of inertia tensor) equals 2Ny.
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y ¼ N−1
XN
i¼1

qi2: ð2Þ

It follows that yðtÞ is a quadratic function of t, in fact

yðtÞ ¼ 2EN−1ðt − τÞ2 þ α ð3Þ

with E ¼ 1
2

P
ip

2
i the kinetic energy (¼ total energy)

and τ and α ≥ 0 suitable constants. From (3) we see that
yðtÞ → ∞ as t → �∞, and, moreover, yðtÞ assumes a
unique minimum at the central time τ.
Now regard E, y, and τ as functions on phase space

R6N ¼ fðq; pÞg ¼ fðq1;…; qN; p1;…; pNÞg. We denote
by ΓE the set of points in phase space with energy E
and pcm ¼ qcm ¼ 0. The quantity

xðq; pÞ ¼ −τðq; pÞ ð4Þ

is the time that has elapsed since the central time if the
system is presently in the state ðq; pÞ. Using the macro-
variable y to define the macrostates, the (Boltzmann)
entropy of the gas is2

Sðq; pÞ ¼ k log ρEðq;pÞðΓy0Þ: ð5Þ

Here, k is Boltzmann’s constant; ρE denotes the invariant
phase-space volume on ΓE (i.e., the measure whose density
relative to surface area is the inverse magnitude of the
gradient of the Hamiltonian); and the “macrostate” Γy0 is
the following. Subdivide the y-axis into intervals of (very
small) length dy0, and let Γy0 be the subset of ΓE for which
yðq; pÞ ∈ ½y0; y0 þ dy0�. (In the following, we will not
distinguish between y and y0.) This entropy is shown in
Appendix A to be a monotonic function of y ¼ y0, namely

S ¼ 3N − 5

2
k log yþ const:; ð6Þ

where the added constant depends on E, dy0, and N but not
y. Thus, the increase or decrease of S coincides with that
of y.
As a consequence, entropy increases indeed with jt − τj

both towards the past and towards the future of the central
time3; see Fig. 1. So, Fact 1 is true also in the toy model.

That is, every solution of the dynamical laws of the toy
model possesses an arrow of time (i.e., entropy increases
monotonically) in the time interval t > τ, and an opposite
arrow of time in the interval t < τ. In Carroll and Chen’s
cosmological model and in the model of Barbour et al., this
is still true of the overwhelming majority of solutions. (In a
universe governed by these models, the inhabitants in both
intervals would, of course, perceive entropy as increasing
with time, as their mental arrow of time is aligned with the
thermodynamic arrow.) Thus, the toy model illustrates how
arrows of time can arise without a past hypothesis.4 We now
turn to the conflict with Fact 2, which may even seem like a
mathematical contradiction.

IV. MATHEMATICAL CONTRADICTION

For simplicity we take E ¼ N=2. Then for each solution,
the image of the system’s orbit in the xy-plane is of the form

y ¼ x2 þ b; ð7Þ

where b ≥ 0 is the size of the system at the central time;
see Fig. 1.
Let us now consider the microcanonical (uniform)

distribution ρE on ΓE. Its image on the xy-plane is (see
Appendix B)

ρðx; yÞ ∼ ðy − x2Þ32ðN−2Þ ð8Þ

restricted to the physical region

Λ ¼ fðx; yÞjy ≥ x2g: ð9Þ

We shall consider instead the simpler density

ρðx; yÞ ∼ ey−x
2 ð10Þ

FIG. 1. Left: Entropy of the gas in the toy model as a function
of time. Right: Orbit of the system in the reduced (two-
dimensional) phase space of the system, described in the text.

2The choice of y as the sole macrovariable is an oversimpli-
fication for the sake of simplicity of the example. If we adopted
the choice of macrovariables from the kinetic theory of gases (and
thus the definition of Boltzmann entropy as −k

R
f log fd3qd3p

with f the coarse-grained empirical density in the 1-particle phase
space), then entropy would never change in the toy model [20].

3If we modified the toy model by taking into account pure
gravity (without any long range repulsive force arising, say, from
a nonzero cosmological constant), then entropy would have to be
defined differently. It would still increase, but by a rather different
mechanism (clustering in space rather than expansion).

4If we regard scale-invariant physical laws as defining a “shape
dynamics” then we may wish to also define entropy in a scale-
invariant way, contrary to what we did for the toy model. In this
regard, see the analysis of Barbour et al. [4–6].
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on the upper half-plane Λ ¼ fðx; yÞjy ≥ 0g [or on (9), that
does not matter much], since it serves just as well for the
points we wish to make; see Fig. 2 for a plot. This
distribution is (as it should be) constant along the orbits.
Suppose that the system is in the macrostate y ¼ y0.

Then the conditional probability distribution is

ρy0ðxÞ¼ρðxjy¼y0Þ¼
ρðx;y0ÞRþ∞

−∞ ρðx;y0Þdx
¼ 1ffiffiffi

π
p e−x

2

; ð11Þ

and it is very likely that the system is near x ¼ 0 (say,
−2 ≤ x ≤ 2); that is, that it has near-minimal entropy. In
other words, it is very likely that the system’s entropy was
not much lower in the past. Put yet another way, Fact 2 is
true also in the toy model. Since ρy0ðxÞ does not depend on
y0, by averaging over y0 the same conclusion would seem
to follow without any conditioning. More precisely, letC be
the vertical strip of width 4 centered around the y-axis.
It is easy to see that ρy0ð½−2; 2�Þ > 0.9 for all y0, and one
might be tempted to conclude that ρðCÞ=ρðΛÞ > 0.9. [Of
course, ρðCÞ ¼ ∞ ¼ ρðΛÞ.]
Now suppose we condition not on y but on b, that is, not

on horizontal lines, but on the parabolas y ¼ x2 þ b,
corresponding to the orbits of our system. Then, labeling
the points on these parabolas by x, the conditional dis-
tribution is ρbðxÞ ∝ 1 (i.e., uniform). In particular, these
conditional distributions assign small probability to C.
Thus, reasoning as before we would seem to find that
ρðCÞ=ρðΛÞ ≪ 1. (How small it would be would depend on
the size of the cutoff on x which is required for the uniform
distributions to be well defined.)
We have arrived, it would seem, at a contradiction. But the

above reasoning would be justified only if ρ were normal-
ized (or normalizable). For a probability (or normalizable)

measure, the probability of an event is the average of its
conditional probability with respect to a partition into
“fibers,” and the total probability of the event of course
does not depend on the choice of partition. But, as the
previous example shows, the situation can be quite different
for a non-normalizable measure. Thus, because ρ is non-
normalizable, the above reasoning is not correct. [And if we
introduce cutoffs tomake ρ normalizable and then normalize
it, what we arrive at for ρðCÞwill depend significantly on the
choice of cutoff; see Fig. 3.] The toy model thus illustrates
how Fact 1 and Fact 2 can, indeed, be compatible.

V. SHOULD WE EXPECT A LOW ENTROPY IN
THE PAST IF WE MAKE NO PAST HYPOTHESIS?

What seemed to be a blatant mathematical contradiction
arising from the combination of Facts 1 and 2 has thus been
resolved. But Fact 2 remains a fact, one that seems to imply
that without the invocation of the past hypothesis we should
expect the entropy of the Universe to be higher in the past as
well as in the future, both in the real world and in the “central
time models” (i.e., the model of Carroll and Chen, that of
Barbour et al., and the toy model). Indeed, should not the
present macrostate (e.g., some Γy0 in the toy model) be
regarded as representing our best available evidence about
what is physically the case? If entropy increases towards the
past, and not just towards the future, for the overwhelming
majority of microstates compatible with the evidence,
should we not have an overwhelming rational expectation
that this bidirectional entropy increase in fact holds?
We believe that the answer is no, we should not. Here is

why. Think about all the things for which the evidence
corresponding to the present macrostate of the Universe
provides support. Among these things is our best physical
theory itself. And it is only after we have such a theory that
we can identify the set of microstates that comprise the
macrostate corresponding to our evidence. Indeed, the very
nature of the phase space, some of whose subsets corre-
spond to macrostates, depends on exactly which variables
are the fundamental variables of the theory. Thus, some of
the conclusions we draw from the present evidence are

FIG. 2. Plot of the distribution ρðx; yÞ ∼ ey−x
2

.

FIG. 3. Left: The measure ρ is normalizable when restricted to
the region between two horizontal lines. For this cutoff, the
central points have large weight. Right: The measure ρ is
normalizable when restricted to the region delimited by two
parabolas and two vertical lines at x ¼ −L and x ¼ L. For this
cutoff, the central points have low weight for large L.
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pretheoretical. Among these, in addition to the theory itself,
are conclusions about the past, including perhaps the past
hypothesis. And after we have our theory, and with it the
detailed macrostates, what had been evidence for conclu-
sions about the past remains so.
Striking features of the present macrostate, such as the

existence of dinosaur bones, and the fact that when we find a
bone somewhere we usually find others nearby, are very
strongly suggestive, providing evidence for the existence of
dinosaurs and,more generally, that theEarth and theUniverse
had indeed pasts like the ones we believe they had. The
evidence we have in the present suggests that the Universe
was more ordered in the past. This corresponds to a rather
different assignment of weights than the uniform one for the
microstates in, say, the present macrostate of the Universe,
one for which the overwhelmingmajority of microstates for a
uniform weighting is assigned negligible weight. Such an
assignment is in agreement with the past hypothesis, but is
consistent with central time models as well.

VI. TYPES OF REASONING

Let us reflect on the different types of reasoning
involving probability that have been used in this paper:
mathematical reasoning, evidential reasoning, and theo-
retical reasoning. The first involves just mathematics, and
uses the mathematical structure provided by probability
theory as an important mathematical tool. It should not be
controversial. Nonetheless it can easily be conflated with
evidential reasoning, for which probability is also an
important ingredient.
Evidential reasoning concerns the drawing of conclu-

sions, with varying degrees of confidence, from some
evidence. There are of course no clear-cut rules for how
this should be done. One procedure is suggested by the
success of statistical mechanics. This procedure involves
the use of the uniform distribution over all microstates
compatible with our present evidence to inform our con-
clusions about past behavior as well as future behavior. It is
responsible for the conviction that the invocation of the past
hypothesis cannot be avoided. Insofar as the past is
concerned, it is quite deficient. But with regard to the
future it works extremely well. That it does so is explained
by statistical mechanics using the past hypothesis [17].
When we analyze the consequences of some theory,

regardless of whether or not it involves the assumption of a
past hypothesis, we take the theory as given, and are not
concerned with the evidence for that theory or with how
likely it is that the theory is correct. Rather we want to
determine the extent to which the theory can account for the
facts that the theory was intended to explain, facts such as
the second law of thermodynamics. Such analyses we call
theoretical reasoning. This, too, often involves the use of
probability, but not merely as pure mathematics, and not
really to provide a measure for different degrees of belief as
appropriate to the evidence, but rather as a means of making

more precise the extent to which what is to be explained
holds for the overwhelming majority of space-time histor-
ies yielded by the theory.
We regard a physical phenomenon, such as entropy

increase and irreversibility, as having been explained by a
theory if we can show that it typically occurs for the histories
of theUniverse provided by that theory, i.e., that it occurs for
the most by far of all theoretical histories. If the right
behavior (for example, entropy increase) is established for
all trajectories and not just for typical trajectories—as is the
case for the central time models we are considering—who
can ask for anything more? Thus, the models of Carroll and
Chen and Barbour et al. show that it is not necessary to add
any additional hypothesis to the laws of physics in order to
explain our arrow of time.

VII. A PROBLEM FOR THEORETICAL
REASONING?

Avariant of the puzzle we have discussed, of the tension
between Fact 1 and Fact 2, exists also in the framework of
theoretical reasoning: on the one hand, it naturally happens
in typical solutions of the model of Carroll and Chen that
galaxies, planetary systems, and life form over billions of
years in very much the way they have actually formed in
our Universe. On the other hand, as a consequence of Fact
2, most phase points consistent with the present macrostate
of the Universe are near (say, within minutes of) their
central times, suggesting that such macrostates most likely
do not come into existence by a billion-year-long history.
While the tension between these facts has a flavor very
similar to that of our discussion above in terms of
mathematical and evidential reasoning, it leads to further
considerations that go beyond the scope of this paper and
will be pursued in a subsequent work [21]. We argue there
that this apparent paradox leads, upon closer analysis, not
to a contradiction but rather to the conclusion that a theory
of this kind without a past hypothesis can only work if
entropy is unbounded from above (as it is in the models of
Carroll and Chen and Barbour et al.).

VIII. CONCLUSIONS

The salient attractive trait of the models of Carroll and
Chen and Barbour et al. is that they provide a possible
explanation of the low entropy state that the Universe was
in at some point in the distant past, without just postulating,
as the past hypothesis does, that the initial state of the
Universe was a very special one. In fact, in these models,
most or all possible histories of the Universe are such that
the entropy curve SðtÞ as a function of time t first decreases
(up to small fluctuations) from þ∞ to a minimum value
and then increases back to þ∞, thus giving rise to a
thermodynamic arrow of time in each of the two temporal
regions. We have elucidated why this behavior may
seem impossible in view of known facts of statistical
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mechanics, and why it is in fact possible. The relevant
considerations had to do with the mathematical properties
of non-normalizable measures that differ from those of
normalizable ones, and with the conclusions that can
validly be drawn about cosmological theories from the
empirical fact that human beings exist, and similar facts.
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APPENDIX A: ENTROPY FORMULA
FOR THE TOY MODEL

This appendix contains the calculation proving Eq. (6).
Let us begin by repeating (a bit more generally) the
definitions:

qiðtÞ ¼ qið0Þ þ tpið0Þ ðA1Þ

qcm ¼ N−1
XN
i¼1

qi; pcm ¼
XN
i¼1

pi ðA2Þ

y ¼ N−1
XN
i¼1

ðqi − qcmÞ2 ðA3Þ

E ¼ 1

2

XN
i¼1

ðpi − N−1pcmÞ2: ðA4Þ

For later reference, we also note that

τ ¼ −ð2EÞ−1
XN
i¼1

ðqi − qcmÞ · ðpi − N−1pcmÞ: ðA5Þ

We write n ¼ 3N, q ¼ ðq1;…; qNÞ, p ¼ ðp1;…; pNÞ, and

U ¼
�
ðv1;…; vNÞ ∈ R3N∶

XN
i¼1

vi ¼ 0

�
; ðA6Þ

which is a subspace of dimension n − 3.
Now we fix the value of pcm. For simplicity we consider

pcm ¼ 0 (which can be arranged by a Galilean trans-
formation); that is, instead of Rn ×Rn we consider the
invariant subset Rn ×U as the phase space. The invariant
measure on Rn ×U inherited from the volume measure on
Rn ×Rn is the ð2n − 3Þ-dimensional volume measure on
Rn ×U [because pcmðq; pÞ is a linear function on Rn ×Rn

so that, for each of its components, the norm of the gradient
is constant].
On Rn ×U, qcmðq; pÞ is a constant of motion because

dqcm=dt ¼ N−1pcm ¼ 0. We fix its value and can arrange
by a translation that qcm ¼ 0; that is, instead of Rn × U we
consider the invariant subsetU ×U as the phase space. The

invariant measure on U ×U inherited from the volume
measure on Rn ×U is the ð2n − 6Þ-dimensional volume
measure on U ×U.
On U ×U, we have that E ¼ 1

2

P
ip

2
i , so the surface of

constant energy is a sphere around the origin in momentum
space. We fix the value of E and can arrange by appropriate
choice of units of length and time that E ¼ N=2; that is,
instead of U ×U we consider the invariant subset ΓE ≔
U × ðU∩S ffiffiffi

N
p Þ as the phase space, with Sr the sphere

with radius r. It has the shape of a cylinder: an ðn − 3Þ-
dimensional hyperplane times an ðn − 4Þ-dimensional
sphere with radius

ffiffiffiffi
N

p
. The invariant measure ρE on ΓE

inherited from the volume measure onU × U is the product
of the ðn − 3Þ-dimensional volume measure on U and the
surface area measure on the ðn − 4Þ-dimensional sphere
(because the norm of the gradient of E is constant
along ΓE).
On ΓE, we have that y ¼ N−1P

iq
2
i , so the surface of

constant y is an ðn − 4Þ-dimensional sphere around the
origin in configuration space with radius

ffiffiffiffiffiffi
Ny

p
[times a

ðn − 4Þ-dimensional sphere with radius
ffiffiffiffi
N

p
in momentum

space]. Therefore, the set

Γy0 ¼ fðq; pÞ ∈ ΓE∶y0 ≤ yðq; pÞ ≤ y0 þ dy0g ðA7Þ
is a spherical shell of thickness dr ¼ ðN=2rÞdy0 and radius
r ¼ ffiffiffiffiffiffiffiffi

Ny0
p

, times a sphere of radius
ffiffiffiffi
N

p
, and so

ρEðΓy0Þ ¼ ðCrn−4drÞðCNðn−4Þ=2Þ ðA8Þ

¼ 1

2
C2Nn−7=2yðn−5Þ=20 dy0 ðA9Þ

with C the surface area of the ðn − 4Þ-dimensional unit
sphere. After dropping the factor dy0, this yields (6).

APPENDIX B: REDUCED PHASE SPACE
OF THE TOY MODEL

In this appendix we verify (8). To this end, we need to
compute ρEðΓx0;y0Þ with
Γx0;y0 ¼ fðq; pÞ ∈ ΓE∶x0 ≤ xðq; pÞ ≤ x0 þ dx0;

y0 ≤ yðq; pÞ ≤ y0 þ dy0g: ðB1Þ
To this end, we use the fact that

Γx0;y0 ¼ ∪
p∈U∩S ffiffi

N
p Mp × fpg ðB2Þ

with

Mp ¼ fq ∈ U∶x0 ≤ xðq; pÞ ≤ x0 þ dx0;

y0 ≤ yðq; pÞ ≤ y0 þ dy0g: ðB3Þ

As we will show presently, Vp ≔ voln−3ðMpÞ ¼ V is
independent of p. This fact, together with (B2), implies that
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ρEðΓx0;y0Þ ¼ VCNðn−4Þ=2: ðB4Þ

To compute Vp, we choose an orthonormal basis in U
whose first basis vector points in the direction of p and
introduce spherical coordinates for q in this basis:

q ¼
ffiffiffiffiffiffiffiffi
Ny0

p
ðcosϕ1; sinϕ1 cosϕ2; sinϕ1 sinϕ2 cosϕ3;…;

sinϕ1 � � � sinϕn−4Þ: ðB5Þ

In these coordinates, by virtue of (A5),

xðq; pÞ ¼ N−1=2q1 ¼
ffiffiffiffiffi
y0

p
cosϕ1; ðB6Þ

so Mp is a shell of thickness dr ¼ ðN=2rÞdy0 over a
stratum of height dq1 ¼

ffiffiffiffi
N

p
dx0 of the ðn − 4Þ-

dimensional sphere of radius r ¼ ffiffiffiffiffiffiffiffi
Ny0

p
; thus, Vp equals

dr times the area Ap of the stratum, Ap ¼
C0ðr sinϕ1Þn−5rdϕ1 with C0 the area of the ðn − 5Þ-
dimensional unit sphere. Using dq1 ¼ r sinϕ1dϕ1, we
have that

Vp ¼ C0ðr2 − q21Þðn−6Þ=2
ffiffiffiffi
N

p
rdrdx0 ðB7Þ

¼ 1

2
C0Nðn−3Þ=2ðy0 − x20Þðn−6Þ=2dx0dy0; ðB8Þ

indeed independently of p, and thus

ρEðΓx0;y0Þ ¼
1

2
CC0Nn−7=2ðy0 − x20Þðn−6Þ=2dx0dy0; ðB9Þ

which proves Eq. (8).
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